EP3696865B1 - Photodiode - Google Patents

Photodiode Download PDF

Info

Publication number
EP3696865B1
EP3696865B1 EP20156051.3A EP20156051A EP3696865B1 EP 3696865 B1 EP3696865 B1 EP 3696865B1 EP 20156051 A EP20156051 A EP 20156051A EP 3696865 B1 EP3696865 B1 EP 3696865B1
Authority
EP
European Patent Office
Prior art keywords
walls
photodiode
wall
lateral
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20156051.3A
Other languages
German (de)
English (en)
Other versions
EP3696865A1 (fr
Inventor
Boris Rodrigues Goncalves
Arnaud Tournier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STMicroelectronics Crolles 2 SAS
Original Assignee
STMicroelectronics Crolles 2 SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by STMicroelectronics Crolles 2 SAS filed Critical STMicroelectronics Crolles 2 SAS
Publication of EP3696865A1 publication Critical patent/EP3696865A1/fr
Application granted granted Critical
Publication of EP3696865B1 publication Critical patent/EP3696865B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • H01L27/14607Geometry of the photosensitive area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1463Pixel isolation structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14634Assemblies, i.e. Hybrid structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0203Containers; Encapsulations, e.g. encapsulation of photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/103Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type

Definitions

  • This description concerns photodiodes.
  • a photodiode is a semiconductor component having the capacity to detect radiation in the optical domain and transform it into an electrical signal. More precisely, light forms electrons in the active area of the photodiode. These electrons must then be recovered by an electrical circuit.
  • the electrons formed at a given moment, when capturing a scene are stored in memories, and the quantity of electrons is then read by a circuit so to obtain information about the scene.
  • the expressions “approximately”, “approximately”, “substantially”, and “of the order of” mean to the nearest 10%, preferably to the nearest 5%.
  • a solution for increasing the speed of movement of electrons towards the memories is the formation of an electric field in the photodiode, for example by applying a gradual voltage to the photodiode, the voltage being lower away from the contact and higher near the contact. contact.
  • FIG. 1 represents, in a top view (1A) and a sectional view (1B) along the plane BB of view 1A, an embodiment of a photodiode 100.
  • the photodiode 100 is located in a semiconductor substrate, for example silicon, and comprises a PN junction.
  • the PN junction comprises a P-type semiconductor layer 102 covered with an N-type semiconductor layer 103.
  • the layer 103 is for example covered with a heavily P-doped semiconductor layer 104 (P++).
  • the semiconductor layers 102, 103 and 104 are for example made of silicon.
  • the photodiode 100 comprises a connection pad 105.
  • the pad 105 allows for example a connection between the photodiode 100 and other electrical components, for example example a sampling system which may include transfer gates, memories or even N-type semiconductor regions forming nodes.
  • the pad 105 therefore corresponds to one of the terminals of the photodiode, for example to the photodiode.
  • the photodiode 100 can comprise several pads 105.
  • two pads 105 can be located on the layer 104.
  • the photodiode 100 includes walls 110, or trenches, extending over the entire height of the photodiode.
  • wall or trench is understood to mean a structure made of a semiconductor material, for example silicon.
  • the walls 110 extend at least from the upper face of the layer 103 to the lower face of the layer 102.
  • the walls 110 pass through the semiconductor layers forming the photodiode.
  • the walls 110 extend across the entire semiconductor substrate in which the photodiode 110 is formed. In the example of the figure 1 , the walls also cross layer 104.
  • the walls 110 include external walls, surrounding, in the example of the figure 1 , entirely the photodiode. More precisely, the photodiode 100 is surrounded by the external walls 110a, 110b, 110c and 110d.
  • the walls 110a and 110c are for example substantially parallel.
  • the side walls 110b and 110d are for example substantially parallel.
  • the walls 110a and 110c are for example substantially perpendicular to the walls 110b and 110d.
  • the wall 110a is for example the wall closest to the connection pad(s) 105, among the walls 110a, 110b, 110c and 110d.
  • the connection pad 105 shown in figure 1 is for example located substantially equidistant from the walls 110b and 110d.
  • the pads 105 can for example form a line parallel to the walls 110a and 110c.
  • the walls 110 include, in addition to the external walls 110a, 110b, 110c and 110d, internal or central walls, substantially parallel to the walls 110b and 110d, extending from the wall 110c.
  • the internal walls and the walls 110b and 110d form the branches of a comb-shaped structure.
  • the branches are, in the example of figure 1 , interconnected by wall 110c.
  • the internal and external walls are interconnected and preferably receive the same electrical potential.
  • the comb includes nine walls, including walls 110b and 110d.
  • the comb comprises an odd number of walls.
  • pad 105 is located in the part of the photodiode between wall 110a and the end of wall M1.
  • the stud 105 is preferably facing the end of the wall M1.
  • the pad 105 is located between the external walls.
  • the pad 105 is not separated from the external walls 110b and 110d by one or more central walls.
  • Each internal wall 110 is included between two walls of greater length.
  • wall M1 is included between walls 110b and 110d.
  • Each wall M2 is, in this example, between wall M1 and one of the external walls 110b, 110d.
  • Each wall M3 is, in this example, included between one of the walls M2 and the wall M1 or between one of the walls M2 and one of the external walls 110b, 110d.
  • the comb includes at least the side walls 110b and 110d (or walls M0) and at least the central wall M1.
  • the comb comprises n rows of walls M1 to Mn, in which n is an integer greater than or equal to 1, and preferably less than or equal to 3.
  • the comb preferably comprises 2 ⁇ (i-1) walls Mi of the row i ( ⁇ representing the power function), with i an integer between 1 and n.
  • the length of each wall Mi of rank i, with i an integer between 1 and n, is less than the lengths of the walls of rank lower than i.
  • each central wall is located between two walls of lower rank, including a wall of immediately lower rank, that is to say that each central wall Mi of rank i, with i an integer between 1 and n, is located between two walls of rank less than i, one of these two walls being a wall of rank i-1.
  • each wall Mi of rank i is preferably substantially equal to 3/4 of the length of the walls Mi-1, for i between 2 and n.
  • Each wall Mi-1 of rank i-1, with i an integer between 2 and n, is located between a wall Mj and a wall Mk, j and k being integers less than i, j and k being able to be equal to the same integer .
  • the walls 110 have, for example, all the same width x, the width being the smallest dimension of the walls in top view (view 1A), for example between approximately 100 nm and approximately 300 nm.
  • Each wall is for example separated from the walls the closest by a distance x1 substantially equal to 5*x (* represents a multiplication).
  • the walls M2 are separated from the walls 110b or 110d and from the wall M1 by a distance x2 substantially equal to 11*x.
  • the wall M1 is separated from the side walls 110b and 110d by a distance x3, substantially equal to 23*x.
  • the side walls 110b and 110d are separated by a distance x4 substantially equal to 47*x.
  • the shortest walls that is to say the Mn walls (M3 in figure 1 ), have for example a length, in top view, of between 200 nm and 1500 nm.
  • the walls of the same row have approximately the same length, seen from above.
  • the central and external walls 110 are connected to a negative voltage source, for example substantially less than -1 V.
  • a negative voltage source for example substantially less than -1 V.
  • the same negative voltage is applied to all the walls 110, the walls 110 being interconnected.
  • the negative voltage applied to the walls causes the formation of a gradual electrostatic potential in the photodiode. More precisely, the electrostatic potential is lower in the parts of the photodiode where the walls are closest (at the level of the walls Mn) than at the level of the pad 105, around which there are no internal walls Mi.
  • the electric field produced by this potential gradient preferably substantially constant, allows the electrons formed by the photodiode to move more quickly. In particular, the electric field allows the electrons formed by the photodiode to move more quickly towards the pad(s) 105.
  • the walls located substantially perpendicular to the internal walls Mi may not be formed.
  • the external walls may only surround partially the active zone of the photodiode.
  • wall 110a and/or wall 110c may not be present. If the wall 110c is absent, the internal walls are then connected by other means to a negative voltage application node, preferably to the same negative voltage application node.
  • FIG 2 represents an example of variations of a potential V in the photodiode, as a function of the position (Z) on a path 150 ( figure 1 ) starting at a point 152 ( figure 1 ), in the wall 110c, and ending in a memory (not shown), via the connection pad 105 ( figure 1 ).
  • the origin of the abscissa axis corresponds to point 152 located in wall 110c.
  • FIG. 2 comprises arrows 200, 202, 204 and 206. Each arrow corresponds to the passage in a different region of the photodiode 100.
  • the arrow 200 corresponds to the passage in a first region, delimited, on the path 150, by the wall 110c on one side and a point 156 on the other ( figure 1 ). More precisely, the first region extends from wall 110c to the end of walls M3. This is the region in which an electron is always less than the x1 distance from a wall. The potential V in the first region is greater than in wall 110c and increases as it approaches point 156.
  • Arrow 202 corresponds to passage in a second region, delimited, on path 150, by point 156 on one side and point 158 on the other ( figure 1 ). More precisely, the second region extends from the end of walls M3 to the end of walls M2. This is the region in which an electron is always less than the x2 distance from a wall. The potential V in the second region is more important than in the first region and increases approaching point 158.
  • Arrow 204 corresponds to passage in a third region, delimited, on path 150, by point 158 on one side and point 160 on the other ( figure 1 ). More precisely, the third region extends from the end of walls M2 to the end of wall M1. This is the region in which an electron is always less than the x3 distance from a wall. The potential V in the third region is greater than in the second region and increases approaching point 160.
  • Arrow 206 corresponds to the passage in a fourth region, delimited, on path 150, by point 160 on one side and point 154 on the other ( figure 1 ). More precisely, the fourth region extends from the end of wall M1 to pad 105. This is the region in which an electron is always located at a distance less than the distance x4 from a wall. The potential V in the fourth region is greater than in the third region and increases approaching point 154.
  • the potential V in the photodiode representative of the electric field present in the photodiode, is gradual between point 152 and point 154, increasing as we approach wall 110a and pad 105.
  • the drop in potential V after point 154 corresponds to the passage through the sampling system.
  • FIG. 3 represents, in a top view, another embodiment of a photodiode 300.
  • the photodiode 300 includes, like the photodiode 100 of the figure 1 , an N-type doped layer 103 (not shown), a P-type doped layer 102 (not shown) and a heavily doped P++ type layer 104. Furthermore, the photodiode includes walls 110b, 110c and 110d. Wall 110a is not present in the example of the Figure 3 .
  • the photodiode 300 includes, in addition to the walls M0 110b and 110d, only the wall M1.
  • the walls 110 (M0 and M1) extend over the entire height of the photodiode 300, as has been described for the walls 110 of the figure 1 .
  • the photodiode 300 further comprises one or more connection pads 105, as described previously.
  • a single pad 105 is shown in Figure 3 . In practice, several pads 105 can be located on the photodiode 300.
  • the potential variation between the wall 110c and the connection pad(s) 105 is more irregular than in the embodiment of the figure 1 .
  • the acceleration caused by the electric field is less significant.
  • the single wall M1 costs less surface area in the active zone of the photodiode than the walls M1, M2 and M3 of the embodiment of the figure 1 .
  • the increase in the integer n corresponding to the number of rows of walls leads to continuity in the variation of the potential V, that is to say a more regular variation of the potential V.
  • This continuity also leads to a loss of surface area in the active zone of the photodiode.
  • this loss of surface is at least partially compensated by the walls 110.
  • the walls 110 pass through the photodiode and therefore accelerate the movement of electrons located over the entire height of the photodiode, including electrons which would not have not been attracted by the connection pads 105 in the absence of the electric field caused by the walls 110. The efficiency of the photodiode is therefore increased.
  • FIG. 4 illustrates another embodiment of a photodiode 400.
  • the photodiode comprises two parts 400a and 400b.
  • Each of the parts 400a and 400b is similar to the photodiode 100 of the figure 1 , with the exception of wall 100c.
  • the parts 400a and 400b are symmetrical with respect to an axis X located between the parts 400a and 400b, at the location, for each part, where the wall 110c was located.
  • the photodiode 400 therefore includes, like the photodiode 100 of the figure 1 and the photodiode 300 of the Figure 3 , an N-type doped layer 103 (not shown), a P-type doped layer 102 (not shown) and a heavily doped P++ type layer 104.
  • the photodiode includes external walls 410a, 410b, 412a and 412b. Walls 412a and 412b correspond to walls 110a of each part 400a and 400b.
  • the axis X is for example substantially equidistant from the walls 412a and 412b.
  • the photodiode 400 further comprises side walls 410a and 410b. Walls 410a and 410b correspond to walls 110b and 110d of parts 400a and 400b.
  • the walls 410a and 410b are for example substantially parallel to each other. In the same way, the walls 412a and 412b are for example substantially parallel to each other. The walls 410a and 410b are for example substantially perpendicular to the walls 412a and 412b.
  • walls 412a and 412b may not be present.
  • the photodiode 400 comprises, in this example, two connection pads 105.
  • a connection pad 105 is located at wall 412a and another connection pad 105 is located at wall 412b, in the same way as a pad connection was located at wall 110a in the mode of realization of the figure 1 .
  • Each connection pad is for example located substantially equidistant from the walls 410a and 410b.
  • each pad 105 is located in the part of the photodiode between a wall 412a or 412b and one of the ends of the wall M1.
  • the photodiode may comprise a higher number of connection pads 105, as has been mentioned in relation to the figure 1 .
  • the photodiode 400 also includes the central walls M1 to Mn.
  • the central walls M1 to Mn extend for example from the axis X towards the walls 412a and 412b.
  • the length of each central wall is substantially equal in each of the parts 400a and 400b.
  • the central walls are not, in this example, interconnected by a wall 110c, as in figure 1 .
  • the walls 410a, 410b and the central walls form the branches of a comb.
  • Each central wall is included between two walls of greater length.
  • the wall M1 is included between the walls 410a and 410b
  • each wall M2 is included between the wall M1 and one of the external walls 410a, 410b
  • each wall M3 is included between one of the walls M2 and the wall M1 or between one of the walls M2 and one of the external walls 410a, 410b.
  • the photodiode 400 comprises at least the side walls 410a and 410b (or walls M0) and at least the central wall M1.
  • the photodiode 400 comprises n rows of walls M1 to Mn, in which n is an integer greater than or equal to 1, and preferably less than 3.
  • the photodiode 400 preferably comprises 2 ⁇ (i-1) walls Mi ( ⁇ representing the power function), with i an integer between 1 and n.
  • the length of each wall Mi of rank i is preferably substantially equal to 3/4 of the length of the walls Mi-1 of rank i-1, for i between 2 and n.
  • Each wall Mi, with i an integer between 1 and n is located between a wall Mj and a wall Mk, j and k being integers less than i.
  • the walls 110 that is to say the central walls Mi, have, for example, all the same width x, the width being the smallest dimension in top view, for example between approximately 100 nm and approximately 300 nm .
  • the walls are for example separated from adjacent walls by a distance x1 approximately equal to 5*x (* represents a multiplication).
  • the walls M2 are separated from the walls 410a or 410b and from the wall M1 by a distance x2 substantially equal to 11*x.
  • the wall M1 is separated from the side walls 410a or 410b by a distance x3, substantially equal to 23*x.
  • the side walls 410a and 410b are separated by a distance x4 substantially equal to 47*x.
  • the shortest walls that is to say the Mn walls (M3 in figure 1 ), for example have a length of between 400 and 3000 nm.
  • the central walls are connected to a negative voltage source, for example significantly less than -1 V.
  • a negative voltage source for example significantly less than -1 V.
  • the walls M1 to Mn and the external walls 410a, 410b, 412a and 412b are for example connected to each other via connection elements not shown, for example one or more metallization levels and conductive vias, or conductive wires.
  • the negative voltage applied to the walls 110 causes the formation of a gradual electrostatic potential in the photodiode. More precisely, the electrostatic potential is lower in the parts of the photodiode 400 where the walls are closest (at the level of the walls Mn) than at the level of the pads 105, around which there are no internal walls Mi
  • the electric field produced by this electrostatic potential allows the electrons formed by the photodiode to move more quickly to one side or the other of the photodiode.
  • the walls located substantially perpendicular to the internal walls Mi may not be formed.
  • wall 412a and/or wall 412b may not be present.
  • FIG. 5 represents an example of variations of a potential V, as a function of the position on a path 450 ( Figure 4 ) starting at a first electron collection point, for example a first memory and ending in a second electron collection point, for example a second memory, via the connection pads 105, represented by points 452 and 454 of road 450 ( Figure 4 ).
  • the origin of the abscissa axis therefore corresponds to the first memory.
  • FIG. 5 comprises arrows 504, 506, 508, 510, 512, 514 and 516. Each arrow corresponds to the passage in a different region of the photodiode 400.
  • Arrow 510 represents point 462 located at the intersection between path 450 and the axis point 462 and wall 412b will head towards point 452.
  • Zone 550 between arrows 508 and 512 corresponds to the potential variations between points 460 ( Figure 4 ) and 464 ( figure 4 ), that is to say in a first region in which an electron is always located at a distance less than the distance x1 from a wall.
  • the potential V in the first region is more important and increases as it approaches points 460 and 464.
  • Arrows 508 and 512 correspond to passages in second regions located, on path 150, between points 460 and 458 for one and between points 464 and 466 for the other ( Figure 4 ).
  • the potential V in the second regions is greater than in the first region and increases as it approaches points 458 and 466.
  • Arrows 506 and 514 correspond to passages in third regions located, on path 150, between points 458 and 456 for one and between points 466 and 468 for the other ( Figure 4 ).
  • the potential V in the thirds regions is more important than in the second regions and increases approaching points 456 and 468.
  • Arrows 504 and 516 correspond to passages in fourth regions located, on path 150, between points 456 and 452 for one and between points 468 and 454 for the other ( Figure 4 ). These are the regions of the photodiode 400, represented by the zones 556, in which an electron is always located at a distance less than the distance x4 from a wall. The potential V in the fourth regions is greater than in the third regions and increases approaching points 452 and 454.
  • the potential V in the photodiode 400 is gradual between point 462 and points 452 and 454, increasing as we approach the walls 412a and 412b. This allows the speed of the electrons to increase towards one or the other of the connection pads.
  • the significant rise 500 and the significant drop 502 in potential represent the passages in the memories, via the connection pads 105.
  • An advantage of the embodiments described here is that only one voltage is supplied to the walls 110. Thus, the implementation of the power management of the embodiments described is therefore simple.
  • the shape of the photodiode in such a way that the photodiode has, when viewed from above, a width decreasing along a rounded curve as we move away from a connection pad 105. This would have made it possible to form a gradual electrostatic potential in the photodiode. However, this would involve the formation of a photodiode having a complex shape which is not easy to manufacture. In addition, this would lead to significant limitations on the shape and dimensions of the photodiodes.
  • An advantage of the embodiments described is that the walls are in contact with the semiconductor layers 102 and 103 over their entire height.
  • the electric field is located, likewise, over the entire volume of the photodiode.
  • the speed of the electrons is therefore accelerated whatever their position in the photodiode. This is not the case in the examples where the negative voltage is only applied to the upper face of the photodiode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Light Receiving Elements (AREA)

Description

    Domaine technique
  • La présente description concerne les photodiodes.
  • Technique antérieure
  • Une photodiode est un composant semiconducteur ayant la capacité de détecter un rayonnement du domaine optique et de le transformer en signal électrique. Plus précisément, la lumière forme des électrons dans la zone active de la photodiode. Ces électrons doivent ensuite être récupérés par un circuit électrique.
  • Dans un capteur d'images 2D ou 3D comprenant des photodiodes, les électrons formés à un instant donné, lors de la capture d'une scène, sont stockés dans des mémoires, et la quantité d'électrons est ensuite lue par un circuit de manière à obtenir une information sur la scène.
  • Pour que l'information sur la scène soit précise et corresponde à l'instant donné, il est préférable que les électrons se déplacent rapidement vers les mémoires.
  • Le document US6538299 B1 divulgue un exemple de photodiode connue présentant une collection de porteurs par peignes interdigités.
  • Résumé de l'invention
  • L'invention est définie dans les revendications ci-jointes.
  • Brève description des dessins
  • Ces caractéristiques et avantages, ainsi que d'autres, seront exposés en détail dans la description suivante de modes de réalisation particuliers faite à titre non limitatif en relation avec les figures jointes parmi lesquelles :
    • la figure 1 représente, par une vue de dessus et une vue en coupe, un mode de réalisation d'une photodiode ;
    • la figure 2 représente le potentiel V dans la photodiode de la figure 1 en fonction de la position dans la photodiode du mode de réalisation de la figure 1 ;
    • la figure 3 représente, par une vue de dessus, un autre mode de réalisation d'une photodiode ;
    • la figure 4 représente un autre mode de réalisation d'une photodiode ; et
    • la figure 5 représente le potentiel V dans la photodiode de la figure 4 en fonction de la position dans la photodiode du mode de réalisation de la figure 4.
    Description des modes de réalisation
  • De mêmes éléments ont été désignés par de mêmes références dans les différentes figures. En particulier, les éléments structurels et/ou fonctionnels communs aux différents modes de réalisation peuvent présenter les mêmes références et peuvent disposer de propriétés structurelles, dimensionnelles et matérielles identiques.
  • Par souci de clarté, seuls les étapes et éléments utiles à la compréhension des modes de réalisation décrits ont été représentés et sont détaillés. En particulier, les applications des photodiodes ne seront pas détaillées.
  • Sauf précision contraire, lorsque l'on fait référence à deux éléments connectés entre eux, cela signifie directement connectés sans éléments intermédiaires autres que des conducteurs, et lorsque l'on fait référence à deux éléments reliés ou couplés entre eux, cela signifie que ces deux éléments peuvent être connectés ou être reliés ou couplés par l'intermédiaire d'un ou plusieurs autres éléments.
  • Dans la description qui suit, lorsque l'on fait référence à des qualificatifs de position absolue, tels que les termes "avant", "arrière", "haut", "bas", "gauche", "droite", etc., ou relative, tels que les termes "dessus", "dessous", "supérieur", "inférieur", etc., ou à des qualificatifs d'orientation, tels que les termes "horizontal", "vertical", etc., il est fait référence sauf précision contraire à l'orientation des figures.
  • Sauf précision contraire, les expressions "environ", "approximativement", "sensiblement", et "de l'ordre de" signifient à 10 % près, de préférence à 5 % près.
  • Une solution pour augmenter la rapidité du mouvement des électrons en direction des mémoires est la formation d'un champ électrique dans la photodiode, par exemple en appliquant une tension graduelle à la photodiode, la tension étant plus faible loin du contact et plus forte près du contact.
  • La figure 1 représente, par une vue de dessus (1A) et une vue en coupe (1B) selon le plan B-B de la vue 1A, un mode de réalisation d'une photodiode 100.
  • La photodiode 100 est située dans un substrat semiconducteur, par exemple en silicium et comprend une jonction PN. La jonction PN comprend une couche semiconductrice 102 de type P recouverte d'une couche semiconductrice 103 de type N. La couche 103 est par exemple recouverte d'une couche semiconductrice 104 fortement dopée P (P++). Les couches semiconductrices 102, 103 et 104 sont par exemple en silicium.
  • La photodiode 100 comprend un plot de connexion 105. Le plot 105 permet par exemple une connexion entre la photodiode 100 et d'autres composants électriques, par exemple un système d'échantillonnage pouvant comprendre des grilles de transfert, des mémoires ou encore des régions semiconductrices de type N formant des noeuds. Le plot 105 correspond donc à une des bornes de la photodiode, par exemple à la photodiode.
  • La figure 1 ne représente qu'un seul plot 105. En pratique, la photodiode 100 peut comprendre plusieurs plots 105. Par exemple, deux plots 105 peuvent être situés sur la couche 104.
  • La photodiode 100 comprend des murs 110, ou tranchées, s'étendant sur toute la hauteur de la photodiode. Dans la suite de ce texte, on entend par mur ou tranchée une structure en un matériau semiconducteur, par exemple en silicium. Par exemple, les murs 110 s'étendent au moins de la face supérieure de la couche 103 à la face inférieure de la couche 102. De préférence, les murs 110 traversent les couches semiconductrices formant la photodiode. De préférence, les murs 110 s'étendent à travers tout le substrat semiconducteur dans lequel est formée la photodiode 110. Dans l'exemple de la figure 1, les murs traversent aussi la couche 104.
  • Les murs 110 incluent des murs externes, entourant, dans l'exemple de la figure 1, entièrement la photodiode. Plus précisément, la photodiode 100 est entourée par les murs externes 110a, 110b, 110c et 110d. Les murs 110a et 110c sont par exemple sensiblement parallèles. De même, les murs latéraux 110b et 110d sont par exemple sensiblement parallèles. Les murs 110a et 110c sont par exemple sensiblement perpendiculaires avec les murs 110b et 110d.
  • Le mur 110a est par exemple le mur le plus proche du ou des plots de connexion 105, parmi les murs 110a, 110b, 110c et 110d. Le plot de connexion 105 représenté en figure 1 est par exemple situé sensiblement à égale distance des murs 110b et 110d.
  • Lorsque la photodiode 100 comprend plusieurs plots 105, les plots 105 peuvent par exemple former une ligne parallèle aux murs 110a et 110c.
  • Les murs 110 comprennent, en plus des murs externes 110a, 110b, 110c et 110d, des murs internes ou centraux, sensiblement parallèles aux murs 110b et 110d, s'étendant à partir du mur 110c. Les murs internes et les murs 110b et 110d forment les branches d'une structure en forme de peigne. Les branches sont, dans l'exemple de la figure 1, interconnectées par le mur 110c. Ainsi, les murs internes et externes sont interconnectés et reçoivent de préférence un même potentiel électrique.
  • Dans l'exemple de la figure 1, le peigne comprend neuf murs, y compris les murs 110b et 110d. De préférence, le peigne comprend un nombre impair de murs.
  • Le peigne de la figure 1 comprend :
    • un premier mur interne M1 (d'un rang 1), le plus long parmi les murs internes ;
    • deux deuxièmes murs interne M2 (d'un rang 2), chaque deuxième mur ayant, de préférence, une longueur sensiblement égale à 3/4 de la longueur du premier mur M1 ;
    • quatre troisièmes murs interne M3 (d'un rang 3), chaque troisième mur ayant, de préférence, une longueur y sensiblement égale à 3/4 de la longueur des deuxièmes murs.
  • Par longueur, on entend la plus grande dimension en vue de dessus, c'est-à-dire dans la vue de la figure 1.
  • Par exemple, le plot 105 est situé dans la partie de la photodiode entre le mur 110a et l'extrémité du mur M1. Le plot 105 est de préférence en regard de l'extrémité du mur M1. De préférence, le plot 105 est situé entre les murs externes. De préférence, le plot 105 n'est pas séparé des murs externes 110b et 110d par un ou plusieurs murs centraux.
  • Chaque mur interne 110 est compris entre deux murs de longueur supérieure. Dans l'exemple de la figure 1, le mur M1 est compris entre les murs 110b et 110d. Chaque mur M2 est, dans cet exemple, compris entre le mur M1 et un des murs externes 110b, 110d. Chaque mur M3 est, dans cet exemple, compris entre un des murs M2 et le mur M1 ou entre un des murs M2 et un des murs externes 110b, 110d.
  • Plus généralement, le peigne comprend au moins les murs latéraux 110b et 110d (ou murs M0) et au moins le mur central M1. Le peigne comprend n rangs de murs M1 à Mn, dans lequel n est un entier supérieur ou égal à 1, et de préférence inférieur ou égal à 3. Le peigne comprend, de préférence, 2^(i-1) murs Mi du rang i (^ représentant la fonction puissance), avec i un entier compris entre 1 et n. La longueur de chaque mur Mi de rang i, avec i un entier compris entre 1 et n, est inférieure aux longueurs des murs de rang inférieur à i. De plus, chaque mur central est situé entre deux murs de rang inférieur, dont un mur de rang immédiatement inférieur, c'est-à-dire que chaque mur central Mi de rang i, avec i un entier compris entre 1 et n, est situé entre deux murs de rang inférieurs à i, un de ces deux murs étant un mur de rang i-1.
  • La longueur de chaque mur Mi de rang i est, de préférence, sensiblement égale à 3/4 de la longueur des murs Mi-1, pour i compris entre 2 et n. Chaque mur Mi-1 de rang i-1, avec i un entier entre 2 et n, est situé entre un mur Mj et un mur Mk, j et k étant des entiers inférieurs à i, j et k pouvant être égaux au même entier.
  • Les murs 110 ont, par exemple, tous une même largeur x, la largeur étant la plus petite dimension des murs en vue de dessus (vue 1A), par exemple comprise entre environ 100 nm et environ 300 nm. Chaque mur est par exemple séparé des murs les plus proches par une distance x1 sensiblement égale à 5*x (* représente une multiplication).
  • Dans l'exemple de la figure 1, les murs M2 sont séparés des murs 110b ou 110d et du mur M1 par une distance x2 sensiblement égale à 11*x. Le mur M1 est séparé des murs latéraux 110b et 110d par une distance x3, sensiblement égale à 23*x. Les murs latéraux 110b et 110d sont séparés d'une distance x4 sensiblement égale à 47*x.
  • Les murs les moins longs, c'est-à-dire les murs Mn (M3 en figure 1), ont par exemple une longueur, en vue de dessus comprise entre 200 nm et 1500 nm. De préférence, les murs d'un même rang ont sensiblement la même longueur, en vue de dessus.
  • Les murs 110 centraux et externes sont connectés à une source de tension négative, par exemple sensiblement inférieure à -1 V. Par exemple, une même tension négative est appliquée à tous les murs 110, les murs 110 étant interconnectés.
  • La tension négative appliquée aux murs entraine la formation d'un potentiel électrostatique graduel dans la photodiode. Plus précisément, le potentiel électrostatique est plus faible dans les parties de la photodiode où les murs sont les plus proches (au niveau des murs Mn) qu'au niveau du plot 105, autour duquel il n'y a pas de murs internes Mi. Le champ électrique produit par ce gradient de potentiel, de préférence sensiblement constant, permet le déplacement plus rapide des électrons formés par la photodiode. En particulier, le champ électrique permet le déplacement plus rapide des électrons formés par la photodiode vers le ou les plots 105.
  • A titre de variante, les murs situés sensiblement perpendiculairement aux murs internes Mi peuvent ne pas être formés. Ainsi, les murs externes peuvent n'entourer que partiellement la zone active de la photodiode. Par exemple, le mur 110a et/ou le mur 110c peuvent ne pas être présents. Si le mur 110c est absent, les murs internes sont alors reliés par d'autres moyens à un noeud d'application de la tension négative, de préférence à un même noeud d'application de la tension négative.
  • La figure 2 représente un exemple de variations d'un potentiel V dans la photodiode, en fonction de la position (Z) sur un chemin 150 (figure 1) commençant en un point 152 (figure 1), dans le mur 110c, et se terminant dans une mémoire (non représentée), par l'intermédiaire du plot de connexion 105 (figure 1).
  • L'origine de l'axe des abscisses correspond au point 152 situé dans du mur 110c.
  • La figure 2 comprend des flèches 200, 202, 204 et 206. Chaque flèche correspond au passage dans une région différente de la photodiode 100.
  • La flèche 200 correspond au passage dans une première région, délimitée, sur le chemin 150, par le mur 110c d'un côté et un point 156 de l'autre (figure 1). Plus précisément, la première région s'étend du mur 110c à l'extrémité des murs M3. Il s'agit de la région dans laquelle un électron se situe toujours à une distance inférieure à la distance x1 d'un mur. Le potentiel V dans la première région est plus important que dans le mur 110c et augmente en se rapprochant du point 156.
  • La flèche 202 correspond au passage dans une deuxième région, délimitée, sur le chemin 150, par le point 156 d'un côté et un point 158 de l'autre (figure 1). Plus précisément, la deuxième région s'étend de l'extrémité des murs M3 à l'extrémité des murs M2. Il s'agit de la région dans laquelle un électron se situe toujours à une distance inférieure à la distance x2 d'un mur. Le potentiel V dans la deuxième région est plus important que dans la première région et augmente en se rapprochant du point 158.
  • La flèche 204 correspond au passage dans une troisième région, délimitée, sur le chemin 150, par le point 158 d'un côté et un point 160 de l'autre (figure 1). Plus précisément, la troisième région s'étend de l'extrémité des murs M2 à l'extrémité du mur M1. Il s'agit de la région dans laquelle un électron se situe toujours à une distance inférieure à la distance x3 d'un mur. Le potentiel V dans la troisième région est plus important que dans la deuxième région et augmente en se rapprochant du point 160.
  • La flèche 206 correspond au passage dans une quatrième région, délimitée, sur le chemin 150, par le point 160 d'un côté et un point 154 de l'autre (figure 1). Plus précisément, la quatrième région s'étend de l'extrémité du mur M1 au plot 105. Il s'agit de la région dans laquelle un électron se situe toujours à une distance inférieure à la distance x4 d'un mur. Le potentiel V dans la quatrième région est plus important que dans la troisième région et augmente en se rapprochant du point 154.
  • Ainsi, le potentiel V dans la photodiode, représentatif du champ électrique présent dans la photodiode, est graduel entre le point 152 et le point 154, augmentant lorsque l'on se rapproche du mur 110a et du plot 105.
  • La chute du potentiel V après le point 154 correspond au passage dans le système d'échantillonnage.
  • La figure 3 représente, par une vue de dessus, un autre mode de réalisation d'une photodiode 300.
  • La photodiode 300 comprend, comme la photodiode 100 de la figure 1, une couche 103 dopée de type N (non représentée), une couche 102 dopée de type P (non représentée) et une couche 104 fortement dopée de type P++. De plus, la photodiode comprend les murs 110b, 110c et 110d. Le mur 110a n'est pas présent dans l'exemple de la figure 3.
  • La photodiode 300 ne comprend, en plus des murs M0 110b et 110d, que le mur M1. Les murs 110 (M0 et M1) s'étendent sur toute la hauteur de la photodiode 300, comme cela a été décrit pour les murs 110 de la figure 1.
  • La photodiode 300 comprend, de plus, un ou plusieurs plots de connexion 105, tels qu'ils ont été décrits précédemment. Un seul plot 105 est représenté en figure 3. En pratique, plusieurs plots 105 peuvent être situés sur la photodiode 300.
  • Dans le cas du mode de réalisation de la figure 3, la variation de potentiel entre le mur 110c et le ou les plots de connexion 105 est plus irrégulière que dans le mode de réalisation de la figure 1. Ainsi, l'accélération causée par le champ électrique est moins importante. Cependant, le seul mur M1 coute moins de surface dans la zone active de la photodiode que les murs M1, M2 et M3 du mode de réalisation de la figure 1.
  • De manière plus générale, l'augmentation de l'entier n correspondant au nombre de rangs de murs entraine une continuité dans la variation du potentiel V, c'est-à-dire une variation plus régulière du potentiel V. Cette continuité entraine aussi une perte de surface dans la zone active de la photodiode. Cependant, cette perte de surface est au moins partiellement compensée par les murs 110. En effet, les murs 110 traversent la photodiode et accélèrent donc le mouvement d'électrons situés sur toute la hauteur de la photodiode, y compris des électrons qui n'aurait pas été attiré par les plots de connexion 105 en absence du champ électrique provoqué par les murs 110. Le rendement de la photodiode est donc augmenté.
  • La figure 4 illustre un autre mode de réalisation d'une photodiode 400.
  • La photodiode comprend deux parties 400a et 400b. Chacune des parties 400a et 400b est similaire à la photodiode 100 de la figure 1, à l'exception du mur 100c. Les parties 400a et 400b sont symétriques par rapport à un axe X situé entre les parties 400a et 400b, à l'emplacement, pour chaque partie, où était situé le mur 110c.
  • La photodiode 400 comprend donc, comme la photodiode 100 de la figure 1 et la photodiode 300 de la figure 3, une couche 103 dopée de type N (non représentée), une couche 102 dopée de type P (non représentée) et une couche 104 fortement dopée de type P++.
  • La photodiode comprend des murs externes 410a, 410b, 412a et 412b. Les murs 412a et 412b correspondent aux murs 110a de chaque partie 400a et 400b. L'axe X est par exemple sensiblement à égale distance des murs 412a et 412b.
  • La photodiode 400 comprend, de plus, des murs latéraux 410a et 410b. Les murs 410a et 410b correspondent aux murs 110b et 110d des parties 400a et 400b.
  • Les murs 410a et 410b sont par exemple sensiblement parallèles l'un à l'autre. De la même manière, les murs 412a et 412b sont par exemple sensiblement parallèles l'un à l'autre. Les murs 410a et 410b sont par exemple sensiblement perpendiculaires aux murs 412a et 412b.
  • Comme les murs 110a et 110c des modes de réalisation précédents, les murs 412a et 412b peuvent ne pas être présents.
  • La photodiode 400 comprend, dans cet exemple, deux plots de connexion 105. Un plot de connexion 105 est situé au niveau du mur 412a et un autre plot de connexion 105 est situé au niveau du mur 412b, de la même manière qu'un plot de connexion était situé au niveau du mur 110a dans le mode de réalisation de la figure 1. Chaque plot de connexion est par exemple situé sensiblement à égale distance des murs 410a et 410b. Par exemple, chaque plot 105 est situé dans la partie de la photodiode entre un mur 412a ou 412b et une des extrémités du mur M1.
  • A titre de variante, la photodiode peut comprendre un nombre plus élevé de plots de connexion 105, comme cela a été mentionné en relation avec la figure 1.
  • La photodiode 400 comprend, de plus, les murs centraux M1 à Mn. Les murs centraux M1 à Mn s'étendent par exemple depuis l'axe X vers les murs 412a et 412b. De préférence, la longueur de chaque mur central est sensiblement égale dans chacune des parties 400a et 400b.
  • Les murs centraux ne sont pas, dans cet exemple, interconnectés par un mur 110c, comme en figure 1. Cependant, les murs 410a, 410b et les murs centraux forment les branches d'un peigne.
  • Ainsi, comme la photodiode 100 de la figure 1, la photodiode 400 comprend :
    • un premier mur M1, le plus long parmi les murs centraux ;
    • deux deuxièmes murs M2, chaque deuxième mur ayant, de préférence, une longueur sensiblement égale à 3/4 de la longueur du premier mur M1 ;
    • quatre troisièmes murs M3, chaque troisième mur ayant, de préférence, une longueur sensiblement égale à 3/4 de la longueur des deuxièmes murs.
  • Chaque mur central est compris entre deux murs de longueur supérieure. Dans l'exemple de la figure 4, le mur M1 est compris entre les murs 410a et 410b, chaque mur M2 est compris entre le mur M1 et un des murs externes 410a, 410b, chaque mur M3 est compris entre un des murs M2 et le mur M1 ou entre un des murs M2 et un des murs externes 410a, 410b.
  • Plus généralement, la photodiode 400 comprend au moins les murs latéraux 410a et 410b (ou murs M0) et au moins le mur central M1. La photodiode 400 comprend n rangs de murs M1 à Mn, dans lequel n est un entier supérieur ou égal à 1, et de préférence inférieure à 3. La photodiode 400 comprend, de préférence, 2^(i-1) murs Mi (^ représentant la fonction puissance), avec i un entier compris entre 1 et n. La longueur de chaque mur Mi de rang i est, de préférence, sensiblement égale à 3/4 de la longueur des murs Mi-1 de rang i-1, pour i compris entre 2 et n. Chaque mur Mi, avec i un entier entre 1 et n, est situé entre un mur Mj et un mur Mk, j et k étant des entiers inférieurs à i.
  • Les murs 110, c'est-à-dire les murs centraux Mi, ont, par exemple, tous une même largeur x, la largeur étant la plus petite dimension en vue de dessus, par exemple comprise entre environ 100 nm et environ 300 nm. Les murs sont par exemple séparés des murs adjacents par une distance x1 sensiblement égale à 5*x (* représente une multiplication).
  • Dans l'exemple de la figure 4, les murs M2 sont séparés des murs 410a ou 410b et du mur M1 par une distance x2 sensiblement égale à 11*x. Le mur M1 est séparé des murs latéraux 410a ou 410b par une distance x3, sensiblement égale à 23*x. Les murs latéraux 410a et 410b sont séparés d'une distance x4 sensiblement égale à 47*x.
  • Les murs les moins longs, c'est-à-dire les murs Mn (M3 en figure 1), ont par exemple une longueur comprise entre 400 et 3000 nm.
  • Les murs centraux sont connectés à une source de tension négative, par exemple sensiblement inférieure à -1 V. Par exemple, une même tension négative est appliquée à tous les murs centraux. Les murs M1 à Mn et les murs externes 410a, 410b, 412a et 412b sont par exemple reliés les uns aux autres par l'intermédiaire d'éléments de connexion non représentés, par exemple un ou plusieurs niveaux de métallisation et des vias conducteurs, ou des fils conducteurs.
  • La tension négative appliquée aux murs 110 entraine la formation d'un potentiel électrostatique graduel dans la photodiode. Plus précisément, le potentiel électrostatique est plus faible dans les parties de la photodiode 400 où les murs sont les plus proches (au niveau des murs Mn) qu'au niveau des plots 105, autour desquels il n'y a pas de murs internes Mi. Le champ électrique produit par ce potentiel électrostatique permet le déplacement plus rapide des électrons formés par la photodiode d'un côté ou de l'autre de la photodiode.
  • A titre de variante, les murs situés sensiblement perpendiculairement aux murs internes Mi peuvent ne pas être formés. Par exemple, le mur 412a et/ou le mur 412b peuvent ne pas être présents.
  • La figure 5 représente un exemple de variations d'un potentiel V, en fonction de la position sur un chemin 450 (figure 4) commençant en un premier point de collecte des électrons, par exemple une première mémoire et terminant dans un deuxième point de collecte des électrons, par exemple une deuxième mémoire, par l'intermédiaire des plots de connexion 105, représentés par les points 452 et 454 du chemin 450 (figure 4). L'origine de l'axe des abscisses correspond donc à la première mémoire.
  • Les variations sont similaires aux variations décrites en relation avec la figure 2 pour chaque partie 400a et 400b.
  • La figure 5 comprend des flèches 504, 506, 508, 510, 512, 514 et 516. Chaque flèche correspond au passage dans une région différente de la photodiode 400.
  • La flèche 510 représente le point 462 situé au croisement entre le chemin 450 et l'axe X de symétrie de la photodiode 400. Les électrons situés entre le point 462 et le mur 412a vont se diriger vers le point 454. Les électrons situés entre le point 462 et le mur 412b vont se diriger vers le point 452.
  • La zone 550 entre les flèches 508 et 512 correspond aux variations de potentiel entre les points 460 (figure 4) et 464 (figure 4), c'est-à-dire dans une première région dans laquelle un électron se situe toujours à une distance inférieure à la distance x1 d'un mur. Le potentiel V dans la première région est plus important augmente en se rapprochant des point 460 et 464.
  • Les flèches 508 et 512 correspondent aux passages dans des deuxièmes régions situées, sur le chemin 150, entre les points 460 et 458 pour l'une et entre les points 464 et 466 pour l'autre (figure 4). Il s'agit des régions de la photodiode 400, représentés par les zones 552, dans lesquelles un électron se situe toujours à une distance inférieure à la distance x2 d'un mur. Le potentiel V dans les deuxièmes régions est plus important que dans la première région et augmente en se rapprochant des points 458 et 466.
  • Les flèches 506 et 514 correspondent aux passages dans des troisièmes régions situées, sur le chemin 150, entre les points 458 et 456 pour l'une et entre les points 466 et 468 pour l'autre (figure 4). Il s'agit des régions de la photodiode 400, représentés par les zones 554, dans lesquelles un électron se situe toujours à une distance inférieure à la distance x3 d'un mur. Le potentiel V dans les troisièmes régions est plus important que dans les deuxièmes régions et augmente en se rapprochant des points 456 et 468.
  • Les flèches 504 et 516 correspondent aux passages dans des quatrièmes régions situées, sur le chemin 150, entre les points 456 et 452 pour l'une et entre les points 468 et 454 pour l'autre (figure 4). Il s'agit des régions de la photodiode 400, représentés par les zones 556, dans lesquelles un électron se situe toujours à une distance inférieure à la distance x4 d'un mur. Le potentiel V dans les quatrièmes régions est plus important que dans les troisièmes régions et augmente en se rapprochant des points 452 et 454.
  • Ainsi, le potentiel V dans la photodiode 400, représentatif du champ électrique, est graduel entre le point 462 et les points 452 et 454, augmentant lorsque l'on se rapproche des murs 412a et 412b. Cela permet l'augmentation de la vitesse des électrons vers l'un ou l'autre des plots de connexion.
  • La montée importante 500 et la chute importante 502 de potentiel représentent les passages dans les mémoires, par l'intermédiaire des plots de connexion 105.
  • On aurait pu choisir de déposer de multiples électrodes sur la surface de la photodiode, chaque électrode étant à un potentiel différent de manière à former le champ électrique voulu. Cependant, une telle structure nécessite d'obtenir les différentes tensions, et nécessite donc un circuit complexe de gestion de puissance. De plus, une telle structure est couteuse en énergie.
  • Un avantage des modes de réalisation décrits ici est qu'une seule tension est fournie aux murs 110. Ainsi, la mise en oeuvre de la gestion de puissance des modes de réalisation décrits est donc simple.
  • On aurait aussi pu choisir la forme de la photodiode de telle manière que la photodiode ait, en vue de dessus, une largeur diminuant selon une courbe arrondie lorsque l'on s'éloigne d'un plot de connexion 105. Cela aurait permis de former un potentiel électrostatique graduel dans la photodiode. Cependant, cela impliquerait la formation d'une photodiode ayant une forme complexe dont la fabrication n'est pas aisée. De plus, cela entrainerait des limitations importantes sur la forme et les dimensions des photodiodes.
  • Un avantage des modes de réalisation décrits est que les murs sont en contact avec les couches semiconductrices 102 et 103 sur toute leur hauteur. Ainsi, le champ électrique est situé, de même, sur l'ensemble du volume de la photodiode. La vitesse des électrons est donc accélérée quel que soit leur position dans la photodiode. Cela n'est pas le cas dans les exemples où la tension négative n'est appliquée que sur la face supérieure de la photodiode.
  • Divers modes de réalisation et variantes ont été décrits. L'homme de l'art comprendra que certaines caractéristiques de ces divers modes de réalisation et variantes pourraient être combinées, et d'autres variantes apparaîtront à l'homme de l'art. En particulier, les types de dopages N et P peuvent être inversés.
  • Enfin, la mise en oeuvre pratique des modes de réalisation et variantes décrits est à la portée de l'homme du métier à partir des indications fonctionnelles données ci-dessus.

Claims (10)

  1. Photodiode (100, 300, 400) comprenant une première couche semiconductrice (102) dopée de type P recouverte d'une deuxième couche semiconductrice (103) de type N, les première et deuxième couches formant une jonction PN, la photodiode comprenant deux murs semiconducteurs latéraux (110b, 110d ; 410a, 410b) dits de rang zéro (M0) et au moins un mur semiconducteur interne (M1, M2, M3, Mi, Mn), les murs internes et latéraux s'étendant sur toute la hauteur des première et deuxième couches semiconductrices, les murs latéraux et internes formant les branches d'une structure en forme de peigne et étant interconnectés de manière à recevoir un même potentiel électrique, chaque mur semiconducteur interne étant situé entre deux murs de longueur supérieure, la photodiode comprend n rangs de murs internes (M1, M2, M3, Mi, Mn), n étant un entier supérieur ou égal à 1, chaque mur interne (M1, M2, M3, Mi, Mn) a une longueur inférieure aux longueurs des murs de rang inférieur, chaque mur interne (M1, M2, M3, Mi, Mn) est situé entre deux murs de rang inférieur, un de ces murs étant de rang immédiatement inférieur, les murs internes d'un même rang ayant sensiblement la même longueur en vue de dessus.
  2. Photodiode selon la revendication 1, dans laquelle les murs latéraux (110b, 110d ; 410a, 410b) et le au moins un mur interne (M1, M2, M3, Mi, Mn) s'étendent sur toute la hauteur de la photodiode (100, 300, 400).
  3. 4. Photodiode selon l'une quelconque des revendications 1 à 2, comprenant 2^(i-1) murs internes (M1, M2, M3, Mi, Mn) du rang i, i étant un entier entre 1 et n.
  4. Photodiode selon l'une quelconque des revendications 1 à 3, dans laquelle les murs internes (M1, M2, M3, Mi, Mn) du rang i, i étant un entier compris entre 2 et n, ont une longueur sensiblement égale à 3/4 de la longueur des murs internes (M1, M2, M3, Mi, Mn) du rang i-1.
  5. Photodiode selon l'une quelconque des revendications 1 à 4, dans laquelle une tension négative est appliquée aux murs internes (M1, M2, M3, Mi, Mn) et latéraux (110b, 110d ; 410a, 410b).
  6. Photodiode selon l'une quelconque des revendications 1 à 5, dans laquelle des murs semiconducteurs externes (110a, 110b, 110c, 110d ; 410a, 410b, 412a, 412b), incluant les murs latéraux, entourent au moins partiellement la zone active de la photodiode (100, 300, 400).
  7. Photodiode selon la revendication 6, dans laquelle les murs internes (M1, M2, M3, Mi, Mn) sont interconnectés par un des murs externes (110c).
  8. Photodiode selon la revendication 6 ou 7, dans laquelle les murs externes (110a, 110b, 110c, 110d ; 410a, 410b, 412a, 412b) entourent entièrement la zone active de la photodiode (100, 300, 400).
  9. Photodiode selon l'une quelconque des revendications 1 à 8, dans laquelle les murs internes et latéraux ont une largeur, en vue de dessus, comprise entre environ 100 et environ 300 nm.
  10. Photodiode selon l'une quelconque des revendications 1 à 9, dans laquelle les murs internes sont séparés de murs internes ou latéraux les plus proches d'une distance égale à sensiblement cinq fois leur largeur, en vue de dessus.
EP20156051.3A 2019-02-14 2020-02-07 Photodiode Active EP3696865B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1901504A FR3092933B1 (fr) 2019-02-14 2019-02-14 Photodiode

Publications (2)

Publication Number Publication Date
EP3696865A1 EP3696865A1 (fr) 2020-08-19
EP3696865B1 true EP3696865B1 (fr) 2023-10-25

Family

ID=67185298

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20156051.3A Active EP3696865B1 (fr) 2019-02-14 2020-02-07 Photodiode

Country Status (4)

Country Link
US (1) US11107938B2 (fr)
EP (1) EP3696865B1 (fr)
CN (2) CN111564510A (fr)
FR (1) FR3092933B1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3094571B1 (fr) * 2019-03-27 2022-04-29 St Microelectronics Crolles 2 Sas Dispositif électronique à photodiode

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6177289B1 (en) * 1998-12-04 2001-01-23 International Business Machines Corporation Lateral trench optical detectors
US6538299B1 (en) * 2000-10-03 2003-03-25 International Business Machines Corporation Silicon-on-insulator (SOI) trench photodiode
US6667528B2 (en) * 2002-01-03 2003-12-23 International Business Machines Corporation Semiconductor-on-insulator lateral p-i-n photodetector with a reflecting mirror and backside contact and method for forming the same
US6943409B1 (en) * 2004-05-24 2005-09-13 International Business Machines Corporation Trench optical device
FR3019378A1 (fr) * 2014-03-25 2015-10-02 St Microelectronics Crolles 2 Structure d'isolement entre des photodiodes
FR3046495B1 (fr) * 2015-12-30 2018-02-16 Stmicroelectronics (Crolles 2) Sas Pixel de detection de temps de vol

Also Published As

Publication number Publication date
EP3696865A1 (fr) 2020-08-19
FR3092933A1 (fr) 2020-08-21
CN111564510A (zh) 2020-08-21
US20200266310A1 (en) 2020-08-20
US11107938B2 (en) 2021-08-31
FR3092933B1 (fr) 2024-07-26
CN211929506U (zh) 2020-11-13

Similar Documents

Publication Publication Date Title
EP1482559B1 (fr) Détecteur de rayonnement infrarouge photovoltaique à grille conductrice indépendante et tridimensionnelle
WO2018050996A1 (fr) Photodiode de type spad
FR2930676A1 (fr) Capteur d'image de tres faibles dimensions
EP0702850A1 (fr) Composant hybride semiconducteur
EP0977269A1 (fr) Capteur d'image à réseau de photodiodes
FR2954854A1 (fr) Photodetecteur a structure plasmon
FR3019379A1 (fr) Transistor a grille verticale et structure de pixel comprenant un tel transistor
CA3024395C (fr) Detecteur de particules realise dans un materiau semi-conducteur
EP3157067B1 (fr) Fabrication d'une matrice de photodiodes multispectrale en cdhgte par diffusion de cadmium
EP2975643A1 (fr) Matrice de photodiodes cdhgte a faible bruit
EP3696865B1 (fr) Photodiode
FR3069106A1 (fr) Diode electroluminescente comportant un empilement a partie amincie et procede d'elaboration de la diode electroluminescente
FR3093230A1 (fr) Boîtier de puce électronique
EP3985745A1 (fr) Procédé de fabrication de dispositif thermoélectrique par fabrication additive de peignes à contacter entre eux
FR2965105A1 (fr) Detecteur bispectral multicouche a photodiodes
EP2846357A1 (fr) Dispositif photodétecteur a regions de semi-conducteurs séparées par une barriàre de potentiel
FR2983640A1 (fr) Matrice de detection compacte a conditions de polarisation ameliorees
EP3716333B1 (fr) Dispositif électronique à photodiode
EP0322303B1 (fr) Dispositif de transfert de charges à abaissement de potentiel de transfert en sortie, et procédé de fabrication de ce dispositif
FR3112242A1 (fr) Isolation de photodiodes
FR3102612A1 (fr) Circuit integré comprenant un réseau de diodes à avalanche déclenchée par un photon unique et procédé de fabrication d’un tel circuit intégré
EP2495764B1 (fr) Matrice de détection à conditions de polarisation améliorées et procédé de fabrication
FR3083001A1 (fr) Capteur d'images
FR3078440A1 (fr) Jonction pn
FR3105581A1 (fr) Photodiode comprenant une zone mémoire

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200207

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230524

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602020019650

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20231025

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1625584

Country of ref document: AT

Kind code of ref document: T

Effective date: 20231025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240225

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240126

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240125

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240226

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240123

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240125

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025