EP3631327B1 - Method and apparatus for air separation by cryogenic distillation - Google Patents

Method and apparatus for air separation by cryogenic distillation Download PDF

Info

Publication number
EP3631327B1
EP3631327B1 EP18736971.5A EP18736971A EP3631327B1 EP 3631327 B1 EP3631327 B1 EP 3631327B1 EP 18736971 A EP18736971 A EP 18736971A EP 3631327 B1 EP3631327 B1 EP 3631327B1
Authority
EP
European Patent Office
Prior art keywords
air
pressure
compressor
column
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18736971.5A
Other languages
German (de)
French (fr)
Other versions
EP3631327A1 (en
Inventor
Jean-Pierre Tranier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP3631327A1 publication Critical patent/EP3631327A1/en
Application granted granted Critical
Publication of EP3631327B1 publication Critical patent/EP3631327B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0012Primary atmospheric gases, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0012Primary atmospheric gases, e.g. air
    • F25J1/0015Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • F25J1/0037Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work of a return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0045Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0221Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
    • F25J1/0224Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop in combination with an internal quasi-closed refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0234Integration with a cryogenic air separation unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/04054Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/0406Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04084Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • F25J3/04181Regenerating the adsorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • F25J3/04224Cores associated with a liquefaction or refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04278Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using external refrigeration units, e.g. closed mechanical or regenerative refrigeration units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04339Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04339Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of air
    • F25J3/04345Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of air and comprising a gas work expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • F25J3/04357Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen and comprising a gas work expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04387Details relating to the work expansion, e.g. process parameter etc. using liquid or hydraulic turbine expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04472Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages
    • F25J3/04496Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist
    • F25J3/04503Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist by exchanging "cold" between at least two different cryogenic liquids, e.g. independently from the main heat exchange line of the air fractionation and/or by using external alternating storage systems
    • F25J3/04509Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist by exchanging "cold" between at least two different cryogenic liquids, e.g. independently from the main heat exchange line of the air fractionation and/or by using external alternating storage systems within the cold part of the air fractionation, i.e. exchanging "cold" within the fractionation and/or main heat exchange line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04472Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages
    • F25J3/04496Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist
    • F25J3/04503Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist by exchanging "cold" between at least two different cryogenic liquids, e.g. independently from the main heat exchange line of the air fractionation and/or by using external alternating storage systems
    • F25J3/04509Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist by exchanging "cold" between at least two different cryogenic liquids, e.g. independently from the main heat exchange line of the air fractionation and/or by using external alternating storage systems within the cold part of the air fractionation, i.e. exchanging "cold" within the fractionation and/or main heat exchange line
    • F25J3/04515Simultaneously changing air feed and products output
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04721Producing pure argon, e.g. recovered from a crude argon column
    • F25J3/04727Producing pure argon, e.g. recovered from a crude argon column using an auxiliary pure argon column for nitrogen rejection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • F25J2200/06Processes or apparatus using separation by rectification in a dual pressure main column system in a classical double column flow-sheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • F25J2205/66Regenerating the adsorption vessel, e.g. kind of reactivation gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/50Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • F25J2240/10Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream the fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/58Processes or apparatus involving steps for recycling of process streams the recycled stream being argon or crude argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/42One fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/58One fluid being argon or crude argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/02Internal refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration

Definitions

  • the present invention relates to a method and apparatus for the separation of air by cryogenic distillation.
  • it relates to methods and apparatus for producing oxygen and / or nitrogen under elevated pressure.
  • the gaseous oxygen produced by the air separation units is usually at an elevated pressure of about 20 to 50 bar.
  • the basic distillation scheme is usually a double column process producing oxygen at the bottom of the second column, operated at a pressure of 1 to 4 bar.
  • the oxygen must be compressed to a higher pressure, either through an oxygen compressor or through the process of pumping liquid. Due to the safety concerns associated with oxygen compressors, newer oxygen generating units use the liquid pumping process.
  • an additional booster is needed to raise some of the feed air or nitrogen to a higher pressure, within the range of 40 to 80 bar. . In essence, the booster replaces the oxygen compressor.
  • One of the goals of developing new process cycles is to reduce the energy consumption of an oxygen production unit.
  • FIG. 1 This prior art is illustrated on Figure 1 .
  • a double column 2 comprising a first column 8 and a second column 9 operating at a lower pressure than the first column, thermally connected by a reboiler / condenser 10. All of the feed air is compressed in a compressor 6 to the pressure of the first column 8, purified in the purification unit 7, and subdivided into three.
  • a flow 502 is sent to a booster 503, cooled in a water cooler (not shown), and further cooled in the heat exchanger 5, then expanded in a turbine 501 coupled to the booster 503.
  • the expanded air 502 is sent to the second column.
  • Another part of the air is sent to the heat exchanger 5 at substantially the same pressure as the first column 8.
  • the third flow is compressed in a compressor 230 and sent to the heat exchanger, where it condenses.
  • the liquefied air is subdivided between the first column 8 and the second column 9 by the valves 231 and 240.
  • a flow rate of liquid enriched in oxygen LR is expanded and sent from the first column to the second column via valve 25.
  • the flow rate of liquid enriched in nitrogen LP is expanded and sent from the first column to the second column.
  • Pure liquid nitrogen NLMP 43 is produced by the first column, then cooled again in the heat exchanger 24 and expanded in the valve 143 and sent to a storage 144.
  • the high pressure nitrogen gas 39 is withdrawn at the top from the first column and heated in the heat exchanger to form a product flow 40.
  • the liquid oxygen OL is withdrawn from the bottom of the second column 9, pressurized by a pump 37 and sent in part as a flow 38 to heat exchanger 5, where it vaporizes by heat exchange with pressurized air to form pressurized oxygen gas.
  • the remainder of the liquid oxygen 52 is withdrawn as a liquid product.
  • An overhead gas flow enriched in nitrogen NR is withdrawn from the second column 9, heated in the heat exchanger 5 in the form of a flow 33.
  • Argon is produced by using a column of impure argon 3 and pure argon 4.
  • the impure argon column is fed by a flow 16 coming from the second column 9.
  • a liquid flow 17 is sent. from the base of the impure argon column 3 to the second column 9.
  • a rich liquid is sent to the overhead condenser 12 of column 3 through the valve 26 and is evaporated to form a flow rate 27 which is returned to the second column .
  • a product flow 19 is sent to the condenser 20 and from there forms the flow 19.
  • the flow 19 is condensed in the heat exchanger 20 and subdivided 49 into the flow 48 which is sent to the waste flow 33 at the point of intersection. 50, and another flow.
  • the other flow is sent through valve 21 to column 4.
  • the pure argon column 4 produces a product flow of 45.
  • the top condenser 13 of the pure argon column 4 is supplied with the liquid rich in nitrogen LP coming from the first column through the valve 34, and the nitrogen. vaporized is withdrawn by the valve 35 in the form of a flow 33 and cooled in the sub-cooler 24.
  • the bottom reboiler 14 of the pure argon column is heated using air, and the liquefied air 23 is sent to the first column.
  • a purge flow 46 is also withdrawn.
  • the condenser 20 is supplied with the liquid rich in nitrogen LP through the valve 31, and the vaporized liquid is sent through the valve 32 to the waste flow 33.
  • the Figure 2 shows the relationship between heat exchange in kcal / h and temperature for fluids cooling and heating in exchanger 5.
  • a cold compression process as described in US-A-5,475,980 , provides a technique for controlling an oxygen production unit with a single air compressor.
  • the air to be distilled is cooled in the heat exchanger, then is again compressed by a booster controlled by an expansion machine, the effluent of which is sent to the first column of a double column process. , the one that operates at the highest pressure.
  • the discharge pressure of the air compressor is of the order of 15 bar, which is likewise very advantageous for the purification unit.
  • a disadvantage of this approach is the increase in the size of the heat exchanger due to the additional recycling of the flow, which is representative of a cold compression unit. It is possible to reduce the size of the exchanger by opening the temperature approaches of the exchanger. However, this would lead to inefficient use of energy, and higher compressor discharge pressure, which would increase the cost.
  • part of the feed air is subjected to further compression in a hot booster, while at least part of the air is still compressed in a cold booster.
  • the air coming from the two boosters is liquefied, and part of the cold compressed air is expanded in a Claude turbine.
  • US-A-5,901,576 describes various arrangements of cold compression schemes using the expansion of a rich liquid vaporized from the bottom of the first column, or the expansion of high pressure nitrogen to drive the cold compressor. In some cases, engine-driven cold compressors have also been used. These methods also operate with feed air at approximately the first column pressure, and in most cases a booster is also needed.
  • US-A-6 626 008 describes a heat pump cycle using a cold compressor to improve the distillation process for the production of low purity oxygen for a dual vaporizer oxygen production process.
  • a low air pressure, and a booster, are also representative of this type of process.
  • EP-A-1 972 875 describes means for improving the above processes using a cold compressor, in particular by introducing all of the feed air flows into the columns at a temperature close to the temperature of the column at the point where the flow is introduced, with the aim of reducing the thermodynamic irreversibility of the system. But it requires the addition of at least one additional compression stage.
  • the present invention therefore aims to resolve the drawbacks of these processes, in particular by introducing all the feed air flows into the columns at a temperature close to the temperature of the column at the point where the flow is introduced, into the aim of reducing the thermodynamic irreversibility of the system without adding an additional compression stage.
  • the overall cost of the products of an oxygen production unit can therefore be reduced.
  • the main improvement is due to the use of an air booster (Booster Air Compressor (BAC)) to recycle the air once it has been used to recover the heat produced by the vaporization of a liquid. high pressure in the main heat exchanger.
  • Booster Air Compressor BAC
  • Cleaned and cooled air is sent from the first compressor to the column system for separation.
  • an apparatus for separating air by cryogenic distillation according to claim 14.
  • a double column 2 comprising a first column 8 and a second column 9 provided, thermally connected by a reboiler / condenser 10. All of the feed air is compressed in the compressor 6 to a pressure of at least one bar greater than the pressure of the first column 8, preferably substantially equal to the pressure of the first column 8, allowing a pressure drop in the intermediate pipes, purified in the purification unit 7 and subdivided into three.
  • a flow 502 is sent to a booster 503, cooled in a water cooler (not shown), then further cooled in the heat exchanger 5, then expanded in a turbine 501, coupled to the booster 503.
  • the expanded air 502 is sent to the second column.
  • Another part 507 of the air is sent to the heat exchanger 5 under a pressure substantially equal to that of the first column 8.
  • the third flow 505 is compressed in a compressor 230 and sent to the heat exchanger, where it condenses.
  • the compressor 230 is a four-stage centrifugal compressor 230A, 230B, 230C and 230D, for example of the integrated speed multiplication type cooled by water intercoolers 232A, 232B, 232C and a chiller. final 232D.
  • the compressor suction pressure is 5.5 bar abs
  • the intermediate pressures are 10.2 bar abs, 18.9 bar abs and 35.1 bar abs
  • the final outlet pressure is 65 bar abs.
  • the suction flow is 26.5% of the total air flow.
  • the liquefied air is subdivided between the first column 8, the second column 9, and the fractions to be expanded in the valves 116A, 116B and 116C.
  • a flow of oxygen enriched liquid LR is expanded and sent from the first column to the second column.
  • a flow of liquid enriched in LP nitrogen is expanded and sent from the first column to the second column.
  • Pure liquid nitrogen NLMP is produced by the first column 8, again cooled in the heat exchanger 24 and expanded in the valve 143 and sent to storage 144.
  • the high pressure gaseous nitrogen 39 is withdrawn at the top of the first column and heated in the heat exchanger to form a product flow 40.
  • the liquid oxygen OL is withdrawn from the bottom of the second column 9, pressurized by a pump 37 and sent in part as a flow 38 to heat exchanger 5, where it vaporizes by heat exchange with pressurized air to form pressurized gaseous oxygen.
  • the remainder of the liquid oxygen 52 is withdrawn as a liquid product.
  • An overhead gas flow NR, enriched in nitrogen, is withdrawn from the second column 9, heated in the heat exchanger 5 in the form of a flow 33.
  • Argon is produced by using the column of impure argon 3 and pure argon 4.
  • the column of impure argon is fed by the flow 16 coming from the second column 9.
  • a flow of liquid 17 is sent from the base of the impure argon column 3 to the second column 9.
  • the oxygen enriched liquid is sent to the overhead condenser 12 of column 3 through the valve 26 and evaporated to form the flow 27, which is returned to the second column.
  • a product flow 19 is sent to the condenser 20, and from there forms the flow 19.
  • the flow 19 is condensed in the heat exchanger 20 and subdivided into a flow 48 which is sent to the waste flow 33 at point d. 'intersection 50, and another flow.
  • the other flow is sent through valve 21 to column 4.
  • the pure argon column 4 produces a product flow of 45.
  • the top condenser 13 of the pure argon column 4 is supplied with the nitrogen-rich LP liquid coming from the first column via the valve 34, and vaporized nitrogen is withdrawn through valve 35 as a flow 33 and cooled in sub-cooler 24.
  • Bottom reboiler 14 of the pure argon column is heated using air, and liquefied air 23 is sent to the first column.
  • a purge flow 46 is likewise withdrawn.
  • the nitrogen-rich liquid 43 is collected through the valve 143 in the storage 144.
  • the condenser 20 is supplied with the nitrogen-rich LP liquid through the valve 31, and the vaporized liquid is sent through the valve 32 to the waste flow 33.
  • the air flow 505 under 65 bar is subdivided into two. Part of the air is expanded in valve 231 and sent to columns 8 and 9 in liquid form.
  • the rest of the air 107 is subdivided into three fractions 107A, 107B, 107C.
  • the fraction of air 107A recycled between the first stage 230A and the second stage 230B corresponds to 1.08% of the total air flow. It is expanded in the valve 116A from 65 bar abs to approximately 10.2 bar abs and introduced into the heat exchanger 5, where it is vaporized, heated after vaporization to give a recycle air 107A.
  • the fraction of air 107B recycled between the second stage 230B and the third stage 230C corresponds to 0.84% of the total air flow. It is expanded in the valve 116B from 65 bar abs to approximately 18.9 bar abs and introduced into the heat exchanger 5, where it is vaporized, heated after vaporization to give a recycle air 107B.
  • the fraction of air 107C recycled between the third stage 230C and the fourth stage 230D corresponds to 22.08% of the total air flow. It is expanded in the valve 116C from 65 bar abs to approximately 35.1 bar abs and introduced into the heat exchanger 5, where it is vaporized, heated after vaporization to give a recycle air 107C.
  • These three air fractions represent a total recirculation air flow rate of 24% of the total air flow rate, which means that the fluid 505 corresponds to a flow rate of 50.5% of the total air flow rate, and that the flow rate through valve 231 is 26.5%.
  • the vaporization of the three air fractions 107A, 107B and 107C takes place in the heat exchanger 5 respectively at temperatures of about -166 ° C, -155 ° C and -142 ° C, as can be seen on the Figure 4 , which is lower than the vaporization temperature of oxygen, which is about -125 ° C.
  • a phase separator should be added if the expanded flow is a two-phase fluid, the liquid phase being introduced into the heat exchanger 5 and the vapor phase being mixed with the flow 107.
  • condensation covers the condensation of a form. vapor in a liquid or partially liquid form. It also covers the pseudo-condensation of a supercritical fluid when it is cooled from a temperature above the supercritical temperature to a temperature below the supercritical temperature.
  • the Figure 4 presents the exchange diagram corresponding to the process of Figure 3 .
  • a less optimized variant of the Figure 3 should involve subdividing flow 107 into one or two fractions and recycling these fractions, after vaporization, with return to compressor 230.
  • valves, 231, 116A, 116B and 116C could be replaced by liquid turbines, that is to say an expansion system producing work in order to reduce the irreversibility associated with isenthalpic expansion. These liquid turbines could be installed in parallel or in series.
  • Compressor 230 in the base case, is considered to be an engine driven machine, but could also be driven by a steam turbine or gas turbine (the same as for Main Air Compressor 6) .
  • any of the four compressor stages 230A, 230B, 230C and 230D could be driven by an expansion machine for any of the fluids of this cryogenic air separation process, preferably at low. temperature.
  • any of the four compressor stages 230A, 230B, 230C, and 230D could have a suction temperature below room temperature, preferably slightly above the vaporization temperature of oxygen, at about -125 ° C.
  • specific energy kWh / Nm3 of O2
  • the specific energy necessary for the production of oxygen under 40 bar abs according to the invention is 92.9, c ' that is, a gain of 7.1%.
  • Fractions 107A, 107B, 107C could be separated from the air passing through 231 and extracted from heat exchanger 5 at a temperature above the temperature of the cold end of heat exchanger 5.
  • the process can be modified to vaporize the pumped liquid nitrogen, as an additional flow or as a flow replacing the pumped oxygen flow.
  • the compressor 230 should be supplied with at least part of the high pressure nitrogen gas 40.
  • liquid buffers 131, 152 are added to the storage unit, and release cryogenic liquids to decorrelate ASU oxygen production from customer consumption. In addition, it helps reduce energy consumption at peak times without reducing the flow of oxygen to the end user, and increasing oxygen consumption at off-peak hours without increasing the flow of oxygen. oxygen to the end user.
  • the supply air is compressed in the compressor 6 and purified in the purification unit 7 and subdivided into two.
  • a flow 505 is compressed in a compressor 230 and is sent to the heat exchanger, where it undergoes partial condensation, or "pseudo-condensation", because it is above the critical pressure.
  • the compressor 230 is considered to be a four-stage centrifugal compressor 230A, 230B, 230C and 230D, for example of the integrated speed multiplier type, cooled by water intercoolers 232A, 232B, 232C and a 232D aftercooler.
  • the compressor suction pressure is 5.5 bar abs
  • the intermediate pressures are 10.2 bar abs, 18.9 bar abs and 35.1 bar abs
  • final pressure 65 bar abs The suction flow rate is 23% of the total air flow when no cryogenic liquid is stored or discharged.
  • the flow 505 is divided into a first secondary flow 505A, which goes directly to the heat exchanger 5, and a second secondary flow 505B, which goes to the refrigeration unit 102 to be cooled to -5 ° C and introduced into heat exchanger 5.
  • a first fraction of the high pressure air is withdrawn and sent to a two-phase expansion machine 116D, reintroduced into the heat exchanger. heat 5 to be heated and recycled to 35.1 bar abs in compressor 230 at the level of stage 230D as flow 107D.
  • This first fraction has a flow rate of 18.4% of the total air flow rate.
  • a second fraction is cooled to -192.2 ° C by complete passage through the heat exchanger 5 and is expanded in the valve 231 to be sent to the liquid air storage unit 131 (LAIR) as flow 234.
  • the flow rate of this second fraction is only 23% of the total air flow coming from the main air compressor 6.
  • a fraction 107 is withdrawn from the cold end of the heat exchanger 5 and subdivided into three.
  • the fraction of air 107A recycled between the first stage 230A and the second stage 230B corresponds to 1.1% of the total air flow. It is expanded in the valve 116A from 65 bar abs to approximately 10.2 bar abs and introduced into the heat exchanger 5, where it is evaporated, heated after vaporization to give a recycling air 107A.
  • the fraction of air 107B recycled between the second stage 230B and the third stage 230C corresponds to 3.15% of the total air flow. It is expanded in the valve 116B from 65 bar abs to approximately 18.9 bar abs and is introduced into the heat exchanger 5, where it is vaporized, heated after vaporization to give a recycle air 107B.
  • the air fraction 107C is expanded in the valve 116C from 65 bar abs to approximately 1.2 bar abs and is introduced into the heat exchanger 5, where it is vaporized, heated after vaporization to give a recycle air 107C which can be used to regenerate air purifiers if ASU 101 is not running. It represents 4.45% of the total air flow.
  • a liquid oxygen storage tank 152 fed by ASU 101 supplies oxygen 151 to the system.
  • a liquid oxygen pump 37 pressurizes the oxygen to the required pressure level before introduction into the heat exchanger 5, where it undergoes vaporization or pseudo-vaporization.
  • the ASU 101 is supplied by air 510 from the same compressor 6 (MAC) and by liquid air 235 which is used to compensate for the production of liquid oxygen 150.
  • MAC compressor 6
  • the flow 510 is cooled in a heat exchanger independent of the heat exchanger 5 by heat exchange with the nitrogen gas coming from the air separation unit (not shown). It is possible to cool the cold flow 510 in the heat exchanger 5, but this would make the system less flexible.
  • valves 231, 116A, 116B and 116C could be replaced by turbines expanding liquid, that is to say an expansion system producing work, in order to reduce the irreversibility associated with isenthalpic expansion.
  • These liquid expansion turbines could be installed in parallel and / or in series.
  • the air separation unit operates such that the amount of liquid oxygen stored in the storage tank 152 increases.
  • the amount of liquid oxygen vaporized in the heat exchanger 5 is less than the liquid oxygen produced by the air separation unit.
  • the air flows 510 are sent to the air separation unit through a heat exchanger independent of the heat exchanger 5, and an air flow 235 is sent to the heat exchanger unit. separation of air from the storage tank 131, and liquid oxygen 150 is sent to the storage tank 152. However, the amount of liquid air sent to the tank 131 exceeds the amount of air therein. withdrawn, and the quantity of liquid oxygen sent to the vessel 152 exceeds the quantity of liquid oxygen which is withdrawn therefrom.
  • the air separation unit does not work, which is not covered by the object of the claimed invention, or Operates at low capacity, usually 50% or less of maximum capacity, even though the total oxygen produced is much greater than 50% of maximum capacity.
  • No air is sent to the air separation unit through the flows 510 and 235.
  • the liquid oxygen stored in the tank 152 is vaporized to give the flow of gaseous oxygen. Regeneration of the purification unit 7 is carried out by using the flow rate 107C.
  • the liquid air produced by the vaporization of liquid oxygen is stored in the storage tank 131 during peak periods, and no gaseous or liquid air is sent to the air separation unit 101.
  • the process can be modified to vaporize the pumped liquid nitrogen as an additional flow, or as a flow replacing the pumped oxygen flow.
  • a nitrogen cycle (rather than an air cycle), as seen in the figure. Figure 6 .
  • the compressor 230 is supplied with at least part of the high pressure gaseous nitrogen 40.
  • Compressed nitrogen is cooled and condensed in heat exchanger 5.
  • the compressed nitrogen is then subdivided into at least two portions, three portions being presented here, expanded to at least two different pressures, and vaporized in the heat exchanger 5.
  • the vaporized nitrogen from the valves 116A and 116B is returned to intermediate positions of the nitrogen compressor 230, and the vaporized nitrogen from the valve 116C can be used to regenerate the purification unit if the separation unit of air does not work.
  • Liquid nitrogen produced 234 is expanded in valve 231 and stored in storage unit 131 for use.
  • liquid oxygen can be vaporized against nitrogen in periods when the air separation unit is not operating, for example periods when electricity is particularly expensive.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

La présente invention concerne un procédé et un appareil pour la séparation de l'air par distillation cryogénique. Elle concerne en particulier des procédés et un appareil pour produire de l'oxygène et/ou de l'azote sous une pression élevée.The present invention relates to a method and apparatus for the separation of air by cryogenic distillation. In particular, it relates to methods and apparatus for producing oxygen and / or nitrogen under elevated pressure.

L'oxygène gazeux produit par les unités de séparation de l'air est habituellement à une pression élevée d'environ 20 à 50 bar. Le schéma de distillation de base est habituellement un procédé à double colonne produisant de l'oxygène au fond de la deuxième colonne, exploitée sous une pression de 1 à 4 bar. L'oxygène doit être comprimé à une pression plus élevée, grâce à un compresseur d'oxygène ou grâce au procédé de pompage de liquide. Du fait des problèmes de sécurité associés aux compresseurs d'oxygène, les unités de production d'oxygène les plus récentes utilisent le procédé de pompage de liquide. Pour vaporiser l'oxygène liquide sous une pression élevée, on a besoin d'un surpresseur additionnel pour élever une partie de l'air ou de l'azote d'alimentation à une pression plus élevée, comprise dans la plage de 40 à 80 bar. Par essence, le surpresseur remplace le compresseur d'oxygène. L'un des buts du développement de nouveaux cycles de procédé est de diminuer la consommation d'énergie d'une unité de production d'oxygène.The gaseous oxygen produced by the air separation units is usually at an elevated pressure of about 20 to 50 bar. The basic distillation scheme is usually a double column process producing oxygen at the bottom of the second column, operated at a pressure of 1 to 4 bar. The oxygen must be compressed to a higher pressure, either through an oxygen compressor or through the process of pumping liquid. Due to the safety concerns associated with oxygen compressors, newer oxygen generating units use the liquid pumping process. To vaporize liquid oxygen under high pressure, an additional booster is needed to raise some of the feed air or nitrogen to a higher pressure, within the range of 40 to 80 bar. . In essence, the booster replaces the oxygen compressor. One of the goals of developing new process cycles is to reduce the energy consumption of an oxygen production unit.

Dans un effort de réduction de cette consommation d'énergie, il est souhaitable d'introduire tous les débits d'air d'alimentation dans les colonnes à une température proche de la température de la colonne, au point où le débit est introduit, pour réduire l'irréversibilité thermodynamique du système. Malheureusement, on ne peut y arriver avec un cycle de pompage "classique".In an effort to reduce this energy consumption, it is desirable to introduce all the feed air flows into the columns at a temperature close to the temperature of the column, at the point where the flow is introduced, to reduce the thermodynamic irreversibility of the system. Unfortunately, this cannot be achieved with a "classic" pumping cycle.

Cet art antérieur est illustré sur la Figure 1. Sur la Figure 1, telle que décrite dans FR-A-2 777 641 , on utilise dans une unité de séparation d'air 1 une double colonne 2, comprenant une première colonne 8 et une deuxième colonne 9 opérant à une plus basse pression que la première colonne, thermiquement reliées par un rebouilleur/condenseur 10. La totalité de l'air d'alimentation est comprimée dans un compresseur 6 à la pression de la première colonne 8, purifiée dans l'unité de purification 7, et subdivisée en trois.This prior art is illustrated on Figure 1 . On the Figure 1 , as described in FR-A-2 777 641 , is used in an air separation unit 1 a double column 2, comprising a first column 8 and a second column 9 operating at a lower pressure than the first column, thermally connected by a reboiler / condenser 10. All of the feed air is compressed in a compressor 6 to the pressure of the first column 8, purified in the purification unit 7, and subdivided into three.

Un débit 502 est envoyé à un surpresseur 503, refroidi dans un refroidisseur d'eau (non représenté), et encore plus refroidi dans l'échangeur de chaleur 5, puis détendu dans une turbine 501 couplée au surpresseur 503. L'air détendu 502 est envoyé à la deuxième colonne.A flow 502 is sent to a booster 503, cooled in a water cooler (not shown), and further cooled in the heat exchanger 5, then expanded in a turbine 501 coupled to the booster 503. The expanded air 502 is sent to the second column.

Une autre partie de l'air est envoyée à l'échangeur de chaleur 5 sensiblement sous la même pression que la première colonne 8.Another part of the air is sent to the heat exchanger 5 at substantially the same pressure as the first column 8.

Le troisième débit est comprimé dans un compresseur 230 et envoyé dans l'échangeur de chaleur, où il se condense. L'air liquéfié est subdivisé entre la première colonne 8 et la deuxième colonne 9 par les vannes 231 et 240.The third flow is compressed in a compressor 230 and sent to the heat exchanger, where it condenses. The liquefied air is subdivided between the first column 8 and the second column 9 by the valves 231 and 240.

Un débit de liquide enrichi en oxygène LR est détendu et envoyé de la première colonne à la deuxième colonne par la vanne 25. Le débit de liquide enrichi en azote LP est détendu et envoyé de la première colonne à la deuxième colonne. De l'azote liquide pur NLMP 43 est produit par la première colonne, puis refroidi de nouveau dans l'échangeur de chaleur 24 et détendu dans la vanne 143 et envoyé à un stockage 144. L'azote gazeux haute pression 39 est soutiré en tête de la première colonne et chauffé dans l'échangeur de chaleur pour former un débit de produit 40. L'oxygène liquide OL est soutiré du fond de la deuxième colonne 9, pressurisé par une pompe 37 et envoyé en partie sous forme d'un débit 38 à l'échangeur de chaleur 5, où il se vaporise par échange de chaleur avec l'air pressurisé pour former un oxygène gazeux pressurisé. Le reste de l'oxygène liquide 52 est soutiré sous forme d'un produit liquide. Un débit gazeux de tête enrichi en azote NR est soutiré de la deuxième colonne 9, chauffé dans l'échangeur de chaleur 5 sous forme d'un débit 33.A flow rate of liquid enriched in oxygen LR is expanded and sent from the first column to the second column via valve 25. The flow rate of liquid enriched in nitrogen LP is expanded and sent from the first column to the second column. Pure liquid nitrogen NLMP 43 is produced by the first column, then cooled again in the heat exchanger 24 and expanded in the valve 143 and sent to a storage 144. The high pressure nitrogen gas 39 is withdrawn at the top from the first column and heated in the heat exchanger to form a product flow 40. The liquid oxygen OL is withdrawn from the bottom of the second column 9, pressurized by a pump 37 and sent in part as a flow 38 to heat exchanger 5, where it vaporizes by heat exchange with pressurized air to form pressurized oxygen gas. The remainder of the liquid oxygen 52 is withdrawn as a liquid product. An overhead gas flow enriched in nitrogen NR is withdrawn from the second column 9, heated in the heat exchanger 5 in the form of a flow 33.

De l'argon est produit par utilisation d'une colonne d'argon impur 3 et d'argon pur 4. La colonne d'argon impur est alimentée par un débit 16 provenant de la deuxième colonne 9. Un débit de liquide 17 est envoyé de la base de la colonne d'argon impur 3 à la deuxième colonne 9. Un liquide riche est envoyé au condenseur de tête 12 de la colonne 3 par la vanne 26 et est évaporé pour former un débit 27 qui est renvoyé à la deuxième colonne. Un débit de produit 19 est envoyé au condenseur 20 et de là forme le débit 19. Le débit 19 est condensé dans l'échangeur de chaleur 20 et subdivisé 49 en le débit 48 qui est envoyé au débit de déchets 33 au point d'intersection 50, et un autre débit. L'autre débit est envoyé par la vanne 21 à la colonne 4.Argon is produced by using a column of impure argon 3 and pure argon 4. The impure argon column is fed by a flow 16 coming from the second column 9. A liquid flow 17 is sent. from the base of the impure argon column 3 to the second column 9. A rich liquid is sent to the overhead condenser 12 of column 3 through the valve 26 and is evaporated to form a flow rate 27 which is returned to the second column . A product flow 19 is sent to the condenser 20 and from there forms the flow 19. The flow 19 is condensed in the heat exchanger 20 and subdivided 49 into the flow 48 which is sent to the waste flow 33 at the point of intersection. 50, and another flow. The other flow is sent through valve 21 to column 4.

La colonne d'argon pur 4 produit un débit de produit 45. Le condenseur de tête 13 de la colonne d'argon pur 4 est alimenté par le liquide riche en azote LP provenant de la première colonne par la vanne 34, et l'azote vaporisé est soutiré par la vanne 35 sous forme d'un débit 33 et refroidi dans le sous-refroidisseur 24.The pure argon column 4 produces a product flow of 45. The top condenser 13 of the pure argon column 4 is supplied with the liquid rich in nitrogen LP coming from the first column through the valve 34, and the nitrogen. vaporized is withdrawn by the valve 35 in the form of a flow 33 and cooled in the sub-cooler 24.

Le rebouilleur de fond 14 de la colonne d'argon pur est chauffé par utilisation d'air, et l'air liquéfié 23 est envoyé à la première colonne.The bottom reboiler 14 of the pure argon column is heated using air, and the liquefied air 23 is sent to the first column.

Un débit de purge 46 est lui aussi soutiré.A purge flow 46 is also withdrawn.

Le condenseur 20 est alimenté par le liquide riche en azote LP par la vanne 31, et le liquide vaporisé est envoyé par la vanne 32 au débit de déchets 33.The condenser 20 is supplied with the liquid rich in nitrogen LP through the valve 31, and the vaporized liquid is sent through the valve 32 to the waste flow 33.

La Figure 2 montre les relations entre l'échange de chaleur en kcal/h et la température pour les fluides se refroidissant et se réchauffant dans l'échangeur 5.The Figure 2 shows the relationship between heat exchange in kcal / h and temperature for fluids cooling and heating in exchanger 5.

Certaines versions différentes du procédé de compression à froid sont aussi décrites dans la technique antérieure, comme dans US-A-5 379 598 , US-A-5 475 980 , US-A-5 596 885 , US-A-5 901 576 et US-A-6 626 008 .Some different versions of the cold pressing process are also described in the prior art, as in US-A-5,379,598 , US-A-5,475,980 , US-A-5,596,885 , US-A-5,901,576 and US-A-6 626 008 .

Dans US-A-5 379 598 une fraction de l'air d'alimentation est recomprimée par un surpresseur, suivi d'un compresseur à froid, pour donner un débit pressurisé nécessaire à la vaporisation de l'oxygène. Cette approche possède encore au moins deux compresseurs, et l'unité de purification fonctionne encore sous une basse pression.In US-A-5,379,598 a fraction of the supply air is recompressed by a booster, followed by a cold compressor, to give a pressurized flow necessary for the vaporization of the oxygen. This approach still has at least two compressors, and the purification unit still operates at low pressure.

Un procédé de compression à froid, tel que décrit dans US-A-5 475 980 , fournit une technique pour commander une unité de production d'oxygène avec un compresseur d'air unique. Dans ce procédé, de l'air à distiller est refroidi dans l'échangeur de chaleur, puis est de nouveau comprimé par un surpresseur commandé par une machine de détente dont l'effluent est envoyé dans la première colonne d'un procédé à double colonne, celle qui opère à la pression la plus élevée.A cold compression process, as described in US-A-5,475,980 , provides a technique for controlling an oxygen production unit with a single air compressor. In this process, the air to be distilled is cooled in the heat exchanger, then is again compressed by a booster controlled by an expansion machine, the effluent of which is sent to the first column of a double column process. , the one that operates at the highest pressure.

Ce faisant, la pression de refoulement du compresseur d'air est de l'ordre de 15 bar, ce qui est de même très avantageux pour l'unité de purification. Un inconvénient de cette approche réside dans l'augmentation de la taille de l'échangeur de chaleur en raison du recyclage supplémentaire de l'écoulement, qui est représentatif d'une unité de compression à froid. Il est possible de réduire la taille de l'échangeur en ouvrant les approches de température de l'échangeur. Cependant, cela conduirait à une utilisation inefficace de l'énergie, et à une pression de refoulement plus élevée du compresseur, ce qui augmenterait le coût.In doing so, the discharge pressure of the air compressor is of the order of 15 bar, which is likewise very advantageous for the purification unit. A disadvantage of this approach is the increase in the size of the heat exchanger due to the additional recycling of the flow, which is representative of a cold compression unit. It is possible to reduce the size of the exchanger by opening the temperature approaches of the exchanger. However, this would lead to inefficient use of energy, and higher compressor discharge pressure, which would increase the cost.

Dans US-A-5 596 885 , une partie de l'air d'alimentation est soumise à une compression plus poussée dans un surpresseur à chaud, pendant qu'au moins une partie de l'air est encore comprimée dans un surpresseur à froid. L'air provenant des deux surpresseurs est liquéfié, et une partie de l'air comprimé à froid est détendue dans une turbine Claude.In US-A-5,596,885 , part of the feed air is subjected to further compression in a hot booster, while at least part of the air is still compressed in a cold booster. The air coming from the two boosters is liquefied, and part of the cold compressed air is expanded in a Claude turbine.

US-A-5 901 576 décrit différents arrangements de schémas de compression à froid utilisant la détente d'un liquide riche vaporisé du fond de la première colonne, ou la détente de l'azote haute pression pour entraîner le compresseur à froid. Dans certains cas, on a aussi utilisé des compresseurs à froid entraînés par un moteur. Ces procédés fonctionnent aussi avec de l'air d'alimentation approximativement à la pression de la première colonne et, dans la plupart des cas, on a aussi besoin d'un surpresseur. US-A-5,901,576 describes various arrangements of cold compression schemes using the expansion of a rich liquid vaporized from the bottom of the first column, or the expansion of high pressure nitrogen to drive the cold compressor. In some cases, engine-driven cold compressors have also been used. These methods also operate with feed air at approximately the first column pressure, and in most cases a booster is also needed.

US-A-6 626 008 décrit un cycle de pompe à chaleur utilisant un compresseur à froid pour améliorer le processus de distillation pour la production d'oxygène de faible pureté pour un procédé de production d'oxygène à double vaporiseur. Une faible pression d'air, et un surpresseur, sont aussi représentatifs de ce type de procédé. US-A-6 626 008 describes a heat pump cycle using a cold compressor to improve the distillation process for the production of low purity oxygen for a dual vaporizer oxygen production process. A low air pressure, and a booster, are also representative of this type of process.

EP-A-1 972 875 décrit des moyens pour améliorer les procédés ci-dessus faisant appel à un compresseur à froid, en particulier par introduction de la totalité des débits d'air d'alimentation dans les colonnes à une température proche de la température de la colonne en le point où le débit est introduit, dans le but de réduire l'irréversibilité thermodynamique du système. Mais elle exige l'addition d'au moins un étage additionnel de compression. EP-A-1 972 875 describes means for improving the above processes using a cold compressor, in particular by introducing all of the feed air flows into the columns at a temperature close to the temperature of the column at the point where the flow is introduced, with the aim of reducing the thermodynamic irreversibility of the system. But it requires the addition of at least one additional compression stage.

La présente invention vise donc à résoudre les inconvénients de ces procédés, en particulier par introduction de tous les débits d'air d'alimentation dans les colonnes à une température proche de la température de la colonne en le point où le débit est introduit, dans le but de réduire l'irréversibilité thermodynamique du système sans ajouter un étage additionnel de compression. Le coût global des produits d'une unité de production d'oxygène peut donc être réduit. L'amélioration principale est due à l'utilisation d'un surpresseur d'air (Booster Air Compressor (BAC)) pour recycler l'air une fois qu'il a été utilisé pour récupérer la chaleur produite par la vaporisation d'un liquide haute pression dans l'échangeur de chaleur principal.The present invention therefore aims to resolve the drawbacks of these processes, in particular by introducing all the feed air flows into the columns at a temperature close to the temperature of the column at the point where the flow is introduced, into the aim of reducing the thermodynamic irreversibility of the system without adding an additional compression stage. The overall cost of the products of an oxygen production unit can therefore be reduced. The main improvement is due to the use of an air booster (Booster Air Compressor (BAC)) to recycle the air once it has been used to recover the heat produced by the vaporization of a liquid. high pressure in the main heat exchanger.

Tous les pourcentages mentionnés sont des pourcentages en moles.All the percentages mentioned are percentages in moles.

Un procédé et un appareil selon les préambules des revendications 1 et 14 respectivement est connu de US6336345 .A method and apparatus according to the preambles of claims 1 and 14 respectively is known from US6336345 .

Selon la présente invention, il est prévu un procédé pour séparer l'air par distillation cryogénique dans un système de colonnes comprenant une première colonne et une deuxième colonne opérant à une plus basse pression que la première colonne, comprenant les étapes de :

  1. i) compression de la totalité de l'air d'alimentation dans un premier compresseur jusqu'à une première pression de sortie d'au plus un bar supérieur à la pression de la première colonne, de préférence sensiblement égale à la pression de la première colonne,
  2. ii) envoi d'une première partie de l'air sous la première pression de sortie à un deuxième compresseur, et compression de l'air à une deuxième pression de sortie,
  3. iii) refroidissement et condensation d'au moins une partie de l'air sous la deuxième pression de sortie dans un échangeur de chaleur,
  4. iv) prélèvement du liquide d'une colonne du système de colonnes, pressurisation du liquide et vaporisation du liquide par échange de chaleur dans l'échangeur de chaleur,
  5. v) détente d'au moins une fraction de l'air refroidi et condensé sous la deuxième pression de sortie jusqu'à une pression intermédiaire comprise entre la première pression de sortie et la deuxième pression de sortie, au moins vaporisation partielle dudit air dans l'échangeur de chaleur, éventuellement chauffage dudit air dans l'échangeur de chaleur caractérisé en ce qu'au moins une partie de cet air est envoyée au deuxième compresseur pour être comprimée jusqu'à la deuxième pression de sortie.
According to the present invention, there is provided a process for separating air by cryogenic distillation in a column system comprising a first column and a second column operating at a lower pressure than the first column, comprising the steps of:
  1. i) compressing all of the supply air in a first compressor to a first outlet pressure of at most one bar greater than the pressure of the first column, preferably substantially equal to the pressure of the first column,
  2. ii) supplying a first part of the air under the first outlet pressure to a second compressor, and compressing the air to a second outlet pressure,
  3. iii) cooling and condensing at least part of the air under the second outlet pressure in a heat exchanger,
  4. iv) taking liquid from a column of the column system, pressurizing the liquid and vaporizing the liquid by heat exchange in the heat exchanger,
  5. v) expansion of at least a fraction of the cooled and condensed air under the second outlet pressure to an intermediate pressure between the first outlet pressure and the second outlet pressure, at least partial vaporization of said air in the heat exchanger, optionally heating said air in the heat exchanger, characterized in that at least part of this air is sent to the second compressor to be compressed up to the second outlet pressure.

De l'air épuré et refroidi est envoyé du premier compresseur au système de colonnes pour s'y séparer.Cleaned and cooled air is sent from the first compressor to the column system for separation.

Selon d'autres aspects facultatifs de l'invention qui peuvent être combinés entre eux :

  • la détente est réalisée dans au moins une vanne.
  • la détente est réalisée dans au moins une turbine et produit du travail.
  • la température de l'au moins une fraction avant détente est inférieure à la somme de la température de la vaporisation du liquide et l'approche de température minimale dans l'échangeur de chaleur.
  • le deuxième compresseur est un compresseur multi-étages.
  • ladite au moins une troisième pression est au moins la pression d'entrée de l'un des étages du deuxième compresseur.
  • un étage du deuxième compresseur est entraîné par une machine de détente d'un fluide du procédé.
  • la température d'entrée de la machine de détente est inférieure à la température ambiante.
  • au moins un étage du deuxième compresseur a une température d'aspiration inférieure à la température ambiante.
  • la température d'aspiration est supérieure à la température de vaporisation du liquide, mais en est proche.
  • le liquide est un débit enrichi en oxygène.
  • le liquide est un débit enrichi en azote.
  • le débit de production du ou des produits liquides n'est pas supérieur à 10% de l'air d'alimentation, de préférence n'est pas supérieur à 5% de l'air d'alimentation.
According to other optional aspects of the invention which can be combined with one another:
  • the expansion is carried out in at least one valve.
  • the expansion is carried out in at least one turbine and produces work.
  • the temperature of the at least one fraction before expansion is less than the sum of the temperature of the vaporization of the liquid and the minimum temperature approaching in the heat exchanger.
  • the second compressor is a multistage compressor.
  • said at least a third pressure is at least the inlet pressure of one of the stages of the second compressor.
  • a second compressor stage is driven by a process fluid expansion machine.
  • the inlet temperature of the expansion machine is lower than the ambient temperature.
  • at least one stage of the second compressor has a suction temperature lower than the ambient temperature.
  • the suction temperature is higher than the vaporization temperature of the liquid, but is close to it.
  • the liquid is an oxygen enriched flow.
  • the liquid is a flow enriched in nitrogen.
  • the production rate of the liquid product (s) is not more than 10% of the feed air, preferably is not more than 5% of the feed air.

Selon un autre aspect de l'invention, il est prévu un appareil pour séparer l'air par distillation cryogénique selon la revendication 14.According to another aspect of the invention, there is provided an apparatus for separating air by cryogenic distillation according to claim 14.

L'invention va être maintenant décrite plus en détail par référence aux Figures 3, 5 et 6, qui sont des schémas de circulation des fluides représentant des procédés de séparation cryogénique d'air selon l'invention, et la Figure 4, qui est un diagramme d'échange de chaleur pour l'échangeur 5 de la Figure 3.The invention will now be described in more detail with reference to Figures 3 , 5 and 6 , which are fluid flow diagrams representing cryogenic air separation processes according to the invention, and the Figure 4 , which is a heat exchange diagram for exchanger 5 of the Figure 3 .

Dans la forme de réalisation de la Figure 3, dans une unité de séparation d'air 1, on utilise une double colonne 2, comprenant une première colonne 8 et une deuxième colonne 9 mis à disposition, reliées thermiquement par un rebouilleur/condenseur 10. La totalité de l'air d'alimentation est comprimée dans le compresseur 6 à une pression d'au moins un bar supérieur à la pression de la première colonne 8, de préférence sensiblement égale à la pression de la première colonne 8, en permettant une perte de charge dans les conduites intermédiaires, purifiée dans l'unité de purification 7 et subdivisée en trois.In the embodiment of the Figure 3 , in an air separation unit 1, a double column 2 is used, comprising a first column 8 and a second column 9 provided, thermally connected by a reboiler / condenser 10. All of the feed air is compressed in the compressor 6 to a pressure of at least one bar greater than the pressure of the first column 8, preferably substantially equal to the pressure of the first column 8, allowing a pressure drop in the intermediate pipes, purified in the purification unit 7 and subdivided into three.

Un débit 502 est envoyé à un surpresseur 503, refroidi dans un refroidisseur d'eau (non représenté), puis encore refroidi dans l'échangeur de chaleur 5, puis détendu dans une turbine 501, couplée au surpresseur 503. L'air détendu 502 est envoyé à la deuxième colonne.A flow 502 is sent to a booster 503, cooled in a water cooler (not shown), then further cooled in the heat exchanger 5, then expanded in a turbine 501, coupled to the booster 503. The expanded air 502 is sent to the second column.

Une autre partie 507 de l'air est envoyée à l'échangeur de chaleur 5 sous une pression sensiblement égale à celle de la première colonne 8.Another part 507 of the air is sent to the heat exchanger 5 under a pressure substantially equal to that of the first column 8.

Le troisième débit 505 est comprimé dans un compresseur 230 et envoyé à l'échangeur de chaleur, où il se condense. Dans ce cas, on considère que le compresseur 230 est un compresseur centrifuge à quatre étages 230A, 230B, 230C et 230D, par exemple du type à multiplication de vitesse intégrée refroidi par des refroidisseurs intermédiaires d'eau 232A, 232B, 232C et un refroidisseur final 232D. La pression d'aspiration du compresseur est de 5,5 bar abs, les pressions intermédiaires sont de 10,2 bar abs, 18,9 bar abs et 35,1 bar abs, et la pression finale de sortie est de 65 bar abs. Le débit d'aspiration est de 26,5% du débit total de l'air. L'air liquéfié est subdivisé entre la première colonne 8, la deuxième colonne 9, et les fractions à détendre dans les vannes 116A, 116B et 116C.The third flow 505 is compressed in a compressor 230 and sent to the heat exchanger, where it condenses. In this case, it is considered that the compressor 230 is a four-stage centrifugal compressor 230A, 230B, 230C and 230D, for example of the integrated speed multiplication type cooled by water intercoolers 232A, 232B, 232C and a chiller. final 232D. The compressor suction pressure is 5.5 bar abs, the intermediate pressures are 10.2 bar abs, 18.9 bar abs and 35.1 bar abs, and the final outlet pressure is 65 bar abs. The suction flow is 26.5% of the total air flow. The liquefied air is subdivided between the first column 8, the second column 9, and the fractions to be expanded in the valves 116A, 116B and 116C.

Un débit de liquide enrichi en oxygène LR est détendu et envoyé de la première colonne à la deuxième colonne. Un débit de liquide enrichi en azote LP est détendu et envoyé de la première colonne à la deuxième colonne.A flow of oxygen enriched liquid LR is expanded and sent from the first column to the second column. A flow of liquid enriched in LP nitrogen is expanded and sent from the first column to the second column.

De l'azote liquide pur NLMP est produit par la première colonne 8, de nouveau refroidi dans l'échangeur de chaleur 24 et détendu dans la vanne 143 et envoyé au stockage 144. L'azote gazeux haute pression 39 est soutiré en tête de la première colonne et chauffé dans l'échangeur de chaleur pour former un débit de produit 40. L'oxygène liquide OL est soutiré du fond de la deuxième colonne 9, pressurisé par une pompe 37 et envoyé en partie sous forme d'un débit 38 à l'échangeur de chaleur 5, où il se vaporise par échange de chaleur avec l'air pressurisé pour former de l'oxygène gazeux pressurisé. Le reste de l'oxygène liquide 52 est soutiré sous forme d'un produit liquide. Un débit gazeux NR de tête, enrichi en azote, est soutiré de la deuxième colonne 9, chauffé dans l'échangeur de chaleur 5 sous forme d'un débit 33.Pure liquid nitrogen NLMP is produced by the first column 8, again cooled in the heat exchanger 24 and expanded in the valve 143 and sent to storage 144. The high pressure gaseous nitrogen 39 is withdrawn at the top of the first column and heated in the heat exchanger to form a product flow 40. The liquid oxygen OL is withdrawn from the bottom of the second column 9, pressurized by a pump 37 and sent in part as a flow 38 to heat exchanger 5, where it vaporizes by heat exchange with pressurized air to form pressurized gaseous oxygen. The remainder of the liquid oxygen 52 is withdrawn as a liquid product. An overhead gas flow NR, enriched in nitrogen, is withdrawn from the second column 9, heated in the heat exchanger 5 in the form of a flow 33.

De l'argon est produit par utilisation de la colonne d'argon impur 3 et d'argon pur 4. La colonne d'argon impur est alimentée par le débit 16 provenant de la deuxième colonne 9. Un débit de liquide 17 est envoyé de la base de la colonne d'argon impur 3 à la deuxième colonne 9. Le liquide enrichi en oxygène est envoyé au condenseur de tête 12 de la colonne 3 par la vanne 26 et évaporé pour former le débit 27, qui est renvoyé à la deuxième colonne. Un débit de produit 19 est envoyé au condenseur 20, et, de là, forme le débit 19. Le débit 19 est condensé dans l'échangeur de chaleur 20 et subdivisé en un débit 48 qui est envoyé au débit de déchets 33 au point d'intersection 50, et un autre débit. L'autre débit est envoyé par la vanne 21 à la colonne 4.Argon is produced by using the column of impure argon 3 and pure argon 4. The column of impure argon is fed by the flow 16 coming from the second column 9. A flow of liquid 17 is sent from the base of the impure argon column 3 to the second column 9. The oxygen enriched liquid is sent to the overhead condenser 12 of column 3 through the valve 26 and evaporated to form the flow 27, which is returned to the second column. A product flow 19 is sent to the condenser 20, and from there forms the flow 19. The flow 19 is condensed in the heat exchanger 20 and subdivided into a flow 48 which is sent to the waste flow 33 at point d. 'intersection 50, and another flow. The other flow is sent through valve 21 to column 4.

La colonne d'argon pur 4 produit un débit de produit 45. Le condenseur de tête 13 de la colonne d'argon pur 4 est alimenté par le liquide LP riche en azote provenant de la première colonne par l'intermédiaire de la vanne 34, et l'azote vaporisé est soutiré par la vanne 35 sous forme d'un débit 33 et refroidi dans le sous-refroidisseur 24. Le rebouilleur de fond 14 de la colonne d'argon pur est chauffé par utilisation d'air, et l'air liquéfié 23 est envoyé à la première colonne.The pure argon column 4 produces a product flow of 45. The top condenser 13 of the pure argon column 4 is supplied with the nitrogen-rich LP liquid coming from the first column via the valve 34, and vaporized nitrogen is withdrawn through valve 35 as a flow 33 and cooled in sub-cooler 24. Bottom reboiler 14 of the pure argon column is heated using air, and liquefied air 23 is sent to the first column.

Un débit de purge 46 est de même soutiré.A purge flow 46 is likewise withdrawn.

Le liquide 43 riche en azote est recueilli par l'intermédiaire de la vanne 143 dans le stockage 144.The nitrogen-rich liquid 43 is collected through the valve 143 in the storage 144.

Le condenseur 20 est alimenté par le liquide LP riche en azote par l'intermédiaire de la vanne 31, et le liquide vaporisé est envoyé par la vanne 32 au débit de déchets 33.The condenser 20 is supplied with the nitrogen-rich LP liquid through the valve 31, and the vaporized liquid is sent through the valve 32 to the waste flow 33.

Après refroidissement et condensation dans l'échangeur de chaleur 5 vers l'extrémité froide de l'échangeur de chaleur, le débit d'air 505 sous 65 bar est subdivisé en deux. Une partie de l'air est détendue dans la vanne 231 et envoyée aux colonnes 8 et 9 sous forme liquide.After cooling and condensation in the heat exchanger 5 towards the cold end of the heat exchanger, the air flow 505 under 65 bar is subdivided into two. Part of the air is expanded in valve 231 and sent to columns 8 and 9 in liquid form.

Le reste de l'air 107 est subdivisé en trois fractions 107A, 107B, 107C. La fraction d'air 107A recyclée entre le premier étage 230A et le deuxième étage 230B correspond à 1,08% du débit d'air total. Elle est détendue dans la vanne 116A de 65 bar abs à environ 10,2 bar abs et introduite dans l'échangeur de chaleur 5, où elle est vaporisée, chauffée après vaporisation pour donner un air de recyclage 107A.The rest of the air 107 is subdivided into three fractions 107A, 107B, 107C. The fraction of air 107A recycled between the first stage 230A and the second stage 230B corresponds to 1.08% of the total air flow. It is expanded in the valve 116A from 65 bar abs to approximately 10.2 bar abs and introduced into the heat exchanger 5, where it is vaporized, heated after vaporization to give a recycle air 107A.

La fraction d'air 107B recyclée entre le deuxième étage 230B et le troisième étage 230C correspond à 0,84% du débit d'air total. Elle est détendue dans la vanne 116B de 65 bar abs à environ 18,9 bar abs et introduite dans l'échangeur de chaleur 5, où elle est vaporisée, chauffée après vaporisation pour donner un air de recyclage 107B.The fraction of air 107B recycled between the second stage 230B and the third stage 230C corresponds to 0.84% of the total air flow. It is expanded in the valve 116B from 65 bar abs to approximately 18.9 bar abs and introduced into the heat exchanger 5, where it is vaporized, heated after vaporization to give a recycle air 107B.

La fraction d'air 107C recyclée entre le troisième étage 230C et le quatrième étage 230D correspond à 22,08% du débit d'air total. Elle est détendue dans la vanne 116C de 65 bar abs à environ 35,1 bar abs et introduite dans l'échangeur de chaleur 5, où elle est vaporisée, chauffée après vaporisation pour donner un air de recyclage 107C.The fraction of air 107C recycled between the third stage 230C and the fourth stage 230D corresponds to 22.08% of the total air flow. It is expanded in the valve 116C from 65 bar abs to approximately 35.1 bar abs and introduced into the heat exchanger 5, where it is vaporized, heated after vaporization to give a recycle air 107C.

Ces trois fractions d'air représentent un débit total d'air de recyclage de 24% du débit d'air total, ce qui signifie que le fluide 505 correspond à un débit de 50,5% du débit d'air total, et que le débit par la vanne 231 est de 26,5%. La vaporisation des trois fractions d'air 107A, 107B et 107C a lieu dans l'échangeur de chaleur 5 respectivement à des températures d'environ -166°C, -155°C et -142°C, comme on peut le voir sur la Figure 4, ce qui est inférieur à la température de vaporisation de l'oxygène, qui est d'environ -125°C. Un séparateur de phase devrait être ajouté si le débit détendu est un fluide diphasique, la phase liquide étant introduite dans l'échangeur de chaleur 5 et la phase vapeur étant mélangée au débit 107. Le terme "condensation" recouvre la condensation d'une forme vapeur à une forme liquide ou partiellement liquide. Il recouvre aussi la pseudo-condensation d'un fluide supercritique quand il est refroidi d'une température supérieure à la température supercritique à une température inférieure à la température supercritique.These three air fractions represent a total recirculation air flow rate of 24% of the total air flow rate, which means that the fluid 505 corresponds to a flow rate of 50.5% of the total air flow rate, and that the flow rate through valve 231 is 26.5%. The vaporization of the three air fractions 107A, 107B and 107C takes place in the heat exchanger 5 respectively at temperatures of about -166 ° C, -155 ° C and -142 ° C, as can be seen on the Figure 4 , which is lower than the vaporization temperature of oxygen, which is about -125 ° C. A phase separator should be added if the expanded flow is a two-phase fluid, the liquid phase being introduced into the heat exchanger 5 and the vapor phase being mixed with the flow 107. The term "condensation" covers the condensation of a form. vapor in a liquid or partially liquid form. It also covers the pseudo-condensation of a supercritical fluid when it is cooled from a temperature above the supercritical temperature to a temperature below the supercritical temperature.

La Figure 4 présente le diagramme d'échange correspondant au procédé de la Figure 3.The Figure 4 presents the exchange diagram corresponding to the process of Figure 3 .

Une variante moins optimisée de la Figure 3 devrait impliquer la subdivision du débit 107 en une ou deux fractions et le recyclage de ces fractions, après vaporisation, avec retour au compresseur 230.A less optimized variant of the Figure 3 should involve subdividing flow 107 into one or two fractions and recycling these fractions, after vaporization, with return to compressor 230.

Pour simplifier le procédé décrit ci-dessus, considérant les faibles débits de 107A et de 107B, il est possible de conserver une fraction d'air recyclé unique 107C.To simplify the process described above, considering the low flow rates of 107A and 107B, it is possible to keep a single recycled air fraction 107C.

Les vannes, 231, 116A, 116B et 116C pourraient être remplacées par des turbines à liquide, c'est-à-dire un système de détente produisant du travail dans le but de diminuer l'irréversibilité associée à la détente isenthalpique. Ces turbines à liquide pourraient installées en parallèle ou en série.The valves, 231, 116A, 116B and 116C could be replaced by liquid turbines, that is to say an expansion system producing work in order to reduce the irreversibility associated with isenthalpic expansion. These liquid turbines could be installed in parallel or in series.

Le compresseur 230, dans le cas de base, est considéré comme étant une machine entraînée par un moteur, mais pourrait aussi être entraîné par une turbine à vapeur ou une turbine à gaz (le même que celui pour le Compresseur d'Air Principal 6). En tant que variante, l'un quelconque des quatre étages de compresseur 230A, 230B, 230C et 230D pourrait être entraîné par une machine de détente de l'un quelconque des fluides de ce procédé de séparation cryogénique d'air, de préférence à basse température. En outre, l'un quelconque des quatre étages de compresseur 230A, 230B, 230C et 230D pourrait avoir une température d'aspiration inférieure à la température ambiante, de préférence légèrement supérieure à la température de vaporisation de l'oxygène, à environ -125°C. En termes d'énergie spécifique (kWh/Nm3 d'O2), si la technique antérieure correspond à 100, l'énergie spécifique nécessaire à la production d'oxygène sous 40 bar abs selon l'invention est de 92,9, c'est-à-dire un gain de 7,1%.Compressor 230, in the base case, is considered to be an engine driven machine, but could also be driven by a steam turbine or gas turbine (the same as for Main Air Compressor 6) . Alternatively, any of the four compressor stages 230A, 230B, 230C and 230D could be driven by an expansion machine for any of the fluids of this cryogenic air separation process, preferably at low. temperature. Further, any of the four compressor stages 230A, 230B, 230C, and 230D could have a suction temperature below room temperature, preferably slightly above the vaporization temperature of oxygen, at about -125 ° C. In terms of specific energy (kWh / Nm3 of O2), if the prior art corresponds to 100, the specific energy necessary for the production of oxygen under 40 bar abs according to the invention is 92.9, c ' that is, a gain of 7.1%.

Les fractions 107A, 107B, 107C pourraient être séparées de la partir de l'air passant par 231 et extraites de l'échangeur de chaleur 5 à une température supérieure à la température de l'extrémité froide de l'échangeur de chaleur 5.Fractions 107A, 107B, 107C could be separated from the air passing through 231 and extracted from heat exchanger 5 at a temperature above the temperature of the cold end of heat exchanger 5.

Le procédé peut être modifié pour vaporiser l'azote liquide pompé, en tant que débit additionnel ou en tant que débit remplaçant le débit d'oxygène pompé.The process can be modified to vaporize the pumped liquid nitrogen, as an additional flow or as a flow replacing the pumped oxygen flow.

Il est de même possible d'utiliser un cycle d'azote (plutôt qu'un cycle d'air) dans une variante qui n'est pas couverte par les revendications. Dans ce cas, le compresseur 230 devrait être alimenté par au moins une partie de l'azote gazeux haute pression 40.It is also possible to use a nitrogen cycle (rather than an air cycle) in a variant which is not covered by the claims. In this case, the compressor 230 should be supplied with at least part of the high pressure nitrogen gas 40.

Il est de même possible d'utiliser l'invention pour réduire la pression de calcul de l'échangeur de chaleur 5, c'est-à-dire la deuxième pression d'air avec une plus faible pénalité d'énergie grâce au recyclage du débit 107.It is likewise possible to use the invention to reduce the design pressure of the heat exchanger 5, that is to say the second air pressure with a lower energy penalty thanks to the recycling of the heat exchanger. flow 107.

Les procédés illustrés présentent des systèmes à double colonne, mais on comprendra aisément que l'invention s'applique à des systèmes à triple colonne.The illustrated methods show dual column systems, but it will be readily understood that the invention applies to triple column systems.

Ils pourraient aussi être utilisés avec des cycles de procédé produisant de l'oxygène de faible pureté (habituellement, de l'O2 à 95% au lieu d'O2 à 99,5%), tels que les cycles de procédé "à double vaporiseur".They could also be used with process cycles producing low purity oxygen (usually 95% O2 instead of 99.5% O2), such as "dual vaporizer" process cycles. ".

Dans la forme de réalisation de la Figure 5, il est prévu d'exploiter le système de la Figure 3 pour récupérer du froid de l'oxygène liquide d'une manière plus indépendante à partir de l'unité de séparation d'air 101.In the embodiment of the Figure 5 , it is planned to operate the system of Figure 3 to recover liquid oxygen from cold in a more independent manner from the air separation unit 101.

En particulier, des tampons liquides 131, 152 sont ajoutés à l'unité de stockage, et libèrent des liquides cryogéniques pour décorréler la production d'oxygène par l'ASU de la consommation par le client. En outre, il permet de réduire la consommation d'énergie aux heures de pointe sans réduire le débit d'oxygène allant vers l'utilisateur final, et l'augmentation de la consommation d'oxygène aux heures creuses, sans augmentation du débit d'oxygène vers l'utilisateur final.In particular, liquid buffers 131, 152 are added to the storage unit, and release cryogenic liquids to decorrelate ASU oxygen production from customer consumption. In addition, it helps reduce energy consumption at peak times without reducing the flow of oxygen to the end user, and increasing oxygen consumption at off-peak hours without increasing the flow of oxygen. oxygen to the end user.

L'air d'alimentation est comprimé dans le compresseur 6 et purifié dans l'unité de purification 7 et subdivisé en deux.The supply air is compressed in the compressor 6 and purified in the purification unit 7 and subdivided into two.

Un débit 505 est comprimé dans un compresseur 230 et est envoyé à l'échangeur de chaleur, où il subit une condensation partielle, ou "pseudo-condensation", car il se trouve au-delà de la pression critique. Dans ce cas, on considère que le compresseur 230 est un compresseur centrifuge à quatre étages 230A, 230B, 230C et 230D, par exemple du type à multiplicateur de vitesse intégré, refroidi par des refroidisseurs intermédiaires d'eau 232A, 232B, 232C et un refroidisseur final 232D. La pression d'aspiration du compresseur est de 5,5 bar abs, les pressions intermédiaires sont de 10,2 bar abs, 18,9 bar abs et 35,1 bar abs, pression finale 65 bar abs. Le débit d'aspiration est de 23% du débit d'air total quand aucun liquide cryogénique n'est stocké ou déstocké.A flow 505 is compressed in a compressor 230 and is sent to the heat exchanger, where it undergoes partial condensation, or "pseudo-condensation", because it is above the critical pressure. In this case, the compressor 230 is considered to be a four-stage centrifugal compressor 230A, 230B, 230C and 230D, for example of the integrated speed multiplier type, cooled by water intercoolers 232A, 232B, 232C and a 232D aftercooler. The compressor suction pressure is 5.5 bar abs, the intermediate pressures are 10.2 bar abs, 18.9 bar abs and 35.1 bar abs, final pressure 65 bar abs. The suction flow rate is 23% of the total air flow when no cryogenic liquid is stored or discharged.

Le débit 505 est divisé en un premier débit secondaire 505A, qui va directement à l'échangeur de chaleur 5, et un deuxième débit secondaire 505B, qui va à l'unité de réfrigération 102 pour être refroidi à -5°C et introduit dans l'échangeur de chaleur 5.The flow 505 is divided into a first secondary flow 505A, which goes directly to the heat exchanger 5, and a second secondary flow 505B, which goes to the refrigeration unit 102 to be cooled to -5 ° C and introduced into heat exchanger 5.

En un point intermédiaire de l'échangeur de chaleur 5, à une température de -124°C, une première fraction de l'air haute pression est soutirée et envoyée à une machine de détente à deux phases 116D, réintroduit dans l'échangeur de chaleur 5 pour être chauffé et recyclé à 35,1 bar abs dans le compresseur 230 au niveau de l'étage 230D en tant que débit 107D. Cette première fraction a un débit de 18,4% du débit d'air total.At an intermediate point of the heat exchanger 5, at a temperature of -124 ° C, a first fraction of the high pressure air is withdrawn and sent to a two-phase expansion machine 116D, reintroduced into the heat exchanger. heat 5 to be heated and recycled to 35.1 bar abs in compressor 230 at the level of stage 230D as flow 107D. This first fraction has a flow rate of 18.4% of the total air flow rate.

Une deuxième fraction est refroidie à -192,2°C par passage complet à travers l'échangeur de chaleur 5 et est détendue dans la vanne 231 pour être envoyée à l'unité de stockage 131 d'air liquide (LAIR) en tant que débit 234. Le débit de cette deuxième fraction n'est que de 23% du débit d'air total provenant du compresseur d'air principal 6.A second fraction is cooled to -192.2 ° C by complete passage through the heat exchanger 5 and is expanded in the valve 231 to be sent to the liquid air storage unit 131 (LAIR) as flow 234. The flow rate of this second fraction is only 23% of the total air flow coming from the main air compressor 6.

Une fraction 107 est soutirée de l'extrémité froide de l'échangeur de chaleur 5 et subdivisée en trois. La fraction d'air 107A recyclée entre le premier étage 230A et le deuxième étage 230B correspond à 1,1% du débit d'air total. Elle est détendue dans la vanne 116A de 65 bar abs à environ 10,2 bar abs et introduite dans l'échangeur de chaleur 5, où elle est évaporée, chauffée après vaporisation pour donner un air de recyclage 107A.A fraction 107 is withdrawn from the cold end of the heat exchanger 5 and subdivided into three. The fraction of air 107A recycled between the first stage 230A and the second stage 230B corresponds to 1.1% of the total air flow. It is expanded in the valve 116A from 65 bar abs to approximately 10.2 bar abs and introduced into the heat exchanger 5, where it is evaporated, heated after vaporization to give a recycling air 107A.

La fraction d'air 107B recyclée entre le deuxième étage 230B et le troisième étage 230C correspond à 3,15% du débit d'air total. Elle est détendue dans la vanne 116B de 65 bar abs à environ 18,9 bar abs et est introduite dans l'échangeur de chaleur 5, où elle est vaporisée, chauffée après vaporisation pour donner un air de recyclage 107B.The fraction of air 107B recycled between the second stage 230B and the third stage 230C corresponds to 3.15% of the total air flow. It is expanded in the valve 116B from 65 bar abs to approximately 18.9 bar abs and is introduced into the heat exchanger 5, where it is vaporized, heated after vaporization to give a recycle air 107B.

La fraction d'air 107C est détendue dans la vanne 116C de 65 bar abs à environ 1,2 bar abs et est introduite dans l'échangeur de chaleur 5, où elle est vaporisée, chauffée après vaporisation pour donner un air de recyclage 107C qui peut être utilisé pour régénérer des purificateur d'air si l'ASU 101 n'est pas en marche. Elle représente 4,45% du débit d'air total.The air fraction 107C is expanded in the valve 116C from 65 bar abs to approximately 1.2 bar abs and is introduced into the heat exchanger 5, where it is vaporized, heated after vaporization to give a recycle air 107C which can be used to regenerate air purifiers if ASU 101 is not running. It represents 4.45% of the total air flow.

Ces trois fractions d'air 107A, 107B, 107C, et la première fraction d'air détendue dans la turbine 116D représentent un débit total d'air de recyclage de 27,1% du débit d'air total provenant du compresseur 230, ce qui signifie que le fluide 505 représente 50,1% du débit d'air total provenant du compresseur principal 6, et le débit passant par la vanne 231 correspond à 23% du débit d'air total.These three air fractions 107A, 107B, 107C, and the first fraction of air expanded in the turbine 116D represent a total recycling air flow rate of 27.1% of the total air flow coming from the compressor 230, this which means that the fluid 505 represents 50.1% of the total air flow coming from the main compressor 6, and the flow passing through the valve 231 corresponds to 23% of the total air flow.

Une cuve de stockage d'oxygène liquide 152 alimentée par l'ASU 101 fournit l'oxygène 151 au système. Une pompe d'oxygène liquide 37 pressurise l'oxygène jusqu'au niveau de pression requis avant introduction dans l'échangeur de chaleur 5, où il subit une vaporisation ou une pseudo-vaporisation.A liquid oxygen storage tank 152 fed by ASU 101 supplies oxygen 151 to the system. A liquid oxygen pump 37 pressurizes the oxygen to the required pressure level before introduction into the heat exchanger 5, where it undergoes vaporization or pseudo-vaporization.

L'ASU 101 est alimentée par un air 510 provenant du même compresseur 6 (MAC) et par l'air liquide 235 qui est utilisé pour compenser la production d'oxygène liquide 150.The ASU 101 is supplied by air 510 from the same compressor 6 (MAC) and by liquid air 235 which is used to compensate for the production of liquid oxygen 150.

Le débit 510 est refroidi dans un échangeur de chaleur indépendant de l'échangeur de chaleur 5 par échange de chaleur avec l'azote gazeux provenant de l'unité de séparation d'air (non représentée). Il est possible de refroidir le débit froid 510 dans l'échangeur de chaleur 5, mais cela rendrait le système moins flexible.The flow 510 is cooled in a heat exchanger independent of the heat exchanger 5 by heat exchange with the nitrogen gas coming from the air separation unit (not shown). It is possible to cool the cold flow 510 in the heat exchanger 5, but this would make the system less flexible.

Dans une alternative qui n'est pas couverte par l'objet de l'invention revendiquée, il est de même possible d'avoir l'unité de séparation d'air et ce système de récupération du froid en des emplacements distincts. Dans ce cas, on aurait un système de compresseur fournissant de l'air à l'ASU et un autre système compresseur fournissant de l'air au système de récupération de froid, et le transport de l'air liquide 235 et de l'oxygène liquide 150 peut être réalisé par camion ou canalisation. Les stockages de liquide 152 et 131 doivent aussi être doublés sur chaque site.In an alternative which is not covered by the object of the claimed invention, it is likewise possible to have the air separation unit and this cold recovery system in separate locations. In this case, we would have a compressor system supplying air to the ASU and another compressor system supplying air to the cold recovery system, and the transport of liquid air 235 and oxygen. liquid 150 can be carried by truck or pipeline. Liquid storages 152 and 131 must also be doubled at each site.

Dans une autre alternative qui n'est pas couverte par l'objet de l'invention revendiquée, il pourrait aussi y avoir des systèmes compresseurs distincts fournissant de l'air à l'ASU et au système de récupération de froid quand les deux unités se trouvent sur le même emplacement, si cela est considéré comme étant plus commode et/ou plus efficace. C'est particulièrement le cas quand les deux unités ne fonctionnent pas simultanément à la même capacité. Un compresseur unique exigerait une dynamique de mesure précise et perdrait son efficacité à faible capacité. Avec des systèmes de compresseurs différents, il est possible d'optimiser la dynamique de mesure sur chaque machine.In another alternative which is not covered by the object of the claimed invention, there could also be separate compressor systems supplying air to the ASU and to the cold recovery system when the two units are running. are in the same location, if this is considered to be more convenient and / or more efficient. This is especially the case when the two units are not operating simultaneously at the same capacity. A single compressor would require precise measurement dynamics and lose efficiency at low capacity. With different compressor systems, it is possible to optimize the measurement dynamics on each machine.

Pour simplifier le procédé décrit ci-dessus, considérant les faibles débits de 107A et de 107B, il est possible de maintenir une fraction d'air recyclé unique 107D et de l'air basse pression vers l'unité de purification 107C.To simplify the process described above, considering the low flow rates of 107A and 107B, it is possible to maintain a single recycled air fraction 107D and low pressure air to the purification unit 107C.

Les vannes 231, 116A, 116B et 116C pourraient être remplacées par des turbines détendant du liquide, c'est-à-dire un système de détente produisant du travail, dans le but de diminuer l'irréversibilité associée à la détente isenthalpique. Ces turbines détendant du liquide pourraient être installées en parallèle et/ou en série.The valves 231, 116A, 116B and 116C could be replaced by turbines expanding liquid, that is to say an expansion system producing work, in order to reduce the irreversibility associated with isenthalpic expansion. These liquid expansion turbines could be installed in parallel and / or in series.

Pendant les périodes creuses, quand le coût de l'électricité est inférieur à une valeur donnée, l'unité de séparation d'air fonctionne de telle sorte que la quantité d'oxygène liquide stockée dans la cuve de stockage 152 augmente. La quantité d'oxygène liquide vaporisée dans l'échangeur de chaleur 5 est inférieure à l'oxygène liquide produit par l'unité de séparation d'air.During off-peak periods, when the cost of electricity is lower than a given value, the air separation unit operates such that the amount of liquid oxygen stored in the storage tank 152 increases. The amount of liquid oxygen vaporized in the heat exchanger 5 is less than the liquid oxygen produced by the air separation unit.

Aucun air n'est envoyé à la vanne 116C, et l'unité de purification 7 est régénérée par utilisation d'un débit d'azote provenant de l'unité de séparation d'air 101.No air is sent to the valve 116C, and the purification unit 7 is regenerated by using a nitrogen flow from the air separation unit 101.

Les débits d'air 510 sont envoyés à l'unité de séparation d'air par l'intermédiaire d'un échangeur de chaleur indépendant de l'échangeur de chaleur 5, et un débit d'air 235 est envoyé à l'unité de séparation d'air à partir de la cuve de stockage 131, et l'oxygène liquide 150 est envoyé à la cuve de stockage 152. Cependant, la quantité d'air liquide envoyée à la cuve 131 dépasse la quantité d'air qui en est soutirée, et la quantité d'oxygène liquide envoyée à la cuve 152 dépasse la quantité d'oxygène liquide qui en est soutirée.The air flows 510 are sent to the air separation unit through a heat exchanger independent of the heat exchanger 5, and an air flow 235 is sent to the heat exchanger unit. separation of air from the storage tank 131, and liquid oxygen 150 is sent to the storage tank 152. However, the amount of liquid air sent to the tank 131 exceeds the amount of air therein. withdrawn, and the quantity of liquid oxygen sent to the vessel 152 exceeds the quantity of liquid oxygen which is withdrawn therefrom.

Pendant les périodes de pointe, quand le coût de l'électricité est supérieur à une valeur donnée, l'unité de séparation d'air ne fonctionne pas, ce qui n'est pas couverte par l'objet de l'invention revendiquée, ou fonctionne à faible capacité, habituellement de 50% ou moins de la capacité maximale, même si l'oxygène total produit est très supérieur à 50% de la capacité maximale. Aucun air n'est envoyé à l'unité de séparation d'air par les débits 510 et 235. L'oxygène liquide stocké dans la cuve 152 est vaporisé pour donner le débit d'oxygène gazeux. La régénération de l'unité de purification 7 est réalisée par utilisation du débit 107C.During peak periods, when the cost of electricity is higher than a given value, the air separation unit does not work, which is not covered by the object of the claimed invention, or Operates at low capacity, usually 50% or less of maximum capacity, even though the total oxygen produced is much greater than 50% of maximum capacity. No air is sent to the air separation unit through the flows 510 and 235. The liquid oxygen stored in the tank 152 is vaporized to give the flow of gaseous oxygen. Regeneration of the purification unit 7 is carried out by using the flow rate 107C.

L'air liquide produit par la vaporisation de l'oxygène liquide est stocké dans la cuve de stockage 131 pendant les périodes de pointe, et aucun air gazeux ou liquide n'est envoyé à l'unité de séparation d'air 101.The liquid air produced by the vaporization of liquid oxygen is stored in the storage tank 131 during peak periods, and no gaseous or liquid air is sent to the air separation unit 101.

Le procédé peut être modifié pour vaporiser l'azote liquide pompé en tant que débit additionnel, ou en tant que débit remplaçant le débit d'oxygène pompé.The process can be modified to vaporize the pumped liquid nitrogen as an additional flow, or as a flow replacing the pumped oxygen flow.

Dans une alternative qui n'est pas couverte par l'objet de l'invention revendiquée, il est de même possible d'utiliser un cycle d'azote (plutôt qu'un cycle d'air), comme on le voit sur la Figure 6. Dans ce cas, le compresseur 230 est alimenté par au moins une partie de l'azote gazeux haute pression 40. Mais, dans ce cas, il est nécessaire d'avoir une source d'azote disponible, provenant de l'unité de séparation d'air 101 fonctionnant à capacité réduite, ou d'autres unités de séparation d'air, en option par l'intermédiaire d'une conduite d'azote. C'est la raison pour laquelle c'est l'air qui est le fluide préféré pour une telle application, car il est disponible indépendamment de toute unité de séparation d'air.In an alternative which is not covered by the object of the claimed invention, it is likewise possible to use a nitrogen cycle (rather than an air cycle), as seen in the figure. Figure 6 . In this case, the compressor 230 is supplied with at least part of the high pressure gaseous nitrogen 40. But, in this case, it is necessary to have a source of nitrogen available, coming from the separation unit d. Air 101 operating at reduced capacity, or other air separation units, optionally via a nitrogen line. This is the reason why air is the preferred fluid for such an application, as it is available independently of any air separation unit.

Dans ce cas, la totalité de l'air d'alimentation est comprimée dans le compresseur d'air principal 6 jusqu'à la pression requise pour la séparation d'air dans l'ASU 101.In this case, all of the supply air is compressed in the main air compressor 6 to the pressure required for air separation in ASU 101.

L'azote comprimé est refroidi et condensé dans l'échangeur de chaleur 5.Compressed nitrogen is cooled and condensed in heat exchanger 5.

L'azote comprimé est ensuite subdivisé en au moins deux portions, trois portions étant présentées ici, détendu à au moins deux pressions différentes, et vaporisé dans l'échangeur de chaleur 5.The compressed nitrogen is then subdivided into at least two portions, three portions being presented here, expanded to at least two different pressures, and vaporized in the heat exchanger 5.

L'azote vaporisé provenant des vannes 116A et 116B est renvoyé à des positions intermédiaires du compresseur d'azote 230, et l'azote vaporisé provenant de la vanne 116C peut servir à régénérer l'unité de purification si l'unité de séparation d'air ne fonctionne pas.The vaporized nitrogen from the valves 116A and 116B is returned to intermediate positions of the nitrogen compressor 230, and the vaporized nitrogen from the valve 116C can be used to regenerate the purification unit if the separation unit of air does not work.

L'azote liquide produit 234 est détendu dans la vanne 231 et stocké dans l'unité de stockage 131 pour utilisation.Liquid nitrogen produced 234 is expanded in valve 231 and stored in storage unit 131 for use.

Ainsi, l'oxygène liquide peut être vaporisé contre l'azote dans les périodes au cours desquelles l'unité de séparation d'air ne fonctionne pas, par exemple les périodes au cours desquelles l'électricité est particulièrement onéreuse.Thus, liquid oxygen can be vaporized against nitrogen in periods when the air separation unit is not operating, for example periods when electricity is particularly expensive.

Ces variantes de l'invention pourraient être utilisées pour récupérer le froid d'un système de secours d'oxygène/azote liquide dans le cas d'une indisponibilité planifiée (maintenance) ou non planifiée (incident) de la ou des unités de séparation d'air.These variants of the invention could be used to recover the cold from an oxygen / liquid nitrogen back-up system in the event of a planned (maintenance) or unplanned (incident) unavailability of the separation unit (s). 'air.

Les procédés illustrés présentent des systèmes à double colonne, mais on comprendra aisément que l'invention s'applique à des systèmes à triple colonne. Elle pourrait aussi être utilisée avec des cycles de procédé produisant de l'oxygène de faible pureté (habituellement de l'O2 à 95% au lieu d'O2 à 99,5%), tels que des cycles de procédé "à double vaporiseur".The illustrated methods show dual column systems, but it will be readily understood that the invention applies to triple column systems. It could also be used with process cycles producing low purity oxygen (usually 95% O2 instead of 99.5% O2), such as "dual vaporizer" process cycles. .

Claims (15)

  1. Process for the separation of air by cryogenic distillation in a system of columns comprising a first column and a second column operating at a lower pressure than the first column, comprising the steps of:
    i) compression of all of the feed air in a first compressor (6) up to a first outlet pressure of at most one bar greater than and preferably substantially equal to the pressure of the first column,
    ii) sending a first part of the air (505) under the first outlet pressure to a second compressor (230), and compression of the air to a second outlet pressure,
    iii) cooling and condensation of at least a part of the air under the second outlet pressure in a heat exchanger (5),
    iv) sending an air gas flow under the first outlet pressure to the system of columns, without more forceful compression, and separation of the air in the system of columns,
    v) withdrawal of the liquid from a column of the system of columns, pressurization of the liquid and vaporization of the liquid (38) by a heat exchange in the heat exchanger, and
    vi) reduction in pressure of at least a fraction of the cooled and condensed air, from the second outlet pressure to at least a third pressure, at least partial vaporization of said air (107A, 107B, 107C) in the heat exchanger under the at least one third pressure, the third pressure being intermediate between the first outlet pressure and the second outlet pressure, optionally heating said at least partially vaporized air in the heat exchanger, characterized in that at least a vaporized part of this air is sent to the second compressor (230) in order to be compressed up to the second outlet pressure.
  2. Process according to Claim 1, in which the reduction in pressure is carried out in at least one valve (116A,116B,116C) .
  3. Process according to Claim 1, in which the reduction in pressure is carried out in at least one turbine and produces work.
  4. Process according to Claim 1, in which the temperature of the at least one fraction before reduction in pressure is less than the temperature of the vaporization of the liquid and the minimum temperature approach in the heat exchanger.
  5. Process according to Claim 1, in which the second compressor is a multistage compressor.
  6. Process according to Claim 5, in which said at least one third pressure is at least the inlet pressure of one of the stages of the second compressor.
  7. Process according to any one of the preceding claims, in which a stage of the second compressor is driven by a device for the reduction in pressure of a fluid of the process.
  8. Process according to Claim 7, in which the inlet temperature of the device for the reduction in pressure is less than ambient temperature.
  9. Process according to any one of the preceding claims, in which at least one stage of the second compressor has a suction temperature which is less than ambient temperature.
  10. Process according to Claim 9, in which the suction temperature is greater than the vaporization temperature of the liquid, but is close to it.
  11. Process according to any one of the preceding claims, in which the liquid is a flow enriched in oxygen.
  12. Process according to any one of the preceding claims, in which the liquid is a flow enriched in nitrogen.
  13. Process according to any one of the preceding claims, in which the production flow of the final liquid product or products is not greater than 10% of the feed air, preferably is not greater than 5% of the feed air.
  14. Apparatus for separating air by cryogenic distillation with a system of columns comprising a first column and a second column operating at a lower pressure than the first column, additionally comprising:
    i) a first compressor (6) for compressing all of the feed air to a first outlet pressure of at most one bar greater than the pressure of the first column,
    ii) means for sending purified and cooled air from the first compressor at the first pressure to the system of columns in order to be separated therein,
    iii) a second compressor (230) and a means for sending a first part of the air under the first outlet pressure from the first compressor to the second compressor, in order to compress the air to a second outlet pressure,
    iv) a heat exchanger (5), in which at least a part of the air under the second outlet pressure is cooled and condensed,
    v) a means for removing liquid from a column of the system of columns, a means (37) for pressurizing the liquid, a means for sending the pressurized liquid to the heat exchanger and a means for removing the vaporized liquid from the heat exchanger, and
    vi) a means for reducing in pressure a fraction of the air cooled and condensed under the second outlet pressure to at least a third pressure, the third pressure being intermediate between the first outlet pressure and the second outlet pressure, and a means for sending said pressure-reduced air to the heat exchanger
    characterized in that it comprises a means for sending at least a part of said pressure-reduced air, which has been vaporized in the heat exchanger under at least the third pressure, from the heat exchanger to the second compressor, in order to compress it to the second outlet pressure.
  15. Apparatus according to Claim 14, where the means for reducing in pressure is a valve or a turbine.
EP18736971.5A 2017-05-24 2018-05-18 Method and apparatus for air separation by cryogenic distillation Active EP3631327B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1754619A FR3066809B1 (en) 2017-05-24 2017-05-24 METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION
FR1754624A FR3062197B3 (en) 2017-05-24 2017-05-24 METHOD AND APPARATUS FOR SEPARATING AIR BY CRYOGENIC DISTILLATION
PCT/FR2018/051201 WO2018215716A1 (en) 2017-05-24 2018-05-18 Method and apparatus for air separation by cryogenic distillation

Publications (2)

Publication Number Publication Date
EP3631327A1 EP3631327A1 (en) 2020-04-08
EP3631327B1 true EP3631327B1 (en) 2021-06-23

Family

ID=62815073

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18736971.5A Active EP3631327B1 (en) 2017-05-24 2018-05-18 Method and apparatus for air separation by cryogenic distillation

Country Status (5)

Country Link
EP (1) EP3631327B1 (en)
CN (1) CN110678710B (en)
FR (2) FR3066809B1 (en)
RU (1) RU2761562C2 (en)
WO (1) WO2018215716A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114174747B (en) * 2019-07-26 2024-05-28 乔治洛德方法研究和开发液化空气有限公司 Method and apparatus for separating air by cryogenic distillation
CN111928511B (en) * 2020-08-07 2021-09-07 西安西热节能技术有限公司 Liquefied air energy storage peak shaving system and method based on compressor intermediate suction
FR3119226B1 (en) 2021-01-25 2023-05-26 Lair Liquide Sa Pour Letude Et Lexploitation De METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE460927C (en) * 1922-05-27 1928-06-09 Arthur Seligmann Dr Ing Process for liquefying and separating difficult to condense gases and gas mixtures with the help of external work
GB2080929B (en) * 1980-07-22 1984-02-08 Air Prod & Chem Producing gaseous oxygen
JPH0455682A (en) * 1990-06-22 1992-02-24 Kobe Steel Ltd Air separating device
JP3213846B2 (en) * 1991-01-25 2001-10-02 日本酸素株式会社 Supercritical gas liquefaction method and apparatus
US5379598A (en) 1993-08-23 1995-01-10 The Boc Group, Inc. Cryogenic rectification process and apparatus for vaporizing a pumped liquid product
US5475980A (en) 1993-12-30 1995-12-19 L'air Liquide, Societe Anonyme Pour L'etude L'exploitation Des Procedes Georges Claude Process and installation for production of high pressure gaseous fluid
FR2721383B1 (en) 1994-06-20 1996-07-19 Maurice Grenier Process and installation for producing gaseous oxygen under pressure.
GB9513766D0 (en) * 1995-07-06 1995-09-06 Boc Group Plc Air separation
DE19526785C1 (en) * 1995-07-21 1997-02-20 Linde Ag Method and device for the variable production of a gaseous printed product
US5901576A (en) 1998-01-22 1999-05-11 Air Products And Chemicals, Inc. Single expander and a cold compressor process to produce oxygen
FR2777641B1 (en) 1998-04-21 2000-05-19 Air Liquide AIR DISTILLATION PROCESS AND INSTALLATION WITH ARGON PRODUCTION
US6006545A (en) * 1998-08-14 1999-12-28 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Liquefier process
DE59909750D1 (en) * 1999-07-05 2004-07-22 Linde Ag Method and device for the low-temperature separation of air
US6626008B1 (en) 2002-12-11 2003-09-30 Praxair Technology, Inc. Cold compression cryogenic rectification system for producing low purity oxygen
CN101000191A (en) 2006-01-11 2007-07-18 王冬雷 Refrigerator, freezer with nitrogen generating freshness retaining function
JP4313389B2 (en) * 2006-10-13 2009-08-12 大陽日酸株式会社 Operation method of helium purifier
RU2433363C1 (en) * 2007-08-10 2011-11-10 Л'Эр Ликид, Сосьете Аноним Пур Л'Этюд Э Л'Эксплуатасьон Де Проседе Жорж Клод Method and apparatus for air separation by cryogenic distillation
CN101482336A (en) * 2008-05-28 2009-07-15 上海启元空分技术发展有限公司 Compression throttling refrigeration method used for air separation
EP2249128A1 (en) * 2009-05-08 2010-11-10 Linde Aktiengesellschaft Measuring assembly and method for monitoring the sump liquid flow in an air decomposition system
DE102009048456A1 (en) * 2009-09-21 2011-03-31 Linde Aktiengesellschaft Method and apparatus for the cryogenic separation of air
EP2600090B1 (en) * 2011-12-01 2014-07-16 Linde Aktiengesellschaft Method and device for generating pressurised oxygen by cryogenic decomposition of air
FR2995393B1 (en) * 2012-09-12 2014-10-03 Air Liquide METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION
EP2963367A1 (en) * 2014-07-05 2016-01-06 Linde Aktiengesellschaft Method and device for cryogenic air separation with variable power consumption

Also Published As

Publication number Publication date
FR3062197A3 (en) 2018-07-27
RU2019140617A3 (en) 2021-07-19
EP3631327A1 (en) 2020-04-08
CN110678710A (en) 2020-01-10
CN110678710B (en) 2021-12-10
FR3062197B3 (en) 2019-05-10
FR3066809A1 (en) 2018-11-30
FR3066809B1 (en) 2020-01-31
RU2761562C2 (en) 2021-12-09
WO2018215716A1 (en) 2018-11-29
US20200132367A1 (en) 2020-04-30
RU2019140617A (en) 2021-06-10

Similar Documents

Publication Publication Date Title
EP0504029B1 (en) Process for the production of gaseous pressurised oxygen
US20090078001A1 (en) Cryogenic Distillation Method and System for Air Separation
EP1711765B1 (en) Cryogenic distillation method and installation for air separation
EP3631327B1 (en) Method and apparatus for air separation by cryogenic distillation
CA2573429A1 (en) Low temperature air separation process for producing pressurized gaseous product
EP2510294B1 (en) Process and unit for the separation of air by cryogenic distillation
EP1623172A1 (en) Method and system for the production of pressurized air gas by cryogenic distillation of air
EP1014020B1 (en) Cryogenic process for separating air gases
CA2832096C (en) Method and apparatus for liquefying a co2-rich gas
EP2694898B1 (en) Method and device for separating air by cryogenic distillation
EP3058297B1 (en) Method and device for separating air by cryogenic distillation
EP1132700B1 (en) Process and apparatus for air separation by cryogenic distillation
FR2973485A1 (en) Method for separating air by cryogenic distillation in column system, involves withdrawing liquid containing specific mol percent of oxygen from bottom of low pressure column, where liquid is pressurized and vaporized to form gaseous oxygen
FR2830928A1 (en) Separation of air by cryogenic distillation with heat exchange cooling the compressed and purified inlet air before it is introduced into the medium pressure column at between 6 and 9 bars
GB2493230A (en) Air separation by cryogenic distillation
FR2837564A1 (en) Distillation of air to produce oxygen, nitrogen and pure argon, extracts oxygen of specified purity and subjects argon to catalytic de-oxygenation
WO2005047790A2 (en) Method and installation for enriching a gas stream with one of the components thereof
US12025372B2 (en) Method and apparatus for air separation by cryogenic distillation
EP3877713A1 (en) Method and apparatus for separating air by cryogenic distillation
FR2864213A1 (en) Producing oxygen, argon or nitrogen as high-pressure gas by distilling air comprises using electricity generated by turbine to drive cold blower
FR3014181A1 (en) METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200102

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210129

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1404650

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210715

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018019050

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210923

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1404650

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210923

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211025

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602018019050

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220518

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220518

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230526

Year of fee payment: 6

Ref country code: DE

Payment date: 20230519

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230519

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180518

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240521

Year of fee payment: 7