EP3698066B1 - Process for manufacturing a composite friction part - Google Patents

Process for manufacturing a composite friction part Download PDF

Info

Publication number
EP3698066B1
EP3698066B1 EP18803457.3A EP18803457A EP3698066B1 EP 3698066 B1 EP3698066 B1 EP 3698066B1 EP 18803457 A EP18803457 A EP 18803457A EP 3698066 B1 EP3698066 B1 EP 3698066B1
Authority
EP
European Patent Office
Prior art keywords
phase
precursor
zro
densification
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18803457.3A
Other languages
German (de)
French (fr)
Other versions
EP3698066A1 (en
Inventor
Eric Bouillon
Arnaud DELEHOUZE
Amandine LORRIAUX
Laurence Maille
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Safran Ceramics SA
Original Assignee
Centre National de la Recherche Scientifique CNRS
Safran Ceramics SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Safran Ceramics SA filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP3698066A1 publication Critical patent/EP3698066A1/en
Application granted granted Critical
Publication of EP3698066B1 publication Critical patent/EP3698066B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/83Carbon fibres in a carbon matrix
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/6286Carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62884Coating the powders or the macroscopic reinforcing agents by gas phase techniques
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/02Braking members; Mounting thereof
    • F16D65/12Discs; Drums for disc brakes
    • F16D65/125Discs; Drums for disc brakes characterised by the material used for the disc body
    • F16D65/126Discs; Drums for disc brakes characterised by the material used for the disc body the material being of low mechanical strength, e.g. carbon, beryllium; Torque transmitting members therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Compositions of linings; Methods of manufacturing
    • F16D69/023Composite materials containing carbon and carbon fibres or fibres made of carbonizable material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3895Non-oxides with a defined oxygen content, e.g. SiOC, TiON
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5252Fibers having a specific pre-form
    • C04B2235/5256Two-dimensional, e.g. woven structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/614Gas infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/79Non-stoichiometric products, e.g. perovskites (ABO3) with an A/B-ratio other than 1
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/0034Materials; Production methods therefor non-metallic
    • F16D2200/0039Ceramics
    • F16D2200/0047Ceramic composite, e.g. C/C composite infiltrated with Si or B, or ceramic matrix infiltrated with metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/0082Production methods therefor
    • F16D2200/0091Impregnating a mat of fibres with a binder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2250/00Manufacturing; Assembly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/02Braking members; Mounting thereof
    • F16D65/12Discs; Drums for disc brakes
    • F16D65/125Discs; Drums for disc brakes characterised by the material used for the disc body

Definitions

  • the invention relates to the manufacture of friction parts based on carbon/carbon (C/C) composite material, such as aircraft brake discs.
  • C/C carbon/carbon
  • Requirement EP 2 253 604 proposes a process for obtaining a friction part made of carbon/carbon (C/C) composite material incorporating a ceramic phase.
  • This friction part has low wear and a coefficient of friction adapted to the braking application and stable, in particular during high-energy braking.
  • the method disclosed in this application comprises the production of a preform in carbon threads, the densification of the preform by a carbon matrix and, during the manufacturing process, the introduction of ceramic grains or particles dispersed within the room.
  • the request EP 2 253 604 discloses carrying out, prior to the completion of the densification, impregnation with a liquid formed by a solution of the sol-gel type and/or a colloidal suspension allowing the dispersion of one or more zirconium compound(s). It is then obtained, in the final piece, grains or crystallites whose composition is at least predominantly of the ZrO x C y type with 1 ⁇ x ⁇ 2 and 0 ⁇ y ⁇ 1.
  • alcohol it is necessary to understand a compound having a single alcohol function.
  • polyalcohol it is necessary to understand a compound having several alcohol functions.
  • the second precursor used here is a C 1 to C 6 alcohol or polyalcohol functionalized, at the level of the oxygen atom of at least one alcohol function, by a group formed by zirconium Zr to which are linked three substituents R
  • the precursor has the following general formula: CH - O - Zr - R 3 , where CH denotes the C 1 to C 6 carbon chain of the alcohol or polyalcohol, and O the oxygen atom of the alcohol function bound to zirconium.
  • the second modified alcohol or polyalcohol precursor advantageously makes it possible to obtain the ZrO x C y phase by implementing a chemical vapor infiltration process.
  • the second precursor has the particular advantage of having a decomposition temperature compatible with the temperatures conventionally used in CVI to form PyC, thus simplifying the implementation of densification.
  • the second precursor also has a reduced cost and good chemical stability, compared to commercial zirconium-based precursors.
  • y can be equal to 0 in the above formula if an oxidant is added in the gas phase in order to oxidize the carbon of the second precursor.
  • Such an oxidant can be dioxygen O 2 or a NO x .
  • Another possibility to reduce the carbon input is to lower the CVI treatment temperature so that the carbon does not crack and remains in the gas phase.
  • the invention makes it possible to obtain a friction part having the desired performance in terms of tribology and resistance to wear, in a simpler manner than in the prior art.
  • the alcohol or the polyalcohol on which the zirconium is grafted constitutes a compound available in large quantities and which can be obtained from renewable resources, thus conferring on the second precursor described above an increased availability compared to the precursors based on commercial zirconium.
  • the densification comprises at least the formation of a codeposition of the pyrocarbon and of the ZrO x C y phase at from a gaseous mixture of a gaseous pyrocarbon precursor and the second precursor.
  • R is chosen from: -H, C 1 to C 3 carbon chains and halogen atoms.
  • At least one substituent R is a C 1 to C 5 carbon chain, or even a C 1 to C 3 carbon chain, or a halogen atom.
  • the R substituents attached to the zirconium are not all -H.
  • the method further comprises a heat treatment for deoxygenation of the ZrO x C y phase formed.
  • the ZrO x C y phase is present, in the final part, in a mass content of between 0.5% and 25%, for example between 2% and 10%.
  • the friction part is a brake disc.
  • the invention is applicable to the production of other friction parts based on C/C composite material, such as brake discs for land vehicles, in particular automobiles, and friction parts other than discs, especially skates.
  • FIG. 1 A first example of implementation of a method according to the invention is illustrated by the figure 1 .
  • a first step consists in making a preform out of carbon threads for a brake disc (step E10).
  • a preform is for example produced by superimposing plies cut from a fibrous texture made of carbon precursor yarns, bonding the plies together by needling and transforming the precursor into carbon by heat treatment.
  • annular preform by winding in superimposed turns a helical fabric made of carbon precursor threads, binding the turns together by needling and transformation of the precursor by heat treatment.
  • a densification by CVI is then carried out in order to densify the preform by the matrix.
  • the fibrous preform to be densified is placed in a CVI reaction chamber. It is possible to implement a reaction chamber adapted to the formation of PyC, which is known per se.
  • the densification comprises a first densification cycle in which a first PyC matrix phase is formed from the first precursor (step E20).
  • the first PyC phase can be formed directly on the wires forming the preform.
  • the first PyC matrix phase can occupy between 5% and 60%, for example between 10% and 30%, of the initial porosity of the fiber preform.
  • a second densification cycle is then carried out during which a second matrix phase comprising the ZrO x C y phase is formed at least from the second precursor (step E30).
  • the second die phase can be formed directly on the first PyC die phase. According to this example, the introduction of the second gaseous precursor into the reaction chamber is initiated during the transition from the first to the second densification cycle.
  • the second precursor can constitute the only reactive gas introduced into the reaction chamber during the second densification cycle (no PyC precursor introduced in this case).
  • the ZrO x C y phase is formed only during this second cycle.
  • the reaction chamber it is possible to introduce, into the reaction chamber, a mixture of a PyC precursor and of the second precursor during the second densification cycle.
  • a codeposition of the ZrO x C y phase and of PyC is obtained.
  • the PyC precursor can be the first or the third precursor or a PyC precursor different from the first and the third precursor.
  • the second matrix phase can occupy between 1% and 10%, for example between 2% and 7%, of the initial porosity of the preform.
  • a heat treatment for deoxygenation can be carried out in order to eliminate at least some of the existing bonds between the zirconium and the oxygen in the ZrO x C y phase obtained.
  • This treatment makes it possible to modulate the stoichiometry of this phase. It is possible in particular, after deoxygenation, to transform the ZrO x C y phase into the ZrC phase. According to the example illustrated, the deoxygenation heat treatment is carried out after the second densification cycle and before the start of the third densification cycle.
  • the thermal deoxygenation treatment constitutes a treatment known per se. It is within the general knowledge of those skilled in the art to determine the duration and the temperature to be implemented during this deoxygenation treatment, depending on the desired material to be obtained.
  • the temperature imposed during the deoxygenation treatment can be higher than the maximum temperature encountered during the formation of the matrix.
  • a third densification cycle is then carried out during which a third phase of PyC matrix is formed from a third gaseous precursor of PyC, identical to or different from the first precursor (step E50).
  • the third matrix phase can be formed directly on the optionally deoxygenated second matrix phase. According to this example, the introduction of the second precursor into the reaction chamber is stopped at the end of the second densification cycle and is not resumed during the third densification cycle.
  • the first and the third precursors can, independently of one another, be chosen from: natural gas, methane, propane, ethanol or a mixture of these compounds.
  • the second precursor can be obtained by modifying the C 1 to C 6 alcohol or polyalcohol by implementing organic chemistry reactions known to those skilled in the art, in order to covalently bind the oxygen atom from the alcohol function to the -Zr-R 3 group.
  • This bond can be produced by nucleophilic substitution of the oxygen atom of the alcohol function on the zirconium.
  • a second usable precursor it is possible to use a C 1 -C 6 alcohol or polyalcohol modified by grafting the Schwartz reagent (C 5 H 5 ) 2 ZrHCl onto the oxygen of the alcohol. This grafting is carried out by nucleophilic substitution reaction by binding of the oxygen of the alcohol function to the zirconium and departure of the chlorine from the Schwartz reagent.
  • R is for each occurrence, identically or differently, -H, a C 1 to C 5 carbon chain, such as a C 1 to C 5 alkyl radical, or a halogen atom.
  • R can be for each occurrence, in an identical or different manner, -H, a C 1 to C 3 carbon chain, such as a C 1 to C 3 alkyl radical, or a halogen atom.
  • R can be for each occurrence, in an identical or different manner, -H, a methyl radical or a halogen atom.
  • the alcohol or the polyalcohol is C 2 to C 4 .
  • the alcohol or the polyalcohol can have a linear, branched or cyclic chain.
  • the alcohol or the polyalcohol (before modification by zirconium bonding) is chosen from: methanol, ethanol, ethylene glycol, propanol, glycerol, butanol, pentanol, hexanol, cyclopropanol, cyclobutanol, cyclopentanol, cyclohexanol or a phenol.
  • the alcohol is ethanol.
  • the precursor is a modified polyalcohol and the oxygen atoms of each alcohol function can be linked to a -Zr-R 3 group, where R is as described above, the -Zr-R 3 groups being in this case identical or different.
  • the -Zr-R 3 groups being in this case identical or different.
  • only part of the alcohol functions can be functionalized by a —Zr—R 3 group.
  • the invention can be implemented in a known CVI installation suitable for PyC densification comprising an additional introduction line making it possible to inject the second gaseous precursor into the reaction enclosure.
  • the second precursor can be introduced into the reaction enclosure by means known per se commonly used in CVI to introduce the precursor in the gaseous state.
  • the densification can be carried out in a reaction chamber at a temperature of approximately 1000° C. and under a pressure preferably of less than 5 kPa. These conditions correspond to the temperature and pressure conditions typically used to form PyC by CVI.
  • the first phase of matrix PyC is formed sequentially, then the second phase of matrix comprising the phase ZrO x C y , then the third phase of matrix PyC.
  • a sequenced matrix is thus obtained comprising at least a first and third layers of PyC and a second layer comprising the ZrO x C y phase interposed between the first and third layers.
  • a first phase of PyC matrix is first formed as described above, then a second phase of ZrO x C y matrix as described above. The densification of the preform can thus be completed by the formation of this second matrix phase.
  • the method first comprises the formation of a fibrous preform (step E60) then the densification of this preform, which comprises at least the formation of a codeposition of PyC and of the ZrO x C y phase (step E70 ).
  • ZrO x C y inclusions distributed throughout the volume of the matrix. These ZrO x C y inclusions are dispersed in the pyrocarbon matrix.
  • the matrix formed from the first and second precursors can occupy at least 50%, or even at least 75%, of the initial porosity of the fibrous preform.
  • the entire matrix can be formed by co-deposition of PyC and the ZrO x C y phase.
  • the preform can be fully densified by this codeposition.
  • only part of the matrix can be formed by co-deposition of PyC and of the ZrO x C y phase, the rest of the matrix having a different composition.
  • the codeposition of PyC and the ZrO x C y phase can have a uniform composition (the codeposition has a homogeneous composition).
  • the relative proportions between the precursor gas of PyC and the second precursor based on zirconium are kept constant during codeposition.
  • the composition of the co-deposition of PyC and of the ZrO x C y phase can vary.
  • the relative proportions between the precursor gas of PyC and the second precursor based on zirconium are modified during codeposition. This modification of the relative proportions during the deposition makes it possible to locally control the proportion of the ZrO x C y phase formed in the matrix obtained.
  • a deoxygenation heat treatment (step E80) can be carried out once the co-deposition has been carried out, if this is desired.
  • densification by a matrix phase additional E90 can be made, optionally.
  • the additional matrix phase can for example be PyC.
  • the relative proportions between the PyC precursor(s) and the second ZrO x C y precursor injected determine the mass content of the ZrO x C y phase obtained in the final part.

Description

L'invention concerne la fabrication de pièces de friction à base de matériau composite carbone/carbone (C/C), telles que des disques de freins d'avions.The invention relates to the manufacture of friction parts based on carbon/carbon (C/C) composite material, such as aircraft brake discs.

Arrière-plan de l'inventionBackground of the invention

La demande EP 2 253 604 propose un procédé pour obtenir une pièce de friction en matériau composite carbone/carbone (C/C) incorporant une phase céramique. Cette pièce de friction présente une faible usure et un coefficient de friction adapté à l'application au freinage et stable, notamment lors de freinage à haute énergie.Requirement EP 2 253 604 proposes a process for obtaining a friction part made of carbon/carbon (C/C) composite material incorporating a ceramic phase. This friction part has low wear and a coefficient of friction adapted to the braking application and stable, in particular during high-energy braking.

Le procédé divulgué dans cette demande comprend la réalisation d'une préforme en fils de carbone, la densification de la préforme par une matrice de carbone et, au cours du processus de fabrication, l'introduction de grains ou particules en céramique dispersés au sein de la pièce. Plus précisément, la demande EP 2 253 604 divulgue de réaliser, préalablement à l'achèvement de la densification, une imprégnation par un liquide formé par une solution de type sol-gel et/ou une suspension colloïdale permettant la dispersion d'un ou plusieurs composé(s) du zirconium. Il est alors obtenu, dans la pièce finale, des grains ou cristallites dont la composition est au moins majoritairement de type ZrOxCy avec 1 ≤ x ≤ 2 et 0 ≤ y ≤ 1.The method disclosed in this application comprises the production of a preform in carbon threads, the densification of the preform by a carbon matrix and, during the manufacturing process, the introduction of ceramic grains or particles dispersed within the room. More specifically, the request EP 2 253 604 discloses carrying out, prior to the completion of the densification, impregnation with a liquid formed by a solution of the sol-gel type and/or a colloidal suspension allowing the dispersion of one or more zirconium compound(s). It is then obtained, in the final piece, grains or crystallites whose composition is at least predominantly of the ZrO x C y type with 1 ≤ x ≤ 2 and 0 ≤ y ≤ 1.

La pièce de friction obtenue par le procédé décrit dans la demande EP 2 253 604 présente de bonnes performances. En revanche, ce procédé est plus complexe que le procédé standard de réalisation d'un disque entièrement C/C. En effet dans cette demande, l'insertion du ou des composés à base de zirconium, est réalisée lors d'une étape par voie liquide, totalement dissociée de celle consistant à élaborer le pyrocarbone par densification par voie gazeuse (CVI).The friction part obtained by the process described in the application EP 2 253 604 shows good performance. However, this process is more complex than the standard process of making an all-C/C disc. In fact, in this application, the insertion of the zirconium-based compound(s) is carried out during a stage by a liquid route, completely separate from that consisting in producing the pyrocarbon by gaseous route densification (CVI).

En particulier, il est divulgué dans la demande EP 2 253 604 de réaliser l'insertion du zirconium, après un premier stade de densification par du pyrocarbone par CVI. La pièce est alors déchargée du four CVI puis immergée dans un sol précurseur de zircone, séchée et traitée thermiquement. La pièce est alors à nouveau introduite dans le four CVI, pour terminer la densification de la matrice pyrocarbone. Cette insertion du zirconium, totalement dissociée du procédé d'infiltration chimique en phase vapeur, occasionne une complexification et un rallongement de la fabrication.In particular, it is disclosed in the application EP 2 253 604 to carry out the insertion of the zirconium, after a first stage of densification by pyrocarbon by CVI. The part is then unloaded from the CVI furnace and then immersed in a zirconia precursor sol, dried and treated thermally. The part is then again introduced into the CVI furnace, to complete the densification of the pyrocarbon matrix. This insertion of zirconium, completely dissociated from the process of chemical infiltration in the vapor phase, causes a complexification and an extension of the manufacture.

Il serait souhaitable de simplifier le procédé de fabrication de pièces de friction en matériau composite C/C incorporant une phase céramique de zirconium.It would be desirable to simplify the process for manufacturing friction parts in C/C composite material incorporating a zirconium ceramic phase.

Objet et résumé de l'inventionSubject matter and summary of the invention

L'invention vise un procédé de fabrication d'une pièce de friction en matériau composite, comprenant au moins l'étape suivante :

  • densification d'une préforme fibreuse en fils de carbone par une matrice comprenant au moins du pyrocarbone (PyC) et au moins une phase ZrOxCy, où 1 ≤ x ≤ 2 et 0 ≤ y ≤ 1, la matrice étant formée par infiltration chimique en phase vapeur (CVI) au moins à partir d'un premier précurseur gazeux de pyrocarbone et d'un deuxième précurseur gazeux comprenant du zirconium, ledit deuxième précurseur étant un alcool ou un polyalcool en C1 à C6 modifié par liaison de l'atome d'oxygène d'au moins une fonction alcool à un groupement de formule -Zr-R3, les substituants R étant identiques ou différents, et R étant choisi parmi : -H, les chaînes carbonées en C1 à C5 et les atomes d'halogène.
The invention relates to a method for manufacturing a friction part made of composite material, comprising at least the following step:
  • densification of a fiber preform made of carbon threads by a matrix comprising at least pyrocarbon (PyC) and at least one ZrO x C y phase, where 1 ≤ x ≤ 2 and 0 ≤ y ≤ 1, the matrix being formed by infiltration chemical vapor phase (CVI) at least from a first gaseous pyrocarbon precursor and a second gaseous precursor comprising zirconium, said second precursor being a C 1 to C 6 alcohol or polyalcohol modified by binding oxygen atom of at least one alcohol function to a group of formula -Zr-R 3 , the substituents R being identical or different, and R being chosen from: -H, C 1 to C 5 carbon chains and halogen atoms.

Par « alcool », il faut comprendre un composé ayant une seule fonction alcool. Par « polyalcool », il faut comprendre un composé ayant plusieurs fonctions alcool.By “alcohol”, it is necessary to understand a compound having a single alcohol function. By “polyalcohol”, it is necessary to understand a compound having several alcohol functions.

Le deuxième précurseur utilisé ici est un alcool ou un polyalcool en C1 à C6 fonctionnalisé, au niveau de l'atome d'oxygène d'au moins une fonction alcool, par un groupement formé par du zirconium Zr auquel sont liés trois substituants R. Le précurseur présente la formule générale suivante : CH - O - Zr - R3, où CH désigne la chaîne carbonée en C1 à C6 de l'alcool ou du polyalcool, et O l'atome d'oxygène de la fonction alcool lié au zirconium.The second precursor used here is a C 1 to C 6 alcohol or polyalcohol functionalized, at the level of the oxygen atom of at least one alcohol function, by a group formed by zirconium Zr to which are linked three substituents R The precursor has the following general formula: CH - O - Zr - R 3 , where CH denotes the C 1 to C 6 carbon chain of the alcohol or polyalcohol, and O the oxygen atom of the alcohol function bound to zirconium.

Le deuxième précurseur alcool ou polyalcool modifié permet avantageusement d'obtenir la phase ZrOxCy par mise en œuvre d'un procédé d'infiltration chimique en phase vapeur. Par rapport aux précurseurs à base de zirconium commerciaux, le deuxième précurseur présente notamment l'avantage d'avoir une température de décomposition compatible avec les températures classiquement utilisées en CVI pour former du PyC, simplifiant ainsi la mise en œuvre de la densification. Le deuxième précurseur présente en outre un coût réduit et une bonne stabilité chimique, par rapport aux précurseurs à base de zirconium commerciaux. Dans un cas particulier, y peut être égal à 0 dans la formule plus haut si l'on ajoute un oxydant dans la phase gazeuse afin d'oxyder le carbone du deuxième précurseur. Un tel oxydant peut être le dioxygène O2 ou un NOx. Une autre possibilité pour réduire l'apport de carbone est d'abaisser la température de traitement CVI afin que le carbone ne se craque pas et reste en phase gazeuse.The second modified alcohol or polyalcohol precursor advantageously makes it possible to obtain the ZrO x C y phase by implementing a chemical vapor infiltration process. Relative to commercial zirconium-based precursors, the second precursor has the particular advantage of having a decomposition temperature compatible with the temperatures conventionally used in CVI to form PyC, thus simplifying the implementation of densification. The second precursor also has a reduced cost and good chemical stability, compared to commercial zirconium-based precursors. In a particular case, y can be equal to 0 in the above formula if an oxidant is added in the gas phase in order to oxidize the carbon of the second precursor. Such an oxidant can be dioxygen O 2 or a NO x . Another possibility to reduce the carbon input is to lower the CVI treatment temperature so that the carbon does not crack and remains in the gas phase.

L'invention permet d'obtenir une pièce de friction ayant les performances souhaitées en termes tribologiques et de résistance à l'usure, de manière plus simple que dans l'art antérieur. En particulier, il est possible de s'affranchir des étapes de déchargement du four et de rechargement dans le four effectuées dans l'état de la technique en formant la matrice uniquement par CVI.The invention makes it possible to obtain a friction part having the desired performance in terms of tribology and resistance to wear, in a simpler manner than in the prior art. In particular, it is possible to dispense with the steps of unloading from the furnace and of reloading in the furnace carried out in the state of the art by forming the matrix solely by CVI.

En outre, l'alcool ou le polyalcool sur lequel le zirconium est greffé constitue un composé disponible en grande quantité et qui peut être obtenu à partir de ressources renouvelables, conférant ainsi au deuxième précurseur décrit plus haut une disponibilité accrue par rapport aux précurseurs à base de zirconium commerciaux.In addition, the alcohol or the polyalcohol on which the zirconium is grafted constitutes a compound available in large quantities and which can be obtained from renewable resources, thus conferring on the second precursor described above an increased availability compared to the precursors based on commercial zirconium.

Dans un exemple de réalisation, la densification comprend :

  • un premier cycle de densification dans lequel une première phase de matrice de pyrocarbone est formée à partir du premier précurseur,
  • un deuxième cycle de densification, réalisé après le premier cycle, dans lequel une deuxième phase de matrice comprenant la phase ZrOxCy est formée au moins à partir du deuxième précurseur, et
  • un troisième cycle de densification, réalisé après le deuxième cycle, dans lequel une troisième phase de matrice de pyrocarbone est formée à partir d'un troisième précurseur gazeux de pyrocarbone, identique ou différent du premier précurseur.
In an exemplary embodiment, the densification comprises:
  • a first densification cycle in which a first pyrocarbon matrix phase is formed from the first precursor,
  • a second densification cycle, carried out after the first cycle, in which a second matrix phase comprising the ZrO x C y phase is formed at least from the second precursor, and
  • a third densification cycle, carried out after the second cycle, in which a third pyrocarbon matrix phase is formed from a third gaseous pyrocarbon precursor, identical to or different from the first precursor.

Dans un exemple de réalisation, la densification comprend au moins la formation d'un co-dépôt du pyrocarbone et de la phase ZrOxCy à partir d'un mélange gazeux d'un précurseur gazeux de pyrocarbone et du deuxième précurseur.In an exemplary embodiment, the densification comprises at least the formation of a codeposition of the pyrocarbon and of the ZrO x C y phase at from a gaseous mixture of a gaseous pyrocarbon precursor and the second precursor.

Dans un exemple de réalisation, R est choisi parmi : -H, les chaînes carbonées en C1 à C3 et les atomes d'halogène.In an exemplary embodiment, R is chosen from: -H, C 1 to C 3 carbon chains and halogen atoms.

Dans un exemple de réalisation, au moins un substituant R est une chaîne carbonée en C1 à C5, voire en C1 à C3, ou un atome d'halogène. En d'autres termes dans ce cas, les substituants R rattachés au zirconium ne sont pas tous -H.In an exemplary embodiment, at least one substituent R is a C 1 to C 5 carbon chain, or even a C 1 to C 3 carbon chain, or a halogen atom. In other words in this case, the R substituents attached to the zirconium are not all -H.

Dans un exemple de réalisation, le procédé comprend, en outre, un traitement thermique de désoxygénation de la phase ZrOxCy formée.In an exemplary embodiment, the method further comprises a heat treatment for deoxygenation of the ZrO x C y phase formed.

Dans un exemple de réalisation, la phase ZrOxCy, éventuellement désoxygénée, est présente, dans la pièce finale, en une teneur massique comprise entre 0,5% et 25%, par exemple comprise entre 2% et 10%.In an exemplary embodiment, the ZrO x C y phase, optionally deoxygenated, is present, in the final part, in a mass content of between 0.5% and 25%, for example between 2% and 10%.

Dans un exemple de réalisation, la pièce de friction est un disque de frein.In an exemplary embodiment, the friction part is a brake disc.

Brève description des dessinsBrief description of the drawings

D'autres caractéristiques et avantages de l'invention ressortiront de la description suivante, donnée à titre non limitatif, en référence aux dessins annexés, sur lesquels :

  • la figure 1 est un ordinogramme montrant différentes étapes d'un premier exemple de procédé selon l'invention, et
  • la figure 2 est un ordinogramme montrant différentes étapes d'un deuxième exemple de procédé selon l'invention.
Other characteristics and advantages of the invention will emerge from the following description, given without limitation, with reference to the appended drawings, in which:
  • the figure 1 is a flowchart showing different steps of a first example of a method according to the invention, and
  • the picture 2 is a flowchart showing different steps of a second example of a method according to the invention.

Description détaillée de modes de réalisationDetailed description of embodiments

Dans la description qui suit, il est plus particulièrement envisagé la réalisation de disques à base de matériau composite C/C pour des freins d'avion. Toutefois, l'invention est applicable à la réalisation d'autres pièces de friction à base de matériau composite C/C, telles que des disques de frein pour des véhicules terrestres, notamment des automobiles, et des pièces de friction autres que des disques, notamment des patins.In the following description, it is more particularly envisaged the production of disks based on C/C composite material for aircraft brakes. However, the invention is applicable to the production of other friction parts based on C/C composite material, such as brake discs for land vehicles, in particular automobiles, and friction parts other than discs, especially skates.

Un premier exemple de mise en œuvre d'un procédé selon l'invention est illustré par la figure 1.A first example of implementation of a method according to the invention is illustrated by the figure 1 .

Une première étape consiste à réaliser une préforme en fils de carbone pour disque de frein (étape E10). Une telle préforme est par exemple réalisée par superposition de strates découpées dans une texture fibreuse en fils de précurseur de carbone, liaison des strates entre elles par aiguilletage et transformation du précurseur en carbone par traitement thermique.A first step consists in making a preform out of carbon threads for a brake disc (step E10). Such a preform is for example produced by superimposing plies cut from a fibrous texture made of carbon precursor yarns, bonding the plies together by needling and transforming the precursor into carbon by heat treatment.

En variante, on peut aussi réaliser une préforme annulaire par enroulement en spires superposées d'un tissu hélicoïdal en fils de précurseur de carbone, liaison des spires entre elles par aiguilletage et transformation du précurseur par traitement thermique. On pourra par exemple se référer aux documents US 5 792 715 , US 6 009 605 et US 6 363 593 .As a variant, it is also possible to produce an annular preform by winding in superimposed turns a helical fabric made of carbon precursor threads, binding the turns together by needling and transformation of the precursor by heat treatment. For example, reference can be made to the documents US 5,792,715 , US 6,009,605 and US 6,363,593 .

On peut aussi réaliser la préforme directement à partir de strates de texture fibreuse en fils de carbone qui sont superposées et liées entre elles par exemple par aiguilletage.It is also possible to produce the preform directly from strata of fibrous texture in carbon threads which are superposed and bonded together, for example by needling.

On réalise ensuite une densification par CVI afin de densifier la préforme par la matrice.A densification by CVI is then carried out in order to densify the preform by the matrix.

Pour cela, la préforme fibreuse à densifier est placée dans une enceinte réactionnelle de CVI. On peut mettre en œuvre une enceinte réactionnelle adaptée à la formation de PyC, connue en soi.For this, the fibrous preform to be densified is placed in a CVI reaction chamber. It is possible to implement a reaction chamber adapted to the formation of PyC, which is known per se.

Dans l'exemple associé à l'ordinogramme de la figure 1, la densification comprend un premier cycle de densification dans lequel une première phase de matrice PyC est formée à partir du premier précurseur (étape E20). La première phase PyC peut être formée directement sur les fils formant la préforme.In the example associated with the flowchart of the figure 1 , the densification comprises a first densification cycle in which a first PyC matrix phase is formed from the first precursor (step E20). The first PyC phase can be formed directly on the wires forming the preform.

On obtient, après le premier cycle de densification et avant le début du deuxième cycle de densification, une préforme partiellement densifiée par la première phase de matrice PyC. La première phase de matrice PyC peut occuper entre 5% et 60%, par exemple entre 10% et 30%, de la porosité initiale de la préforme fibreuse.After the first densification cycle and before the start of the second densification cycle, a preform partially densified by the first phase of PyC matrix is obtained. The first PyC matrix phase can occupy between 5% and 60%, for example between 10% and 30%, of the initial porosity of the fiber preform.

On réalise ensuite un deuxième cycle de densification durant lequel une deuxième phase de matrice comprenant la phase ZrOxCy est formée au moins à partir du deuxième précurseur (étape E30). La deuxième phase de matrice peut être formée directement sur la première phase de matrice PyC. Selon cet exemple, l'introduction du deuxième précurseur gazeux dans l'enceinte réactionnelle est initiée lors du passage du premier au deuxième cycle de densification.A second densification cycle is then carried out during which a second matrix phase comprising the ZrO x C y phase is formed at least from the second precursor (step E30). The second die phase can be formed directly on the first PyC die phase. According to this example, the introduction of the second gaseous precursor into the reaction chamber is initiated during the transition from the first to the second densification cycle.

Selon un exemple, le deuxième précurseur peut constituer l'unique gaz réactif introduit dans l'enceinte réactionnelle durant le deuxième cycle de densification (pas de précurseur de PyC introduit dans ce cas). Auquel cas, on forme uniquement durant ce deuxième cycle la phase ZrOxCy.According to one example, the second precursor can constitute the only reactive gas introduced into the reaction chamber during the second densification cycle (no PyC precursor introduced in this case). In which case, the ZrO x C y phase is formed only during this second cycle.

En variante, on peut introduire, dans l'enceinte réactionnelle, un mélange d'un précurseur de PyC et du deuxième précurseur durant le deuxième cycle de densification. Auquel cas, on obtient un co-dépôt de la phase ZrOxCy et de PyC. Dans ce dernier cas, le précurseur de PyC peut être le premier ou le troisième précurseur ou un précurseur de PyC différent du premier et du troisième précurseur. La deuxième phase de matrice peut occuper entre 1% et 10%, par exemple entre 2% et 7%, de la porosité initiale de la préforme.As a variant, it is possible to introduce, into the reaction chamber, a mixture of a PyC precursor and of the second precursor during the second densification cycle. In which case, a codeposition of the ZrO x C y phase and of PyC is obtained. In the latter case, the PyC precursor can be the first or the third precursor or a PyC precursor different from the first and the third precursor. The second matrix phase can occupy between 1% and 10%, for example between 2% and 7%, of the initial porosity of the preform.

Si cela est souhaité, un traitement thermique (étape E40 optionnelle) de désoxygénation peut être réalisé afin d'éliminer une partie au moins des liaisons existantes entre le zirconium et l'oxygène dans la phase ZrOxCy obtenue. Ce traitement permet de moduler la stoechiométrie de cette phase. On peut en particulier, après désoxygénation, transformer la phase ZrOxCy en phase de ZrC. Selon l'exemple illustré, le traitement thermique de désoxygénation est réalisé après le deuxième cycle de densification et avant le début du troisième cycle de densification.If desired, a heat treatment (optional step E40) for deoxygenation can be carried out in order to eliminate at least some of the existing bonds between the zirconium and the oxygen in the ZrO x C y phase obtained. This treatment makes it possible to modulate the stoichiometry of this phase. It is possible in particular, after deoxygenation, to transform the ZrO x C y phase into the ZrC phase. According to the example illustrated, the deoxygenation heat treatment is carried out after the second densification cycle and before the start of the third densification cycle.

Le traitement thermique de désoxygénation constitue un traitement connu en soi. Il va des connaissances générales de l'homme du métier de déterminer la durée et la température à mettre en œuvre durant ce traitement de désoxygénation, en fonction du matériau souhaité à obtenir.The thermal deoxygenation treatment constitutes a treatment known per se. It is within the general knowledge of those skilled in the art to determine the duration and the temperature to be implemented during this deoxygenation treatment, depending on the desired material to be obtained.

La température imposée durant le traitement de désoxygénation peut être supérieure à la température maximale rencontrée durant la formation de la matrice.The temperature imposed during the deoxygenation treatment can be higher than the maximum temperature encountered during the formation of the matrix.

On réalise ensuite un troisième cycle de densification durant lequel une troisième phase de matrice PyC est formée à partir d'un troisième précurseur gazeux de PyC, identique ou différent du premier précurseur (étape E50). La troisième phase de matrice peut être formée directement sur la deuxième phase de matrice, éventuellement désoxygénée. Selon cet exemple, l'introduction du deuxième précurseur dans l'enceinte réactionnelle est stoppée à la fin du deuxième cycle de densification et n'est pas reprise durant le troisième cycle de densification.A third densification cycle is then carried out during which a third phase of PyC matrix is formed from a third gaseous precursor of PyC, identical to or different from the first precursor (step E50). The third matrix phase can be formed directly on the optionally deoxygenated second matrix phase. According to this example, the introduction of the second precursor into the reaction chamber is stopped at the end of the second densification cycle and is not resumed during the third densification cycle.

Le premier et le troisième précurseurs peuvent, indépendamment l'un de l'autre, être choisis parmi : le gaz naturel, le méthane, le propane, l'éthanol ou un mélange de ces composés.The first and the third precursors can, independently of one another, be chosen from: natural gas, methane, propane, ethanol or a mixture of these compounds.

Le deuxième précurseur peut être obtenu par modification de l'alcool ou du polyalcool en C1 à C6 en mettant en œuvre des réactions de chimie organique connues de l'homme du métier, afin de lier de manière covalente l'atome d'oxygène de la fonction alcool au groupement -Zr-R3. Cette liaison peut être réalisée par substitution nucléophile de l'atome d'oxygène de la fonction alcool sur le zirconium.The second precursor can be obtained by modifying the C 1 to C 6 alcohol or polyalcohol by implementing organic chemistry reactions known to those skilled in the art, in order to covalently bind the oxygen atom from the alcohol function to the -Zr-R 3 group. This bond can be produced by nucleophilic substitution of the oxygen atom of the alcohol function on the zirconium.

A titre d'exemple de deuxième précurseur utilisable, on peut utiliser un alcool ou un polyalcool en C1-C6 modifié par greffage du réactif de Schwartz (C5H5)2ZrHCl sur l'oxygène de l'alcool. Ce greffage est réalisé par réaction de substitution nucléophile par liaison de l'oxygène de la fonction alcool au zirconium et départ du chlore du réactif de Schwartz.By way of example of a second usable precursor, it is possible to use a C 1 -C 6 alcohol or polyalcohol modified by grafting the Schwartz reagent (C 5 H 5 ) 2 ZrHCl onto the oxygen of the alcohol. This grafting is carried out by nucleophilic substitution reaction by binding of the oxygen of the alcohol function to the zirconium and departure of the chlorine from the Schwartz reagent.

R est pour chaque occurrence, de manière identique ou différente, -H, une chaîne carbonée en C1 à C5, comme un radical alkyle en C1 à C5, ou un atome d'halogène.R is for each occurrence, identically or differently, -H, a C 1 to C 5 carbon chain, such as a C 1 to C 5 alkyl radical, or a halogen atom.

Plus particulièrement, R peut être pour chaque occurrence, de manière identique ou différente, -H, une chaîne carbonée en C1 à C3, comme un radical alkyle en C1 à C3, ou un atome d'halogène.More particularly, R can be for each occurrence, in an identical or different manner, -H, a C 1 to C 3 carbon chain, such as a C 1 to C 3 alkyl radical, or a halogen atom.

Plus particulièrement encore, R peut être pour chaque occurrence, de manière identique ou différente, -H, un radical méthyle ou un atome d'halogène.More particularly still, R can be for each occurrence, in an identical or different manner, -H, a methyl radical or a halogen atom.

Dans un exemple de réalisation, l'alcool ou le polyalcool est en C2 à C4. L'alcool ou le polyalcool peut présenter une chaîne linéaire, ramifiée ou cyclique.In an exemplary embodiment, the alcohol or the polyalcohol is C 2 to C 4 . The alcohol or the polyalcohol can have a linear, branched or cyclic chain.

Dans un exemple de réalisation, l'alcool ou le polyalcool (avant modification par liaison au zirconium) est choisi parmi : le méthanol, l'éthanol, l'éthylène glycol, le propanol, le glycérol, le butanol, le pentanol, l'hexanol, le cyclopropanol, le cyclobutanol, le cyclopentanol, le cyclohexanol ou un phénol. En particulier, l'alcool est l'éthanol.In an exemplary embodiment, the alcohol or the polyalcohol (before modification by zirconium bonding) is chosen from: methanol, ethanol, ethylene glycol, propanol, glycerol, butanol, pentanol, hexanol, cyclopropanol, cyclobutanol, cyclopentanol, cyclohexanol or a phenol. In particular, the alcohol is ethanol.

Selon un exemple, le précurseur est un polyalcool modifié et les atomes d'oxygène de chaque fonction alcool peuvent être liés à un groupement -Zr-R3, où R est tel que décrit plus haut, les groupements - Zr-R3 étant dans ce cas identiques ou différents. En variante, seule une partie des fonctions alcool peuvent être fonctionnalisées par un groupement -Zr-R3.According to one example, the precursor is a modified polyalcohol and the oxygen atoms of each alcohol function can be linked to a -Zr-R 3 group, where R is as described above, the -Zr-R 3 groups being in this case identical or different. As a variant, only part of the alcohol functions can be functionalized by a —Zr—R 3 group.

L'invention peut être mise en œuvre dans une installation de CVI connue adaptée à la densification PyC comprenant une ligne d'introduction supplémentaire permettant d'injecter le deuxième précurseur gazeux dans l'enceinte réactionnelle. Le deuxième précurseur peut être introduit dans l'enceinte réactionnelle par des moyens connus en soi communément utilisés dans la CVI pour introduire le précurseur à l'état gazeux.The invention can be implemented in a known CVI installation suitable for PyC densification comprising an additional introduction line making it possible to inject the second gaseous precursor into the reaction enclosure. The second precursor can be introduced into the reaction enclosure by means known per se commonly used in CVI to introduce the precursor in the gaseous state.

On peut réaliser la densification dans une enceinte réactionnelle à une température d'environ 1000°C et sous une pression de préférence inférieure à 5 kPa. Ces conditions correspondent aux conditions de température et de pression typiquement utilisées pour former du PyC par CVI.The densification can be carried out in a reaction chamber at a temperature of approximately 1000° C. and under a pressure preferably of less than 5 kPa. These conditions correspond to the temperature and pressure conditions typically used to form PyC by CVI.

Dans l'exemple qui vient d'être décrit en lien avec la figure 1, on forme séquentiellement la première phase de matrice PyC, puis la deuxième phase de matrice comprenant la phase ZrOxCy, puis la troisième phase de matrice PyC. On obtient ainsi une matrice séquencée comprenant au moins une première et troisième couches de PyC et une deuxième couche comprenant la phase ZrOxCy intercalée entre les première et troisième couches. Dans une variante de procédé non illustrée, on peut s'affranchir de la formation de cette troisième phase de matrice. Auquel cas, on forme d'abord une première phase de matrice PyC comme décrit plus haut, puis une deuxième phase de matrice ZrOxCy comme décrit plus haut. La densification de la préforme peut ainsi être terminée par la formation de cette deuxième phase de matrice.In the example just described in connection with the figure 1 , the first phase of matrix PyC is formed sequentially, then the second phase of matrix comprising the phase ZrO x C y , then the third phase of matrix PyC. A sequenced matrix is thus obtained comprising at least a first and third layers of PyC and a second layer comprising the ZrO x C y phase interposed between the first and third layers. In a variant of the process not illustrated, it is possible to dispense with the formation of this third matrix phase. In which case, a first phase of PyC matrix is first formed as described above, then a second phase of ZrO x C y matrix as described above. The densification of the preform can thus be completed by the formation of this second matrix phase.

On va maintenant décrire une variante de procédé selon l'invention en lien avec la figure 2.A method variant according to the invention will now be described in connection with the figure 2 .

Dans l'exemple de la figure 2, le procédé comprend d'abord la formation d'une préforme fibreuse (étape E60) puis la densification de cette préforme, laquelle comprend au moins la formation d'un co-dépôt de PyC et de la phase ZrOxCy (étape E70).In the example of the picture 2 , the method first comprises the formation of a fibrous preform (step E60) then the densification of this preform, which comprises at least the formation of a codeposition of PyC and of the ZrO x C y phase (step E70 ).

On peut, en particulier, obtenir des inclusions de ZrOxCy réparties dans tout le volume de la matrice. Ces inclusions ZrOxCy sont dispersées dans la matrice de pyrocarbone.It is possible, in particular, to obtain ZrO x C y inclusions distributed throughout the volume of the matrix. These ZrO x C y inclusions are dispersed in the pyrocarbon matrix.

La matrice formée à partir des premier et deuxième précurseurs peut occuper au moins 50%, voire au moins 75%, de la porosité initiale de la préforme fibreuse. L'intégralité de la matrice peut être formée par un co-dépôt de PyC et de la phase ZrOxCy. Ainsi, la préforme peut intégralement densifiée par ce co-dépôt. En variante, seule une partie de la matrice peut être formée par un co-dépôt de PyC et de la phase ZrOxCy, le reste de la matrice ayant une composition différente.The matrix formed from the first and second precursors can occupy at least 50%, or even at least 75%, of the initial porosity of the fibrous preform. The entire matrix can be formed by co-deposition of PyC and the ZrO x C y phase. Thus, the preform can be fully densified by this codeposition. As a variant, only part of the matrix can be formed by co-deposition of PyC and of the ZrO x C y phase, the rest of the matrix having a different composition.

Le co-dépôt de PyC et de la phase ZrOxCy peut avoir une composition uniforme (le co-dépôt présente une composition homogène). Dans ce cas, les proportions relatives entre le gaz précurseur de PyC et le deuxième précurseur à base de zirconium sont maintenues constantes lors du co-dépôt.The codeposition of PyC and the ZrO x C y phase can have a uniform composition (the codeposition has a homogeneous composition). In this case, the relative proportions between the precursor gas of PyC and the second precursor based on zirconium are kept constant during codeposition.

En variante, la composition du co-dépôt de PyC et de la phase ZrOxCy peut varier. Dans ce cas, les proportions relatives entre le gaz précurseur de PyC et le deuxième précurseur à base de zirconium sont modifiées lors du co-dépôt. Cette modification des proportions relatives lors du dépôt permet de contrôler localement la proportion de la phase de ZrOxCy formée dans la matrice obtenue.As a variant, the composition of the co-deposition of PyC and of the ZrO x C y phase can vary. In this case, the relative proportions between the precursor gas of PyC and the second precursor based on zirconium are modified during codeposition. This modification of the relative proportions during the deposition makes it possible to locally control the proportion of the ZrO x C y phase formed in the matrix obtained.

De manière similaire à ce qui a été décrit plus haut, un traitement thermique de désoxygénation (étape E80) peut être réalisé une fois le co-dépôt réalisé, si cela est souhaité. Après ce traitement thermique de désoxygénation E80, une densification par une phase de matrice additionnelle E90 peut être réalisée, de manière optionnelle. La phase de matrice additionnelle peut par exemple être du PyC.In a manner similar to what was described above, a deoxygenation heat treatment (step E80) can be carried out once the co-deposition has been carried out, if this is desired. After this E80 deoxygenation heat treatment, densification by a matrix phase additional E90 can be made, optionally. The additional matrix phase can for example be PyC.

Les détails décrits plus haut relatifs à la préforme fibreuse, aux précurseurs de PyC et de ZrOxCy et aux conditions opératoires CVI restent applicables à l'exemple de la figure 2.The details described above relating to the fibrous preform, to the PyC and ZrO x C y precursors and to the CVI operating conditions remain applicable to the example of the picture 2 .

Les proportions relatives entre le ou les précurseurs PyC et le deuxième précurseur de ZrOxCy injectés déterminent la teneur massique de la phase ZrOxCy obtenue dans la pièce finale. On peut en particulier obtenir dans la pièce finale une teneur comprise entre 0,5% et 25%, voire entre 2% et 10%, pour la phase ZrOxCy, cette phase pouvant ou non avoir subi le traitement de désoxygénation évoqué plus haut.The relative proportions between the PyC precursor(s) and the second ZrO x C y precursor injected determine the mass content of the ZrO x C y phase obtained in the final part. In particular, it is possible to obtain in the final part a content of between 0.5% and 25%, or even between 2% and 10%, for the ZrO x C y phase, this phase possibly or not having undergone the deoxygenation treatment mentioned above. high.

L'expression « compris(e) entre ... et ... » doit se comprendre comme incluant les bornes.The expression "between ... and ..." must be understood as including the limits.

Claims (9)

  1. A process for manufacturing a friction component of composite material, comprising at least the following step:
    - densification of a fibrous preform of carbon yarns by a matrix comprising at least pyrocarbon and at least one ZrOxCy phase, where 1 ≤ x ≤ 2 and 0 ≤ y ≤ 1, the matrix being formed by chemical vapor infiltration at least from a first gaseous precursor of pyrocarbon and a second gaseous precursor comprising zirconium, said second precursor being an alcohol or a C1 to C6 polyalcohol modified by linking the oxygen atom of at least one alcohol function to a group of formula -Zr-R3, the substituents R being identical or different, and R being selected from: -H, C1 to C5 carbon chains and halogen atoms.
  2. The process claimed in claim 1, wherein the densification comprises:
    - a first densification cycle in which a first pyrocarbon matrix phase is formed from the first precursor,
    - a second densification cycle, carried out after the first cycle, in which a second matrix phase comprising the ZrOxCy phase is formed at least from the second precursor, and
    - a third densification cycle, carried out after the second cycle, in which a third pyrocarbon matrix phase is formed from a third gaseous pyrocarbon precursor, identical or different from the first precursor.
  3. The process claimed in claim 1 or 2, wherein densification comprises at least the formation of a co-deposition of the pyrocarbon phase and the ZrOxCy phase from a gaseous mixture of a gaseous pyrocarbon precursor and the second precursor.
  4. The process as claimed in any one of claims 1 to 3, wherein R is selected from: -H, C1 to C3 carbon chains and halogen atoms.
  5. The process as claimed in any one of claims 1 to 4, wherein at least one substituent R is a C1 to C5 or C1 to C3 carbon chain or a halogen atom.
  6. The process as claimed in any one of claims 1 to 5, wherein the process further comprises a deoxygenation heat treatment of the ZrOxCy phase formed.
  7. The process as claimed in any one of claims 1 to 6, in which the ZrOxCy phase, optionally deoxygenated, is present, in the final component, in a mass content of between 0.5% and 25%.
  8. The process claimed in claim 7, in which the ZrOxCy phase, optionally deoxygenated, is present, in the final component, in a mass content of between 2% and 10%.
  9. The process as claimed in any one of claims 1 to 8, wherein the friction component is a brake disc.
EP18803457.3A 2017-10-19 2018-10-16 Process for manufacturing a composite friction part Active EP3698066B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1759873A FR3072675B1 (en) 2017-10-19 2017-10-19 METHOD FOR MANUFACTURING A FRICTION PIECE OF COMPOSITE MATERIAL
PCT/FR2018/052571 WO2019077260A1 (en) 2017-10-19 2018-10-16 Process for manufacturing a composite friction component

Publications (2)

Publication Number Publication Date
EP3698066A1 EP3698066A1 (en) 2020-08-26
EP3698066B1 true EP3698066B1 (en) 2022-11-30

Family

ID=61750213

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18803457.3A Active EP3698066B1 (en) 2017-10-19 2018-10-16 Process for manufacturing a composite friction part

Country Status (5)

Country Link
US (1) US11530727B2 (en)
EP (1) EP3698066B1 (en)
CN (1) CN111226057B (en)
FR (1) FR3072675B1 (en)
WO (1) WO2019077260A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3130276A1 (en) * 2021-12-15 2023-06-16 Safran Ceramics Installation of thermochemical treatment and method of manufacturing a friction part in composite material

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2637890B1 (en) * 1988-09-14 1991-02-01 Europ Propulsion COMPOSITE MATERIAL WITH ZIRCONIA MATRIX
JPH0672070B2 (en) 1991-07-25 1994-09-14 住友電気工業株式会社 High-density fiber-reinforced composite material manufacturing apparatus and manufacturing method
FR2726013B1 (en) 1994-10-20 1997-01-17 Carbone Ind PROCESS FOR PRODUCING A FIBROUS SUBSTRATE BY SUPERIMPOSING FIBROUS LAYERS AND SUBSTRATE THUS OBTAINED
FR2741634B1 (en) 1995-11-27 1998-04-17 Europ Propulsion PROCESS FOR THE REALIZATION OF FIBROUS PREFORMS INTENDED FOR THE MANUFACTURE OF ANNULAR PIECES IN COMPOSITE MATERIAL
FR2824084B1 (en) 2001-04-30 2003-08-01 Messier Bugatti NEEDLE FEEDER BY CONTINUOUS SPIRAL BAND
FR2869609B1 (en) * 2004-05-03 2006-07-28 Snecma Propulsion Solide Sa PROCESS FOR MANUFACTURING A THERMOSTRUCTURAL COMPOSITE MATERIAL PART
FR2880016B1 (en) * 2004-12-23 2007-04-20 Messier Bugatti Sa PROCESS FOR PRODUCING A FIBROUS PREFORM FOR THE MANUFACTURE OF CARBON / CARBON COMPOSITE MATERIAL PARTS INCORPORATING CERAMIC PARTICLES, AND PRODUCT PRODUCED THEREBY
GB2432363B (en) * 2005-11-16 2010-06-23 Epichem Ltd Hafnocene and zirconocene precursors, and use thereof in atomic layer deposition
CN100390221C (en) 2006-06-26 2008-05-28 北京航空航天大学 Carbon-base brake material for track vehicle
FR2945529B1 (en) * 2009-05-13 2011-06-17 Messier Bugatti PIECE BASED ON COMPOSITE C / C MATERIAL AND METHOD FOR MANUFACTURING THE SAME
JP5959307B2 (en) * 2011-06-22 2016-08-02 株式会社日立国際電気 Semiconductor device manufacturing method, substrate processing method, substrate processing apparatus, and program
CN103247689A (en) 2012-02-04 2013-08-14 李德杰 Graphene field effect transistor
JP6106278B2 (en) * 2013-09-27 2017-03-29 株式会社日立国際電気 Semiconductor device manufacturing method, substrate processing apparatus, and program
US9970497B2 (en) * 2015-12-18 2018-05-15 Goodrich Corporation Systems and methods for carbon-carbon materials incorporating yttrium and zirconium compounds

Also Published As

Publication number Publication date
FR3072675A1 (en) 2019-04-26
US20200325950A1 (en) 2020-10-15
CN111226057B (en) 2022-02-01
FR3072675B1 (en) 2019-11-01
WO2019077260A1 (en) 2019-04-25
CN111226057A (en) 2020-06-02
US11530727B2 (en) 2022-12-20
EP3698066A1 (en) 2020-08-26

Similar Documents

Publication Publication Date Title
EP2253604B1 (en) Part made from a C/C composite material and method for manufacturing same
EP2340238B1 (en) Method of manufacturing pieces of thermostructural composite material
EP3830056B1 (en) Method for manufacturing a part made from cmc
EP0956276B2 (en) Friction element in composite carbon/carbon-silicon carbide material and method for manufacturing same
EP2637986B1 (en) Method for the production of a friction part comprising a c/c composite material
FR2732338A1 (en) COMPOSITE MATERIAL PROTECTED AGAINST OXIDATION BY SELF-CRITICIZING MATRIX AND METHOD FOR MANUFACTURING THE SAME
FR2880016A1 (en) PROCESS FOR PRODUCING A FIBROUS PREFORM FOR THE MANUFACTURE OF CARBON / CARBON COMPOSITE MATERIAL PARTS INCORPORATING CERAMIC PARTICLES, AND PRODUCT PRODUCED THEREBY
FR2852003A1 (en) Production of a multi-perforated component in a composite material with a ceramic base involves the insertion and elimination of pins in a consolidated fibrous preformer, notably for the combustion chamber of a jet engine
EP2234944B1 (en) Method for making a refractory carbide layer on a part made of c/c composite material
EP3698066B1 (en) Process for manufacturing a composite friction part
CA3029384A1 (en) Method for chemical vapour deposition or infiltration
EP3473607B1 (en) Method for producing a friction part made of composite material
FR3072670A1 (en) PROCESS FOR MANUFACTURING A WORKPIECE FROM A MODIFIED ALCOHOL OR POLYALCOOL PRECURSOR
FR2778403A1 (en) CARBON / CARBON COMPOSITE MATERIAL HAVING INCREASED OXIDATION RESISTANCE
EP3642031B1 (en) Process for manufacturing a fibrous preform filled with particles

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200406

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C23C 16/56 20060101ALI20220413BHEP

Ipc: C23C 16/40 20060101ALI20220413BHEP

Ipc: C23C 16/26 20060101ALI20220413BHEP

Ipc: C04B 35/83 20060101ALI20220413BHEP

Ipc: C23C 16/04 20060101ALI20220413BHEP

Ipc: C23C 16/30 20060101ALI20220413BHEP

Ipc: C23C 16/455 20060101ALI20220413BHEP

Ipc: F16D 65/12 20060101ALI20220413BHEP

Ipc: F16D 69/02 20060101AFI20220413BHEP

INTG Intention to grant announced

Effective date: 20220513

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1534912

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018043736

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230331

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230228

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1534912

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230330

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602018043736

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230920

Year of fee payment: 6

26N No opposition filed

Effective date: 20230831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230920

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230920

Year of fee payment: 6