EP3658780B1 - Dispositif pouvant être traversé - Google Patents

Dispositif pouvant être traversé Download PDF

Info

Publication number
EP3658780B1
EP3658780B1 EP18759897.4A EP18759897A EP3658780B1 EP 3658780 B1 EP3658780 B1 EP 3658780B1 EP 18759897 A EP18759897 A EP 18759897A EP 3658780 B1 EP3658780 B1 EP 3658780B1
Authority
EP
European Patent Office
Prior art keywords
disc
diffuser
impeller
cover
wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18759897.4A
Other languages
German (de)
English (en)
Other versions
EP3658780A1 (fr
Inventor
Uwe Martens
Nico Petry
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Global GmbH and Co KG
Original Assignee
Siemens Energy Global GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Energy Global GmbH and Co KG filed Critical Siemens Energy Global GmbH and Co KG
Publication of EP3658780A1 publication Critical patent/EP3658780A1/fr
Application granted granted Critical
Publication of EP3658780B1 publication Critical patent/EP3658780B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • F04D29/444Bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/284Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • F05D2240/121Fluid guiding means, e.g. vanes related to the leading edge of a stator vane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/52Outlet

Definitions

  • the invention relates to an arrangement through which a process fluid can flow along a main flow direction, comprising an impeller that can be rotated about an axis in a direction of rotation and a standing diffuser that is located downstream of the impeller and is bladed with guide vanes, wherein the impeller has an inlet for a substantially axial inflow and an outlet for a substantially radial outflow, wherein radially and axially extending impeller blades are arranged between a wheel disk and a cover disk of the impeller, which delimit impeller channels from one another in a circumferential direction, wherein the diffuser extends substantially radially along a main flow direction, wherein the diffuser has an axial cover disk side and an axial wheel disk side, which delimit an axial channel width of the diffuser between them, wherein the diffuser has a diffuser inlet for a substantially radial inflow and a diffuser outlet, wherein between the wheel disk side and the cover disk side of the diffuser there is a Guide vanes are arranged
  • the EP-O 648 939 A2 shows a turbomachine with a closed impeller.
  • the EP 2 650 546 A1 shows a guide vane design with a curved profile center line along the blade height downstream of a closed impeller.
  • the JP-S54-69811-A discloses an arrangement through which a process fluid can flow along the main flow direction.
  • the invention proposes an arrangement of the type defined at the outset, which is further developed by means of the characterizing part of the main claim.
  • the individual guide vanes can be defined as a stack of blade profiles along a blade height.
  • the blade profiles are two-dimensional geometries that define the blade outer contour in a specific blade height position.
  • the invention understands a profile chord of a blade profile as an ("imaginary") straight connecting line between the profile leading edge (profile nose) and a profile trailing edge.
  • the angle of attack of a blade profile corresponds to the angle between the tangent to the profile chord and the tangent to the circular motion of the rotor. Accordingly, the angle of attack is constant along the extension of the blade perpendicular to the blade height, i.e. essentially parallel to the main flow direction, and can vary along the blade height.
  • a skeleton line describes a profile section or a profile of a blade at a certain height position in that the skeleton line (curvature line) is a line defined by the centers of circles inscribed or tangent to the suction side and pressure side of the profile.
  • a process fluid can be any gaseous, liquid or mixed-phase fluid.
  • the process fluid moves along a main flow direction through the arrangement, which is usually part of a turbomachine.
  • the outflow direction is understood to be the average direction of movement of the process fluid in the area that is defined in the respective context by physical boundary walls.
  • the process fluid moves through individual flow channels that are axially delimited by guide vanes and circumferentially delimited from an area of the inlet edges of the guide vanes radially outwards into an area of the outlet edges of the guide vanes. Since the guide vanes each have a curvature of the profile, one can only speak of an essentially radial main flow direction. In any case, the term "main flow direction" does not take local vortices and turbulence into account.
  • the impeller of the arrangement usually has a wheel disc and a cover disc.
  • the wheel disc limits the flow channels of the impeller on the one hand radially (mainly in the area of the inflow) inside and on the other hand on the axial side (increasing with proximity to the impeller outlet through which the inflow side is axially opposite and through which a process fluid does not flow into the impeller.
  • the cover plate represents the boundary of the flow channels of the impeller opposite the wheel disc.
  • the process fluid flows axially into the impeller and is diverted radially outwards for the flow channels of the impeller.
  • the cover plate side could therefore also be called the inflow side.
  • the flow channels of the impeller are separated from one another by means of impeller blades, with the impeller blades connecting the wheel disc and the cover plate to one another.
  • the wheel disc and the cover disc each define the wheel disc side and the cover disc side, to which reference is also made in the description of the diffuser.
  • the inflow of the diffuser in the arrangement according to the invention always takes place radially from the inside to the outside.
  • the diffuser is preferably also provided with an essentially radially outwardly directed outflow in the form of a diffuser outlet.
  • the diffuser is also curved and optionally flows radially-axially, axially or radially inward.
  • a section of the diffuser always extends essentially radially. This section can be located before a deflection of the flow in an axial or in a radially inward flow direction.
  • a leading edge angle for each axial blade height is defined as the angle between a leading edge tangent to a skeleton line on a leading edge of the respective guide vane and a circumferential tangent through the leading edge, whereby the leading edge angle is smaller on the cover disk side than on the wheel disk side.
  • a circumferential tangent that runs through the leading edge means that this circumferential tangent runs perpendicular to a radial ray through the leading edge point of the respective profile section of the guide vane.
  • the leading edge angle is the mathematically positive angle from the circumferential tangent to the leading edge tangent on the skeleton line.
  • An advantageous development of the invention provides that the difference between the leading edge angle on the cover disk side and the leading edge angle on the wheel disk side is at least 5°.
  • An inventive design of the invention on this scale leads to a significant improvement in the aerodynamic properties of the arrangement.
  • Another advantageous development of the invention provides that the angle of attack of the guide vanes on the cover plate side is smaller than on the wheel plate side. This design also takes into account the difference in the flow pattern after exiting the impeller between the cover plate side and the wheel plate side, so that the aerodynamics are further improved.
  • Another development of the invention provides that the flow after exiting the impeller before entering the diffuser is prepared particularly expediently if the quotient of the axial channel width of the bladed diffuser to the maximum impeller outlet diameter is greater than 0.04.
  • Another advantageous development of the invention provides that the quotient of the axial channel width of the bladed diffuser to the axial channel width of the impeller at the maximum impeller outlet diameter is less than 0.95. In this way, the flow is accelerated upon entering the diffuser, so that the vortex formation behind the impeller is reduced.
  • the guide vanes are designed in such a way that an angle between a tangent to the skeleton line in the leading edge area and a tangent to the skeleton line in the trailing edge area is smaller on the cover disk side than on the wheel disk side.
  • this feature can be characterized by the fact that a deflection function specified by the respective profile is less strong on the cover disk side than on the wheel disk side.
  • This design also advantageously relates to the special flow situation of the process fluid after exiting the impeller and before entering the diffuser.
  • Another advantageous development of the arrangement according to the invention has a similar effect, in which the guide vanes are designed in such a way that an angle between a tangent on the skeleton line in the leading edge area to the profile chord is smaller on the cover disk side than on the wheel disk side.
  • the angle between a tangent on the skeleton line in the leading edge area to the profile chord is defined as the mathematically positive angle from the tangent on the skeleton line in the leading edge area to the profile chord.
  • the guide vanes have an inclination such that the leading edge on the cover disk side is offset from the leading edge on the wheel disk side against the direction of rotation of the impeller by at least 10% of the axial channel width of the diffuser.
  • this embodiment additionally takes into account the differences between the cover disc side and the wheel disc side in the flow pattern after exiting the impeller.
  • the trailing edge can also be inclined in the circumferential direction, wherein according to an advantageous development of the arrangement it is particularly expedient if the guide vanes are designed such that an offset against the direction of rotation of the impeller at the trailing edge from the cover disk side relative to the wheel disk side is smaller than at the leading edge.
  • a harmonious flow pattern with low pressure loss is achieved in particular when the axial course (course in the vertical direction) of the diffuser's guide vanes is continuously curved from the cover disk side to the wheel disk side.
  • FIGS. 1 and 2 show a schematic representation of longitudinal sections through an arrangement ARG according to the invention, where Figure 2 a detail marked II of the Figure 1 reproduces.
  • a process fluid PFF flows through an arrangement ARG according to the invention along a main flow direction MFD from an inlet INL to an outlet EXT.
  • the arrangement ARG comprises an impeller IMP that can be rotated about an axis X in the direction of rotation RTD. Downstream of the impeller IMP there is a standing diffuser DFF bladed with guide vanes VNE.
  • the impeller IMP has an inlet INI for a substantially axial inflow and an outlet EXI for a substantially radial outflow.
  • the suitability for the substantially axial inflow or the substantially radial outflow of the impeller is characterized by the course of the flow channel or impeller channels ICH extending through the impeller.
  • Radially and axially extending impeller blades BLD are located between a wheel disk HWI and a cover disk SWI of the impeller IMP.
  • the blade channels ICH are separated from each other by these blades BLD in a circumferential direction CDR, as shown in the Figures 3 and 4 can be removed.
  • the diffuser DFF extends with diffuser flow channels along a main flow direction MFD, which runs essentially radially.
  • the diffuser DFF has an axial cover plate side SWS and an axial wheel disc side HWS.
  • the diffuser DFF has a diffuser inlet IND for an essentially radial inflow and a diffuser outlet EXD.
  • the diffuser is divided into three sections extending along the main flow direction MFD, into a first diffuser third TS1, a second diffuser third TS2 and a third diffuser third TS3.
  • guide vanes VNE extend axially along a blade height direction and radially along a flow direction.
  • the guide vanes VNE delimit individual guide vane channels HCN from one another in a circumferential direction CDR.
  • FIG. 3 , 4 and 5 a cross-section of the arrangement ARG according to the invention or a section thereof is shown in each case, so that it is also clear to what extent the guide vane channels HCN are delimited from one another in a circumferential direction CDR by means of the guide vanes VNE. Since the guide vanes VNE naturally do not have a completely straight profile along the main flow direction MFD, such delimitation is also to be understood accordingly.
  • the individual guide vanes VNE can be represented as a stack of blade profiles PRL (for example blade profile PRL, as in Figure 5 shown) along the blade height. The blade height runs as shown in the Figures 1, 2 reproduced, parallel to the X axis, i.e. axially.
  • the blade profiles PRL themselves are two-dimensional geometries that define the blade outer contour in a certain blade height position.
  • the actual outer contour of the blade on the respective suction side SCS and pressure side PRS results from a surface interpolation between the linear boundary contours of the blade profiles PRL, which each specify a linear specification in the respective blade height position (here also axial position).
  • Figure 3 shows a schematic cross-section of the arrangement ARG according to the invention with an impeller IMP and a diffuser DFF connected downstream, which is designed as a stator STA. There is a radial clearance RCL of a radial gap between the impeller IMP and the diffuser DFF.
  • the impeller IMP rotates in the illustration against a circumferential direction CDR.
  • the individual guide vanes VNE of the diffuser DFF are only shown as schematic skeleton lines BWL.
  • a skeleton line BWL describes a profile section or a profile of a blade in a certain height position in that the skeleton line BWL, also sometimes called a curvature line, is a line defined by the centers of circles inscribed or tangent to the suction side and the pressure side of the profile.
  • the Figure 5 Using two circles CLC, it is shown as an example how the pressure side PRF and the suction side SCS of a guide vane VNE define the skeleton line BWL using the inscribed circles CLC.
  • Figure 5 only an axial section through the diffuser DFF in the area of a guide vane VNS, whereby the illustration is valid for both the cover disk side SWS and the wheel disk side HWS.
  • the Figure 4 shows similar relationships in conjunction with the impeller IMP.
  • the impeller IMP is divided into three successive third sections along the main flow direction MFD, roughly starting from a rotor blade inlet edge ILE to a rotor blade outlet edge ITE.
  • the rotor blade inlet edge ILE and the rotor blade outlet edge ITE are not necessarily identical to the inlet INI of the impeller or the outlet XEI of the impeller.
  • the main flow direction MFD also runs axially in the impeller IMP - i.e. in Figure 4 also into the drawing plane.
  • the information about the axial extension is included in the axial projection of the rotor blades BLD of the Figure 4 lost naturally.
  • the impeller has a first impeller section IS1, a second impeller section IS2 and a third impeller section IS3.
  • Figure 4 shows, in dashed lines, the cover disk side SWS and the wheel disk side HWS for both a rotor blade BLD and a guide vane VNE.
  • a leading edge angle LEA for each axial blade is defined as Angle between a leading edge tangent TLV of the respective guide vane VNE and a circumferential tangent CTG through the leading edge DLE.
  • the leading edge angle LEA is mathematically positive, measured from the circumferential tangent CTG to the leading edge tangent TLV.
  • the circumferential tangent CTG is a tangent to the circumferential direction in the respective specified position, here at the position of the leading edge DLE.
  • This circumferential tangent CTG can also be defined as perpendicular to a radial ray RAD and the reference point, here including the leading edge DLE.
  • the profile chord VCH of the profile of the guide vane VNE is also drawn in the respective section, which extends from a leading edge DLE to a trailing edge DTE as a straight line.
  • the angle of attack AOA is defined starting from the profile chord VCH as a mathematically positive measured angle starting from the circumferential tangent CTG to the profile chord VCH.
  • the Figure 4 shows these relationships for the cover plate side SWS and the wheel disc side HWS of the diffuser DFF.
  • the arrangement ARG provides that the leading edge angle LEA on the cover plate side is smaller than on the wheel disc side for the diffuser DFF.
  • the difference between the leading edge angle LEA on the cover plate side and the wheel disc side is preferably at least 5 degrees.
  • the quotient of the axial channel width SAC of the bladed diffuser DFF to the maximum impeller outlet diameter is more than 0.04. Also the Figure 2 It can be seen that the quotient of the axial channel width SAC of the bladed diffuser to the axial channel width IAC of the impeller IMP at the maximum impeller outlet diameter DIE is less than 0.95.
  • the guide vane VNE is designed in such a way that an angle, here called profile curvature angle VBA, between a tangent TLV at the The angle of curvature VBA is again mathematically positive when measured from the tangent TLV to the skeleton line BWL in the leading edge area.
  • FIG. 5 An advantageous embodiment of the invention is shown such that an angle between the tangent TLV on the skeleton line BWL in the leading edge area to the profile chord VCH is smaller on the cover disk side than on the wheel disk side, whereby the angle is referred to here as the leading angle of attack VTC.
  • the Figure 5 which basically shows the conditions on the wheel disc side HWS or cover disc side SWS schematically and accordingly represents both sides.
  • a leading edge DLE of the guide vanes VNE can advantageously, as in Figure 4 shown, be offset radially a little downstream from the diffuser inlet DFF, whereby in Figure 4 this radial offset is designated as CBS.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Claims (11)

  1. Dispositif (ARG), dans lequel un fluide (PFF) de processus peut passer suivant une direction (MFD) d'écoulement principal, comprenant une roue (IMP) à aubes pouvant tourner autour d'un axe (X) dans un sens (RTD) de rotation et un diffuseur (DFF) fixe se trouvant en aval de la roue (IMP) à aubes et aileté d'aubes (VNE) directrices,
    dans lequel la roue (IMP) à aubes a une entrée (INI) pour un écoulement d'arrivée sensiblement axial et une sortie (EXI) pour un écoulement d'échappement sensiblement radial,
    dans lequel entre un disque (HWI) de roue et un disque (SWI) de recouvrement de la roue (IMP) à aubes sont disposées des aubes (BLD) mobiles s'étendant radialement et axialement, qui délimitent les unes des autres des canaux (ICH) de roue à aubes dans une direction (CDR) périphérique,
    dans lequel le diffuseur (DFF) s'étend sensiblement radialement suivant une direction (MFD) d'écoulement principal,
    dans lequel le diffuseur (DFF) a une face (SWS) axiale de disque de recouvrement et une face (HWS) axiale de disque de roue, qui délimitent entre elles une largeur (SAC) axiale de canal du diffuseur (DFF),
    dans lequel le diffuseur (DFF) a une entrée (IND) de diffuseur pour une arrivée sensiblement radiale et une sortie (EXD) de diffuseur,
    dans lequel entre la face (HWS) de disque de roue et la face (SWS) de disque de recouvrement du diffuseur (DFF), sont disposées des aubes (VNE) directrices s'étendant axialement suivant une direction en hauteur d'aube et radialement suivant une direction d'écoulement, qui délimite entre elles des canaux (HCN) d'aubes directrices dans une direction (CDR) périphérique, dans lequel
    un angle (LEA) de bord d'attaque est défini pour chaque hauteur axiale d'aube comme un angle entre une tangente (TLV) au bord d'attaque à une ligne (BWL) de squelette à un bord (DLE) d'attaque de l'aube (VNE) directrice respective et une tangente (CTG) périphérique passant par le bord d'attaque, dans lequel l'angle (LEA) de bord d'attaque est plus petit du côté du disque de recouvrement que du côté du disque de roue, et dans lequel l'angle (LEA) de bord d'attaque est à cet égard l'angle parcouru positivement mathématiquement à partir de la tangente (CTG) périphérique jusqu'à la tangente (TLV) au bord d'attaque, caractérisé en ce que les aubes (VNE) directrices sont constituées de manière à ce qu'un angle (VBA) de courbure entre une tangente à la ligne (BWL) de squelette dans la partie de bord d'attaque et une tangente à la ligne (BWL) de squelette dans la partie (TEA) de bord de fuite soit plus petit du côté du disque de recouvrement que du côté du disque de roue, dans lequel l'angle (VBA) de courbure est à cet égard un angle, qui est mesuré positivement mathématiquement à partir de la tangente (TLV) à la ligne (BWL) de squelette dans la partie du bord d'attaque.
  2. Dispositif (ARG) suivant la revendication 1,
    dans lequel la différence entre l'angle (LEA) de bord d'attaque du côté du disque de recouvrement et du côté du disque de roue est d'au moins 5°.
  3. Dispositif (ARG) suivant la revendication 1 ou 2,
    dans lequel l'angle (AOA) d'attaque des aubes (VNE) directrices est plus petit du côté du disque de recouvrement que du côté du disque de roue, dans lequel l'angle (AOA) d'attaque est défini comme un angle mesuré positivement mathématiquement à partir de la tangente (CTG) périphérique sur la corde (VCH) de profil.
  4. Dispositif (ARG) suivant la revendication 3,
    dans lequel la différence entre l'angle (AOA) d'attaque du côté du disque de recouvrement et du côté du disque de roue des aubes (VNE) directrices est d'au moins 5°.
  5. Dispositif (ARG) suivant l'une des revendications 1 à 4,
    dans lequel le quotient de la largeur (SAC) axiale de canal du diffuseur (DFF) aileté au diamètre (DIE) maximum de la sortie d'aube directrice est plus grand que 0,04.
  6. Dispositif (ARG) suivant l'une des revendications 1 à 5,
    dans lequel le quotient de la largeur (SAC) axiale du canal du diffuseur aileté à la largeur (IAC) axiale de canal de la roue (IMP) à aubes au diamètre (DIE) maximum de la sortie de la roue à aubes est plus petit que 0,95.
  7. Dispositif (ARG) suivant au moins l'une des revendications précédentes, dans lequel les aubes (VNE) directrices ont une inclinaison, de manière à ce que le bord (DLE) d'entrée du côté du disque de recouvrement soit décalé par rapport au bord (DLE) d'entrée du côté du disque de roue dans le sens contraire au sens (RTD) de rotation de la roue (IMP) à aubes d'au moins 10% de la largeur (SAC) axiale de canal du diffuseur (DFF).
  8. Dispositif (ARG) suivant au moins l'une des revendications précédentes, dans lequel les aubes (VNE) directrices sont constituées, de manière à ce qu'un décalage, dans le sens contraire au sens (RTD) de rotation de la roue (IMP) à aubes au bord (DTE) de sortie, de la face du disque de recouvrement par rapport à la face du disque de roue soit plus petit qu'au bord (DLE) d'entrée.
  9. Dispositif (ARG) suivant au moins l'une des revendications précédentes, dans lequel le tracé axial des aubes (VNE) directrices du diffuseur (DFF) est réalisé incurvé, de manière continue de la face du disque de recouvrement à la face du disque de roue.
  10. Dispositif (ARG) suivant au moins l'une des revendications précédentes, dans lequel la roue (IMP) à aubes est conformée en trois dimensions, de manière à avoir, au moins dans le tiers le plus en aval de l'étendue des aubes (BLD) mobiles, suivant la direction (MFD) d'écoulement principal, une projection axiale d'une trace (BDS) d'aube mobile du côté du disque de recouvrement et d'une trace (BRS) d'aube mobile du côté du disque de roue, un dépassement de la trace (BDS) d'aube mobile du côté du disque de recouvrement par rapport à la trace (BRS) d'aube mobile du côté du disque de roue, d'au moins une proportion en surface > à 5% rapportée à la surface de la trace d'aube mobile du côté du disque de recouvrement.
  11. Dispositif (ARG) suivant au moins l'une des revendications précédentes, dans lequel le diffuseur (DFF) est conformé en trois dimensions, de manière à avoir au moins dans le tiers le plus en aval de l'étendue des aubes (VNE) directrices, suivant la direction (MFD) d'écoulement principal, une projection axiale d'une trace (DDS) d'aube directrice du côté du disque de recouvrement et d'une trace d'aube directrice du côté du disque de roue, au moins un dépassement de la trace (DDS) d'aube directrice du côté du disque de recouvrement par rapport à la trace (DRS) d'aube directrice du côté du disque de roue d'au moins une proportion en surface > à 5% rapportée à la surface de la trace (DRS) d'aube directrice du côté du disque de recouvrement.
EP18759897.4A 2017-09-20 2018-08-20 Dispositif pouvant être traversé Active EP3658780B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP17192114.1A EP3460257A1 (fr) 2017-09-20 2017-09-20 Dispositif pouvant être traversé
PCT/EP2018/072378 WO2019057412A1 (fr) 2017-09-20 2018-08-20 Dispositif pouvant être parcouru par un flux

Publications (2)

Publication Number Publication Date
EP3658780A1 EP3658780A1 (fr) 2020-06-03
EP3658780B1 true EP3658780B1 (fr) 2024-06-26

Family

ID=59923321

Family Applications (2)

Application Number Title Priority Date Filing Date
EP17192114.1A Withdrawn EP3460257A1 (fr) 2017-09-20 2017-09-20 Dispositif pouvant être traversé
EP18759897.4A Active EP3658780B1 (fr) 2017-09-20 2018-08-20 Dispositif pouvant être traversé

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP17192114.1A Withdrawn EP3460257A1 (fr) 2017-09-20 2017-09-20 Dispositif pouvant être traversé

Country Status (5)

Country Link
US (1) US11313384B2 (fr)
EP (2) EP3460257A1 (fr)
JP (1) JP7074959B2 (fr)
CN (1) CN111133202B (fr)
WO (1) WO2019057412A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3760871A1 (fr) 2019-07-04 2021-01-06 Siemens Aktiengesellschaft Diffuseur pour une turbomachine
EP3760876A1 (fr) 2019-07-04 2021-01-06 Siemens Aktiengesellschaft Diffuseur pour une turbomachine
EP3805572A1 (fr) 2019-10-07 2021-04-14 Siemens Aktiengesellschaft Diffuseur, turbocompresseur radial
CN113969855B (zh) * 2021-10-15 2022-08-02 清华大学 抑制水泵水轮机泵工况驼峰的叶片改型方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5469811A (en) * 1977-11-14 1979-06-05 Hitachi Ltd Diffuser for centrifugal compressor

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2372880A (en) * 1944-01-11 1945-04-03 Wright Aeronautical Corp Centrifugal compressor diffuser vanes
US3460748A (en) * 1967-11-01 1969-08-12 Gen Electric Radial flow machine
JP3482668B2 (ja) * 1993-10-18 2003-12-22 株式会社日立製作所 遠心形流体機械
US7111643B2 (en) 2005-01-26 2006-09-26 Invensys Building Systems, Inc. Flow characterization in a flowpath
US8016557B2 (en) 2005-08-09 2011-09-13 Praxair Technology, Inc. Airfoil diffuser for a centrifugal compressor
US8313286B2 (en) 2008-07-28 2012-11-20 Siemens Energy, Inc. Diffuser apparatus in a turbomachine
DE112009004804B4 (de) 2009-05-27 2019-02-07 Flowserve Management Company Fluidflusskontrollvorrichtungen und -systeme, sowie Verfahren, Fluide durch diese fließen zu lassen
EP2623795B1 (fr) * 2009-07-19 2018-07-04 Ingersoll-Rand Company Diffuseur de compresseur centrifuge
DE102010020379A1 (de) 2010-05-12 2011-11-17 Siemens Aktiengesellschaft Einstellbarer Radialverdichterdiffusor
US8616836B2 (en) * 2010-07-19 2013-12-31 Cameron International Corporation Diffuser using detachable vanes
JP5010722B2 (ja) 2010-08-31 2012-08-29 三菱重工業株式会社 遠心圧縮機のディフューザおよびこれを備えた遠心圧縮機
JP5608062B2 (ja) 2010-12-10 2014-10-15 株式会社日立製作所 遠心型ターボ機械
US9581170B2 (en) * 2013-03-15 2017-02-28 Honeywell International Inc. Methods of designing and making diffuser vanes in a centrifugal compressor
JP6323454B2 (ja) * 2013-08-06 2018-05-16 株式会社Ihi 遠心圧縮機及び過給機
EP3161325A1 (fr) 2014-06-24 2017-05-03 ABB Turbo Systems AG Diffuseur pour compresseur radial
JP6242775B2 (ja) * 2014-09-18 2017-12-06 三菱重工業株式会社 遠心圧縮機
DE102014219107A1 (de) 2014-09-23 2016-03-24 Siemens Aktiengesellschaft Radialverdichterlaufrad und zugehöriger Radialverdichter
CN204164041U (zh) 2014-09-29 2015-02-18 杭州康联科技有限公司 一种离心式空气压缩机的静叶扩压器
DE102016201256A1 (de) 2016-01-28 2017-08-03 Siemens Aktiengesellschaft Strömungsmaschine mit beschaufeltem Diffusor
GB2555567A (en) * 2016-09-21 2018-05-09 Cummins Ltd Turbine wheel for a turbo-machine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5469811A (en) * 1977-11-14 1979-06-05 Hitachi Ltd Diffuser for centrifugal compressor

Also Published As

Publication number Publication date
WO2019057412A1 (fr) 2019-03-28
CN111133202B (zh) 2021-04-23
JP7074959B2 (ja) 2022-05-25
CN111133202A (zh) 2020-05-08
JP2020534474A (ja) 2020-11-26
EP3460257A1 (fr) 2019-03-27
EP3658780A1 (fr) 2020-06-03
US20200277967A1 (en) 2020-09-03
US11313384B2 (en) 2022-04-26

Similar Documents

Publication Publication Date Title
EP3658780B1 (fr) Dispositif pouvant être traversé
EP2473743B1 (fr) Aube mobile de compresseur pour un compresseur axial
EP2696029B1 (fr) Grille d'aube avec définition de contour de la paroi latérale et turbomachine
EP2096316B1 (fr) Structuration de boîtier pour compresseur axial dans la zone du moyeu
EP3658781B1 (fr) Dispositif pouvant être traversé
EP3225781B1 (fr) Canal d'aube, grille d'aube et turbomachine
EP2806102B1 (fr) Aubage statorique de turbomachine et turbomachine associée
EP2746533B1 (fr) Grille d'aube et turbomachine
EP2835499B1 (fr) Grille d'aubes et turbomachine associée
DE102007020025A1 (de) Form eines Gaskanals in einer Axialströmungs-Gasturbinenmaschine
EP2505851B1 (fr) Aubage de stator pour un compresseur axial dans une turbomachine
EP0798447B1 (fr) Aube pour une turbomachine
EP3460255A1 (fr) Système pouvant être traversé
DE102004043036A1 (de) Strömungsarbeitsmaschine mit Fluidentnahme
EP3205883A1 (fr) Roue pour un turbocompresseur centrifuge
EP2626512A1 (fr) Turbomachine
EP3404210A1 (fr) Segment de grille d'aubes d'une turbomachine avec paroi de plateforme non-axisymétrique , grille d'aubes, canal d'aube, plateforme, turbomachine associés
EP3364039A1 (fr) Étage de retour
DE19722353A1 (de) Kreiselpumpe mit einer Einlaufleiteinrichtung
EP2607625B1 (fr) Turbomachine et étage de turbomachine
EP3358135B1 (fr) Contournage d'une plate-forme de grille d'aube
EP2607626A1 (fr) Turbomachine et étage de turbomachine
EP3404211A1 (fr) Segment de grille d'aubes d'une turbine avec paroi de plateforme contourée, grille d'aubes, canal d'aube, plateforme, turbine et moteur d'aéronef associés
DE2043083C3 (de) Beschaufelung einer axial durchströmten Turbomaschine
EP3390833B1 (fr) Aube de rotor de compresseur et procede de profilage d'une telle aube

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200226

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220707

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240214

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP