EP3604904B1 - Light module comprising an array of light sources and a bifocal optical system - Google Patents

Light module comprising an array of light sources and a bifocal optical system Download PDF

Info

Publication number
EP3604904B1
EP3604904B1 EP19186425.5A EP19186425A EP3604904B1 EP 3604904 B1 EP3604904 B1 EP 3604904B1 EP 19186425 A EP19186425 A EP 19186425A EP 3604904 B1 EP3604904 B1 EP 3604904B1
Authority
EP
European Patent Office
Prior art keywords
light
light sources
array
vertical
luminous module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19186425.5A
Other languages
German (de)
French (fr)
Other versions
EP3604904A1 (en
Inventor
Marie Pellarin
Marine Courcier
Vanesa Sanchez
Sebastien ROELS
Jérôme LE CORRE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Vision SAS
Original Assignee
Valeo Vision SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Vision SAS filed Critical Valeo Vision SAS
Publication of EP3604904A1 publication Critical patent/EP3604904A1/en
Application granted granted Critical
Publication of EP3604904B1 publication Critical patent/EP3604904B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/143Light emitting diodes [LED] the main emission direction of the LED being parallel to the optical axis of the illuminating device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/151Light emitting diodes [LED] arranged in one or more lines
    • F21S41/153Light emitting diodes [LED] arranged in one or more lines arranged in a matrix
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/24Light guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/255Lenses with a front view of circular or truncated circular outline
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/26Elongated lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/285Refractors, transparent cover plates, light guides or filters not provided in groups F21S41/24-F21S41/28
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • F21V19/001Fastening of light sources or lamp holders the light sources being semiconductors devices, e.g. LEDs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2107/00Use or application of lighting devices on or in particular types of vehicles
    • F21W2107/10Use or application of lighting devices on or in particular types of vehicles for land vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the invention relates to a light module for a motor vehicle which is capable of projecting a light beam with horizontal contiguous segments and an angular resolution in vertical planes of less than 1 °.
  • a motor vehicle is equipped with headlamps intended to produce a light beam which illuminates the road in front of the vehicle, in particular at night or in the event of reduced light.
  • Light modules of this type are already known. Such light modules are suitable for producing an illuminating light beam, for example a high beam, divided, vertically and horizontally, into light segments and of which at least some light segments can be selectively extinguished. This makes it possible, for example, to illuminate the road optimally while avoiding dazzling road users.
  • Such light modules generate segmented light beams, which are known by the English name of "pixel beam". It is for example possible to divide the overall light beam into a matrix of light segments.
  • the vertical resolution of the light beam that is to say the number of light segments in the vertical planes of the beam emitted by a projector, remains quite coarse.
  • the extinction of a light segment plunges into shadow a portion of the road which is often much wider than necessary to avoid dazzling a road user. It would be advantageous to be able to increase the vertical resolution of the light beam to be able to illuminate the road up to a road user located in front of the vehicle, while extinguishing the light segments liable to dazzle the road user.
  • headlamps are preferably designed to illuminate a wide lateral visual field, but the known lighting systems have sometimes unsatisfactory visibility for the driver of the vehicle.
  • two adjacent segments in the horizontal plane are contiguous so that the overall light beam illuminates the road in a homogeneous manner.
  • the known solutions do not make it possible to obtain a high vertical resolution and at the same time to obtain a wide horizontal field having contiguous light segments, in particular when the light sources are too far apart from each other.
  • a known lighting system for a motor vehicle headlight comprises a primary optical module comprising a plurality of light sources, for example light emitting diodes, each associated with respective light guides.
  • a secondary projection optical element for example a lens, is associated with the primary optical module.
  • This secondary optical projection element may have several focal lengths.
  • Such a lighting system nevertheless has certain drawbacks.
  • a primary optical module comprising a plurality of independent light guides each associated with a light source, is complex and expensive to produce.
  • the focal lengths are chosen to coincide with the exit surfaces of the primary optics.
  • this system requires positioning the primary optics at an angle relative to the optical axis of the projection element, which makes the alignment and assembly of the optical system complex and therefore expensive.
  • the major drawback of such a system is that it is not possible to achieve vertical resolutions of less than 0.6 ° if standard commercial light sources and projection lenses having a large diameter, typically larger, are used. big than 100mm.
  • Another lighting system described in the document DE102008013603 , relates to an optical module comprising a matrix of light emitters and makes it possible to project a homogeneous light beam.
  • the system has an array of optical elements, each funnel-shaped. Each optical element in the array is positioned in front of an emitter and its reflective interior surface ensures that a substantially parallel beam is projected toward the projector.
  • Such a matrix of reflective conical elements is expensive to manufacture.
  • the projection module described in the document US 2014/0307459 A1 the system described in the document DE102008013603 does not provide a high vertical resolution associated with a high horizontal projection angle.
  • a strip of light sources is suitable for a one-piece optical structure comprising a single light guide connected to a corrective optical part.
  • the bifocal secondary optic ensuring the projection of light in the far optical field, has a vertical focal plane which coincides with the exit surface of the optical guide, which of course produces low resolution in the vertical direction.
  • the light module produced according to the teachings of the invention thus makes it possible to produce a light beam having a wide horizontal field of illumination while having a high angular resolution in any plane parallel to the vertical direction.
  • Such a primary optical element is very easy to manufacture and robust as well as easy to assemble in a light module, therefore inexpensive to manufacture.
  • the primary optical element is an array of cylindrical lenses.
  • the longitudinal axis of each cylindrical lens is parallel to one of the vertical rows of light sources.
  • Such an array of cylindrical lenses is easy and inexpensive to manufacture, for example by a plastic injection method.
  • the cylindrical lenses are designed to form, on the virtual projection surface, secondary light sources whose horizontal component is an M-factor magnification of the horizontal component of the light sources.
  • the magnification factor M is at least equal to 2.
  • the cylindrical lenses are designed so that said secondary light sources are contiguous. This avoids obtaining projections of dark bands in the vertical direction.
  • the cylindrical lenses are designed so that said secondary light sources overlap partially in the horizontal direction. This makes it possible to obtain a homogeneous illumination field.
  • the coverage of the secondary light sources in the horizontal direction is less than 20% of the width of their horizontal component.
  • the primary optical element comprises an array of light guides arranged between said array of light sources and the imaging device.
  • the use of light guides makes it possible to make the light emitted by the secondary sources more homogeneous.
  • the array of light guides consists of light guides having a first surface on the side of said array and a second surface, also defined as an exit surface, opposite to the first surface having, in any plane parallel to the horizontal direction, a width greater than the width of the first surface. This makes it possible to reduce, in any plane parallel to the horizontal direction, the angle of emission of the beams directed at the projection optic.
  • the light guides have a trapezoidal shape in section parallel to the horizontal direction and a rectangular shape in any section defined in a vertical plane parallel to said grating.
  • the manufacture of light guides having a trapezoidal section is easy and inexpensive and the surfaces can have very high optical quality.
  • the light guides have in any horizontal plane a shape comprising curved side edges, ie their side faces are curved.
  • the use of guides whose side walls are curved, preferably concave, makes it possible to improve the optical qualities of the beams emitted by the secondary sources. Faces curved lines as defined by polynomials can increase the number of possible optimizations of the light modulus.
  • said first surface is in close proximity to the light output surface of a light source of said vertical row.
  • the immediate proximity has the advantage of guaranteeing a high efficiency of the transmission of the light emitted by the light sources towards the virtual projection plane.
  • this virtual projection plane is coplanar with the exit surface of the light guides
  • the width of the second surface has, in any section parallel to the horizontal plane, a dimension equal to or greater than twice the width of the first surface.
  • the primary optical element comprises diffractive optical elements.
  • diffractive elements makes it possible to correct the intensity distributions emitted by the light sources and therefore to increase the optical quality of the beam. It is easy to integrate diffractive structures or refractive structures in molded parts or produced by plastic injection, without increasing the costs.
  • n is at least equal to 10 and m is at least equal to 20.
  • the use of networks comprising a large number of light sources makes it possible to considerably increase the angular resolution of the optical beam emitted by the device. imaging.
  • the angular opening of a light beam emitted by the light module coming from a single light source is less than 1 ° along the vertical axis.
  • the angular opening of a light beam emitted by the light module coming from a single light source is less than 0.6 ° along the vertical axis. This makes it possible to obtain a high vertical angular resolution.
  • the vertical angular opening of the light beam emitted by the module, coming from all the light sources of the network is at least equal to 2 °, preferably at least equal to 4 ° and at most 9 °
  • the horizontal angular opening of the light beam emitted by the module, coming from all the light sources of the array is greater than 10 °, preferably greater than 20 °. This makes it possible to obtain a very large horizontal illumination field while ensuring high vertical resolution.
  • the vertical orientation "V" is used as a geometric reference of the light module 10 unrelated to the direction of gravity.
  • the L and V directions define a vertical plane 32 and the L and H directions define a horizontal plane 34.
  • a light module which is intended to equip a lighting or signaling device for a motor vehicle.
  • the light module 10 is intended to emit a final light beam longitudinally towards the front of the vehicle. This is a light beam which is composed of a plurality of adjoining elementary beams.
  • Such a light module 10 is in particular capable of fulfilling a lighting function having a large transverse angular opening and a large vertical angular resolution.
  • Each elementary light beam illuminates a portion called hereafter “light segment”, also known under the term “pixel”.
  • the term “vertical resolution” is understood to mean the angled size of each segment.
  • the light module 10 defines an optical axis O, parallel to the longitudinal orientation L, and comprises at least one network 12 of light sources 14, comprising m transverse rows 12A and n vertical rows 12B of light sources 14 which are in particular visible to figures 1, 2 , 3 , 4 and 5 .
  • the transverse rows 12A are arranged in a direction perpendicular to the vertical rows 12B and the number n vertical rows 12B is greater than the number m transverse rows 12A.
  • Each light source 14 is formed by a light emitting source which is preferably, but not necessarily, a light emitting diode which has a light emitting diode. square or rectangular emission surface which extends in a plane substantially orthogonal to the optical axis O.
  • the array 12 of light sources 14 is carried by a support, preferably a printed circuit board 13.
  • the light sources 14 can be switched on independently of one another, selectively, to obtain the desired illumination.
  • the network 12 can be constituted by an assembly of several vertical arrays 12B of light sources 14, and each of the arrays may be carried by a support, preferably a printed circuit board.
  • Each strip 12B carries the light sources forming one of the columns of the network 12.
  • Light sources 14 are closer to vertically adjacent light sources than transversely adjacent light sources. For example, two vertically adjacent light sources are spaced apart by a distance less than 10% of the vertical height of the emitting surface of said light source, while two transversely adjacent light sources are spaced apart by a distance greater than 10%. of the transverse width of the emission surface of said light source.
  • the light module 10 also comprises at least one primary optical element 40.
  • the primary optical element 40 is an optical part, or a set of parts and / or optical structures, arranged to transfer the light emitted by said light sources 14 onto a virtual projection surface 60, which is located opposite and to a predefined distance from the network 12, in the direction of the light emission.
  • the figure 1 and the figure 2 illustrate a ray of light 16 emitted by a light source 14.
  • the virtual projection surface 60 is preferably a virtual plane, but can also be a virtual curved surface, defined for example in an embodiment where the support and / or the printed circuit 13 has a curved shape.
  • the primary optical element 40 is arranged such that the projections in the horizontal plane 34 of the light beams 16 emitted by said light sources 14 form, in said virtual projection surface 60, secondary light sources 62.
  • the optical element 40 is arranged so that, in the horizontal plane 34, the dimension of the secondary light sources 62 is greater than a dimension 14a of the light sources 14 and that the angular opening ⁇ of the secondary light beams 18 emitted by the secondary light sources 62 is less than an angular opening ⁇ of the light beams 16 emitted by said light sources 14.
  • ny ⁇ y' ⁇ 'in which n and n' are the refractive indices of the object and image space respectively, y and y 'the object and image heights (or width) respectively, and ⁇ and a 'the angles of incident and emerging rays of an optical system.
  • the figures 1 and 2 illustrate the propagation of a ray of light 16, 18, 20 having different angles with respect to the optical axis O.
  • the dimension of the cross section 62a of the secondary sources 62 is more particularly defined so that the secondary light sources 62 are contiguous or overlapping transversely.
  • the dimension of the cross section 62a of the secondary sources 62 can be at least 2 times greater than the transverse dimension 14a of the light sources 14.
  • the primary optical element 40 can be arranged to present, in a horizontal plane, different enlargements M for different light sources 14 of the array.
  • the magnification M of a light source 14 present on the optical axis O may be smaller than the magnification of a light source 14 which is located at a transverse end of the array 12. This variant makes it possible to be applied in cases where the vertical rows 12B of the light sources 14 are not positioned evenly in the transverse direction.
  • the primary optical element 40 is made to have no magnifying effect, or negligible magnifying effect, in the vertical direction, as shown in figure. figure 2 .
  • the optical element can have a displacement effect, in the direction of the axis optical O, the conical beam of light emitted by the light sources 14, similar to the effect obtained by inserting a flat optical plate in an optical beam which passes through it. It is well known that this displacement depends on the thickness of the optical plate as well as its refractive index, which is also the case of the primary optical element 40.
  • the primary optical element 40 can be made in a single optical part but can include at least two optical parts which can have different shapes and / or refractive indices. Said at least two pieces can also be made of different materials and can include coatings to improve light transmission efficiency, such as an anti-reflective coating.
  • the primary element 40 can comprise diffractive or refractive structures, such as diffraction gratings or Fresnel structures.
  • the light module 10 comprises at least one bifocal imaging device 30 which is designed to project a beam of light from each light source 14.
  • the bifocal imaging device 30 preferably projects an image from each light source 14 to infinity, usually measured on a virtual reference plane, defined at a distance d E with respect to the center of the bifocal imaging device 30. In the automotive field, this distance is typically 25 m, as illustrated in figures 10 and 11 .
  • the bifocal imaging device 30 may be an optical system having rotational symmetry relative to its optical axis O, but may also be an optical system which has a horizontal dimension greater than its vertical dimension.
  • the largest diameter of the bifocal imaging device 30 is less than 80mm.
  • the imaging device 30 has a first focal length F1 and a first transverse focusing surface 30a which is arranged substantially in coincidence with the virtual projection surface 60.
  • the first focusing surface 30a is a planar virtual surface as illustrated in the FIGS. figures 1 to 5 .
  • the imaging device 30 also has a second focal length F2 and a transverse focusing surface 30b which is arranged substantially in coincidence with the array 12 of the light sources 14.
  • the focal length F2 is adapted to take account of the effect. deflection in the vertical plane of the primary optical element 40 as described above. Thus, by projecting the primary light sources which are extremely close vertically, one obtains light segments which are substantially vertically contiguous.
  • the total surface illuminated by the light module 10 has a dimension of approximately n times p1 in the horizontal direction and a dimension m times p 2 in the vertical direction and the vertical angular resolution is thus p 2 / d E rad and the horizontal resolution p 1 / d E.
  • the light module produces a beam having a horizontal angular opening ⁇ and a vertical angular opening ⁇ .
  • the horizontal angular opening ⁇ can be higher than 10 °, preferably higher than 20 °.
  • the vertical opening ⁇ can be higher than 2 °, preferably higher than 4 °.
  • the various elements of the light module 10 can be adapted as a function of the desired total horizontal and vertical angle as well as of the horizontal and vertical angular resolution. Those skilled in the art will know how to add correction optical elements to the light modules 10 as a function of the nature of the light sources 14, their geometry and the spatial distribution of the beams of light. light emitted by these sources 14, as well as according to the type of the imaging device 30, and according to the type of the primary element 40 according to the invention, several embodiments of which are described in this document.
  • the imaging device 30 has circular symmetry, relative to the optical axis O, and a diameter defined in a vertical plane is less than 100mm, preferably less than 80mm.
  • the vertical dimension of the device is different from its horizontal dimension.
  • the largest diameter defined orthogonally to the optical axis is less than 100mm, preferably less than 80mm.
  • the imaging device 30 may comprise reflecting elements or be of the catadioptric type.
  • the primary optical element 40 comprises an array of cylindrical lenses 42, each cylindrical lens 42 of which comprises a vertical axis C1 parallel to one of the vertical rows 12B of light sources 14.
  • the array 40 of cylindrical lenses 42 comprises an entrance surface 42b of light and an exit surface 42a of light and forms an image, on the virtual projection surface 60.
  • each ray of light emitted by a light source 14 is transferred by the array of cylindrical lenses 42 on the virtual surface of projection. projection 60.
  • the light distribution of this image consists of a horizontal row of vertically stretched light bands.
  • the cylindrical lenses 12 are arranged to form an enlarged image of the horizontal component 14a of the light sources 14 in the virtual projection plane 60.
  • the magnification factor M is greater than 1.5, preferably greater than 2 or even more preferably greater than 5.
  • the inlet surface 40a can also comprise a second array 40 of cylindrical lenses 42, which need not necessarily be symmetrical with the array 40 of cylindrical lenses 42 of the outlet surface 42a.
  • the array of cylindrical lenses may consist of two optical elements, each comprising a structure making it possible to achieve a focusing of light in a horizontal plane and without having a focusing effect in a vertical plane, apart from the effect. deflection of the incident beams and which is due, as already explained, to the thickness and the refractive index of the array of cylindrical lenses.
  • the outlet surfaces 42a of the cylindrical lenses 42 have, in any horizontal plane 34, the shape of a section of a circle. In one variant, this form is defined by a polynomial.
  • diffractive structures can be arranged on the inlet surfaces 42b and / or the outlet surfaces 42a of the cylindrical lenses.
  • additional optical elements may be arranged between the array 12 of the light sources 14 and the array 40 of cylindrical lenses 42.
  • These additional optical elements may for example comprise an array of microlenses, which may be useful in the case of certain types of light emitting diodes 14 which do not include an integrated collimating lens.
  • the array of cylindrical lenses 42 is designed such that said secondary light sources 62 are contiguous, as illustrated in Figure 1. figure 1 .
  • the array of cylindrical lenses 42 is designed so that said secondary light sources 62 partially overlap in the horizontal direction H.
  • the overlap, in the horizontal direction H, of the secondary sources is less than 20% of the width of their horizontal component 62a.
  • the optical elements of the light module can be optimized and arranged so that the distribution of the intensity of the image produced in the far field, for example at 25 m from the light module 10, is a homogeneous distribution, even if secondary sources partially overlap in the virtual projection surface 60.
  • the primary optical element 40 comprises an array 50 of light guides 52 disposed between the array 12, 12A, 12B of light sources 14 and the imaging device 30.
  • Said light guides 52 have a first surface 56 on the side of the array 12 of light sources 14 and a second surface 58, also defined as a light exit surface, opposite to the first surface 56, also defined as an entrance surface. from light.
  • the first surface 56 and the second surface 58 are connected by vertical walls 51, 53 which are configured to modify, in a plane along the horizontal axis and relative to the optical axis O, the angle of propagation of a ray of light incident on these surfaces 51 , 53.
  • the figures 4 and 5 show the propagation of a ray 16, 19, 21 respectively emitted by a light source 14, transmitted by a light guide 52 and projected by a bifocal imaging device 30.
  • said first surface 56 is in close proximity, or coincident, with the light exit surface 15 of a light source 14 of a vertical row 12B.
  • the light guide 52 also comprises an upper wall 57 and a lower wall 55 which are arranged such that no ray of light emitted by one of the vertical rows 12B of light sources is incident on these surfaces, as illustrated. in the figure 5 .
  • the shape of the upper 57 and lower 55 surfaces may be planar or may be curved, as shown in the figures. figures 6 and 7 .
  • the upper 57 and lower 55 surfaces have no optical function and can therefore comprise at least one structure or a structuring making it possible to make the assembly of this light guide 52 in the light module 10 easy and therefore cheap. Those skilled in the art will know how to produce these structures directly in a mold of a light guide 52, made for example of injected plastic.
  • the light guides 52 are made of a transparent solid material such as plastic or glass.
  • the width of the first surface 56 is less than the width of the second surface 58.
  • at least a portion of the light emitted by a light source 14 is refracted by the first surface 56 and undergoes at least a total reflection on one of the side walls 51, 53.
  • These walls side 51, 53 can be flat or can be curved.
  • the shape of the horizontal projection of the side walls 51, 53 may be defined by a polynomial, for example a parabolic shape or a portion shape of an ellipse or a hyperbolic shape.
  • the figure 6 shows a perspective view of a light guide 52 which has side walls 51, 53 planar.
  • the figure 7 shows a perspective view of a light guide 52 which has curved side walls 51, 53.
  • the side walls 51, 53 are configured so as to reduce the angle ⁇ of propagation, relative to the optical axis O, of a ray of light emitted by a light source 14.
  • light guide 52 is positioned such that exit surface 58 is proximate to virtual projection surface 60. Alternatively, exit surface 58 coincides with virtual projection surface 60.
  • the light guides 52 make it possible to produce secondary sources 60 which have a horizontal dimension greater than the horizontal width 14a of the light sources 14 and whose angle of propagation ⁇ of the light rays transmitted, relative to the optical axis O, is less than the angle of emission ⁇ of this ray of light by the source of emission 14 of this ray of light.
  • the light guides 52 are hollow and comprise a wall of which at least a portion of the vertical internal surfaces 51, 53 are reflective.
  • the surfaces 56 and 58 are respectively a light inlet opening 56 and a light outlet opening 58.
  • the magnifying optical effect obtained is similar to that of the light guides 52 made of a transparent material. described above.
  • the secondary emission source 62 which is present in the virtual projection surface 60, by the transfer of the light from a source 14 through the light guide 52, comprises a greater horizontal dimension than that of the light source 14.
  • the advantage of a light guide 52 made with walls 51, 53 whose surfaces internal elements are reflective is to obtain better light transmission efficiency, especially since there is no loss of light by refraction through the inlet opening.
  • reflective light guides are often more expensive to manufacture because they require in particular a reflective coating.
  • the light guides 52 have a trapezoidal shape in any horizontal plane 34 and have a rectangular shape for any section defined in a vertical plane parallel to said network 12.
  • the width of the second surface 58 for any section parallel to the horizontal plane 34, has a dimension equal to or greater than twice the width of the first surface 56.
  • an axial dimension d g of the light guides 52, defined in the optical axis O of the light module 10, is substantially identical to the dimension of the intersection of the first surface 46 with the horizontal plane 34 .
  • an axial dimension d g of the light guides 52, defined in the optical axis O of the light module 10, is at least 50% greater than the dimension of the intersection of the first surface 56 with the horizontal plane 34.
  • the imaging device 30 can include reflective elements R1, R2, R3. This makes it possible to realize light modules 10 which are shorter in the longitudinal direction L.
  • the imaging device 30 comprises at least one mirror R1 arranged in a so-called off-axis configuration. This configuration makes it possible to produce a light module of a defined length w, in the longitudinal direction, shorter than the variants illustrated in the figures 1, 2 , 3 , 4, 5 .
  • the imaging device 30 is produced in a Cassegrain type configuration, comprising two mirrors R2, R3 also making it possible to produce light modules 10 that are more compact in the longitudinal direction.
  • catadioptric configurations can be implemented for the imaging device 30.

Description

DOMAINE TECHNIQUE DE L'INVENTIONTECHNICAL FIELD OF THE INVENTION

L'invention concerne un module lumineux pour un véhicule automobile qui est apte à projeter un faisceau lumineux à segments jointifs horizontaux et une résolution angulaire dans les plans verticaux inférieurs à 1°.The invention relates to a light module for a motor vehicle which is capable of projecting a light beam with horizontal contiguous segments and an angular resolution in vertical planes of less than 1 °.

ARRIÈRE PLAN TECHNIQUE DE L'INVENTIONBACKGROUND OF THE INVENTION

Un véhicule automobile est équipé de projecteurs destinés à produire un faisceau lumineux qui éclaire la route devant le véhicule, notamment la nuit ou en cas de luminosité réduite.A motor vehicle is equipped with headlamps intended to produce a light beam which illuminates the road in front of the vehicle, in particular at night or in the event of reduced light.

On connaît déjà des modules lumineux de ce type. De tels modules lumineux sont aptes à produire un faisceau lumineux d'éclairage, par exemple un feu de route, divisé, verticalement et horizontalement, en segments lumineux et dont au moins certains segments lumineux peuvent être éteints sélectivement. Cela permet par exemple d'éclairer la route de manière optimale tout en évitant d'éblouir les usagers de la route.Light modules of this type are already known. Such light modules are suitable for producing an illuminating light beam, for example a high beam, divided, vertically and horizontally, into light segments and of which at least some light segments can be selectively extinguished. This makes it possible, for example, to illuminate the road optimally while avoiding dazzling road users.

De tels modules lumineux génèrent des faisceaux lumineux segmentés, qui sont connus sous l'appellation anglaise de "pixel beam". Il est par exemple possible de diviser le faisceau lumineux global en une matrice de segments lumineux.Such light modules generate segmented light beams, which are known by the English name of "pixel beam". It is for example possible to divide the overall light beam into a matrix of light segments.

Généralement, la résolution verticale du faisceau lumineux, c'est-à-dire le nombre de segments lumineux dans les plans verticaux du faisceau émis par un projecteur, demeure assez grossière. Ainsi, l'extinction d'un segment lumineux plonge dans l'ombre une portion de route qui est souvent bien plus large que nécessaire pour éviter d'éblouir un usager de la route. Il serait avantageux de pouvoir augmenter la résolution verticale du faisceau lumineux pour pouvoir éclairer la route jusqu'à un usager de la route situé en avant du véhicule, tout en éteignant les segments lumineux susceptibles d'éblouir l'usager de la route.Generally, the vertical resolution of the light beam, that is to say the number of light segments in the vertical planes of the beam emitted by a projector, remains quite coarse. Thus, the extinction of a light segment plunges into shadow a portion of the road which is often much wider than necessary to avoid dazzling a road user. It would be advantageous to be able to increase the vertical resolution of the light beam to be able to illuminate the road up to a road user located in front of the vehicle, while extinguishing the light segments liable to dazzle the road user.

Ces projecteurs sont préférablement conçus pour éclairer un large champ visuel latéral mais les systèmes d'éclairage connus ont une visibilité parfois insatisfaisante pour le conducteur du véhicule. En particulier il est difficile, voire impossible, d'assurer un large champ d'éclairage dans le plan horizontal de la trajectoire du véhicule et en même temps assurer une haute résolution dans la direction verticale, et cela pour tout angle dans le plan horizontal. En plus, il est important de réduire la taille des lentilles de projection qui devraient avoir préférablement un diamètre inférieur de 80mm tout en utilisant des réseaux de diodes électroluminescentes du commerce qui ont chacune une taille minimale de 0.75mmx0.75mm. Par ailleurs, pour des raisons de confort visuel, aussi bien que pour des raisons réglementaires, il est préférable que deux segments adjacents dans le plan horizontal soient jointifs pour que le faisceau lumineux global éclaire la route de manière homogène. Or, les solutions connues ne permettent pas d'obtenir une haute résolution vertical et en même temps d'obtenir un large champ horizontal ayant des segments lumineux jointifs, notamment lorsque les sources lumineuses sont trop espacées les unes des autres.These headlamps are preferably designed to illuminate a wide lateral visual field, but the known lighting systems have sometimes unsatisfactory visibility for the driver of the vehicle. In particular, it is difficult, if not impossible, to ensure a wide field of illumination in the horizontal plane of the path of the vehicle and at the same time to ensure high resolution in the vertical direction, and this for any angle in the horizontal plane. In addition, it is important to reduce the size of the projection lenses which should preferably have a smaller diameter of 80mm while using commercial light emitting diode arrays which each have a minimum size of 0.75mmx0.75mm. Furthermore, for reasons of visual comfort, as well as for regulatory reasons, it is preferable that two adjacent segments in the horizontal plane are contiguous so that the overall light beam illuminates the road in a homogeneous manner. However, the known solutions do not make it possible to obtain a high vertical resolution and at the same time to obtain a wide horizontal field having contiguous light segments, in particular when the light sources are too far apart from each other.

Un système d'éclairage connu pour projecteur de véhicule automobile, décrit dans le document US 2014/0307459 A1 , comprend un module optique primaire comportant une pluralité de sources de lumière, par exemple des diodes électroluminescentes, chacune associées à des guides de lumière respectifs. Un élément optique secondaire de projection, par exemple une lentille, est associé au module optique primaire. Cet élément optique secondaire de projection peut avoir plusieurs distances focales. Un tel système d'éclairage présente néanmoins certains inconvénients. D'abord, Un tel module optique primaire, comportant une pluralité de guides de lumière indépendants chacun associés à une source lumineuse, est complexe et onéreux à réaliser. Aussi, les distances focales sont choisies pour coïncider avec les surfaces de sortie de l'optique primaire. Aussi, ce système nécessite de positionner l'optique primaire selon un angle relatif à l'axe optique de l'élément de projection, ce qui rend l'alignement et l'assemblage du système optique complexe et donc couteux. L'inconvénient majeur d'un tel système est qu'il n'est pas possible d'atteindre des résolutions verticales inférieurs à 0.6° si on utilise des sources de lumière standard du commerce et des lentilles de projection ayant un grand diamètre, typiquement plus grand que 100mm.A known lighting system for a motor vehicle headlight, described in the document US 2014/0307459 A1 , comprises a primary optical module comprising a plurality of light sources, for example light emitting diodes, each associated with respective light guides. A secondary projection optical element, for example a lens, is associated with the primary optical module. This secondary optical projection element may have several focal lengths. Such a lighting system nevertheless has certain drawbacks. First, such a primary optical module, comprising a plurality of independent light guides each associated with a light source, is complex and expensive to produce. Also, the focal lengths are chosen to coincide with the exit surfaces of the primary optics. Also, this system requires positioning the primary optics at an angle relative to the optical axis of the projection element, which makes the alignment and assembly of the optical system complex and therefore expensive. The major drawback of such a system is that it is not possible to achieve vertical resolutions of less than 0.6 ° if standard commercial light sources and projection lenses having a large diameter, typically larger, are used. big than 100mm.

Un autre système d'éclairage, décrit dans le document DE102008013603 , concerne un module optique comprenant une matrice d'émetteurs de lumière et permet de projeter un faisceau de lumière homogène. Le système comporte une matrice d'éléments optiques, chacune de forme d'entonnoir. Chaque élément optique de la matrice est positionné en face d'un émetteur et sa surface intérieure réfléchissante assure qu'un faisceau sensiblement parallèle est projeté vers le projecteur. Une telle matrice d'éléments coniques réfléchissants est onéreuse à fabriquer. En outre, comme le module de projection décrit dans le document US 2014/0307459 A1 , le système décrit dans le document DE102008013603 ne permet pas d'obtenir une grande résolution verticale associé à un angle de projection horizontal élevé.Another lighting system, described in the document DE102008013603 , relates to an optical module comprising a matrix of light emitters and makes it possible to project a homogeneous light beam. The system has an array of optical elements, each funnel-shaped. Each optical element in the array is positioned in front of an emitter and its reflective interior surface ensures that a substantially parallel beam is projected toward the projector. Such a matrix of reflective conical elements is expensive to manufacture. In addition, as the projection module described in the document US 2014/0307459 A1 , the system described in the document DE102008013603 does not provide a high vertical resolution associated with a high horizontal projection angle.

Dans un autre mode de réalisation, décrit dans le document US2015131305A une barrette de sources de lumières est adaptée à une structure optique monobloc comprenant un unique guide de lumière relié à une partie optique correctrice. L'optique secondaire bifocale, assurant la projection de lumière dans le champ optique lointain, a un plan focal vertical qui coïncide avec la surface de sortie du guide optique, ce qui produit bien entendu une faible résolution dans la direction verticale.In another embodiment, described in the document US2015131305A a strip of light sources is suitable for a one-piece optical structure comprising a single light guide connected to a corrective optical part. The bifocal secondary optic, ensuring the projection of light in the far optical field, has a vertical focal plane which coincides with the exit surface of the optical guide, which of course produces low resolution in the vertical direction.

BREF RÉSUMÉ DE L'INVENTIONBRIEF SUMMARY OF THE INVENTION

L'invention propose un module lumineux de véhicule automobile, définissant une direction de mouvement (L), une direction verticale (V) et une direction horizontale (H) orthogonale à la direction verticale (V), les directions (L) et (V) définissant un plan vertical et les direction (L) et (H) définissant un plan horizontal comprenant :

  • au moins un réseau de sources lumineuses, comportant m rangées transversales et n rangées verticales les rangées transversales étant disposées suivant une direction perpendiculaire aux rangées verticales, le nombre n étant plus élevé que le nombre m;
  • au moins un dispositif bifocal d'imagerie conçu pour projeter un faisceau lumineux, le dispositif d'imagerie présentant une première surface de focalisation horizontale et une deuxième surface de focalisation verticale parallèle au dit premier plan;
caractérisé en ce que
le module lumineux comporte au moins un élément optique primaire, qui ne modifie pas en sortie selon une direction verticale V l'angle des rayons incidents, agencé pour transférer la lumière émise par les dites sources lumineuses sur une surface virtuelle de projection, définie entre le dit réseau et le dispositif d'imagerie, et confondue avec le premier plan de focalisation, de telle façon que les projections dans le plan horizontal des faisceaux émis par les dites sources lumineuses forment, dans la dite surface virtuelle de projection, des sources secondaires de lumière qui sont étirées dans la direction horizontale, et en ce que le deuxième plan de focalisation verticale est confondu avec la surface du réseau des sources lumineuses. Dans le plan horizontal, une dimension des sources secondaires de lumière est plus grande qu'une dimension des sources lumineuses et une ouverture angulaire des faisceaux secondaires de lumière émis par les sources de lumière secondaires est inférieure à une ouverture angulaire des faisceaux de lumière émis par les dites sources lumineuses.The invention provides a motor vehicle light module, defining a direction of movement (L), a vertical direction (V) and a horizontal direction (H) orthogonal to the vertical direction (V), the directions (L) and (V). ) defining a vertical plane and the directions (L) and (H) defining a horizontal plane comprising:
  • at least one network of light sources, comprising m transverse rows and n vertical rows, the transverse rows being arranged in a direction perpendicular to the vertical rows, the number n being greater than the number m;
  • at least one bifocal imaging device designed to project a light beam, the imaging device having a first horizontal focusing surface and a second vertical focusing surface parallel to said first plane;
characterized in that
the light module comprises at least one primary optical element, which does not modify at output in a vertical direction V the angle of the incident rays, arranged to transfer the light emitted by said light sources onto a virtual projection surface, defined between the said network and the imaging device, and coincides with the first focusing plane, such that the projections in the horizontal plane of the beams emitted by said light sources form, in said virtual projection surface, secondary sources of light which are stretched in the horizontal direction, and in that the second vertical focal plane coincides with the surface of the array of light sources. In the plan horizontal, a dimension of the secondary light sources is greater than a dimension of the light sources and an angular opening of the secondary light beams emitted by the secondary light sources is less than an angular opening of the light beams emitted by said sources bright.

Le module lumineux réalisé selon les enseignements de l'invention permet ainsi de réaliser un faisceau lumineux présentant un large champ horizontal d'illumination tout en ayant une résolution angulaire élevée dans tout plan parallèle à la direction verticale. Un tel élément d'optique primaire est très aisé à fabriquer et robuste ainsi que facile à assembler dans un module lumineux, donc peu onéreux à fabriquer.The light module produced according to the teachings of the invention thus makes it possible to produce a light beam having a wide horizontal field of illumination while having a high angular resolution in any plane parallel to the vertical direction. Such a primary optical element is very easy to manufacture and robust as well as easy to assemble in a light module, therefore inexpensive to manufacture.

Selon un premier mode de réalisation de l'invention l'élément optique primaire est un réseau de lentilles cylindriques. L'axe longitudinal de chaque lentille cylindrique est parallèle à une des rangées verticales de sources lumineuses. Un tel réseau de lentilles cylindriques est facile et peu onéreux à fabriquer, par exemple par une méthode d'injection plastique.According to a first embodiment of the invention, the primary optical element is an array of cylindrical lenses. The longitudinal axis of each cylindrical lens is parallel to one of the vertical rows of light sources. Such an array of cylindrical lenses is easy and inexpensive to manufacture, for example by a plastic injection method.

Dans un mode de réalisation préférable, les lentilles cylindriques sont conçues pour former, sur la surface virtuelle de projection, des sources secondaires de lumière dont la composante horizontale est un agrandissement d'un facteur M de la composante horizontale des sources lumineuses.In a preferable embodiment, the cylindrical lenses are designed to form, on the virtual projection surface, secondary light sources whose horizontal component is an M-factor magnification of the horizontal component of the light sources.

Avantageusement le facteur d'agrandissement M est au moins égal à 2.Advantageously, the magnification factor M is at least equal to 2.

Préférablement, les lentilles cylindriques sont conçues de telle sorte que les dites sources secondaires de lumière sont jointives. Ceci évite d'obtenir des projections de bandes sombres dans la direction verticale.Preferably, the cylindrical lenses are designed so that said secondary light sources are contiguous. This avoids obtaining projections of dark bands in the vertical direction.

En variante, les lentilles cylindriques sont conçues pour que les dites sources secondaires de lumière se recouvrent partiellement dans la direction horizontale. Ceci permet d'obtenir un champ d'illumination homogène.Alternatively, the cylindrical lenses are designed so that said secondary light sources overlap partially in the horizontal direction. This makes it possible to obtain a homogeneous illumination field.

Dans une autre variante le recouvrement des sources secondaires de lumière dans la direction horizontale est inférieur à 20% de la largeur de leur composante horizontale.In another variant, the coverage of the secondary light sources in the horizontal direction is less than 20% of the width of their horizontal component.

Selon un deuxième mode de réalisation de l'invention l'élément optique primaire comprend un réseau de guides de lumière disposé entre le dit réseau de sources lumineuses et le dispositif d'imagerie. L'utilisation de guides de lumière permet de rendre la lumière émise par les sources secondaires plus homogène.According to a second embodiment of the invention, the primary optical element comprises an array of light guides arranged between said array of light sources and the imaging device. The use of light guides makes it possible to make the light emitted by the secondary sources more homogeneous.

Avantageusement, le réseau de guides de lumière est constitué de guides de lumière ayant une première surface du côté dudit réseau et une deuxième surface, définie aussi comme surface de sortie, opposée à la première surface présentant, dans tout plan parallèle à la direction horizontale, une largeur supérieure à la largeur de la première surface. Ceci permet de diminuer, dans tout plan parallèle à la direction horizontale, l'angle d'émission des faisceaux dirigés à l'optique de projection.Advantageously, the array of light guides consists of light guides having a first surface on the side of said array and a second surface, also defined as an exit surface, opposite to the first surface having, in any plane parallel to the horizontal direction, a width greater than the width of the first surface. This makes it possible to reduce, in any plane parallel to the horizontal direction, the angle of emission of the beams directed at the projection optic.

En variante, les guides de lumière présentent une forme trapézoïdale en section parallèle à la direction horizontale et une forme rectangulaire dans toute section définie dans un plan vertical parallèle au dit réseau. La fabrication de guides de lumière ayant une section en forme de trapèze est facile et peu onéreuse et les surfaces peuvent avoir une très grande qualité optique.As a variant, the light guides have a trapezoidal shape in section parallel to the horizontal direction and a rectangular shape in any section defined in a vertical plane parallel to said grating. The manufacture of light guides having a trapezoidal section is easy and inexpensive and the surfaces can have very high optical quality.

Dans une variante, les guides de lumière présentent dans tout plan horizontal une forme comprenant des bords latéraux courbés, c'et à dire que leur faces latérales sont courbées. L'utilisation de guides dont les parois latérales sont courbées, de préférence concaves, permet d'améliorer les qualités optiques des faisceaux émis par les sources secondaires. Des faces courbées tel que définies par des polynômes peuvent augmenter le nombre d'optimisations possibles du module lumineux.In a variant, the light guides have in any horizontal plane a shape comprising curved side edges, ie their side faces are curved. The use of guides whose side walls are curved, preferably concave, makes it possible to improve the optical qualities of the beams emitted by the secondary sources. Faces curved lines as defined by polynomials can increase the number of possible optimizations of the light modulus.

Avantageusement, la dite première surface est à proximité immédiate avec la surface de sortie de lumière d'une source lumineuse de la dite rangée verticale. La proximité immédiate a l'avantage de garantir une grande efficacité de la transmission de la lumière émise par les sources lumineuses vers le plan de projection virtuel. Avantageusement ce plan de projection virtuel est coplanaire avec la surface de sortie des guides de lumièreAdvantageously, said first surface is in close proximity to the light output surface of a light source of said vertical row. The immediate proximity has the advantage of guaranteeing a high efficiency of the transmission of the light emitted by the light sources towards the virtual projection plane. Advantageously, this virtual projection plane is coplanar with the exit surface of the light guides

Dans des variantes préférées, la largeur de la deuxième surface présente, selon toute section parallèle au plan horizontal, une dimension égale ou plus grande que le double de la largeur de la première surface.In preferred variants, the width of the second surface has, in any section parallel to the horizontal plane, a dimension equal to or greater than twice the width of the first surface.

Dans une variante de réalisation, l'élément optique primaire comprend des éléments optiques diffractifs. Utiliser des éléments diffractifs permet de corriger les distributions d'intensités émises par les sources lumineuses et donc d'augmenter la qualité optique du faisceau. Il est facile d'intégrer des structures diffractives ou des structures réfractives dans des pièces moulées ou réalisées par injection plastique, sans en augmenter les coûts.In an alternative embodiment, the primary optical element comprises diffractive optical elements. Using diffractive elements makes it possible to correct the intensity distributions emitted by the light sources and therefore to increase the optical quality of the beam. It is easy to integrate diffractive structures or refractive structures in molded parts or produced by plastic injection, without increasing the costs.

Dans des variantes de réalisation, n est au moins égal à 10 et m est au moins égal à 20. L'utilisation de réseaux comprenant un grand nombre de sources de lumière permet d'augmenter considérablement la résolution angulaire du faisceau optique émis par le dispositif d'imagerie.In alternative embodiments, n is at least equal to 10 and m is at least equal to 20. The use of networks comprising a large number of light sources makes it possible to considerably increase the angular resolution of the optical beam emitted by the device. imaging.

Avantageusement l'ouverture angulaire d'un faisceau lumineux émis par le module de lumière provenant d'une seule source lumineuse est inférieure à 1 ° selon l'axe vertical.Advantageously, the angular opening of a light beam emitted by the light module coming from a single light source is less than 1 ° along the vertical axis.

Dans une variante de réalisation, l'ouverture angulaire d'un faisceau lumineux émis par le module de lumière provenant d'une seule source lumineuse est inférieure à 0.6 ° selon l'axe vertical. Ceci permet d'obtenir une grande résolution angulaire verticale.In an alternative embodiment, the angular opening of a light beam emitted by the light module coming from a single light source is less than 0.6 ° along the vertical axis. This makes it possible to obtain a high vertical angular resolution.

Avantageusement l'ouverture angulaire verticale du faisceau lumineux émis par le module, provenant de l'ensemble des sources lumineuses du réseau, est au moins égale à 2°, préférablement au moins égale à 4° et d'au plus 9°
Dans une variante de réalisation, l'ouverture angulaire horizontale du faisceau lumineux émis par le module, provenant de l'ensemble des sources lumineuses du réseau, est supérieure à 10°, préférablement supérieure à 20°. Ceci permet d'obtenir un très grand champ d'illumination horizontal tout en assurant une résolution verticale élevée.
Advantageously the vertical angular opening of the light beam emitted by the module, coming from all the light sources of the network, is at least equal to 2 °, preferably at least equal to 4 ° and at most 9 °
In an alternative embodiment, the horizontal angular opening of the light beam emitted by the module, coming from all the light sources of the array, is greater than 10 °, preferably greater than 20 °. This makes it possible to obtain a very large horizontal illumination field while ensuring high vertical resolution.

BRÈVE DESCRIPTION DES FIGURESBRIEF DESCRIPTION OF THE FIGURES

D'autres caractéristiques et avantages de l'invention apparaitront au cours de la lecture de la description détaillée qui va suivre pour la compréhension de laquelle on se reportera aux dessins annexés dans lesquels :

  • la figure 1 est une vue de dessus qui représente un élément optique primaire et un élément optique secondaire d'un module lumineux réalisé selon le concept de l'invention ;
  • la figure 2 est une vue de coté qui représente un élément optique primaire et un élément optique secondaire d'un module lumineux réalisé selon le concept de l'invention;
  • la figure 3 est une vue en perspective qui représente un élément optique primaire comprenant un réseau de lentilles cylindriques et un élément optique secondaire d'un premier module lumineux, réalisés selon un premier mode de réalisation de l'invention;
  • la figure 4 est une vue de dessus qui représente un élément optique primaire comprenant des guides de lumière et un élément optique secondaire d'un module lumineux, réalisés selon un deuxième mode de réalisation de l'invention ;
  • la figure 5 est une vue de coté qui représente un élément optique primaire comprenant des guides de lumière et un élément optique secondaire d'un module lumineux, réalisés selon le deuxième mode de réalisation de l'invention;
  • la figure 6 est une vue en perspective d'un guide de lumière ayant des parois verticales ou latérales planes ;
  • la figure 7 est une vue en perspective d'un autre guide de lumière ayant des parois verticales ou latérales courbées ;
  • la figure 8 est une vue de dessus d'un module lumineux comprenant un dispositif de projection réfléchissant;
  • la figure 9 est une vue de dessus d'un module lumineux comprenant un dispositif de projection ayant une configuration de type Cassegrain ;
  • la figure 10 est une vue de dessus d'un véhicule et d'un écran de projection situé devant le véhicule ;
  • la figure 11 est une vue de côté d'un véhicule et d'un écran de projection situé devant le véhicule.
Other characteristics and advantages of the invention will become apparent on reading the detailed description which follows, for the understanding of which reference is made to the appended drawings in which:
  • the figure 1 is a top view which shows a primary optical element and a secondary optical element of a light module produced according to the concept of the invention;
  • the figure 2 is a side view which shows a primary optical element and a secondary optical element of a light module produced according to the concept of the invention;
  • the figure 3 is a perspective view which shows a primary optical element comprising an array of cylindrical lenses and a secondary optical element of a first light module, produced according to a first embodiment of the invention;
  • the figure 4 is a top view which shows a primary optical element comprising light guides and a secondary optical element of a light module, produced according to a second embodiment of the invention;
  • the figure 5 is a side view which shows a primary optical element comprising light guides and a secondary optical element of a light module, produced according to the second embodiment of the invention;
  • the figure 6 is a perspective view of a light guide having flat vertical or side walls;
  • the figure 7 is a perspective view of another light guide having curved vertical or side walls;
  • the figure 8 is a top view of a light module comprising a reflective projection device;
  • the figure 9 is a top view of a light module comprising a projection device having a Cassegrain type configuration;
  • the figure 10 is a top view of a vehicle and a projection screen located in front of the vehicle;
  • the figure 11 is a side view of a vehicle and a projection screen located in front of the vehicle.

DESCRIPTION DÉTAILLÉE DES FIGURESDETAILED DESCRIPTION OF THE FIGURES

Dans la suite de la description, on adoptera à titre non limitatif des orientations longitudinale, dirigée d'arrière en avant, verticale, dirigée de bas en haut, et transversale, dirigée de gauche à droite, indiquées par le trièdre "L, V, T" des figures.In the remainder of the description, longitudinal orientations, directed from rear to front, vertical, directed from bottom to top, and transverse, directed from left to right, indicated by the trihedron "L, V," will be adopted without limitation. T "of the figures.

L'orientation verticale « V » est utilisée à titre de repère géométrique du module lumineux 10 sans rapport avec la direction de la gravité.The vertical orientation "V" is used as a geometric reference of the light module 10 unrelated to the direction of gravity.

Les directions L et V définissent un plan vertical 32 et les directions L et H définissant un plan horizontal 34.The L and V directions define a vertical plane 32 and the L and H directions define a horizontal plane 34.

Dans la suite de la description, des éléments présentant une structure identique ou des fonctions analogues seront désignés par des mêmes références.In the remainder of the description, elements having an identical structure or similar functions will be designated by the same references.

On a représenté à la figure 1 et la figure 2 une coupe horizontale (figure 1) et une coupe verticale (figure 2) d'un module lumineux qui est destiné à équiper un dispositif d'éclairage ou de signalisation pour véhicule automobile. Le module 10 lumineux est destiné à émettre un faisceau lumineux final longitudinalement vers l'avant du véhicule. Il s'agit ici d'un faisceau lumineux qui est composé d'une pluralité de faisceaux élémentaires jointifs. Un tel module lumineux 10 est notamment apte à remplir une fonction d'éclairage ayant une grande ouverture angulaire transversale et une grande résolution angulaire verticale. Chaque faisceau lumineux élémentaire éclaire une portion appelée par la suite « segment lumineux », aussi connu sous le terme "pixel". Dans la description, le terme "résolution verticale" s'entend la taille anglaire de chaque segment.We have represented at the figure 1 and the figure 2 a horizontal cut ( figure 1 ) and a vertical section ( figure 2 ) a light module which is intended to equip a lighting or signaling device for a motor vehicle. The light module 10 is intended to emit a final light beam longitudinally towards the front of the vehicle. This is a light beam which is composed of a plurality of adjoining elementary beams. Such a light module 10 is in particular capable of fulfilling a lighting function having a large transverse angular opening and a large vertical angular resolution. Each elementary light beam illuminates a portion called hereafter “light segment”, also known under the term “pixel”. In the description, the term “vertical resolution” is understood to mean the angled size of each segment.

Le module lumineux 10 définit un axe optique O, parallèle à l'orientation longitudinale L, et comporte au moins un réseau 12 de sources lumineuses 14, comportant m rangées transversales 12A et n rangées verticales 12B de sources lumineuses 14 qui sont notamment visibles aux figures 1, 2, 3, 4 et 5. Les rangées transversales 12A sont disposées suivant une direction perpendiculaire aux rangées verticales 12B et le nombre n rangées verticales 12B est plus élevé que le nombre m rangées transversales 12A.The light module 10 defines an optical axis O, parallel to the longitudinal orientation L, and comprises at least one network 12 of light sources 14, comprising m transverse rows 12A and n vertical rows 12B of light sources 14 which are in particular visible to figures 1, 2 , 3 , 4 and 5 . The transverse rows 12A are arranged in a direction perpendicular to the vertical rows 12B and the number n vertical rows 12B is greater than the number m transverse rows 12A.

On notera que sur les figures 1 et 2, les proportions d'écartement entre les sources lumineuses 14 horizontalement et verticalement n'ont pas été respectées ; en effet, l'écartement vertical entre les sources est en réalité est plus resserré que l'écartement horizontal.Note that on figures 1 and 2 , the spacing proportions between the light sources 14 horizontally and vertically have not been respected; in fact, the vertical spacing between the sources is in reality tighter than the horizontal spacing.

Chaque source de lumière 14 est formée par une source d'émission lumineuse qui est préférablement, mais pas nécessairement, une diode électroluminescente qui présente une surface d'émission carrée ou rectangulaire qui s'étend dans un plan sensiblement orthogonal à l'axe optique O.Each light source 14 is formed by a light emitting source which is preferably, but not necessarily, a light emitting diode which has a light emitting diode. square or rectangular emission surface which extends in a plane substantially orthogonal to the optical axis O.

Le réseau 12 de sources lumineuses 14 est portée par un support, préférablement une carte à circuit imprimé 13. Les sources lumineuses 14 peuvent être allumées indépendamment les unes des autres, de façon sélective, pour obtenir l'éclairage souhaité.The array 12 of light sources 14 is carried by a support, preferably a printed circuit board 13. The light sources 14 can be switched on independently of one another, selectively, to obtain the desired illumination.

Dans une variante, le réseau 12 peut être constitué par un assemblage de plusieurs barrettes 12B verticales de sources de lumière 14, et chacune des barrettes peut être portée par un support, préférablement une carte à circuit imprimé. Chaque barrette 12B porte les sources lumineuses formant l'une des colonnes du réseau 12.In a variant, the network 12 can be constituted by an assembly of several vertical arrays 12B of light sources 14, and each of the arrays may be carried by a support, preferably a printed circuit board. Each strip 12B carries the light sources forming one of the columns of the network 12.

Les sources lumineuses 14 sont plus proches des sources lumineuses adjacentes verticalement que des sources lumineuses adjacentes transversalement. Par exemple, deux sources lumineuses adjacentes verticalement sont écartées d'une distance inférieure à 10% de la hauteur verticale de la surface d'émission de ladite source lumineuse, tandis que deux sources lumineuses adjacentes transversalement sont écartées d'une distance supérieure à 10% de la largeur transversale de la surface d'émission de ladite source lumineuse.Light sources 14 are closer to vertically adjacent light sources than transversely adjacent light sources. For example, two vertically adjacent light sources are spaced apart by a distance less than 10% of the vertical height of the emitting surface of said light source, while two transversely adjacent light sources are spaced apart by a distance greater than 10%. of the transverse width of the emission surface of said light source.

Le module lumineux 10 comporte aussi au moins un élément optique primaire 40.The light module 10 also comprises at least one primary optical element 40.

L'élément optique primaire 40 est une pièce optique, ou un ensemble de pièces et/ou structures optiques, agencé pour transférer la lumière émise par les dites sources lumineuses 14 sur une surface virtuelle de projection 60, qui se situe en face et à une distance prédéfinie du réseau 12, dans le sens de l'émission de la lumière. La figure 1 et la figure 2 illustrent un rayon de lumière 16 émis par une source de lumière 14.The primary optical element 40 is an optical part, or a set of parts and / or optical structures, arranged to transfer the light emitted by said light sources 14 onto a virtual projection surface 60, which is located opposite and to a predefined distance from the network 12, in the direction of the light emission. The figure 1 and the figure 2 illustrate a ray of light 16 emitted by a light source 14.

La surface virtuelle de projection 60 est préférablement un plan virtuel, mais peut être aussi une surface courbée virtuelle, défini par exemple dans une réalisation où le support et/ou le circuit imprimé 13 présente une forme courbée. Tel qu'illustré dans la figure 1, l'élément optique primaire 40 est agencé de telle façon que les projections dans le plan horizontal 34 des faisceaux de lumière 16 émis par les dites sources lumineuses 14 forment, dans la dite surface virtuelle de projection 60, des sources secondaires de lumière 62.The virtual projection surface 60 is preferably a virtual plane, but can also be a virtual curved surface, defined for example in an embodiment where the support and / or the printed circuit 13 has a curved shape. As shown in the figure 1 , the primary optical element 40 is arranged such that the projections in the horizontal plane 34 of the light beams 16 emitted by said light sources 14 form, in said virtual projection surface 60, secondary light sources 62.

Avantageusement, comme illustré dans la figure 1, l'élément optique 40 est agencé pour que, dans le plan horizontal 34, la dimension des sources secondaires de lumière 62 est plus grande qu'une dimension 14a des sources lumineuses 14 et que l'ouverture angulaire β des faisceaux secondaires de lumière 18 émis par les sources de lumière secondaires 62 est inférieure à une ouverture angulaire α des faisceaux de lumière 16 émis par les dites sources lumineuses 14. Le principe exploité ici, dans tout plan horizontal, est celui de l'invariant de Lagrange-Helmholz qui impose que dans un système optique nyα=n'y'α' dans lequel n et n' sont les indices de réfraction de l'espace objet et image respectivement, y et y' les hauteurs (ou largeur) objet et image respectivement, et α et a' les angles des rayons incident et émergent d'un système optique. Les figures 1 et 2 illustrent la propagation d'un rayon de lumière 16, 18, 20 présentant des angles différents par rapport à l'axe optique O.Advantageously, as illustrated in figure 1 , the optical element 40 is arranged so that, in the horizontal plane 34, the dimension of the secondary light sources 62 is greater than a dimension 14a of the light sources 14 and that the angular opening β of the secondary light beams 18 emitted by the secondary light sources 62 is less than an angular opening α of the light beams 16 emitted by said light sources 14. The principle used here, in any horizontal plane, is that of the Lagrange-Helmholz invariant which imposes that in an optical system nyα = y'α 'in which n and n' are the refractive indices of the object and image space respectively, y and y 'the object and image heights (or width) respectively, and α and a 'the angles of incident and emerging rays of an optical system. The figures 1 and 2 illustrate the propagation of a ray of light 16, 18, 20 having different angles with respect to the optical axis O.

La dimension de la section transversale 62a des sources secondaires 62 est plus particulièrement définie de manière à ce que les sources lumineuses secondaires 62 soient jointives ou chevauchantes transversalement.The dimension of the cross section 62a of the secondary sources 62 is more particularly defined so that the secondary light sources 62 are contiguous or overlapping transversely.

Dans un exemple de réalisation, non limitatif, la dimension de la section transversale 62a des sources secondaires 62 peut être au moins 2 fois plus grand que la dimension transversale 14a des sources lumineuses 14.In a nonlimiting exemplary embodiment, the dimension of the cross section 62a of the secondary sources 62 can be at least 2 times greater than the transverse dimension 14a of the light sources 14.

Bien entendu, l'élément optique primaire 40 peut être agencé pour présenter, dans un plan horizontal, différents agrandissements M pour différentes sources lumineuses 14 du réseau. Par exemple, l'agrandissement M d'une source lumineuse 14 présente sur l'axe optique O peut être plus faible que l'agrandissement d'une source lumineuse 14 qui se situe à une extrémité transversale du réseau 12. Cette variante permet d'être appliqué dans les cas où les rangées verticales 12B des sources de lumière 14 ne sont pas positionnées d'une façon régulière dans la direction transversale.Of course, the primary optical element 40 can be arranged to present, in a horizontal plane, different enlargements M for different light sources 14 of the array. For example, the magnification M of a light source 14 present on the optical axis O may be smaller than the magnification of a light source 14 which is located at a transverse end of the array 12. This variant makes it possible to be applied in cases where the vertical rows 12B of the light sources 14 are not positioned evenly in the transverse direction.

En outre, l'élément optique primaire 40 est réalisé pour ne pas avoir d'effet d'agrandissement, ou un effet d'agrandissement négligeable, dans la direction verticale, tel qu'illustré dans la figure 2. Cela se traduit par le fait que l'élément optique primaire ne modifie pas en sortie selon une direction verticale V l'angle des rayons incidents Tout au plus, l'élément optique peut avoir un effet de déplacement, dans le sens de l'axe optique O, du faisceau conique de lumière émis par les sources de lumière 14, similaire à l'effet obtenu par l'insertion d'une lame optique plane dans un faisceau optique qui la traverse. Il est bien connu que ce déplacement dépend de l'épaisseur de la lame optique ainsi que son indice de réfraction, ce qui est également le cas de l'élément optique primaire 40.Further, the primary optical element 40 is made to have no magnifying effect, or negligible magnifying effect, in the vertical direction, as shown in figure. figure 2 . This results in the fact that the primary optical element does not modify at the output in a vertical direction V the angle of the incident rays At most, the optical element can have a displacement effect, in the direction of the axis optical O, the conical beam of light emitted by the light sources 14, similar to the effect obtained by inserting a flat optical plate in an optical beam which passes through it. It is well known that this displacement depends on the thickness of the optical plate as well as its refractive index, which is also the case of the primary optical element 40.

Bien entendu, l'élément optique primaire 40 peut être réalisé dans une seule pièce optique mais peut comprendre au moins deux pièces optiques qui peuvent avoir des formes et/ou indices de réfraction différents. Les dites au moins deux pièces peuvent également être fabriquées dans des matériaux différents et peuvent comprendre des revêtements pour améliorer l'efficacité de transmission de la lumière, tel qu'un revêtement antireflet. Afin d'optimiser l'efficacité et la qualité du faisceau projeté par le module de lumière 10, l'élément primaire 40 peut comprendre des structures diffractives ou réfractives, tels que des réseaux de diffraction ou des structures Fresnel.Of course, the primary optical element 40 can be made in a single optical part but can include at least two optical parts which can have different shapes and / or refractive indices. Said at least two pieces can also be made of different materials and can include coatings to improve light transmission efficiency, such as an anti-reflective coating. In order to optimize the efficiency and the quality of the beam projected by the light module 10, the primary element 40 can comprise diffractive or refractive structures, such as diffraction gratings or Fresnel structures.

Le module lumineux 10 comporte au moins un dispositif bifocal d'imagerie 30 qui est conçu pour projeter un faisceau de lumière de chaque source lumineuse 14. Le dispositif bifocal d'imagerie 30 projette préférablement une image de chaque source lumineuse 14 à l'infini, usuellement mesurée sur un plan virtuel de référence, défini à une distance dE par rapport au centre du dispositif bifocal d'imagerie 30. Dans le domaine automobile cette distance est typiquement 25 m, comme cela est illustré aux figures 10 et 11.The light module 10 comprises at least one bifocal imaging device 30 which is designed to project a beam of light from each light source 14. The bifocal imaging device 30 preferably projects an image from each light source 14 to infinity, usually measured on a virtual reference plane, defined at a distance d E with respect to the center of the bifocal imaging device 30. In the automotive field, this distance is typically 25 m, as illustrated in figures 10 and 11 .

Le dispositif bifocal d'imagerie 30 peut être un système optique ayant une symétrie rotationnelle relative à son axe optique O, mais peut également être un système optique qui a une dimension horizontale plus élevée que sa dimension verticale.The bifocal imaging device 30 may be an optical system having rotational symmetry relative to its optical axis O, but may also be an optical system which has a horizontal dimension greater than its vertical dimension.

Dans un mode de réalisation préféré, le plus grand diamètre du dispositif bifocal d'imagerie 30 est inférieur à 80mm.In a preferred embodiment, the largest diameter of the bifocal imaging device 30 is less than 80mm.

Le dispositif d'imagerie 30 présente une première longueur focale F1 et une première surface de focalisation transversale 30a qui est agencé sensiblement en coïncidence avec la surface virtuelle 60 de projection. Dans un mode de réalisation préféré, la première surface de focalisation 30a est une surface virtuelle plane telle qu'illustré dans les figures 1 à 5. Ainsi, en projetant les sources lumineuses secondaires 62 jointives transversalement, on obtient ainsi des segments lumineux jointifs transversalement.The imaging device 30 has a first focal length F1 and a first transverse focusing surface 30a which is arranged substantially in coincidence with the virtual projection surface 60. In a preferred embodiment, the first focusing surface 30a is a planar virtual surface as illustrated in the FIGS. figures 1 to 5 . Thus, by projecting the secondary light sources 62 contiguous transversely, one thus obtains light segments contiguous transversely.

Le dispositif d'imagerie 30 présente aussi une deuxième longueur focale F2 et une surface de focalisation transversale 30b qui est agencé sensiblement en coïncidence avec le réseau 12 des sources lumineuses 14. Bien entendu la longueur focale F2 est adaptée pour tenir compte de l'effet de déviation dans le plan vertical de l'élément optique primaire 40 tel que décrit avant. Ainsi, en projetant les sources lumineuses primaires qui sont extrêmement proches verticalement, on obtient des segments lumineux sensiblement jointifs verticalement.The imaging device 30 also has a second focal length F2 and a transverse focusing surface 30b which is arranged substantially in coincidence with the array 12 of the light sources 14. Of course, the focal length F2 is adapted to take account of the effect. deflection in the vertical plane of the primary optical element 40 as described above. Thus, by projecting the primary light sources which are extremely close vertically, one obtains light segments which are substantially vertically contiguous.

Ainsi, la surface totale illuminée par le module de lumière 10 a une dimension d'environ n fois p1 dans la direction horizontale et une dimension m fois p2 dans la direction verticale et la résolution angulaire verticale est ainsi p2/dE rad et la résolution horizontale p1/dE.Thus, the total surface illuminated by the light module 10 has a dimension of approximately n times p1 in the horizontal direction and a dimension m times p 2 in the vertical direction and the vertical angular resolution is thus p 2 / d E rad and the horizontal resolution p 1 / d E.

Avantageusement le module de lumière 10 de l'invention peut être configuré, pour tous les modes de réalisation, afin d'obtenir une résolution angulaire horizontale ϕ de moins de 1°, préférablement moins de 0.6° et une résolution angulaire verticale Y de moins de 0.6°, préférablement moins de 0.35°. Ainsi, par exemple, avec :

  • une résolution angulaire horizontale ϕ de 0.6°; et
  • une résolution angulaire verticale Y de 0.35°; et
  • un nombre n de 15; et
  • un nombre m de 25;
une surface illuminée de 5.2 m x 7.9m est réalisée sur un écran E positionné à 25 m du centre C. Dans cet exemple, à 25 m du module de lumière 10, la hauteur de chaque segment lumineux est d'environ 26cm sur l'écran E.Advantageously, the light module 10 of the invention can be configured, for all the embodiments, in order to obtain a horizontal angular resolution ϕ of less than 1 °, preferably less than 0.6 ° and a vertical angular resolution Y of less than 0.6 °, preferably less than 0.35 °. So, for example, with:
  • a horizontal angular resolution ϕ of 0.6 °; and
  • a vertical angular resolution Y of 0.35 °; and
  • a number n of 15; and
  • a number m of 25;
an illuminated surface of 5.2 mx 7.9 m is produced on a screen E positioned 25 m from the center C. In this example, 25 m from the light module 10, the height of each light segment is approximately 26cm on the screen E.

Tel qu'illustré dans les figures 10 et 11 le module de lumière produit un faisceau ayant une ouverture angulaire horizontale Φ et une ouverture angulaire verticale θ. L'ouverture angulaire horizontale Φ peut être plus élevée que 10°, préférablement plus élevé que 20°. L'ouverture verticale θ peut être plus élevée que 2°, préférablement plus élevé que 4°. Les différents éléments du module de lumière 10 peuvent être adaptés en fonction de l'angle total horizontal et vertical désiré ainsi que de la résolution angulaire horizontale et verticale. L'homme du métier saura ajouter dans le modules de lumière 10 des éléments optiques de correction en fonction de la nature des sources de lumière 14, de leur géométrie et de la distribution spatiale des faisceaux de lumière émise par ces sources 14, ainsi qu'en fonction du type du dispositif d'imagerie 30, et en fonction du type de l'élément primaire 40 selon l'invention, dont plusieurs modes de réalisation sont décrits dans le présent document.As illustrated in figures 10 and 11 the light module produces a beam having a horizontal angular opening Φ and a vertical angular opening θ. The horizontal angular opening Φ can be higher than 10 °, preferably higher than 20 °. The vertical opening θ can be higher than 2 °, preferably higher than 4 °. The various elements of the light module 10 can be adapted as a function of the desired total horizontal and vertical angle as well as of the horizontal and vertical angular resolution. Those skilled in the art will know how to add correction optical elements to the light modules 10 as a function of the nature of the light sources 14, their geometry and the spatial distribution of the beams of light. light emitted by these sources 14, as well as according to the type of the imaging device 30, and according to the type of the primary element 40 according to the invention, several embodiments of which are described in this document.

Dans un mode de réalisation, le dispositif d'imagerie 30 possède une symétrie circulaire, relatif à l'axe optique O, et un diamètre défini dans un plan vertical est inférieur à 100mm, préférablement inférieur à 80 mm. Dans une variante, la dimension verticale du dispositif est différente de sa dimension horizontale. Dans ce cas, le plus grand diamètre défini orthogonalement à l'axe optique est inférieur à 100mm, préférablement inférieur à 80 mm.In one embodiment, the imaging device 30 has circular symmetry, relative to the optical axis O, and a diameter defined in a vertical plane is less than 100mm, preferably less than 80mm. In a variant, the vertical dimension of the device is different from its horizontal dimension. In this case, the largest diameter defined orthogonally to the optical axis is less than 100mm, preferably less than 80mm.

Comme illustré dans les figures 8 et 9, et décrit en détail pour quelques exemples ci-après, le dispositif d'imagerie 30 peut comprendre des éléments réfléchissants ou être de type catadioptrique.As illustrated in figures 8 and 9 , and described in detail for a few examples below, the imaging device 30 may comprise reflecting elements or be of the catadioptric type.

Dans un mode de réalisation représenté dans la figure 3, l'élément optique primaire 40 comporte un réseau de lentilles cylindriques 42 dont chaque lentille cylindrique 42 comprend un axe vertical C1 parallèle à une des rangées verticales 12B de sources de lumière 14. Le réseau 40 de lentilles cylindriques 42 comprend une surface d'entrée 42b de lumière et une surface de sortie 42a de lumière et forme une image, sur la surface virtuelle de projection 60. Préférablement chaque rayon de lumière émis par une source de lumière 14 est transféré par le réseau de lentilles cylindriques 42 sur la surface virtuelle de projection 60.In one embodiment shown in figure 3 , the primary optical element 40 comprises an array of cylindrical lenses 42, each cylindrical lens 42 of which comprises a vertical axis C1 parallel to one of the vertical rows 12B of light sources 14. The array 40 of cylindrical lenses 42 comprises an entrance surface 42b of light and an exit surface 42a of light and forms an image, on the virtual projection surface 60. Preferably each ray of light emitted by a light source 14 is transferred by the array of cylindrical lenses 42 on the virtual surface of projection. projection 60.

La distribution lumineuse de cette image est constituée d'une rangée horizontale de bandes lumineuses étirées verticalement.The light distribution of this image consists of a horizontal row of vertically stretched light bands.

Les lentilles cylindriques 12 sont agencées afin de former une image agrandie de la composante horizontale 14a des sources de lumière 14 dans le plan de projection virtuel 60. Le facteur d'agrandissement M, dans un plan horizontal, obtenu par les lentilles cylindriques 12 est donné par M = d2/d1 où d1 est la distance entre une source lumineuse 14 et la surface d'entrée de lumière 42b et d2 est la distance entre la surface de sortie de lumière 42a et la surface virtuelle de projection 60, tel qu'illustré dans la figure 3. Dans un exemple de réalisation le facteur d'agrandissement M est plus grand que 1.5, préférablement plus grand que 2 ou encore plus préférablement plus grand que 5.The cylindrical lenses 12 are arranged to form an enlarged image of the horizontal component 14a of the light sources 14 in the virtual projection plane 60. The magnification factor M, in a horizontal plane, obtained by the cylindrical lenses 12 is given by M = d2 / d1 where d1 is the distance between a light source 14 and the light entry surface 42b and d2 is the distance between the light emitting surface 42a and the virtual projection surface 60, as illustrated in figure 3 . In an exemplary embodiment, the magnification factor M is greater than 1.5, preferably greater than 2 or even more preferably greater than 5.

Préférablement la dite surface d'entrée de lumière 42b est une surface plane verticale transversale. Dans une variante la surface d'entrée 40a peut comprendre aussi un deuxième réseau 40 de lentilles cylindriques 42, qui ne doit pas forcément être symétrique avec le réseau 40 de lentilles cylindriques 42 de la surface de sortie 42a. Dans une variante le réseau de lentilles cylindriques peut être constitué de deux éléments optiques, chacun comportant une structure permettant de réaliser une focalisation de lumière dans un plan horizontal et sans avoir d'effet de focalisation dans un plan vertical, mis à part l'effet de déviation des faisceaux incidents et qui est dû, comme déjà expliqué, à l'épaisseur et l'indice de réfraction du réseau de lentilles cylindriques.Preferably said light entry surface 42b is a transverse vertical planar surface. In a variant, the inlet surface 40a can also comprise a second array 40 of cylindrical lenses 42, which need not necessarily be symmetrical with the array 40 of cylindrical lenses 42 of the outlet surface 42a. In a variant, the array of cylindrical lenses may consist of two optical elements, each comprising a structure making it possible to achieve a focusing of light in a horizontal plane and without having a focusing effect in a vertical plane, apart from the effect. deflection of the incident beams and which is due, as already explained, to the thickness and the refractive index of the array of cylindrical lenses.

Dans un mode de réalisation les surfaces de sortie 42a des lentilles cylindriques 42 ont, dans tout plan horizontal 34 une forme de section de cercle. Dans une variante cette forme est définie par un polynôme.In one embodiment, the outlet surfaces 42a of the cylindrical lenses 42 have, in any horizontal plane 34, the shape of a section of a circle. In one variant, this form is defined by a polynomial.

Dans une variante, des structures diffractives peuvent être agencées sur les surfaces d'entrée 42b et/ou les surfaces de sortie 42a des lentilles cylindriques.Alternatively, diffractive structures can be arranged on the inlet surfaces 42b and / or the outlet surfaces 42a of the cylindrical lenses.

L'homme du métier saura réaliser ces réseaux de lentilles par des méthodes de fabrication connues, tel que le moulage en plastique, la réplication ou encore la polymérisation de polymères sur une surface optique tel qu'une surface en verre.Those skilled in the art will know how to produce these lens arrays by known manufacturing methods, such as plastic molding, replication or even polymerization of polymers on an optical surface such as a glass surface.

Dans une variante, des éléments optiques additionnels peuvent être agencés entre le réseau 12 des sources de lumière 14 et le réseau 40 de lentilles cylindriques 42. Ces éléments optiques additionnels peuvent comprendre par exemple un réseau de microlentilles, ce qui peut être utile dans le cas de certains types des diodes électroluminescentes 14 qui ne comprennent pas de lentille de collimation intégrée.In a variant, additional optical elements may be arranged between the array 12 of the light sources 14 and the array 40 of cylindrical lenses 42. These additional optical elements may for example comprise an array of microlenses, which may be useful in the case of certain types of light emitting diodes 14 which do not include an integrated collimating lens.

Dans un mode de réalisation, le réseau de lentilles cylindriques 42 est conçu de telle sorte que les dites sources secondaires de lumière 62 sont jointives, tel qu'illustré dans la figure 1.In one embodiment, the array of cylindrical lenses 42 is designed such that said secondary light sources 62 are contiguous, as illustrated in Figure 1. figure 1 .

Dans une variante de réalisation, le réseau de lentilles cylindriques 42 est conçu pour que les dites sources secondaires de lumière 62 se recouvrent partiellement dans la direction horizontale H.In an alternative embodiment, the array of cylindrical lenses 42 is designed so that said secondary light sources 62 partially overlap in the horizontal direction H.

Dans un exemple de réalisation, le recouvrement, dans la direction horizontale H, des sources secondaires est inférieur à 20% de la largeur de leur composante horizontale 62a.In an exemplary embodiment, the overlap, in the horizontal direction H, of the secondary sources is less than 20% of the width of their horizontal component 62a.

Bien entendu, les éléments optiques du module de lumière peuvent être optimisés et agencés pour que la distribution de l'intensité de l'image produit dans le champ lointain, par exemple à 25m de module de lumière 10, soit une distribution homogène, même si des sources secondaires se recouvrent partiellement dans la surface virtuelle de projection 60.Of course, the optical elements of the light module can be optimized and arranged so that the distribution of the intensity of the image produced in the far field, for example at 25 m from the light module 10, is a homogeneous distribution, even if secondary sources partially overlap in the virtual projection surface 60.

Dans un autre mode de réalisation, illustré dans les figures 4, 5, 6, 7, l'élément optique primaire 40 comprend un réseau 50 de guides de lumière 52 disposé entre le réseau 12, 12A, 12B de sources lumineuses 14 et le dispositif d'imagerie 30.In another embodiment, illustrated in figures 4, 5 , 6, 7 , the primary optical element 40 comprises an array 50 of light guides 52 disposed between the array 12, 12A, 12B of light sources 14 and the imaging device 30.

Les dits guides de lumière 52 ont une première surface 56 du côté du réseau 12 de sources de lumière 14 et une deuxième surface 58, aussi définie comme surface de sortie de lumière, opposée à la première surface 56, aussi définie comme surface d'entrée de lumière. La première surface 56 et la deuxième surface 58 sont connectées par des parois verticales 51, 53 qui sont configurées pour modifier, dans un plan selon l'axe horizontal et relatif à l'axe optique O, l'angle de propagation d'un rayon de lumière incident sur ces surfaces 51, 53. Les figures 4 et 5 montrent la propagation d'un rayon 16, 19, 21 respectivement émis par une source lumineuse 14, transmis par un guide de lumière 52 et projeté par un dispositif bifocale d'imagerie 30.Said light guides 52 have a first surface 56 on the side of the array 12 of light sources 14 and a second surface 58, also defined as a light exit surface, opposite to the first surface 56, also defined as an entrance surface. from light. The first surface 56 and the second surface 58 are connected by vertical walls 51, 53 which are configured to modify, in a plane along the horizontal axis and relative to the optical axis O, the angle of propagation of a ray of light incident on these surfaces 51 , 53. The figures 4 and 5 show the propagation of a ray 16, 19, 21 respectively emitted by a light source 14, transmitted by a light guide 52 and projected by a bifocal imaging device 30.

Dans un mode de réalisation préféré, la dite première surface 56 est à proximité immédiate, ou coïncidente, avec la surface de sortie 15 de lumière d'une source lumineuse 14 d'une rangée verticale 12B.In a preferred embodiment, said first surface 56 is in close proximity, or coincident, with the light exit surface 15 of a light source 14 of a vertical row 12B.

Le guide de lumière 52 comprend aussi une paroi supérieure 57 et inférieure 55 qui sont agencées de telle façon à ce qu'aucun rayon de lumière émis par une des rangées verticales 12B de sources de lumière ne soit incident sur ces surfaces, tel qu'illustrée dans la figure 5. La forme des surfaces supérieures 57 et inférieures 55 peut être plane ou peut être courbée, tel qu'illustré dans les figures 6 et 7. Dans un mode de réalisation les surfaces supérieures 57 et inférieures 55 n'ont aucune fonction optique et peuvent donc comprendre au moins une structure ou une structuration permettant de rendre l'assemblage de ce guide de lumière 52 dans le module de lumière 10 aisée et donc peu onéreux. L'homme du métier saura réaliser ces structures directement dans un moule d'un guide de lumière 52, réalisé par exemple en plastique injecté.The light guide 52 also comprises an upper wall 57 and a lower wall 55 which are arranged such that no ray of light emitted by one of the vertical rows 12B of light sources is incident on these surfaces, as illustrated. in the figure 5 . The shape of the upper 57 and lower 55 surfaces may be planar or may be curved, as shown in the figures. figures 6 and 7 . In one embodiment, the upper 57 and lower 55 surfaces have no optical function and can therefore comprise at least one structure or a structuring making it possible to make the assembly of this light guide 52 in the light module 10 easy and therefore cheap. Those skilled in the art will know how to produce these structures directly in a mold of a light guide 52, made for example of injected plastic.

Dans un mode de réalisation, les guides de lumière 52 sont réalisés dans un matériau solide transparent tel qu'un plastique ou un verre. Dans toute section selon l'axe horizontal, la largeur de la première surface 56 est inférieure à la largeur de la deuxième surface 58. Comme illustré dans la figure 4, au moins une portion de la lumière émise par une source de lumière 14 est réfractée par la première surface 56 et subit au moins une réflexion totale sur une des parois latérales 51, 53. Ces parois latérales 51, 53 peuvent être planes ou peuvent être courbées. La forme de la projection horizontale des parois latérales 51, 53 peut être défini par un polynôme, par exemple une forme parabolique ou une forme de portion d'une ellipse ou une forme hyperbolique. La figure 6 montre une vue en perspective d'un guide de lumière 52 qui comporte des parois latérales 51, 53 planes. La figure 7 montre une vue en perspective d'un guide de lumière 52 qui comporte des parois latérales 51, 53 courbées. Dans tous les cas, les parois latérales 51, 53 sont configurées afin de réduire l'angle β de propagation, relatif à l'axe optique O, d'un rayon de lumière émis par une source lumineuse 14. Comme cela est représenté dans la figure 4 et 5 le guide de lumière 52 est positionné de telle façon à ce que la surface de sortie 58 est à proximité avec la surface virtuelle de projection 60. Dans une variante, la surface de sortie 58 coïncide avec la surface virtuelle de projection 60.In one embodiment, the light guides 52 are made of a transparent solid material such as plastic or glass. In any section along the horizontal axis, the width of the first surface 56 is less than the width of the second surface 58. As illustrated in figure 4 , at least a portion of the light emitted by a light source 14 is refracted by the first surface 56 and undergoes at least a total reflection on one of the side walls 51, 53. These walls side 51, 53 can be flat or can be curved. The shape of the horizontal projection of the side walls 51, 53 may be defined by a polynomial, for example a parabolic shape or a portion shape of an ellipse or a hyperbolic shape. The figure 6 shows a perspective view of a light guide 52 which has side walls 51, 53 planar. The figure 7 shows a perspective view of a light guide 52 which has curved side walls 51, 53. In all cases, the side walls 51, 53 are configured so as to reduce the angle β of propagation, relative to the optical axis O, of a ray of light emitted by a light source 14. As shown in Figure figure 4 and 5 light guide 52 is positioned such that exit surface 58 is proximate to virtual projection surface 60. Alternatively, exit surface 58 coincides with virtual projection surface 60.

Similaire au mode de réalisation de la figure 3 comprenant un réseau de lentilles cylindriques 42, les guides de lumière 52 permettent de produire des sources secondaires 60 qui ont une dimension horizontale plus grande que la largeur horizontale 14a des sources de le lumière 14 et dont l'angle de propagation β des rayons de lumière transmis, relatif à l'axe optique O, est inférieur à l'angle d'émission α de ce rayon de lumière par la source d'émission 14 de ce rayon de lumière.Similar to the embodiment of the figure 3 comprising an array of cylindrical lenses 42, the light guides 52 make it possible to produce secondary sources 60 which have a horizontal dimension greater than the horizontal width 14a of the light sources 14 and whose angle of propagation β of the light rays transmitted, relative to the optical axis O, is less than the angle of emission α of this ray of light by the source of emission 14 of this ray of light.

Dans une variante non représentée de l'invention, les guides de lumière 52 sont creux et comprennent une paroi dont au moins une portion des surfaces internes verticales 51, 53 sont réfléchissantes. Dans ce cas, les surfaces 56 et 58 sont respectivement une ouverture d'entrée de lumière 56 et une ouverture de sortie de lumière 58. L'effet optique d'agrandissement obtenu est similaire à celui des guides de lumière 52 réalisés dans un matériau transparents décrit ci-dessus. En effet, la source secondaire d'émission 62, qui se présente dans la surface virtuelle de projection 60, par le transfert de la lumière d'une source 14 par le guide de lumière 52, comprend une plus grande dimension horizontale que celle de la source de lumière 14. L'avantage d'un guide de lumière 52 réalisé avec des parois 51, 53 dont les surfaces internes sont réfléchissantes est d'obtenir une meilleure efficacité de transmission de lumière, notamment puisqu'il n'y a pas de pertes de lumière par réfraction par l'ouverture d'entrée. Par contre, des guides de lumière réfléchissants sont souvent plus onéreux à fabriquer car nécessitant notamment un revêtement de réfléchissant.In a variant of the invention that is not shown, the light guides 52 are hollow and comprise a wall of which at least a portion of the vertical internal surfaces 51, 53 are reflective. In this case, the surfaces 56 and 58 are respectively a light inlet opening 56 and a light outlet opening 58. The magnifying optical effect obtained is similar to that of the light guides 52 made of a transparent material. described above. Indeed, the secondary emission source 62, which is present in the virtual projection surface 60, by the transfer of the light from a source 14 through the light guide 52, comprises a greater horizontal dimension than that of the light source 14. The advantage of a light guide 52 made with walls 51, 53 whose surfaces internal elements are reflective is to obtain better light transmission efficiency, especially since there is no loss of light by refraction through the inlet opening. On the other hand, reflective light guides are often more expensive to manufacture because they require in particular a reflective coating.

Dans une variante, illustrée dans la figure 6, les guides de lumière 52 présentent une forme trapézoïdale dans tout plan horizontal 34 et présentent une forme rectangulaire pour toute section définie dans un plan vertical parallèle au dit réseau 12.In a variant, illustrated in the figure 6 , the light guides 52 have a trapezoidal shape in any horizontal plane 34 and have a rectangular shape for any section defined in a vertical plane parallel to said network 12.

Dans un exemple de réalisation, la largeur de la deuxième surface 58, pour toute section parallèle au plan horizontal 34, présente une dimension égale ou plus grande que le double de la largeur de la première surface 56.In an exemplary embodiment, the width of the second surface 58, for any section parallel to the horizontal plane 34, has a dimension equal to or greater than twice the width of the first surface 56.

Dans un autre exemple de réalisation, une dimension axiale dg des guides de lumière 52, définie dans l'axe optique O du module lumineux 10, est sensiblement identique à la dimension de l'intersection de la première surface 46 avec le plan horizontal 34.In another exemplary embodiment, an axial dimension d g of the light guides 52, defined in the optical axis O of the light module 10, is substantially identical to the dimension of the intersection of the first surface 46 with the horizontal plane 34 .

Dans encore un autre exemple de réalisation, une dimension axiale dg des guides de lumière 52, définie dans l'axe optique O du module lumineux 10, est au moins 50% supérieure à la dimension de l'intersection de la première surface 56 avec le plan horizontal 34.In yet another exemplary embodiment, an axial dimension d g of the light guides 52, defined in the optical axis O of the light module 10, is at least 50% greater than the dimension of the intersection of the first surface 56 with the horizontal plane 34.

Comme cela est représenté dans les figures 8 et 9 le dispositif d'imagerie 30 peut comprendre des éléments réfléchissants R1, R2, R3. Ceci permet de réaliser des modules de lumière 10 qui sont plus courts dans la direction longitudinale L.As shown in the figures 8 and 9 the imaging device 30 can include reflective elements R1, R2, R3. This makes it possible to realize light modules 10 which are shorter in the longitudinal direction L.

Dans un mode de réalisation, dont une vue de dessus est représentée dans la figure 8, le dispositif d'imagerie 30 comprend au moins un miroir R1 disposé dans une configuration dite hors axe. Cette configuration permet de réaliser une module de lumière d'une longueur w définie, dans la direction longitudinale, plus court que les variantes illustrées dans les figures 1, 2, 3, 4, 5.In one embodiment, a top view of which is shown in figure 8 , the imaging device 30 comprises at least one mirror R1 arranged in a so-called off-axis configuration. This configuration makes it possible to produce a light module of a defined length w, in the longitudinal direction, shorter than the variants illustrated in the figures 1, 2 , 3 , 4, 5 .

Dans une autre variante, dont une vue de dessus est représentée dans la figure 9, le dispositif d'imagerie 30 est réalisé dans une configuration de type Cassegrain, comportant deux miroirs R2, R3 permettant aussi de réaliser des modules de lumière 10 plus compacts dans la direction longitudinale.In another variant, a top view of which is shown in the figure 9 , the imaging device 30 is produced in a Cassegrain type configuration, comprising two mirrors R2, R3 also making it possible to produce light modules 10 that are more compact in the longitudinal direction.

Dans d'autres variantes non représentées de l'invention, des configurations catadioptriques peuvent être mis en œuvre pour le dispositif d'imagerie 30.In other variants of the invention not shown, catadioptric configurations can be implemented for the imaging device 30.

Claims (15)

  1. Luminous motor-vehicle module (10), comprising:
    - at least one array (12) of light sources (14), comprising m transverse rows (12A) and n vertical rows (12B), the number n being higher than the number m;
    - at least one bifocal imaging device (30) designed to project a light beam, the imaging device (30) having a horizontal first focusing surface (30a) and a vertical second focusing surface (30b) parallel to said first surface;
    characterized in that
    the luminous module (10) comprises at least one primary optical element (40), which at its exit does not modify in a vertical direction V the angle of the incident rays, said primary optical element being arranged to transfer the light emitted by said light sources (14) to a virtual projecting surface (60) that is defined between said array (12) and the imaging device (30), and that is coincident with the first focusing surface (30a), in such a way that the projections in a plane containing a horizontal axis (H) of the beams (16) emitted by said light sources (14) form, on said virtual projecting surface (60), secondary light sources (62),
    and in that the vertical second focusing surface (30b) is coincident with the surface of the array of the light sources (14), and in that, in a horizontal plane (34), a transverse dimension of the secondary light sources (62) is larger than a transverse dimension of the light sources (14) and an angular aperture (β) of the secondary light beams (18) emitted by the secondary light sources (62) is smaller than an angular aperture (α) of the light beams (16) emitted by said light sources (14).
  2. Luminous module (10) according to Claim 1, characterized in that the primary optical element (40) is an array of cylindrical lenses (42), and the longitudinal axis (C1) of each cylindrical lens (42) is parallel to one of the vertical rows (12B) of light sources (14).
  3. Luminous module (10) according to Claim 2, characterized in that the cylindrical lenses (42) are designed to form, on the virtual projecting surface (60), secondary light sources (62) the horizontal component (62a) of which is an enlargement by a factor M of the horizontal component (14a) of the light sources (14).
  4. Luminous module (10) according to Claim 3, characterized in that the enlargement factor M is at least equal to 2.
  5. Luminous module (10) according to one of Claims 2 to 4, characterized in that the cylindrical lenses (42) are designed such that said secondary light sources (62) adjoin.
  6. Luminous module (10) according to Claims 2 to 4, characterized in that the cylindrical lenses (42) are designed so that said secondary light sources (62) partially overlap in the horizontal direction (H).
  7. Luminous module (10) according to Claim 6, characterized in that the overlap of the secondary light sources (62) in the horizontal direction (H) is smaller than 20% of the width of their horizontal component (62a) .
  8. Luminous module (10) according to Claim 1, characterized in that the primary optical element (40) comprises an array (50) of light guides, said array being placed between said array (12, 12A, 12B) of light sources (14) and the imaging device (30).
  9. Luminous module (10) according to Claim 8, characterized in that the array (50) of light guides is made up of light guides (52) having a first surface (56) on the side of said array (12) and a second surface (58) opposite to the first surface (56) having, in any plane containing the horizontal axis (34), a width larger than the width of the first surface (56).
  10. Luminous module (10) according to Claim 9, characterized in that the light guides (52) have a trapezoidal shape in any plane containing the horizontal axis (34) and a rectangular shape in any cross section defined in a vertical plane parallel to said array (12).
  11. Luminous module (10) according to Claim 10, characterized in that the light guides (52) comprise sidewalls (51, 53) having a curved shape in any plane containing the horizontal axis (34).
  12. Luminous module (10) according to one of Claims 9 to 11, characterized in that said first surface (56) is in immediate proximity to the light exit surface (15) of a light source (14) of said vertical row (12B).
  13. Luminous module (10) according to one of Claims 9 to 12, characterized in that, in any plane containing the horizontal axis (34), the width of the second surface (58) has a dimension equal to or larger than twice the width of the first surface (56).
  14. Luminous module (10) according to one of Claims 1 to 13, characterized in that the primary optical element (40) comprises diffractive optical elements.
  15. Luminous module (10) according to one of Claims 1 to 14, characterized in that n is at least equal to 10 and in that m is at least equal to 20.
EP19186425.5A 2018-07-31 2019-07-16 Light module comprising an array of light sources and a bifocal optical system Active EP3604904B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1857186A FR3084723B1 (en) 2018-07-31 2018-07-31 LIGHT MODULE CONTAINING A MATRIX OF LIGHT SOURCES AND A BIFOCAL OPTICAL SYSTEM

Publications (2)

Publication Number Publication Date
EP3604904A1 EP3604904A1 (en) 2020-02-05
EP3604904B1 true EP3604904B1 (en) 2021-03-10

Family

ID=65443912

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19186425.5A Active EP3604904B1 (en) 2018-07-31 2019-07-16 Light module comprising an array of light sources and a bifocal optical system

Country Status (4)

Country Link
US (1) US10731817B2 (en)
EP (1) EP3604904B1 (en)
CN (1) CN110778977B (en)
FR (1) FR3084723B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3072445B1 (en) * 2017-10-16 2020-11-13 Valeo Vision LIGHT MODULE FOR MOTOR VEHICLES
FR3106671B1 (en) * 2019-12-20 2022-07-15 Valeo Vision Light beam projection system
US11204147B1 (en) * 2021-04-20 2021-12-21 GM Global Technology Operations LLC Headlight unit having micro-light emitting diode device, relay lens system and projection lens system
CN116221647B (en) * 2023-05-08 2023-07-28 常州星宇车灯股份有限公司 Car light high beam lighting system, lighting module and vehicle

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2889289B1 (en) * 2005-07-29 2009-11-20 Valeo Vision LUMINOUS PROJECTOR FOR MOTOR VEHICLE
JP4536017B2 (en) * 2006-02-08 2010-09-01 株式会社小糸製作所 Vehicle headlamp
FR2913095B1 (en) * 2007-02-28 2013-07-05 Valeo Vision PROJECTOR FOR MOTOR VEHICLE
EP2068068B1 (en) * 2007-12-07 2013-11-20 Stanley Electric Co., Ltd. Vehicle headlamp
DE102008013603B4 (en) 2008-03-11 2017-06-22 Automotive Lighting Reutlingen Gmbh Light module for a lighting device
JP5719697B2 (en) * 2011-06-10 2015-05-20 株式会社小糸製作所 Vehicle headlamp device
DE102013206488A1 (en) * 2013-04-11 2014-10-30 Automotive Lighting Reutlingen Gmbh Light module for a motor vehicle lighting device
DE102013215359B3 (en) * 2013-08-05 2015-02-19 Automotive Lighting Reutlingen Gmbh Mechanically-free bend lighting module
FR3012867A1 (en) 2013-11-07 2015-05-08 Valeo Vision PRIMARY OPTICAL ELEMENT, LIGHT MODULE AND PROJECTOR FOR MOTOR VEHICLE
US10363860B2 (en) * 2013-12-12 2019-07-30 Mitsubishi Electric Corporation Headlight module and headlight apparatus
DE102014203335A1 (en) * 2014-02-25 2015-08-27 Automotive Lighting Reutlingen Gmbh Light module of a motor vehicle headlight and headlights with such a light module
AT516113B1 (en) * 2014-08-12 2017-12-15 Zkw Group Gmbh Headlight for motor vehicles with laser unit
JP6835737B2 (en) * 2015-11-20 2021-02-24 株式会社小糸製作所 Lighting unit and vehicle headlights
CN107091443B (en) * 2016-02-18 2019-10-18 株式会社小糸制作所 Lamps apparatus for vehicle
FR3048059B1 (en) * 2016-02-22 2022-08-05 Valeo Vision LIGHT BEAM PROJECTION DEVICE PROVIDED WITH A MATRIX OF LIGHT SOURCES, LIGHTING MODULE AND HEADLIGHT PROVIDED WITH SUCH A DEVICE
TWI607179B (en) * 2016-11-30 2017-12-01 隆達電子股份有限公司 Lens array, vehicle lamp lenses using lens array, and vehicle lamp using vehicle lamp lenses
JP6865396B2 (en) * 2017-02-27 2021-04-28 パナソニックIpマネジメント株式会社 Lighting equipment, lighting systems, and moving objects
JP2018142437A (en) * 2017-02-27 2018-09-13 パナソニックIpマネジメント株式会社 Luminaire, headlight and movable body

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN110778977B (en) 2023-11-03
FR3084723B1 (en) 2020-08-28
FR3084723A1 (en) 2020-02-07
CN110778977A (en) 2020-02-11
US10731817B2 (en) 2020-08-04
EP3604904A1 (en) 2020-02-05
US20200041093A1 (en) 2020-02-06

Similar Documents

Publication Publication Date Title
EP3604904B1 (en) Light module comprising an array of light sources and a bifocal optical system
EP3147557B1 (en) Primary optical element for lighting module of a vehicle
EP3124854B1 (en) Lighting system for motor vehicle headlight
EP1746339B1 (en) Device for lighting or signalising, in particular for vehicles
EP3167226B1 (en) Lighting module for a motor vehicle
EP2743567B1 (en) Primary optical element, lighting module and headlight for motor vehicle
EP3830474A1 (en) Luminous module that images the illuminated surface of a collector
FR3065784B1 (en) LUMINOUS MODULE WITH OPTICAL IMAGING OPTICS FOR A PIXELLIZED SPATIAL MODULATOR FOR A MOTOR VEHICLE
EP1500869A1 (en) Elliptical lighting module without screen emitting a low beam and headlamp comprising the same
FR3093789A1 (en) LUMINOUS DEVICE IMAGING THE LIT SURFACES OF AT LEAST TWO MANIFOLDS
FR3010772A1 (en) LIGHT EMITTING DEVICE FOR MOTOR VEHICLE PROJECTOR
EP3357752B1 (en) Lighting module of a light beam for a motor vehicle headlight
EP3870893B1 (en) Luminous module for vehicle lighting device
FR2943400A1 (en) LIGHTING OR SIGNALING DEVICE FOR MOTOR VEHICLE
FR3050010A1 (en) COMPACT LIGHT EMITTING MODULE, DEVICE AND PROJECTOR THEREOF FOR MOTOR VEHICLE
FR3070925A1 (en) LUMINOUS MODULE FOR A MOTOR VEHICLE, AND LIGHTING AND / OR SIGNALING DEVICE EQUIPPED WITH SUCH A MODULE
EP3453955B1 (en) Light-emitting module for lighting and/or signalling of a motor vehicle
EP3857283A1 (en) Projecting optical system and luminous module for a vehicle
FR3101391A1 (en) Optical system
FR3076887A1 (en) OPTICAL MODULE FOR MOTOR VEHICLE
FR2898662A1 (en) Motor vehicle dippable-beam light design procedure uses lens with output surface that can be linked to smooth surface of adjacent modules
WO2022269095A1 (en) Optical module of a motor vehicle lighting system
WO2023006673A1 (en) Light module for vehicle headlight
FR2853718A1 (en) LIGHTING PROJECTOR FOR A MOTOR VEHICLE COMPRISING MEANS FOR SPREADING THE LIGHT BEAM
WO2024094530A1 (en) Lighting device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200727

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F21S 41/255 20180101ALI20200901BHEP

Ipc: F21S 41/153 20180101ALI20200901BHEP

Ipc: F21S 41/20 20180101AFI20200901BHEP

INTG Intention to grant announced

Effective date: 20201001

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1370196

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019003071

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210611

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210610

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210610

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1370196

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210310

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210712

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210710

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602019003071

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

26N No opposition filed

Effective date: 20211213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210710

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210716

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20190716

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230727

Year of fee payment: 5

Ref country code: DE

Payment date: 20230712

Year of fee payment: 5

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230716