EP3597712A1 - All-in-one fast curing acrylic structural adhesive - Google Patents

All-in-one fast curing acrylic structural adhesive Download PDF

Info

Publication number
EP3597712A1
EP3597712A1 EP19186653.2A EP19186653A EP3597712A1 EP 3597712 A1 EP3597712 A1 EP 3597712A1 EP 19186653 A EP19186653 A EP 19186653A EP 3597712 A1 EP3597712 A1 EP 3597712A1
Authority
EP
European Patent Office
Prior art keywords
microcapsules
aminoborane
initiator
suspension
cure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP19186653.2A
Other languages
German (de)
French (fr)
Other versions
EP3597712B1 (en
Inventor
Gabriel Iftime
Jessica Louis Baker Rivest
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Palo Alto Research Center Inc
Original Assignee
Palo Alto Research Center Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Palo Alto Research Center Inc filed Critical Palo Alto Research Center Inc
Publication of EP3597712A1 publication Critical patent/EP3597712A1/en
Application granted granted Critical
Publication of EP3597712B1 publication Critical patent/EP3597712B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09J133/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09J133/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/20Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive itself
    • C09J2301/208Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive itself the adhesive layer being constituted by at least two or more adjacent or superposed adhesive layers, e.g. multilayer adhesive
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/412Additional features of adhesives in the form of films or foils characterized by the presence of essential components presence of microspheres
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2433/00Presence of (meth)acrylic polymer

Definitions

  • the disclosed technology relates generally to the field of adhesives and, more particularly, to acrylic adhesives with inert microcapsules.
  • Structural adhesives have been widely used to replace traditional mechanical attachment techniques such as welds, rivets, screws, spot welds, and bolts, for example.
  • two-part epoxy and acrylic structural adhesives are used.
  • Acrylic adhesives are preferred over epoxy adhesives in applications requiring no surface preparation due to their faster curing speeds at room temperature and their ability to bond common plastics, such as polypropylene, polyethylene, or polystyrene, with each other as well as with dissimilar materials.
  • the limited worklife of acrylic adhesives has prevented their introduction in high speed assembly lanes, such as those found in the automotive and the packaging industries.
  • Application equipment of conventional liquid acrylic adhesives must be cleaned thoroughly and often to prevent adhesive residue from hardening. Using conventional acrylic adhesives with robotic adhesive dispensing equipment has not been possible because residual cured adhesive would plug the feeding lines and nozzles in minutes.
  • conventional adhesives may include epoxy adhesives, encapsulated adhesives, and others.
  • Two-part adhesives typically include separate resin and hardener components, where the chemical reaction between the two parts causes cross-linking.
  • some peroxide-initiated adhesives include two parts separately encapsulated within the same suspension that cure when the two parts react after being released from the capsules.
  • these types of adhesives with peroxide initiation can be slow to cure and prone to premature curing through heat activation, thus limiting their shelf life.
  • an acrylic adhesive composition having a first part including an aminoborane initiator and acrylate or/and methacrylate monomers, and a second part including inert microcapsules of a cure activator and acrylate monomers, wherein the microcapsules are breakable, such that when broken, the first part reacts with the second part and the acrylic adhesive begins to cure.
  • two-part structural adhesive having a suspension component containing an aminoborane initiator, and microcapsules containing an encapsulated component, wherein the microcapsules are dispersed in the suspension component.
  • a method of A method of activating an aminoborane initiator suspension to form a structural adhesive including adding microcapsules containing an encapsulated component, to the aminoborane initiator suspension at a predetermined ratio, and breaking the microcapsules to activate curing.
  • FIG. 1 shows cross-sectional views of an example two-part structural adhesive composition, including microcapsules in a suspension medium, as the adhesive cures, in accordance with certain embodiments of the disclosed technology.
  • the structural adhesive composition may be fast-curing for use in commercial environments, such as high speed industrial assembly lines, for example.
  • the two-part adhesive composition may include a first part including an aminoborane initiator, optional acrylate or methacrylate monomers and additional additives such as tougheners.
  • the two-part adhesive composition may include a second part is that is encapsulated within inert microcapsules.
  • the encapsulated second part may include a water insoluble cure activator, such as a carboxylic acid that is optionally dissolved or dispersed within acrylate and/or methacrylate monomers.
  • the placement of the cure activator inside microcapsules allows premixing these inert microcapsules within the first part that contains the aminoborane initiator without being activated because it prevents direct contact between the cure activator and the amino-borane initiator.
  • the curing process is activated when the curing activator and the aminoborane initiator interact with each other. Direct contact can be achieved by high pressure, ultrasonic, or shock waves may cause the microcapsules to rupture, initiating rapid curing by radical polymerization. Curing may be initiated immediately following microcapsule rupture, with cure times variable depending on microcapsule to suspension ratios. Further, the breaking point or pressure of the microcapsules may be tailored to the desired application.
  • the ability to finely control the ratio of cure activating microcapsules to the aminoborane initiator suspension allows for optimizing cure times to less than 1 second, in contrast to the minimum cure time of minutes required by conventional adhesives.
  • the inert encapsulation of the cure activator eliminates the need to immediately clean application equipment after deposition of the structural adhesive. Since the two-part adhesive compositions are inert before application onto substrates, they may be handled indefinitely before deposition and used without premature curing, thus not substantially limited by shelf- or worklife.
  • an all-in-one fast curing acrylic structural adhesive composition 100 may be made up of two parts or components-an encapsulated part 104 with a water insoluble carboxylic acid activator, and a suspension part 102 with an aminoborane initiator.
  • the encapsulated part 104 consists of microcapsules containing the carboxylic acid that may activate curing.
  • the microcapsules 104 may also contain acrylate and/or methacrylate monomers.
  • the encapsulation of the cure activator in microcapsules 104 advantageously allows sufficient handling time for deposition of the structural adhesive.
  • the cure activator within the microcapsules 104 may be a carboxylic acid that is sufficiently water insoluble or hydrophobic with very little miscibility with water.
  • the carboxylic acid may have more than 6 carbon atoms and have less than about 0.1% solubility in water.
  • the suspension part 102 may include an air-stable aminoborane initiator.
  • the suspension part 102 may also contain acrylate monomers.
  • the suspension part 102 may include tougheners or other additives.
  • the viscosity of the suspension part 102 may be altered in various ways, such as by adding thickening agents.
  • the two-part structural adhesive 100 may be curable at room temperature through breaking the microcapsules 104.
  • the microcapsules 104 may be broken, crushed, and/or ruptured by many means.
  • the microcapsules 104 may be broken by applying pressure to the two-part adhesive composition 100, in which the microcapsules 104 are suspended.
  • FIG. 1 shows the curing through cross-linking of an example two-part structural adhesive following the application of pressure to the composition 100 via the substrates 106 and 108. Curing may be initiated very quickly following microcapsule breakage.
  • the microcapsules may be dispersed within the first part substantially uniformly. This substantially uniform dispersion may advantageously eliminate any mixing that is required in conventional adhesives.
  • the inherently small and distributed nature of the microcapsules allows for much finer mixing between the two parts of the adhesive composition.
  • the microcapsules may have a diameter of about 5-20 ⁇ m or more.
  • the bonding of the two-part structural adhesive composition 100 may be sensitive to the ratio of the suspension part 102 to the encapsulated part 104.
  • the two parts may be mixed in various concentration ranges such as from 100:1 to 1:100. Finer mixing of the two parts of the adhesive composition may allow for both faster curing and higher uniformity of resultant polymer properties.
  • cure times may be less than about 1 second.
  • the ratio of microcapsules 104 to the suspension part 102 may be about 10:1. Higher concentrations are possible.
  • the suspension part 102 may be added to the structural adhesive composition until sufficiently sticky or adhering before activated.
  • the microcapsules 104 may have a sufficient wall thickness to prevent leakage or accidental breakage.
  • the microcapsules 104 may have a wall thickness of about 50 nm. In other embodiments, the microcapsules 104 may have a wall thickness of about 3 ⁇ m.
  • the strength of the microcapsule wall may be optimized to break at a specific pressure. For example, the microcapsule wall strength may be varied by tuning the thickness and material composition.
  • the microcapsules 104 may break under about 10-15 psi of pressure. In other embodiments, the threshold breaking pressure may be about 100 psi. The pressure needed to break the microcapsules 104 may be scaled as high or low as desired for particular applications.
  • the curing process for the two-part acrylic structural adhesive 100 may include the activator (R-COOH) reacting with the aminoborane initiator (NHR 2 ) to release borane (BR 3 ).
  • the unstable borane may react with oxygen (O 2 ) in the air, creating radicals (RO•). These radicals may initiate polymerization of the acrylic monomers.
  • the encapsulated part 104 with the cure activator may be provided as a separate dry component that can be added to the suspension part 102.
  • the two parts of the structural adhesive 100 may be stored separately and the encapsulated part 104 may be added to the suspension part 102 prior to use.
  • the two-part adhesive composition 100 may include a certain concentration of microcapsules 104 dispersed in the suspension part 102, where further separate microcapsules 104 may be added to increase the concentration of the encapsulated activator. Increasing the concentration of microcapsules 104 encapsulating the cure activator may substantially shorten the time to cure. Providing smaller, inert microcapsules 104 separately allows for finer control in mixing ratios with the suspension part 102, as well as greater uniformity.
  • Encapsulation may be achieved through a variety of processes, such as complex coacervation, interfacial polymerization, in-situ polymerization, electrolytic dispersion and cooling, spray-drying processes, and others, for example.
  • the encapsulation process may include complex coacervation, which is ideally suited for encapsulation of organic, more hydrophobic liquids, such as methacrylate monomers compositions that may be included in a liquid resin precursor.
  • the complex coacervation process may produce encapsulated water insoluble materials where the capsule walls consist of gelatin/gum arabic cross-linked with glutaraldehyde.
  • the general process of encapsulation of organic fluids may include preparation of the microcapsules using melamine-formaldehyde, urea-formaldehyde, resorcinol-formaldehyde, phenolformaldehyde, gelatin-formaldehyde, isocyanate-polyol, interpolymer complexes of two oppositely charged polymers such as gelatin/gum arabic, gelatin-polyphosphate, and poly(styrene sulfonic acid)/gelatin, hydroxypropyl cellulose, mixtures and/or combinations of the foregoing, and the like, as microcapsule wall-forming materials.
  • Example experiments evaluating the suitability of the acrylic materials for encapsulation resulted in the identification of optimized materials.
  • the successful development of the separate encapsulated cure activator and resin system allows for independent optimization of the activator system, in particular for increasing the activator concentration to achieve extremely fast cure (e.g., less than 1 second to handling strength).
  • the encapsulation process may take place in acidic conditions.
  • the encapsulation process may occur in an environment with a pH value of about 4 and at a temperature of about 40-50°C.
  • the preferred activator materials suitable for fabricating an encapsulated "all-in-one" acrylic adhesive are carboxylic acids with more than 6 carbon atoms and a low solubility in water ( e.g ., less than 0.1 %).

Abstract

An acrylic adhesive composition includes a first part including an aminoborane initiator and acrylate or/and methacrylate monomers, and a second part including inert microcapsules of a cure activator and acrylate monomers, wherein the microcapsules are breakable, such that when broken, the first part reacts with the second part and the acrylic adhesive begins to cure. A two-part structural adhesive includes a suspension component containing an aminoborane initiator, and microcapsules containing an encapsulated component, wherein the microcapsules are dispersed in the suspension component. A method of activating an aminoborane initiator suspension to form a structural adhesive includes adding microcapsules containing an encapsulated component, to the aminoborane initiator suspension at a predetermined ratio, and breaking the microcapsules to activate curing.

Description

  • The disclosed technology relates generally to the field of adhesives and, more particularly, to acrylic adhesives with inert microcapsules.
  • Structural adhesives have been widely used to replace traditional mechanical attachment techniques such as welds, rivets, screws, spot welds, and bolts, for example. For most industrial bonding applications, two-part epoxy and acrylic structural adhesives are used. Acrylic adhesives are preferred over epoxy adhesives in applications requiring no surface preparation due to their faster curing speeds at room temperature and their ability to bond common plastics, such as polypropylene, polyethylene, or polystyrene, with each other as well as with dissimilar materials. However, the limited worklife of acrylic adhesives has prevented their introduction in high speed assembly lanes, such as those found in the automotive and the packaging industries. Application equipment of conventional liquid acrylic adhesives must be cleaned thoroughly and often to prevent adhesive residue from hardening. Using conventional acrylic adhesives with robotic adhesive dispensing equipment has not been possible because residual cured adhesive would plug the feeding lines and nozzles in minutes.
  • In general, conventional adhesives may include epoxy adhesives, encapsulated adhesives, and others. Two-part adhesives typically include separate resin and hardener components, where the chemical reaction between the two parts causes cross-linking. For example, some peroxide-initiated adhesives include two parts separately encapsulated within the same suspension that cure when the two parts react after being released from the capsules. However, these types of adhesives with peroxide initiation can be slow to cure and prone to premature curing through heat activation, thus limiting their shelf life.
  • Therefore, a fast curing acrylic structural adhesive that can be deposited with fast robotic or automatic dispensing equipment is needed.
  • According to an aspect illustrated here, there is provided an acrylic adhesive composition having a first part including an aminoborane initiator and acrylate or/and methacrylate monomers, and a second part including inert microcapsules of a cure activator and acrylate monomers, wherein the microcapsules are breakable, such that when broken, the first part reacts with the second part and the acrylic adhesive begins to cure.
  • According to another aspect illustrated here, there is provided two-part structural adhesive having a suspension component containing an aminoborane initiator, and microcapsules containing an encapsulated component, wherein the microcapsules are dispersed in the suspension component.
  • According to another aspect illustrated here, there is provide a method of A method of activating an aminoborane initiator suspension to form a structural adhesive, including adding microcapsules containing an encapsulated component, to the aminoborane initiator suspension at a predetermined ratio, and breaking the microcapsules to activate curing.
  • FIG. 1 shows cross-sectional views of an example two-part structural adhesive composition, including microcapsules in a suspension medium, as the adhesive cures, in accordance with certain embodiments of the disclosed technology.
  • Disclosed herein are systems and methods of making and using a two-part or "all-in-one" acrylic structural adhesive. The structural adhesive composition may be fast-curing for use in commercial environments, such as high speed industrial assembly lines, for example. The two-part adhesive composition may include a first part including an aminoborane initiator, optional acrylate or methacrylate monomers and additional additives such as tougheners. The two-part adhesive composition may include a second part is that is encapsulated within inert microcapsules. The encapsulated second part may include a water insoluble cure activator, such as a carboxylic acid that is optionally dissolved or dispersed within acrylate and/or methacrylate monomers. The placement of the cure activator inside microcapsules allows premixing these inert microcapsules within the first part that contains the aminoborane initiator without being activated because it prevents direct contact between the cure activator and the amino-borane initiator. The curing process is activated when the curing activator and the aminoborane initiator interact with each other. Direct contact can be achieved by high pressure, ultrasonic, or shock waves may cause the microcapsules to rupture, initiating rapid curing by radical polymerization. Curing may be initiated immediately following microcapsule rupture, with cure times variable depending on microcapsule to suspension ratios. Further, the breaking point or pressure of the microcapsules may be tailored to the desired application.
  • The ability to finely control the ratio of cure activating microcapsules to the aminoborane initiator suspension allows for optimizing cure times to less than 1 second, in contrast to the minimum cure time of minutes required by conventional adhesives. The inert encapsulation of the cure activator eliminates the need to immediately clean application equipment after deposition of the structural adhesive. Since the two-part adhesive compositions are inert before application onto substrates, they may be handled indefinitely before deposition and used without premature curing, thus not substantially limited by shelf- or worklife.
  • As shown in FIG. 1, an all-in-one fast curing acrylic structural adhesive composition 100 may be made up of two parts or components-an encapsulated part 104 with a water insoluble carboxylic acid activator, and a suspension part 102 with an aminoborane initiator. The encapsulated part 104 consists of microcapsules containing the carboxylic acid that may activate curing. The microcapsules 104 may also contain acrylate and/or methacrylate monomers. The encapsulation of the cure activator in microcapsules 104 advantageously allows sufficient handling time for deposition of the structural adhesive. The cure activator within the microcapsules 104 may be a carboxylic acid that is sufficiently water insoluble or hydrophobic with very little miscibility with water. For example, the carboxylic acid may have more than 6 carbon atoms and have less than about 0.1% solubility in water. The suspension part 102 may include an air-stable aminoborane initiator. The suspension part 102 may also contain acrylate monomers. Further, the suspension part 102 may include tougheners or other additives. For example, the viscosity of the suspension part 102 may be altered in various ways, such as by adding thickening agents.
  • The two-part structural adhesive 100 may be curable at room temperature through breaking the microcapsules 104. The microcapsules 104 may be broken, crushed, and/or ruptured by many means. For example, the microcapsules 104 may be broken by applying pressure to the two-part adhesive composition 100, in which the microcapsules 104 are suspended. FIG. 1 shows the curing through cross-linking of an example two-part structural adhesive following the application of pressure to the composition 100 via the substrates 106 and 108. Curing may be initiated very quickly following microcapsule breakage.
  • The microcapsules may be dispersed within the first part substantially uniformly. This substantially uniform dispersion may advantageously eliminate any mixing that is required in conventional adhesives. The inherently small and distributed nature of the microcapsules allows for much finer mixing between the two parts of the adhesive composition. For example, in some embodiments, the microcapsules may have a diameter of about 5-20 µm or more. The bonding of the two-part structural adhesive composition 100 may be sensitive to the ratio of the suspension part 102 to the encapsulated part 104. The two parts may be mixed in various concentration ranges such as from 100:1 to 1:100. Finer mixing of the two parts of the adhesive composition may allow for both faster curing and higher uniformity of resultant polymer properties. For example, for higher concentrations of microcapsules 104, which encapsulate the cure activator, cure times may be less than about 1 second. In some embodiments, the ratio of microcapsules 104 to the suspension part 102 may be about 10:1. Higher concentrations are possible. The suspension part 102 may be added to the structural adhesive composition until sufficiently sticky or adhering before activated.
  • The microcapsules 104 may have a sufficient wall thickness to prevent leakage or accidental breakage. For example, in some embodiments, the microcapsules 104 may have a wall thickness of about 50 nm. In other embodiments, the microcapsules 104 may have a wall thickness of about 3 µm. Additionally, the strength of the microcapsule wall may be optimized to break at a specific pressure. For example, the microcapsule wall strength may be varied by tuning the thickness and material composition. In some embodiments, the microcapsules 104 may break under about 10-15 psi of pressure. In other embodiments, the threshold breaking pressure may be about 100 psi. The pressure needed to break the microcapsules 104 may be scaled as high or low as desired for particular applications.
  • After the microcapsules 104 are broken such that the internal ingredients are free to interact with the surrounding suspension part 102, the adhesive composition 100 may begin to cure. The curing process for the two-part acrylic structural adhesive 100 may include the activator (R-COOH) reacting with the aminoborane initiator (NHR2) to release borane (BR3). The unstable borane may react with oxygen (O2) in the air, creating radicals (RO•). These radicals may initiate polymerization of the acrylic monomers.
  • Additionally or alternatively, the encapsulated part 104 with the cure activator may be provided as a separate dry component that can be added to the suspension part 102. In this way, the two parts of the structural adhesive 100 may be stored separately and the encapsulated part 104 may be added to the suspension part 102 prior to use. Further, the two-part adhesive composition 100 may include a certain concentration of microcapsules 104 dispersed in the suspension part 102, where further separate microcapsules 104 may be added to increase the concentration of the encapsulated activator. Increasing the concentration of microcapsules 104 encapsulating the cure activator may substantially shorten the time to cure. Providing smaller, inert microcapsules 104 separately allows for finer control in mixing ratios with the suspension part 102, as well as greater uniformity.
  • Encapsulation may be achieved through a variety of processes, such as complex coacervation, interfacial polymerization, in-situ polymerization, electrolytic dispersion and cooling, spray-drying processes, and others, for example. The encapsulation process may include complex coacervation, which is ideally suited for encapsulation of organic, more hydrophobic liquids, such as methacrylate monomers compositions that may be included in a liquid resin precursor. The complex coacervation process may produce encapsulated water insoluble materials where the capsule walls consist of gelatin/gum arabic cross-linked with glutaraldehyde. The general process of encapsulation of organic fluids may include preparation of the microcapsules using melamine-formaldehyde, urea-formaldehyde, resorcinol-formaldehyde, phenolformaldehyde, gelatin-formaldehyde, isocyanate-polyol, interpolymer complexes of two oppositely charged polymers such as gelatin/gum arabic, gelatin-polyphosphate, and poly(styrene sulfonic acid)/gelatin, hydroxypropyl cellulose, mixtures and/or combinations of the foregoing, and the like, as microcapsule wall-forming materials.
  • Example experiments evaluating the suitability of the acrylic materials for encapsulation resulted in the identification of optimized materials. The successful development of the separate encapsulated cure activator and resin system allows for independent optimization of the activator system, in particular for increasing the activator concentration to achieve extremely fast cure (e.g., less than 1 second to handling strength).
  • The encapsulation process may take place in acidic conditions. As a non-limiting example, the encapsulation process may occur in an environment with a pH value of about 4 and at a temperature of about 40-50°C.
  • The experimental results revealed that exposing the cure activators of conventional adhesives to the environments of the encapsulation process permanently altered its ability to cure when mixed with the initiators. Without being bound by theory, it is believed that the high aqueous miscibility of the activator material present in Part A of conventional adhesives causes the part to be unrecoverable with the organic material in Part A as it is required by the proposed invention Therefore, because the encapsulated conventional Part A may not contain the activator material, the activation process may not occur and the adhesive composition will not cure.
  • Similar experiments run with more hydrophobic carboxylic acids as cure activators resulted in very fast cure times (e.g., less than 5 seconds) of the recovered resin part after exposure to the experimental conditions required for encapsulation. Based on the experimental results, the preferred activator materials suitable for fabricating an encapsulated "all-in-one" acrylic adhesive are carboxylic acids with more than 6 carbon atoms and a low solubility in water (e.g., less than 0.1 %).
  • These findings maximized the cure speed of the disclosed two-part adhesives, bringing the cure time down to mere seconds versus the minutes required in conventional acrylate adhesives. Further, the pressure activation eliminates any need for heating to accelerate curing.

Claims (20)

  1. An acrylic adhesive composition comprising:
    a first part including an aminoborane initiator and acrylate or/and methacrylate monomers; and
    a second part including inert microcapsules of a cure activator and acrylate monomers, wherein the microcapsules are breakable, such that when broken, the first part reacts with the second part and the acrylic adhesive begins to cure.
  2. The acrylic adhesive composition of claim 1, wherein the cure activator is a carboxylic acid.
  3. The acrylic adhesive composition of claim 2, wherein the carboxylic acid has at least 6 carbon atoms and a water solubility of less than about 0.1%.
  4. The acrylic adhesive composition of claim 1, wherein the ratio of the first part to the second part is about 1:10.
  5. The acrylic adhesive composition of claim 1, wherein the second part is over 50% of the composition by volume.
  6. The acrylic adhesive composition of claim 3, wherein the second part is over 75% of the composition by volume.
  7. The acrylic adhesive composition of claim 1, wherein the inert microcapsules are breakable under a pressure of about 15 psi.
  8. The acrylic adhesive composition of claim 1, wherein the inert microcapsules are breakable under a pressure of about 100 psi.
  9. A two-part structural adhesive comprising:
    a suspension component containing an aminoborane initiator; and
    microcapsules containing an encapsulated component, wherein the microcapsules are dispersed in the suspension component.
  10. The two-part structural adhesive of claim 9, wherein the adhesive is curable at room temperature when the microcapsules are broken.
  11. The two-part structural adhesive of claim 10, wherein the microcapsules are breakable under a predetermined pressure.
  12. The two-part structural adhesive of claim 9, wherein the microcapsules are dispersed substantially uniformly within the first substance.
  13. The two-part structural adhesive of claim 9, wherein second substance includes a cure activator.
  14. The two-part structural adhesive of claim 13, wherein the cure activator includes a carboxylic acid with substantially low aqueous miscibility.
  15. A method of activating an aminoborane initiator suspension to form a structural adhesive, comprising:
    adding microcapsules containing an encapsulated component, to the aminoborane initiator suspension at a predetermined ratio; and
    breaking the microcapsules to activate curing.
  16. The method of claim 15, wherein the predetermined ratio of microcapsules to the aminoborane initiator suspension is at least about 10:1.
  17. The method of claim 15, wherein breaking the microcapsules includes applying a predetermined force to the adhesive.
  18. The method of claim 17, wherein the predetermined force is at least about 10 psi.
  19. The method of claim 17, wherein the predetermined force is at least about 100 psi.
  20. The method of claim 15, further comprising mixing the microcapsules into the aminoborane initiator suspension to a desired uniformity.
EP19186653.2A 2018-07-20 2019-07-16 All-in-one fast curing acrylic structural adhesive Active EP3597712B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US16/040,988 US10995240B2 (en) 2018-07-20 2018-07-20 All-in-one fast curing acrylic structural adhesive

Publications (2)

Publication Number Publication Date
EP3597712A1 true EP3597712A1 (en) 2020-01-22
EP3597712B1 EP3597712B1 (en) 2023-11-29

Family

ID=67314710

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19186653.2A Active EP3597712B1 (en) 2018-07-20 2019-07-16 All-in-one fast curing acrylic structural adhesive

Country Status (4)

Country Link
US (1) US10995240B2 (en)
EP (1) EP3597712B1 (en)
JP (1) JP7202264B2 (en)
KR (1) KR102531249B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4126504A (en) * 1977-01-27 1978-11-21 Pratt & Lambert, Inc. Adhesive compositions and method employing same
US5684102A (en) * 1995-04-14 1997-11-04 Minnesota Mining And Manufacturing Company Organoborane polyamine complexes and adhesive compositions made therewith
US20070246245A1 (en) * 2004-10-28 2007-10-25 Dongchan Ahn Conductive Curable Compositions
WO2008085234A1 (en) * 2007-01-09 2008-07-17 Dow Corning Corporation Process for forming films and films formed by the process
EP3124517A1 (en) * 2015-07-31 2017-02-01 The Boeing Company Encapsulated catalyst for aerospace grade resin systems

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040242817A1 (en) * 2003-05-29 2004-12-02 Lord Corporation Internally coordinated organoboranes
EP1833864B1 (en) * 2005-01-04 2013-06-12 Dow Corning Corporation Siloxanes and silanes cured by organoborane amine complexes
EP2834314A1 (en) * 2012-04-06 2015-02-11 Ips Corporation Adhesive composition for bonding low surface energy polyolefin substrates

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4126504A (en) * 1977-01-27 1978-11-21 Pratt & Lambert, Inc. Adhesive compositions and method employing same
US5684102A (en) * 1995-04-14 1997-11-04 Minnesota Mining And Manufacturing Company Organoborane polyamine complexes and adhesive compositions made therewith
US20070246245A1 (en) * 2004-10-28 2007-10-25 Dongchan Ahn Conductive Curable Compositions
WO2008085234A1 (en) * 2007-01-09 2008-07-17 Dow Corning Corporation Process for forming films and films formed by the process
EP3124517A1 (en) * 2015-07-31 2017-02-01 The Boeing Company Encapsulated catalyst for aerospace grade resin systems

Also Published As

Publication number Publication date
US20200024485A1 (en) 2020-01-23
KR20200010047A (en) 2020-01-30
JP7202264B2 (en) 2023-01-11
KR102531249B1 (en) 2023-05-12
JP2020012105A (en) 2020-01-23
US10995240B2 (en) 2021-05-04
EP3597712B1 (en) 2023-11-29

Similar Documents

Publication Publication Date Title
JP6592533B2 (en) Encapsulated polymerization initiator, polymerization system, and method of using the same
US6004417A (en) Method for coupling conduits using microencapsulatable solvent adhesive composition
JP5366291B2 (en) Encapsulated curing system
US4126504A (en) Adhesive compositions and method employing same
US5877236A (en) Microencapsulatable solvent adhesive composition and method for coupling conduits
WO2007018736A2 (en) Encapsulated structural adhesive
JPH0127081B2 (en)
GB2272446A (en) Microencapsulated adhesive composition and method of making same
GB2255781A (en) Adhesive system
US20060240257A1 (en) Adhesively securable stock materials
US4200480A (en) Adhesive joining of pipes
CA2602139C (en) Adhesively securable stock materials
KR20030011801A (en) Coating materials having anti-seizing properties for detachable bush-bolt and/or threaded connections
US10227515B2 (en) Encapsulated catalyst for aerospace grade resin systems
EP3597712B1 (en) All-in-one fast curing acrylic structural adhesive
WO2020201359A1 (en) Anaerobically curable compositions
JP5005273B2 (en) (Meth) acrylic composition, (meth) acrylic curable composition and adhesive using the same, and method for producing microcapsules
JP2007222807A (en) Production method of restoration type microcapsule
US5824724A (en) Microencapsulatable solvent adhesive composition and method for coupling conduits
JPH05321920A (en) Self-locking member and manufacture thereof
JP2010077307A (en) Sheet-like adhesive
JP2024048617A (en) Thermosetting adhesive composition

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200722

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20201007

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230620

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019042229

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20231129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231129

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240329

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240301

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231129

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240229