EP3669029B1 - Pénètromètre statique pour l'évaluation du caractère liquefiable d'un sol et procédé associé - Google Patents

Pénètromètre statique pour l'évaluation du caractère liquefiable d'un sol et procédé associé Download PDF

Info

Publication number
EP3669029B1
EP3669029B1 EP18765956.0A EP18765956A EP3669029B1 EP 3669029 B1 EP3669029 B1 EP 3669029B1 EP 18765956 A EP18765956 A EP 18765956A EP 3669029 B1 EP3669029 B1 EP 3669029B1
Authority
EP
European Patent Office
Prior art keywords
soil
movable body
movement
evaluating
central rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18765956.0A
Other languages
German (de)
English (en)
Other versions
EP3669029A1 (fr
Inventor
Pierre RIEGEL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EquatechR&d
Original Assignee
EquatechR&d
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EquatechR&d filed Critical EquatechR&d
Publication of EP3669029A1 publication Critical patent/EP3669029A1/fr
Application granted granted Critical
Publication of EP3669029B1 publication Critical patent/EP3669029B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D1/00Investigation of foundation soil in situ
    • E02D1/02Investigation of foundation soil in situ before construction work
    • E02D1/022Investigation of foundation soil in situ before construction work by investigating mechanical properties of the soil

Definitions

  • the present invention relates to the field of geotechnics and geology. It relates to a device for measuring the resistance to soil penetration, commonly called a penetrometer, and an associated measurement method. It relates in particular to a static penetrometer for carrying out tests for evaluating the liquefiable character of a soil.
  • the new earthquake-resistant standards lead to systematizing, during geotechnical studies in seismic zones, the characterization of soils with regard to the risk of liquefaction.
  • the liquefaction of a soil during a seismic movement refers to the decrease in the rigidity of said soil and / or the decrease in its shear resistance, due to the increase in the pressure of the pore water.
  • a penetrometer conventionally comprises rods connected end to end to form a string of rods at the end of which is fixed a measuring tip, intended to sink into the ground to depths which may reach several tens of meters.
  • the drill string In static mode, the drill string is pushed by jacks, causing the progressive insertion of the measuring tip; the latter measures the point resistance and possibly the lateral friction on a cylindrical sleeve located above the point. These measurements are recorded continuously or discontinuously at regular intervals.
  • the static measurement of resistance to soil penetration is undoubtedly the most precise because it is carried out directly on the measuring tip, at the bottom of the borehole.
  • in situ measurements are usually carried out from standard penetration tests (SPT) or cone penetration tests (CPT), in particular piezocone soundings (CPTU).
  • SPT standard penetration tests
  • CPT cone penetration tests
  • CPTU piezocone soundings
  • the raw measurements resulting from these tests are then used to determine standardized variables allowing the evaluation of the standardized resistance of the soil; this normalized resistance is then compared to the normalized stress of the site.
  • Soil samples can also be taken with a view to determining grain size curves in the laboratory.
  • the challenge is to propose methods for identifying liquefiable soils, on the one hand relatively direct, avoiding empirical correlations, and on the other hand relatively simple, in particular avoiding the complexity of implementing piezocone tests or cyclic loading in the laboratory.
  • An object of the present invention is to provide an alternative solution to the solutions of the state of the art, in particular a static penetrometer, simple to use and allowing a more direct evaluation of the liquefiable character of a soil.
  • the applicant has developed a method for the pre-identification of liquefiable soils (cf. H. Hosseini-Sadrabadi et al, "Identification of liquefiable soils by static penetrometer: principle and digital modeling", National Days of Geotechnics and Engineering Geology, Nancy 2016 ) using a static penetrometer.
  • This method is based on static penetration tests with double measurement: a measurement of the tip resistance at a constant driving speed of 2cm / s (noted Q vs 2 cm / s - static mode) and a measurement of the peak resistance at standstill (noted Q vs To r r ê t ).
  • the present invention relates to a penetrometer 100 for the evaluation by direct measurement of the liquefiable character of a soil.
  • the penetrometer 100 according to the invention will make it possible to carry out tests, directly at the given depth of zone A (to return to the example illustrated in figure 1 ), in order to more directly assess the liquefiable character of the soil layers concerned and assess the associated risks.
  • the penetrometer 100 ( figure 2 ) comprises at least one central rod 1 terminated at a first end by a measuring tip 11. It also comprises at least one hollow tube 2 surrounding the central rod 1. The respective diameters of the hollow tube 2 and of the central rod 1 are suitable so that the latter can slide freely inside the hollow tube 2.
  • the couple formed by the central rod 1 and the hollow tube 2 is intended to sink into the ground, the tip 11 at the head.
  • additional rods 1 and tubes 2 can be connected end to end, to form a train of rod / tube pairs, which can be driven into the ground for several tens of meters.
  • the penetrometer 100 further comprises an electric jack 6 comprising an external body 61 integral with the hollow tube 2 and a movable body 62 able to come into contact with the central rod 1.
  • the movable body 62 is capable of achieving a maximum displacement of 75mm between a retracted position (movable body 62 retracted) and a deployed position (movable body 62 extended to the maximum).
  • the movable body 62 is configured to transmit a displacement to a second end 12 of the central rod 1, which displacement will lead to a controlled depression of the measuring tip 11 into the ground.
  • controlled sinks will be carried out successively from the given depth P A , in the suspect zone A ( figure 1 ).
  • the power of the electric actuator motor is preferably chosen so that the movable body 62 is capable of applying a pressure between 10 and 40 bars: this range of pressures makes it possible to address the characteristic stresses (10-30 bars) measured at peak in soil layers at risk of liquefaction.
  • the motor of the electric jack 6 is also chosen so that the speed of movement of the movable body 62 can vary between a few mm / s and about 16 cm / s, so that the detection of the effective loss of lift of the ground (case of a liquefiable sol) is not affected by the technical limits of the device (as will be detailed later in the process).
  • the movable body 62 is also configured to measure the force applied to effect said displacement.
  • the applied force is representative of the resistance to soil penetration at the level of the measuring tip 11.
  • the electric jack 6 therefore comprises a force or stress sensor (not shown) for measuring this force.
  • the movable body 62 is able to apply a vibration to the second end 12 of the central rod 1, at a determined frequency.
  • the determined frequency is advantageously between 1 and 5 Hertz.
  • This frequency range is characteristic of earthquakes, according to current seismological knowledge; we will see later in the description of the method according to the invention, that the vibration in this frequency range makes it possible to modify the properties of the ground and to evaluate the evolution of its lift in the event of an earthquake.
  • the electric jack 6 is electronically controlled: the actuation and the speed of the movable body 62 to effect a movement, the force applied during the depression, the measurement of the reaction force of the rod 1 and the vibration of the movable body 62 can thus be carried out according to programmed sequences or be slaved to one another.
  • the penetrometer 100 advantageously comprises a cell in contact (or integral with) the hollow tube 2.
  • the cell (not shown) may for example be secured to the hollow tube 2 by means of a clamping jaw 3.
  • the cell is intended to transmit a support force, applied by support means, so as to cause a depression in static mode in the ground of the couple formed by the hollow tube 2 and the central rod 1 up to ( or the given depth (s) to be investigated.
  • the support means may in particular consist of a hydraulic cylinder.
  • the movable part of the hydraulic cylinder fixed to the cell applies to it the support force necessary for the continuous sinking of the tube / rod pair.
  • the fixed part of the hydraulic cylinder must be fixed directly or indirectly to a reaction block.
  • the support means may comprise a self-propelled hydraulic unit, to actuate the hydraulic cylinder.
  • the support means are held by a frame.
  • the frame is provided with at least one mechanical connecting element intended to be connected to a reaction block.
  • This mechanical connecting element could for example consist of a hydraulic or mechanical clamp, or else a vice of the same type.
  • the fact that the frame is equipped with such a mechanical connecting element makes it connectable to any kind of reaction block.
  • the present invention also relates to a method for evaluating the liquefiable character of a soil. It will be described in the case of the use of the penetrometer 100 described above. However, it should be noted that a penetrometer of different design, but capable of performing the characteristic functions of the penetrometer 100 according to the invention could very well be used to carry out the steps of the method below.
  • the process for the evaluation of the liquefiable character of a soil comprises different steps ( figure 3 ).
  • Step a) consists in driving the couple formed by the hollow tube 2 and the central rod 1 into the ground to bring the measuring tip 11 to a given depth of investigation (for example P A with reference to the figure 1 ).
  • the measuring tip 11 is preferably in abutment against the hollow tube 2 and the movable body 62 of the electric cylinder is in the retracted position ( figure 3 - a )).
  • the movable body 62 is not in contact with the second end 12 of the central rod 1.
  • the support means via the cell, make it possible to achieve this depression to the given depth. .
  • step b) is carried out; it consists in actuating the movable body 62 to place it in contact with the second end 12 of the central rod 1.
  • This step b) is optional and would in particular not be useful in the event that the movable body 62, in the retracted position, would be already in contact with the second end 12.
  • step c) consists in actuating the movable body 62 so that it performs a first displacement D1, inducing a first controlled depression of the measuring tip 11 into the ground.
  • the first displacement D1 is preferably carried out at constant speed.
  • the first displacement D1 (corresponding to the amplitude of the first depression) is 10mm, carried out for example at a speed of 2cm / s.
  • Step c) also provides for the measurement of the force applied to effect said first displacement D1.
  • This measurement of the applied force representative of the resistance of the ground, makes it possible to verify that the peak resistance Q vs 2 cm / s measured at the given depth P A is substantially identical to that measured during the pre-diagnosis at this same depth.
  • the measurement of the reaction force transmitted by the second end 12 to the movable body 62, at standstill is also provided in step c).
  • the next step d) consists in applying a vibration at a determined frequency to the second end 12 of the central rod 1 by means of the movable body 62 and simultaneously actuating the movable body 62 so that it performs a second displacement D2 , inducing a second controlled insertion of the measuring tip 11 into the ground ( figure 3 - d )).
  • the determined frequency is between 1 and 5 Hertz, characteristic frequencies of earthquakes.
  • the objective here is to apply locally constraints likely to modify the properties of the soil layer, as could an earthquake.
  • the movable body 62 performs a second displacement D2 which causes a second depression of the measuring tip 11 in the layer of soil placed under vibratory stress.
  • the second displacement D2 (corresponding to the amplitude of the second depression) is 30mm.
  • Step d) also provides for the measurement of the force applied to effect the second displacement D2: the measured values of the force applied reflect the change in the peak resistance Q c during this second controlled depression.
  • the speed of the second displacement D 2 is adjusted so as to keep the applied force substantially constant.
  • the second displacement D2 is therefore advantageously carried out with a constant load (applied force).
  • an applied force is aimed at substantially equal to the value of the applied force representative of the peak resistance.
  • the speed of the second displacement D 2 is therefore automatically increased or decreased as a function of the force measured during step d), with the aim of keeping the latter substantially constant.
  • the second displacement D2 is then carried out at a low speed, the latter being adjusted so as to keep the force applied to effect said second displacement substantially constant. D2. In such a case, it appears that the soil layer does not change suddenly with a vibratory stress.
  • the layer of soil can very quickly lose its resistance under the vibratory stress: the second displacement D2 is then carried out at a high speed, the latter being adjusted so as to keep the force constant as much as possible. applied to perform said second displacement D2.
  • the motor of the electric jack 6 is chosen so that the speed of movement of the movable body 62 can reach approximately 16 cm / s, in order to be able to follow a sudden loss of lift of the layer of soil studied.
  • next step e) consists in stopping the vibration.
  • Step f) then provides for actuating the movable body 62 so that it performs a third displacement D3, inducing a third controlled depression of the measuring tip 11 in the ground ( figure 3 - f )).
  • Step f) also provides for measuring the force applied to effect this third displacement D3.
  • the third displacement D3 is preferably carried out at constant speed.
  • the third displacement D3 (corresponding to the amplitude of the third depression) is 10mm, carried out for example at a speed of 2cm / s.
  • step f in the absence of vibratory stress, the soil layer can see its resistance evolve in different ways, depending on the characteristics of said layer.
  • a layer having quickly lost its resistance under vibratory stress may, in the absence of the latter, regain its initial resistance.
  • Q vs 2 cm / s it is a behavior of liquefiable soil (for example curve (a) on the figure 4 ).
  • a layer having quickly lost its resistance under vibratory stress may, in the absence of the latter, return during the third controlled depression to a resistance Q c lower than its initial resistance.
  • Q vs 2 cm / s this can translate a phenomenon of the large deformation type (for example, curve (b) on the figure 4 ), the resistance properties of the soil layer having been irreversibly modified by the vibration.
  • a layer having rapidly lost its resistance under vibratory stress may, in the absence of the latter, return during the third controlled depression to a resistance Q c greater than its initial resistance.
  • Q vs 2 cm / s this may reflect a phenomenon of densification (for example, curve (c) on the figure 4 ), the resistance of the soil layer having been reinforced by vibration.
  • the measurement of the reaction force transmitted by the second end 12 to the movable body 62, when stationary, after the third depression, is also provided in step f).
  • Steps a) to f) may be repeated for other given investigation depths, so as to analyze successive soil layers included in a suspect zone A of greater or lesser thickness.
  • the method and the penetrometer 100 according to the invention thus make it possible to evaluate the liquefiable character of the soil layer analyzed, from the speed of realization of the second displacement D 2 .
  • the more or less sudden reduction in the resistance of the soil under vibratory stress is a key criterion of the liquefiable character.
  • the invention also provides important information on the bearing properties of the soil layer analyzed, following a vibratory stress, making it possible to anticipate potential irreversible changes in the resistance of the soil.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Soil Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

    DOMAINE DE L'INVENTION
  • La présente invention concerne le domaine de la géotechnique et de la géologie. Elle concerne un dispositif de mesure de la résistance à la pénétration d'un sol, appelé communément un pénétromètre, et un procédé de mesure associé. Elle concerne en particulier un pénétromètre statique pour réaliser des essais d'évaluation du caractère liquéfiable d'un sol.
  • ARRIERE PLAN TECHNOLOGIQUE DE L'INVENTION
  • Les nouvelles normes parasismiques conduisent à systématiser lors des études géotechniques en zones sismiques, la caractérisation des sols vis-à-vis du risque de liquéfaction. La liquéfaction d'un sol pendant un mouvement sismique désigne la diminution de la rigidité dudit sol et/ou la diminution de sa résistance au cisaillement, dues à l'augmentation de la pression de l'eau interstitielle. Ces modifications des caractéristiques du sol sont susceptibles de produire des déformations permanentes significatives (tassements, glissements), voire une quasi-annulation des contraintes effectives (phénomène de grande déformation, étalements).
  • L'identification de ce risque de liquéfaction permet donc d'anticiper les solutions de réalisation des fondations pour assurer la stabilité des ouvrages lors des séismes.
  • Rappelons que la compacité des sols est habituellement mesurée, soit en mode statique, soit en mode dynamique, par un dispositif de mesure appelé pénétromètre. Les documents FR2584186A1 et WO00/17622A1 présentent des exemples de dispositifs permettant de mesurer des caractéristiques mécaniques des sols.
  • Un pénétromètre comporte classiquement des tiges raccordées bout à bout pour former un train de tiges au bout duquel est fixée une pointe de mesure, destinée à s'enfoncer dans le sol sur des profondeurs pouvant atteindre plusieurs dizaines de mètres.
  • En mode statique, le train de tiges est poussé par des vérins, provoquant l'enfoncement progressif de la pointe de mesure ; cette dernière mesure la résistance de pointe et éventuellement le frottement latéral sur un manchon cylindrique situé au-dessus de la pointe. Ces mesures sont enregistrées de manière continue ou discontinue selon un pas régulier. La mesure statique de la résistance à la pénétration du sol est sans conteste la plus précise car elle est réalisée directement sur la pointe de mesure, au fond du sondage.
  • Actuellement, le caractère potentiellement liquéfiable d'un sol est évalué par corrélations expérimentales entre des mesures in situ et les contraintes critiques de cisaillement cyclique (dont on sait qu'elles ont causé une liquéfaction lors des séismes passés). Les mesures in situ sont habituellement réalisées à partir d'essais de pénétration standard (SPT) ou d'essais de pénétration au cône (CPT), notamment sondages au piézocône (CPTU). Les mesures brutes issues de ces essais sont ensuite utilisées pour déterminer des variables normalisées permettant l'évaluation de la résistance normalisée du sol ; cette résistance normalisée est ensuite comparée à la sollicitation normalisée du site. Des prélèvements des sols peuvent également être réalisés en vue de la détermination des courbes granulométriques en laboratoire.
  • L'enjeu est de proposer des méthodes d'identification des sols liquéfiables, d'une part relativement directes, évitant les corrélations empiriques, et d'autre part relativement simples, évitant notamment la complexité de mise en œuvre d'essais au piézocône ou de chargement cyclique en laboratoire.
  • OBJET DE L'INVENTION
  • Un objet de la présente invention est de proposer une solution alternative aux solutions de l'état de l'art, en particulier un pénétromètre statique, simple de mise en œuvre et permettant une évaluation plus directe du caractère liquéfiable d'un sol.
  • BREVE DESCRIPTION DE L'INVENTION
  • La présente invention concerne un pénétromètre pour l'évaluation du caractère liquéfiable d'un sol, comprenant :
    • Au moins une tige centrale terminée à une première extrémité par une pointe de mesure ;
    • Au moins un tube creux entourant la tige centrale, cette dernière étant apte à coulisser à l'intérieur du tube creux ;
  • Le pénétromètre comprend en outre un vérin électrique comportant un corps externe solidaire du tube creux et un corps mobile, ledit corps mobile étant :
    • configuré pour transmettre un déplacement à une deuxième extrémité de la tige centrale menant à un enfoncement contrôlé de la pointe de mesure dans le sol, et pour mesurer une force appliquée pour effectuer ledit déplacement,
    • et configuré à appliquer à la deuxième extrémité de la tige centrale une vibration, à une fréquence déterminée.
  • Selon d'autres caractéristiques avantageuses et non limitatives de l'invention, prises seules ou selon toute combinaison techniquement réalisable :
    • la fréquence déterminée est comprise entre 1 et 5 Hertz ;
    • le vérin électrique est asservi électroniquement de sorte que l'actionnement et la vitesse du corps mobile pour effectuer un déplacement, la force appliquée, et l'application ou l'arrêt de la vibration peuvent être effectués selon des séquences programmées ou asservis les uns aux autres ;
    • le pénétromètre comprend une cellule solidaire du tube creux, destinée à transmettre une force d'appui, appliquée par des moyens d'appui, de manière à provoquer un enfoncement dans le sol du tube creux et de la tige centrale jusqu'à une profondeur donnée.
  • L'invention concerne également un procédé pour l'évaluation du caractère liquéfiable d'un sol, pouvant utiliser le pénétromètre tel que ci-dessus. Ledit procédé comprend les étapes suivantes :
    • a) enfoncer dans le sol le couple formé par le tube creux et la tige centrale pour amener la pointe de mesure à une profondeur donnée, ladite pointe de mesure étant en butée contre le tube creux ;
    • c) actionner le corps mobile pour qu'il effectue un premier déplacement, induisant un premier enfoncement contrôlé de la pointe de mesure dans le sol, et mesurer la force appliquée pour effectuer ledit premier déplacement ;
    • d) appliquer une vibration à une fréquence déterminée, à la deuxième extrémité de la tige centrale par l'intermédiaire du corps mobile et simultanément actionner le corps mobile pour qu'il effectue un deuxième déplacement, induisant un deuxième enfoncement contrôlé de la pointe de mesure dans le sol ; et mesurer la force appliquée pour effectuer ledit deuxième déplacement ;
    • e) arrêter la vibration ;
    • f) actionner le corps mobile pour qu'il effectue un troisième déplacement, induisant un troisième enfoncement contrôlé de la pointe de mesure dans le sol et mesurer la force appliquée pour effectuer ledit troisième déplacement.
  • Selon d'autres caractéristiques avantageuses et non limitatives de l'invention, prises seules ou selon toute combinaison techniquement réalisable :
    • le procédé comprend avant l'étape c), l'étape b) suivante : b) actionner le corps mobile pour le placer en contact avec la deuxième extrémité de la tige centrale ;
    • l'étape c) comprend également la mesure de la force de réaction transmise par la deuxième extrémité au corps mobile, à l'arrêt, après le premier enfoncement ;
    • l'étape f) comprend également la mesure de la force de réaction transmise par la deuxième extrémité au corps mobile, à l'arrêt, après le troisième enfoncement ;
    • à l'étape d), la vitesse du deuxième déplacement est ajustée de manière à maintenir la force appliquée mesurée sensiblement constante ;
    • à l'étape d), la vitesse du deuxième déplacement est ajustée de manière à ce que la force appliquée mesurée soit maintenue sensiblement égale ou approche au plus près la force appliquée mesurée à l'étape c) ;
    • la vitesse de déplacement du corps mobile peut atteindre 16cm/s ;
    • le déplacement maximal entre une position effacée et une position déployée du corps mobile est de 75mm ;
    • le premier déplacement du corps mobile est de 10mm, le deuxième déplacement est de 30mm et le troisième déplacement est de 10mm.
    BREVE DESCRIPTION DES DESSINS
  • D'autres caractéristiques et avantages de l'invention ressortiront de la description détaillée qui va suivre en référence aux figures annexées sur lesquelles :
    • la figure 1 présente une courbe d'essai avec double mesure de la résistance à la pénétration d'un sol ;
    • la figure 2 présente un pénétromètre conforme à l'invention ;
    • la figure 3 présente un procédé conforme à l'invention ;
    • la figure 4 présente l'évolution de la force appliquée pour effectuer des enfoncements contrôlés, en fonction du temps.
    DESCRIPTION DETAILLEE DE L'INVENTION
  • Le demandeur a développé une méthode de pré-identification de sols liquéfiables (cf. H. Hosseini-Sadrabadi et al, « Identification des sols liquéfiables par pénétromètre statique : principe et modélisation numérique », Journées Nationales de Géotechnique et de Géologie de l'Ingénieur, Nancy 2016) au moyen d'un pénétromètre statique. Cette méthode est basée sur des essais de pénétration statique avec double mesure : une mesure de la résistance de pointe à une vitesse constante d'enfoncement de 2cm/s (notée Q c 2 cm / s
    Figure imgb0001
    - mode statique) et une mesure de la résistance de pointe à l'arrêt (notée Q c a r r ê t
    Figure imgb0002
    ).
  • Ces doubles mesures, en mode statique et à l'arrêt, à une profondeur donnée, peuvent permettre d'identifier des sols potentiellement liquéfiables en ce que l'écart (noté ΔQc ) entre la résistance du sol en mode statique et la résistance du sol à l'arrêt semble caractéristique de l'évolution des pressions interstitielles dans le sol : Δ Q c = Q c 2 cm / s Q c a r r ê t Q c 2 cm / s
    Figure imgb0003
  • Plus cet écart ΔQc est élevé, plus le risque de liquéfaction du sol en cas de séisme est élevé. En particulier, le demandeur affecte une très forte probabilité de liquéfaction lorsque cet écart excède 40% de la résistance du sol mesurée en mode statique.
  • Comme illustré sur la figure 1, il est donc possible lors d'un essai avec double mesure (en mode statique et à l'arrêt) de la résistance à la pénétration d'un sol, de détecter des couches de sol (zone A), à une (ou des) profondeur(s) donnée(s), pour lesquelles l'écart ΔQc est supérieur à une valeur critique, en particulier 40%. Ce type d'essai peut constituer un pré-diagnostic intéressant du caractère liquéfiable d'un sol.
  • La présente invention concerne un pénétromètre 100 pour l'évaluation par mesure directe du caractère liquéfiable d'un sol. Sur la base d'un pré-diagnostic évoqué précédemment, le pénétromètre 100 selon l'invention va permettre de réaliser des essais, directement à la profondeur donnée de la zone A (pour reprendre l'exemple illustré en figure 1), en vue d'évaluer plus directement le caractère liquéfiable des couches de sol concernées et apprécier les risques associés.
  • Le pénétromètre 100 (figure 2) comprend au moins une tige centrale 1 terminée à une première extrémité par une pointe de mesure 11. Il comprend également au moins un tube creux 2 entourant la tige centrale 1. Les diamètres respectifs du tube creux 2 et de la tige centrale 1 sont adaptés de sorte que cette dernière puisse coulisser librement à l'intérieur du tube creux 2.
  • Le couple formé par la tige centrale 1 et le tube creux 2 est destiné à s'enfoncer dans le sol, la pointe 11 en tête. Comme cela est bien connu, pour atteindre une profondeur donnée, des tiges 1 et tubes 2 additionnels peuvent être raccordés bout à bout, pour former un train de couples tige/tube, pouvant être enfoncé dans le sol sur plusieurs dizaines de mètres.
  • Le pénétromètre 100 comprend en outre un vérin électrique 6 comportant un corps externe 61 solidaire du tube creux 2 et un corps mobile 62 apte à venir en contact avec la tige centrale 1.
  • Avantageusement, le corps mobile 62 est capable de réaliser un déplacement maximal de 75mm entre une position effacée (corps mobile 62 rétracté) et une position déployée (corps mobile 62 étendu au maximum).
  • Le corps mobile 62 est configuré pour transmettre un déplacement à une deuxième extrémité 12 de la tige centrale 1, déplacement qui va mener à un enfoncement contrôlé de la pointe de mesure 11 dans le sol. Comme cela sera décrit plus en détail dans le procédé selon l'invention, des enfoncements contrôlés seront effectués successivement à partir de la profondeur donnée PA, dans la zone A suspecte (figure 1). Pour cela, la puissance du moteur du vérin électrique est préférentiellement choisie de sorte que le corps mobile 62 soit capable d'appliquer une pression comprise entre 10 et 40 bars : cette gamme de pressions permet d'adresser les contraintes caractéristiques (10-30 bars) mesurées en pointe dans des couches de sol à risque de liquéfaction. Le moteur du vérin électrique 6 est également choisi pour que la vitesse de déplacement du corps mobile 62 puisse varier entre quelques mm/s et environ 16cm/s, de telle sorte que la détection de la perte effective de portance du sol (cas d'un sol liquéfiable) ne soit pas affectée par les limites techniques du dispositif (comme cela sera détaillé plus tard dans le procédé).
  • Le corps mobile 62 est également configuré pour mesurer la force appliquée pour effectuer ledit déplacement. La force appliquée est représentative de la résistance à la pénétration du sol au niveau de la pointe de mesure 11. Le vérin électrique 6 comprend donc un capteur de force ou de contrainte (non représenté) pour mesurer cette force.
  • Enfin, le corps mobile 62 est apte à appliquer une vibration à la deuxième extrémité 12 de la tige centrale 1, à une fréquence déterminée.
  • La fréquence déterminée est avantageusement comprise entre 1 et 5 Hertz. Cette gamme de fréquences est caractéristique des tremblements de terre, selon les connaissances sismologiques actuelles ; nous verrons plus tard dans la description du procédé selon l'invention, que la vibration dans cette gamme de fréquence permet de modifier les propriétés du sol et d'évaluer l'évolution de sa portance en cas de séisme.
  • Avantageusement le vérin électrique 6 est asservi électroniquement : l'actionnement et la vitesse du corps mobile 62 pour effectuer un déplacement, la force appliquée lors de l'enfoncement, la mesure de la force de réaction de la tige 1 et la vibration du corps mobile 62 peuvent ainsi être effectués selon des séquences programmées ou être asservis les uns aux autres.
  • Le pénétromètre 100 selon l'invention comprend avantageusement une cellule en contact (ou solidaire) avec le tube creux 2. La cellule (non représentée) pourra par exemple être solidarisée au tube creux 2 par l'intermédiaire d'une mâchoire de bridage 3. La cellule est destinée à transmettre une force d'appui, appliquée par des moyens d'appui, de manière à provoquer un enfoncement en mode statique dans le sol du couple formé par le tube creux 2 et la tige centrale 1 jusqu'à la (ou les) profondeur(s) donnée(s) à investiguer.
  • Les moyens d'appui pourront en particulier consister en un vérin hydraulique. La partie mobile du vérin hydraulique fixée à la cellule lui applique la force d'appui nécessaire à l'enfoncement continu du couple tube/tige. La partie fixe du vérin hydraulique doit être fixé directement ou indirectement à un massif de réaction. Les moyens d'appui pourront comprendre un groupe hydraulique automoteur, pour actionner le vérin hydraulique.
  • Avantageusement, les moyens d'appui sont maintenus par un châssis. Le châssis est muni d'au moins un élément de liaison mécanique destiné à être connecté à un massif de réaction. Cet élément de liaison mécanique pourra par exemple consister en une pince hydraulique ou mécanique, ou encore un étau de même type. Le fait que le châssis soit équipé d'un tel élément de liaison mécanique le rend connectable à tout genre de massif de réaction.
  • La présente invention concerne également un procédé pour l'évaluation du caractère liquéfiable d'un sol. Il va être décrit dans le cas de l'utilisation du pénétromètre 100 décrit précédemment. Cependant, il est à noter qu'un pénétromètre de conception différente, mais apte à réaliser les fonctions caractéristiques du pénétromètre 100 selon l'invention, pourrait tout à fait être utilisé pour réaliser les étapes du procédé ci-dessous.
  • Le procédé pour l'évaluation du caractère liquéfiable d'un sol comprend différentes étapes (figure 3).
  • L'étape a) consiste à enfoncer dans le sol le couple formé par le tube creux 2 et la tige centrale 1 pour amener la pointe de mesure 11 à une profondeur donnée d'investigation (par exemple PA en référence à la figure 1). Au cours de cette étape, la pointe de mesure 11 est préférentiellement en butée contre le tube creux 2 et le corps mobile 62 du vérin électrique est en position effacée (figure 3 - a)). Avantageusement, dans cette position, le corps mobile 62 n'est pas en contact avec la deuxième extrémité 12 de la tige centrale 1. Les moyens d'appui, par l'intermédiaire de la cellule, permettent de réaliser cet enfoncement à la profondeur donnée.
  • Après que la pointe de mesure 11 a atteint la profondeur donnée PA, l'étape b) est opérée ; elle consiste à actionner le corps mobile 62 pour le placer en contact avec la deuxième extrémité 12 de la tige centrale 1. Cette étape b) est facultative et ne serait notamment pas utile dans le cas où le corps mobile 62, en position effacée, serait déjà en contact avec la deuxième extrémité 12.
  • Puis, l'étape c) consiste à actionner le corps mobile 62 pour qu'il effectue un premier déplacement D1, induisant un premier enfoncement contrôlé de la pointe de mesure 11 dans le sol. Le premier déplacement D1 est préférentiellement réalisé à vitesse constante. Selon un mode de réalisation avantageux, le premier déplacement D1 (correspondant à l'amplitude du premier enfoncement) est de 10mm, réalisé par exemple à une vitesse de 2cm/s.
  • L'étape c) prévoit également la mesure de la force appliquée pour effectuer ledit premier déplacement D1. Cette mesure de la force appliquée, représentative de la résistance du sol, permet de vérifier que la résistance de pointe Q c 2 cm / s
    Figure imgb0004
    mesurée à la profondeur donnée PA est sensiblement identique à celle mesurée lors du pré-diagnostic à cette même profondeur. Préférentiellement, après le premier enfoncement, la mesure de la force de réaction transmise par la deuxième extrémité 12 au corps mobile 62, à l'arrêt (représentative de la résistance de pointe à l'arrêt Q c a r r ê t
    Figure imgb0005
    ) est également prévue à l'étape c).
  • Les valeurs Q c 2 cm / s
    Figure imgb0006
    et Q c a r r ê t
    Figure imgb0007
    extraites des mesures à l'étape c) sont attendues sensiblement identiques à celles mesurées lors du pré-diagnostic : elles constituent le point de départ de l'essai d'évaluation du caractère liquéfiable de la couche de sol investiguée (zone A).
  • L'étape d) suivante consiste à appliquer une vibration à une fréquence déterminée à la deuxième extrémité 12 de la tige centrale 1 par l'intermédiaire du corps mobile 62 et simultanément à actionner le corps mobile 62 pour qu'il effectue un deuxième déplacement D2, induisant un deuxième enfoncement contrôlé de la pointe de mesure 11 dans le sol (figure 3 - d)).
  • Comme indiqué précédemment, la fréquence déterminée est comprise entre 1 et 5 Hertz, fréquences caractéristiques des séismes. L'objectif ici est d'appliquer localement des contraintes susceptibles de modifier les propriétés de la couche de sol, comme pourrait le faire un tremblement de terre. En parallèle de cette sollicitation, le corps mobile 62 effectue un deuxième déplacement D2 qui provoque un deuxième enfoncement de la pointe de mesure 11 dans la couche de sol mise sous contrainte vibratoire.
  • Selon un mode de réalisation avantageux, le deuxième déplacement D2 (correspondant à l'amplitude du deuxième enfoncement) est de 30mm.
  • L'étape d) prévoit également la mesure de la force appliquée pour effectuer le deuxième déplacement D2 : les valeurs mesurées de la force appliquée traduisent l'évolution de la résistance de pointe Qc au cours de ce deuxième enfoncement contrôlé.
  • Selon un mode de réalisation avantageux, la vitesse du deuxième déplacement D2 est ajustée de manière à maintenir la force appliquée sensiblement constante. Le deuxième déplacement D2 est donc avantageusement réalisé à charge (force appliquée) constante. En particulier, on vise une force appliquée sensiblement égale à la valeur de force appliquée représentative de la résistance de pointe Q c 2 cm / s
    Figure imgb0008
    mesurée à l'étape c). La vitesse du deuxième déplacement D2 est donc automatiquement augmentée ou diminuée en fonction de la force mesurée au cours de l'étape d), dans l'objectif de maintenir celle-ci sensiblement constante.
  • La vitesse à laquelle le deuxième déplacement D2 est effectué, traduisant le temps nécessaire pour réaliser le deuxième enfoncement, à force constante, donne une indication importante sur le caractère brutal de la perte de résistance de la couche de sol sous sollicitation vibratoire.
  • Plusieurs cas de figures peuvent se présenter, selon les propriétés de la couche de sol analysée. Les propriétés de résistance de la couche de sol peuvent évoluer très lentement sous la sollicitation vibratoire : le deuxième déplacement D2 s'effectue alors à une faible vitesse, celle-ci étant ajustée de manière à maintenir sensiblement constante la force appliquée pour effectuer ledit deuxième déplacement D2. Dans un tel cas de figure, il apparaît que la couche de sol ne se modifie pas brusquement avec une contrainte vibratoire.
  • Selon un autre cas de figure, la couche de sol peut perdre très rapidement sa résistance sous la sollicitation vibratoire : le deuxième déplacement D2 s'effectue alors à une vitesse élevée, celle-ci étant ajustée de manière à maintenir autant que possible constante la force appliquée pour effectuer ledit deuxième déplacement D2. Comme indiqué précédemment, le moteur du vérin électrique 6 est choisi pour que la vitesse de déplacement du corps mobile 62 puisse atteindre environ 16cm/s, pour être capable de suivre une perte brutale de portance de la couche de sol étudiée.
  • Les risques en cas de séisme dans l'un et l'autre cas de figures évoqués sont clairement différents : les précautions et spécifications sur les fondations d'ouvrages construits pourront être adaptées à chaque cas.
  • Lorsque le deuxième enfoncement contrôlé est terminé (deuxième déplacement D2 effectué), l'étape e) suivante consiste à arrêter la vibration.
  • L'étape f) prévoit ensuite d'actionner le corps mobile 62 pour qu'il effectue un troisième déplacement D3, induisant un troisième enfoncement contrôlé de la pointe de mesure 11 dans le sol (figure 3 - f)). L'étape f) prévoit également de mesurer la force appliquée pour effectuer ce troisième déplacement D3. Le troisième déplacement D3 est préférentiellement réalisé à vitesse constante.
  • Selon un mode de réalisation avantageux, le troisième déplacement D3 (correspondant à l'amplitude du troisième enfoncement) est de 10mm, réalisé par exemple à une vitesse de 2cm/s.
  • Au cours de l'étape f), en l'absence de sollicitation vibratoire, la couche de sol peut voir sa résistance évoluer de différentes manières, selon les caractéristiques de ladite couche.
  • Selon un premier comportement, une couche ayant rapidement perdu sa résistance sous sollicitation vibratoire pourra, en l'absence de cette dernière, retrouver sa résistance initiale Q c 2 cm / s
    Figure imgb0009
    : c'est un comportement de sol liquéfiable (par exemple courbe (a) sur la figure 4).
  • Selon un deuxième comportement, une couche ayant rapidement perdu sa résistance sous sollicitation vibratoire pourra, en l'absence de cette dernière, revenir lors du troisième enfoncement contrôlé à une résistance Qc inférieure à sa résistance initiale Q c 2 cm / s
    Figure imgb0010
    : cela peut traduire un phénomène de type grande déformation (par exemple, courbe (b) sur la figure 4), les propriétés de résistance de la couche de sol ayant été irréversiblement modifiées par la vibration.
  • Enfin, selon un troisième comportement, une couche ayant rapidement perdu sa résistance sous sollicitation vibratoire pourra, en l'absence de cette dernière, revenir lors du troisième enfoncement contrôlé à une résistance Qc supérieure à sa résistance initiale Q c 2 cm / s
    Figure imgb0011
    : cela peut traduire un phénomène de densification (par exemple, courbe (c) sur la figure 4), la résistance de la couche de sol ayant été renforcée par la vibration.
  • Avantageusement, après le troisième enfoncement, la mesure de la force de réaction transmise par la deuxième extrémité 12 au corps mobile 62, à l'arrêt, après le troisième enfoncement est également prévue à l'étape f).
  • Les étapes a) à f) pourront être répétées pour d'autres profondeurs données d'investigation, de manière à analyser des couches de sol successives incluses dans une zone A suspecte de plus ou moins grande épaisseur.
  • Le procédé et le pénétromètre 100 selon l'invention permettent ainsi d'évaluer le caractère liquéfiable de la couche de sol analysée, à partir de la vitesse de réalisation du deuxième déplacement D2. La diminution plus ou moins brutale de la résistance du sol sous sollicitation vibratoire est un critère clé du caractère liquéfiable.
  • Par ailleurs, l'invention apporte également une information importante sur les propriétés de portance de la couche de sol analysée, à la suite d'une sollicitation vibratoire, permettant d'anticiper de potentielles modifications irréversibles de la résistance du sol.
  • De ce qui précède, la connaissance du comportement effectif du sol après vibration permet d'orienter les constructeurs dans leur conception d'ouvrages, et les entreprises dans leurs méthodologies de réalisation. A titre d'exemple, une densification du sol permettra d'envisager des méthodes alternatives d'amélioration de sols préalablement à la construction d'ouvrages.
  • A l'inverse, une perte de portance pourra conduire à la réalisation de fondations sécuritaires en connaissance objective des risques.

Claims (13)

  1. Pénétromètre (100) pour l'évaluation du caractère liquéfiable d'un sol, comprenant :
    • Au moins une tige centrale (1) terminée à une première extrémité par une pointe de mesure (11) ;
    • Au moins un tube creux (2) entourant la tige centrale (1), cette dernière étant apte à coulisser à l'intérieur du tube creux (2) ;
    Le pénétromètre (100) étant caractérisé en ce qu'il comprend un vérin électrique (6) comportant un corps externe (61) solidaire du tube creux (2) et un corps mobile (62), ledit corps mobile (62) étant configuré:
    • pour transmettre un déplacement à une deuxième extrémité (12) de la tige centrale (1) menant à un enfoncement contrôlé de la pointe de mesure (11) dans le sol, et pour mesurer une force appliquée pour effectuer ledit déplacement,
    • et à appliquer à la deuxième extrémité (12) de la tige centrale (1) une vibration, à une fréquence déterminée.
  2. Pénétromètre (100) selon la revendication précédente, dans lequel la fréquence déterminée est comprise entre 1 et 5 Hertz.
  3. Pénétromètre (100) selon l'une des revendications précédentes, dans lequel le vérin électrique (6) est asservi électroniquement de sorte que l'actionnement et la vitesse du corps mobile (62) pour effectuer un déplacement, la force appliquée, et l'application ou l'arrêt de la vibration peuvent être effectués selon des séquences programmées ou asservis les uns aux autres.
  4. Pénétromètre (100) selon l'une des revendications précédentes, comprenant une cellule solidaire du tube creux (2), destinée à transmettre une force d'appui, appliquée par des moyens d'appui, de manière à provoquer un enfoncement dans le sol du tube creux (2) et de la tige centrale (1) jusqu'à une profondeur donnée.
  5. Procédé pour l'évaluation du caractère liquéfiable d'un sol en utilisant le pénétromètre (100) selon l'une des revendications précédentes, et comprenant les étapes suivantes :
    a) enfoncer dans le sol le couple formé par le tube creux (2) et la tige centrale (1) pour amener la pointe de mesure (11) à une profondeur donnée, ladite pointe de mesure (11) étant en butée contre le tube creux (2) ;
    c) actionner le corps mobile (62) pour qu'il effectue un premier déplacement, induisant un premier enfoncement contrôlé de la pointe de mesure (11) dans le sol,
    le procédé étant caractérisé en ce que l'étape c) prévoit de mesurer la force appliquée pour effectuer ledit premier déplacement, et en ce qu'il comprend en outre les étapes suivantes :
    d) appliquer une vibration à une fréquence déterminée, à la deuxième extrémité (12) de la tige centrale (1) par l'intermédiaire du corps mobile (62) et simultanément actionner le corps mobile (62) pour qu'il effectue un deuxième déplacement, induisant un deuxième enfoncement contrôlé de la pointe de mesure (11) dans le sol ; et mesurer la force appliquée pour effectuer ledit deuxième déplacement ;
    e) arrêter la vibration ;
    f) actionner le corps mobile (62) pour qu'il effectue un troisième déplacement, induisant un troisième enfoncement contrôlé de la pointe de mesure dans le sol et mesurer la force appliquée pour effectuer ledit troisième déplacement.
  6. Procédé pour l'évaluation du caractère liquéfiable d'un sol selon la revendication précédente comprenant avant l'étape c), l'étape b) suivante :
    b) actionner le corps mobile (62) pour le placer en contact avec la deuxième extrémité (12) de la tige centrale (1).
  7. Procédé pour l'évaluation du caractère liquéfiable d'un sol selon l'une des deux revendications précédentes, dans lequel l'étape c) comprend également la mesure de la force de réaction transmise par la deuxième extrémité (12) au corps mobile (62), à l'arrêt, après le premier enfoncement.
  8. Procédé pour l'évaluation du caractère liquéfiable d'un sol selon l'une des trois revendications précédentes, dans lequel l'étape f) comprend également la mesure de la force de réaction transmise par la deuxième extrémité (12) au corps mobile (62), à l'arrêt, après le troisième enfoncement.
  9. Procédé pour l'évaluation du caractère liquéfiable d'un sol selon l'une des quatre revendications précédentes, dans lequel, à l'étape d), la vitesse du deuxième déplacement est ajustée de manière à maintenir la force appliquée mesurée sensiblement constante.
  10. Procédé pour l'évaluation du caractère liquéfiable d'un sol selon l'une des cinq revendications précédentes, dans lequel, à l'étape d), la vitesse du deuxième déplacement est ajustée de manière à ce que la force appliquée mesurée soit maintenue sensiblement égale ou approche au plus près la force appliquée mesurée à l'étape c) .
  11. Procédé pour l'évaluation du caractère liquéfiable d'un sol selon l'une des six revendications précédentes, dans lequel la vitesse de déplacement du corps mobile (62) peut atteindre 16cm/s.
  12. Procédé pour l'évaluation du caractère liquéfiable d'un sol selon l'une des sept revendications précédentes, dans lequel le déplacement maximal entre une position effacée et une position déployée du corps mobile (62) est de 75mm.
  13. Procédé pour l'évaluation du caractère liquéfiable d'un sol selon l'une des huit revendications précédentes, dans lequel le premier déplacement du corps mobile (62) est de 10mm, le deuxième déplacement est de 30mm et le troisième déplacement est de 10mm.
EP18765956.0A 2017-08-18 2018-08-14 Pénètromètre statique pour l'évaluation du caractère liquefiable d'un sol et procédé associé Active EP3669029B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1757732A FR3070170B1 (fr) 2017-08-18 2017-08-18 Penetrometre statique pour l'evaluation du caractere liquefiable d'un sol et procede associe
PCT/FR2018/052062 WO2019034822A1 (fr) 2017-08-18 2018-08-14 Penetrometre statique pour l'evaluation du caractere liquefiable d'un sol et procede associe

Publications (2)

Publication Number Publication Date
EP3669029A1 EP3669029A1 (fr) 2020-06-24
EP3669029B1 true EP3669029B1 (fr) 2021-10-06

Family

ID=59930608

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18765956.0A Active EP3669029B1 (fr) 2017-08-18 2018-08-14 Pénètromètre statique pour l'évaluation du caractère liquefiable d'un sol et procédé associé

Country Status (6)

Country Link
EP (1) EP3669029B1 (fr)
JP (1) JP7138173B2 (fr)
ES (1) ES2902928T3 (fr)
FR (1) FR3070170B1 (fr)
PT (1) PT3669029T (fr)
WO (1) WO2019034822A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7456973B2 (ja) 2021-04-28 2024-03-27 大成建設株式会社 針貫入測定装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2584186B1 (fr) * 1985-06-28 1989-05-26 Hurtado Jean Dispositif de mesure des caracteristiques des sols par penetration statique-dynamique
GB2341936B (en) * 1998-09-23 2000-08-16 Adas Consulting Ltd Measuring the energy absorbing capacity of a substrate
US6615653B1 (en) * 2001-09-27 2003-09-09 Geosierra, Llc In situ method for determining soil liquefaction tendency and its prevention by electro-osmosis
JP3876318B2 (ja) * 2003-05-23 2007-01-31 独立行政法人産業技術総合研究所 貫入プローブ
JP6841704B2 (ja) * 2017-03-30 2021-03-10 積水化学工業株式会社 地盤改良方法

Also Published As

Publication number Publication date
JP2020531721A (ja) 2020-11-05
PT3669029T (pt) 2022-01-11
ES2902928T3 (es) 2022-03-30
FR3070170A1 (fr) 2019-02-22
JP7138173B2 (ja) 2022-09-15
WO2019034822A1 (fr) 2019-02-21
FR3070170B1 (fr) 2019-09-06
EP3669029A1 (fr) 2020-06-24

Similar Documents

Publication Publication Date Title
EP0125164B1 (fr) Méthode de détermination des caractéristiques d'une formation souterraine produisant un fluide
EP3411668B1 (fr) Procédé de surveillance du comportement thermomécanique d'une conduite sous-marine de transport de fluides sous pression
WO2014027592A1 (fr) Système de mesure de répartitions de pression, de température, de tension de substance, procédé de surveillance de stockage souterrain de dioxyde de carbone l'utilisant, procédé d'évaluation de l'influence d'une injection de dioxyde de carbone sur la stabilité de la strate, et procédé de surveillance de gel
FR2989465A1 (fr) Procede de determination de parametres geomecaniques d'un echantillon de roche
EP3655591B1 (fr) Pénétromètre statique et procédé de mesure associé
EP1226417A1 (fr) Procede et dispositif d'essai triaxial in situ
EP3669029B1 (fr) Pénètromètre statique pour l'évaluation du caractère liquefiable d'un sol et procédé associé
EP3411669B1 (fr) Procédé et dispositif de surveillance du comportement mécanique d'une conduite sous-marine de transport de fluides sous pression
EP3559661B1 (fr) Cellule de mesure et procede de mesure associe
FR2900193A1 (fr) Procede et dispositif permettant de determiner l'existence et l'emplacement de forces de contraintes sur une tige
EP3683360B1 (fr) Penetrometre statique a systeme compressible deporte et utilisation d'un tel penetrometre
EP3874251A1 (fr) Procede de mesure des proprietes elasto-plastiques d'un sol grace a un penetrometre statique
EP3835487A1 (fr) Pénétromètre statique auto-foreur
EP1933125B1 (fr) Méthode et dispositif de mesures des propriétés élastiques, plastiques et de rupture
FR3092598A1 (fr) penetromètre stato-dynamique autonome
EP0705941A1 (fr) Appareil à membrane à piezo-incliné
OA18858A (en) Procédé de surveillance du comportement thermomécanique d'une conduite sous-marine de transport de fluides sous pression
EP2865810B1 (fr) Perfectionnement aux dispositifs de mise en pression de la paroi d'un puits
EP2563974B1 (fr) Procédé et dispositif de mesure des caractéristiques mécaniques du sol
OA18859A (en) Procédé et dispositif de surveillance du comportement mécanique d'une conduite sousmarine de transport de fluides sous pression

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200218

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210414

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1436343

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018024715

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3669029

Country of ref document: PT

Date of ref document: 20220111

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20220104

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1436343

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211006

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2902928

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20220330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220106

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220206

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220106

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220107

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602018024715

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20220808

Year of fee payment: 5

Ref country code: GB

Payment date: 20220822

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MC

Payment date: 20220823

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20221025

Year of fee payment: 5

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230821

Year of fee payment: 6

Ref country code: LU

Payment date: 20230821

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230825

Year of fee payment: 6

Ref country code: CH

Payment date: 20230902

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230828

Year of fee payment: 6

Ref country code: DE

Payment date: 20230821

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230831

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180814