EP3581853B1 - Heat transfer module for hot water production - Google Patents

Heat transfer module for hot water production Download PDF

Info

Publication number
EP3581853B1
EP3581853B1 EP19179677.0A EP19179677A EP3581853B1 EP 3581853 B1 EP3581853 B1 EP 3581853B1 EP 19179677 A EP19179677 A EP 19179677A EP 3581853 B1 EP3581853 B1 EP 3581853B1
Authority
EP
European Patent Office
Prior art keywords
valve device
inlet
way valve
outlet
way
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19179677.0A
Other languages
German (de)
French (fr)
Other versions
EP3581853A1 (en
Inventor
Xiang Zheng
Mingliang Zhou
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lacaze Energies
Original Assignee
Lacaze Energies
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lacaze Energies filed Critical Lacaze Energies
Publication of EP3581853A1 publication Critical patent/EP3581853A1/en
Application granted granted Critical
Publication of EP3581853B1 publication Critical patent/EP3581853B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1051Arrangement or mounting of control or safety devices for water heating systems for domestic hot water
    • F24D19/1054Arrangement or mounting of control or safety devices for water heating systems for domestic hot water the system uses a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/12Heat pump
    • F24D2200/123Compression type heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/02Fluid distribution means
    • F24D2220/0235Three-way-valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/02Fluid distribution means
    • F24D2220/0242Multiple way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/06Heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/08Storage tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/14Cleaning; Sterilising; Preventing contamination by bacteria or microorganisms, e.g. by replacing fluid in tanks or conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/215Temperature of the water before heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/219Temperature of the water after heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/238Flow rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps

Definitions

  • the present invention relates to the production of hot water and more particularly to a thermal transfer module intended to be connected between a hot water storage tank, in particular a domestic hot water tank, and a heat pump.
  • the invention aims in particular to allow operation of a thermal transfer module connected to a carbon dioxide heat pump according to several operating modes or phases.
  • the production of domestic hot water uses in a known manner a hot water storage tank coupled to a heating module.
  • the heating module is in the form of a heat pump connected to the tank by a thermal transfer module responsible for transferring the heat produced by the heating module to the tank.
  • the water stored in the tank is distributed according to a temperature gradient: the hottest water being in the upper part of the tank and the coldest water being in the lower part of the tank.
  • the hot water storage tank is connected in its lower part, on the one hand, at an inlet called “low inlet”, to a water circuit of a water distributor. running water in order to supply the tank with water and, on the other hand, at an outlet called “low outlet”, at the inlet of the heat transfer module, the outlet of the heat transfer module opening into the part top of the balloon at the level of a so-called “high inlet”.
  • the heat pump comprises an inlet called “cold inlet” and an outlet called “hot outlet”, connected to the heat transfer module, and its function is to heat the flow of water circulating between the cold inlet and the hot outlet.
  • the heat transfer module comprises a heat exchanger having an inlet called “hot inlet” connected to the hot outlet of the heat pump and an outlet called “cold outlet” connected to the cold inlet of the heat pump.
  • the exchanger also comprises an inlet called “cold inlet” connected to the bottom part of the tank and an outlet called “hot outlet” connected to the top part of the tank via a first three-way valve device.
  • the first three-way valve device is connected to the top inlet of the tank by its first channel called the “outlet” channel, to the cold inlet of the heat exchanger by its second channel called “bypass channel” and to the output heat exchanger through its third channel called the inlet channel.
  • the water circuit circulating in the heat pump which supplies the calories during the heat exchange, is called the primary circuit.
  • the water circuit circulating between the tank and the exchanger, which receives the calories supplied by the primary circuit is called the secondary circuit.
  • thermodynamic systems on the market have combined small tank volume capacities with low so-called “conventional” heat pump powers, that is to say using HFC or HCFC type refrigerants. allowing a temperature rise of 5 to 8 ° C after heating the water by the heat pump. Consequently, this type of system is only suitable for individuals or small apartment buildings, via a so-called “accumulation” mode of production in which hot water is stored in the tank.
  • thermodynamic systems are intended for the direct production of domestic hot water (DHW) for tertiary sectors, collective residential dwellings and small and medium industries.
  • DHW domestic hot water
  • these domestic hot water production systems do not allow temperature regulation on the secondary circuit.
  • Carbon dioxide (CO2, referenced in a known manner R744) is a fluid without harmful effects on human health and healthy for the environment. It is a natural refrigerant with very low global warming power (GWP of the order of 1) compared to the HFCs or HCFCs traditionally used (which has a GWP 1300 to 2000 times higher).
  • GWP global warming power
  • a CO 2 heat pump can directly produce hot water up to 90 ° C, unlike conventional HFC / HCFC heat pumps which only produce hot water up to a temperature of around 60 ° C.
  • a CO 2 heat pump makes it possible to optimize energy efficiency and ensure the calorific power (constant) down to very low outside temperatures according to the principle known to those skilled in the art under the name "inverter”.
  • the inverter principle consists of starting the heat pump gradually, starting to decrease the intensity while maintaining the temperature with a low speed of rotation of the compressor just before the set temperature in order to consume only the necessary amount of energy, this which allows the heat pump to adapt its power to thermal inertia and to the real need for heat in the installation.
  • a CO 2 heat pump being able to work without (electrical) back-up up to low ambient temperatures makes it possible to improve the overall energy balance of the thermodynamic system. It is therefore a high energy efficiency system that generates low operating costs.
  • thermodynamic systems based on PAC CO 2 marketed on the market have the following points in common: the direct introduction of supplementary sanitary cold water in the heat exchanger of the CO 2 heat pump and the direct introduction of hot water from the CO 2 heat pump outlet into the tank, regardless of the operating state of the CO 2 heat pump in most cases.
  • these characteristics lead to various drawbacks.
  • the nature of the water is very diverse and varied (at equilibrium or corrosive and / or scaling) depending on the operating conditions, while the heat exchanger integrated in the CO 2 heat pump is generally in a spiral spiral copper duct, which is sensitive to the phenomena of scaling and corrosion of water in chemical and erosion forms (case of large flows).
  • the CO 2 heat pump For the durability and reliability of the CO 2 heat pump, the required water quality is demanding and must be controlled. In addition, after each draw-off and with the addition of cold water in the tank (reservoir), the CO 2 heat pump restarts. However, the CO 2 heat pump needs a certain time for it to be able to establish its stabilized operating regime according to the inverter principle. During this time, the water temperature at the outlet of the CO 2 heat pump being variable and often lower than the set value, this thus causes the de-stratification of hot water in the tank.
  • the PAC CO 2 must be able to perform operations such as a defrost or anti-freeze cycle.
  • Energy stored in the tank is used for defrosting during which the water temperature at the outlet of the CO 2 heat pump is significantly lower than the set point. Its injection in the upper part of the tank causes the de-stratification of the hot water in the tank.
  • a thermal shock by raising the water temperature in the tank to more than 70 ° C can be advantageously used against the risk of the proliferation of legionella while the instruction of the production of domestic hot water is generally between 55 and 60 ° C to avoid the risk of scalding. This aspect must be taken into consideration.
  • a thermal transfer module according to the preamble of claim 1 is known from documents EP 0 126 605 where EP 2 672 204 A .
  • the second three-way valve device advantageously makes it possible to take water from the lower part of the tank or directly from a water distribution point, for example from a city water distribution network.
  • the first three-way valve device makes it possible in particular to implement a so-called “start-up” mode covering the transient period of rise in temperature of the water circulating in the heat transfer module by recirculating the withdrawn water. on a water distribution point of a water distribution network in the thermal transfer module.
  • the second three-way valve device makes it possible to implement a stabilized mode with a water temperature at the inlet of the exchanger as low as possible in which the heat transfer module sends heated water into the tank having has a higher coefficient of performance (COP) compared to the solutions of the prior art of PAC CO 2 . Furthermore, the second three-way valve device makes it possible to implement an antifreeze mode at any time, in which water is either taken from the lower part of the tank, or from the water distribution point in order to be heated by recirculation in the thermal transfer module.
  • COP coefficient of performance
  • the heat transfer module according to the invention can also make it possible to implement an anti-bacteria mode, thanks to the coupling with a carbon dioxide heat pump, a return mode, using a heater positioned upstream. from the hot water outlet of the tank, or a defrost mode, using a heating unit between the heat exchanger of the heat transfer module and the heat exchanger of the heat pump.
  • the heat transfer module comprises, between the inlet port of the first three-way valve device and the hot outlet of the heat exchanger, a third three-way valve device comprising a connected inlet port. at the hot outlet of the heat exchanger, an outlet path connected to the inlet path of the first three-way valve device, and a bypass path intended to be connected to the water distribution point and to the low entry of the balloon.
  • the inlet path of the first three-way valve device is connected to the outlet path of the third three-way valve device but is no longer directly connected to the hot outlet of the exchanger.
  • the third three-way valve device makes it possible to implement an antifreeze mode, in particular in the case where the heat stored in the heat transfer module is not sufficient.
  • the heat transfer module comprises, a hot water distribution circuit being connected to the top outlet of the tank, a heater capable of receiving the water present in said hot water distribution circuit, of heating the water. received and reinjecting the water thus heated into said hot water distribution circuit.
  • a heater makes it possible to implement a so-called "return” mode by taking the water stored in the hot water distribution circuit, which cools when said hot water distribution circuit is closed, in order to heat it beforehand. to reinject it into said hot water distribution circuit.
  • the first three-way valve device, the second three-way valve device and the third three-way valve device are each in the form of a one-piece three-way valve, preferably one.
  • Monobloc three-way solenoid valve which simplifies the architecture of the thermal transfer module.
  • At least one of the first three-way valve device, the second three-way valve device, or the third three-way valve device each comprises two two-way valves connected together. the other by one of their two ways in order to form a three-way valve device.
  • the heat transfer module comprises a regulating temperature sensor mounted between the hot outlet of the heat exchanger of the heat transfer module and the inlet path of the first or of the third valve device. three-way in order in particular to monitor the temperature during a so-called “start-up” mode and to be able to switch to a so-called “stabilized” mode once the water circulating in the heat transfer module is sufficiently hot.
  • the thermal transfer module comprises a flowmeter mounted between the hot outlet of the heat exchanger of the thermal transfer module and the inlet path of the first three-way valve device or the inlet path of the third. three-way valve device if applicable.
  • the heat transfer module comprises a circulation pump, preferably with variable flow rate, mounted between the outlet port of the second three-way valve device and the cold inlet of the heat exchanger of the heat transfer module. in order to allow efficient circulation of water in the thermal transfer module with an appropriate flow rate.
  • the invention also relates to a system for producing hot water, in particular sanitary water, said system comprising a heat transfer module as presented above and a management module capable of controlling the valves of the first three-way valve device, of the second. three-way valve device and, where appropriate, the third three-way valve device, in their different positions on the one hand, and also to control the operation of the heat pump and of the thermal module on the other hand.
  • the management module is also able to manage the various equipment and instruments integrated on the ball.
  • the system comprises a heat pump, said heat pump comprising an outlet called “hot outlet”, connected to the hot inlet of the heat exchanger of the thermal transfer module, and an inlet said “cold inlet”, connected to the cold outlet of the heat exchanger of the heat transfer module, and being able to supply heat between said hot outlet and said cold inlet using carbon dioxide as refrigerant.
  • the thermal transfer module or the heat pump comprises a heating unit, comprising for example at least one electrical resistance or any other suitable heating means, in order to implement a defrost mode in which the heat transfer module circulation pump is stopped and in which the heat pump can defrost using the energy supplied by the integrated heating unit when needed.
  • the system comprises a hot water storage tank, said tank comprising at least one inlet called “high inlet” connected to the outlet path of the first three-way valve device, a so-called outlet.
  • "High outlet” intended to be connected to a hot water distribution circuit, an inlet called “low inlet” connected to a water distribution point and an outlet called “low outlet” connected to the inlet channel of the second three-way valve device, the bypass of the second three-way valve device being connected to the water distribution point and to the bottom inlet of the tank.
  • System 1 comprises a domestic hot water storage tank 10, a thermal transfer module 20, a heat pump 30 and a management module 40.
  • the tank 10 comprises an inlet called “low inlet” 10EB, connected to a water distribution point 5 of a distribution network (not shown), an outlet called “low outlet” 10SB, an inlet called “High inlet” 10EH, a so-called “high” outlet 10SH, connected to a hot water distribution circuit 101.
  • the balloon 10 further comprises a first regulation thermostat 110, a second regulation thermostat 112, an emergency immersion heater 120 (or emergency resistor) mounted inside the balloon.
  • a first regulation thermostat 110 a second regulation thermostat 112
  • an emergency immersion heater 120 or emergency resistor mounted inside the balloon.
  • internal temperature sensors SV1, SV2, SV3, SV4 mounted at four levels in the tank 10 and a tap 130 intended for the return of water circulating in the hot water distribution circuit 101 (called the circulation return).
  • these internal temperature probes SV1, SV2, SV3, SV4 could be more or less than four.
  • the first regulation thermostat 110 makes it possible to fix the domestic hot water storage setpoint and to control the operation of the heat pump 30.
  • the second regulation thermostat 112 is a safety device which makes it possible to prevent the phenomenon of overheating in the heat pump.
  • the ball 10 in a manner known per se.
  • the immersion heater 120 is preferably in the form of an electrical resistance.
  • the internal temperature sensors SV1, SV2, SV3, SV4 allowing the management module 40 to monitor and know, in real time, the quantity of hot water in the tank 10. These internal temperature sensors SV1, SV2, SV3, SV4 can be integrated into the devices of the tank 10, as diffusers for certain cold or hot water inlet tappings, in a manner known per se.
  • the heat pump 30 comprises an outlet called “hot outlet” 30SC and an inlet called “cold inlet” 30EF.
  • the thermal transfer module 20, also called a “thermo-hydraulic module”, is connected between the tank 10 and the heat pump 30.
  • the management module 40 is connected to the devices of the tank 10 for storing domestic hot water, at the thermal transfer module 20 and to the heat pump 30 to allow the control of the system 1 by the as will be described below.
  • the heat transfer module 20 comprises a first three-way valve device 201 and a second three-way valve device 202 and a heat exchanger 210.
  • the heat transfer module 20 further comprises a third three-way valve device 203.
  • the outlet channel is denoted 1
  • the bypass channel is denoted 2
  • the inlet channel is denoted 3.
  • a portion of the so-called “injection” circuit 100 makes it possible to inject the hot water coming from the exchanger 210 directly into the water distribution circuit 101 or else directly into the tank 10 in the event of non-draft. hot water in the water distribution circuit 101 through a tap.
  • the heat transfer module 20 further comprises a circulation pump 220, a flowmeter 230, a so-called “cold” temperature sensor 240 and a temperature regulation sensor 250.
  • the heat exchanger 210 comprises, on the one hand, a so-called “hot inlet” 210EC and an outlet called “cold outlet” 210SF interconnected by a so-called “primary” circuit portion 211 and, on the other hand, an input called “cold input” 210EF and an output called “hot output” 210SC interconnected by a so-called “secondary” circuit portion 212, the primary circuit portion 211 providing calories, that is to say heat. heat, to the portion of the secondary circuit 212 in operation of system 1.
  • the hot inlet 210EC of the heat exchanger 210 is connected to the hot outlet 30SC of the heat pump 30.
  • the cold outlet 210SF of the heat exchanger heat 210 is connected to the cold input 30EF of the heat pump 30.
  • the first three-way valve device 201, the second three-way valve device 202 and the third three-way valve device 203 are three-way solenoid valves.
  • the first three-way valve device 201, the second three-way valve device 202 and / or the third three-way valve device 203 could each be made from an assembly of two. two-way solenoid valves, in a manner known per se.
  • the first three-way valve device 201 is connected by its outlet path to the top inlet 10EH of the tank 10, by its bypass path to the outlet path of the second three-way valve device 202 and by its path d 'inlet to the outlet port of the third three-way valve device 203.
  • the second three-way valve device 202 is connected by its inlet path to the bottom outlet 10SB of the tank 10, by its bypass path to a water distribution point 5 and to the bottom inlet 10EB of the tank 10. and by its outlet path at the inlet of the circulation pump 220, the outlet of the circulation pump 220 being connected to the cold inlet 210EF of the heat exchanger 210.
  • the water distribution point 5 can for example be a point of connection to a drinking water distribution network.
  • the third three-way valve device 203 is connected by its outlet path to the inlet path of the first three-way valve device 201, by its bypass path to the water distribution point 5 and to the inlet low 10EB of the tank 10, and by its inlet path to the outlet of the flowmeter 230, the inlet of the flowmeter 230 being connected to the hot outlet 210SC of the heat exchanger 210.
  • the cold temperature sensor 240 is mounted between the outlet of the second three-way valve device 202 and the inlet of the circulation pump 220.
  • the temperature control sensor 250 is mounted between the hot outlet 210SC of the heat exchanger 210 and the flow meter inlet 240.
  • the high inlet 10EH of the tank 10 is connected to the outlet path of the first three-way valve device 201, the low inlet 10EB of the tank 10 is connected to the water distribution point 5 and the low outlet 10SB of the tank 10 is connected to the inlet path of the second three-way valve device 202, the bypass path of the second three-way valve device 202 being connected to the water distribution point 5 and to the lower inlet 10EB of the ball 10.
  • the heat pump 30 is able to supply heat between its hot outlet 30SC and its cold inlet 30EF using carbon dioxide as refrigerant.
  • the heat pump 30 comprises an internal heat exchanger 310 comprising a portion of the primary circuit 311 delimited between a hot inlet 310EC and a cold outlet 310SF and a portion of the secondary circuit 312 delimited between a cold inlet 310EF and an outlet hot 310SC.
  • the heat pump 30 comprises, in addition to the internal heat exchanger 310 (condenser), a holder 315, an evaporator 316 and a compressor 317 in order to supply heat to the portion of the secondary circuit 312.
  • This heat pump architecture 30 being known per se, it will not be further detailed here.
  • the heat pump 30 also includes an integrated circulator 320 whose output is connected to the cold inlet 310EF of the internal heat exchanger 310, a temperature sensor 330, mounted between the cold inlet 30EF of the heat pump 30 and the inlet of the integrated circulator 320, a flowmeter 340, connected between the hot outlet 310SC of the internal heat exchanger 310 and the hot outlet 30SC of the heat pump 30, a regulation temperature sensor 350, mounted between the hot outlet 310SC of the internal heat exchanger 310 and the inlet of the flowmeter 340, and a temperature sensor 360, mounted between the outlet of the flowmeter 340 and the hot outlet 30SC of the heat pump 30.
  • an integrated circulator 320 whose output is connected to the cold inlet 310EF of the internal heat exchanger 310
  • a temperature sensor 330 mounted between the cold inlet 30EF of the heat pump 30 and the inlet of the integrated circulator 320
  • a flowmeter 340 connected between the hot outlet 310SC of the internal heat exchanger 310 and the hot outlet 30SC
  • the temperature sensors 330, 360, the temperature sensor control temperature 350 and the flowmeter 340 could be outside the heat pump 30, for example between the heat pump 30 and the thermal transfer module 20.
  • these elements could for example advantageously be integrated in the thermal transfer module 20.
  • the loop formed successively by the portion of the secondary circuit 312 of the internal heat exchanger 310 of the heat pump 30, the flowmeter 340, the portion of the primary circuit 211 of the heat exchanger 210 of the heat transfer module 20 and the integrated circulator 320 constitutes the primary circuit C1 of the hot water production system 1.
  • the loop formed successively by the hot outlet 210SC of the heat exchanger 210 of the heat transfer module 20, the flowmeter 230, the third three-way valve device 203, the first three-way valve device 201, the tank 10 , the second three-way valve device 202, the circulation pump 220 and the portion of the secondary circuit 212 of the heat exchanger 210 constitutes the secondary circuit C2 of the system 1 for producing hot water.
  • the management module 40 is able to control the first three-way valve device 201, the second three-way valve device 202 and, where appropriate, the third control device. three-way valve 203, in different configurations.
  • the management module 40 also receives the temperature measurements made by the temperature sensors 240, 250, 330, 350, 360, the flow measurements made by the flow meters 230, 340 and is able to control the circulation pump 220, the operation of the heat pump 30, the immersion heater 120 and other devices mounted in the tank 10 if necessary.
  • the system 1 can advantageously operate in several operating modes. More particularly, the management module 40 can control the first three-way valve device 201, the second three-way valve device 202 and the third three-way valve device 203, as well as the flow meters 230, 340, the pump 220, immersion heater 120 and built-in circulator 320 so that system 1 operates in different modes.
  • the system 1 can thus advantageously operate according to a starting mode, a stabilized mode, an antifreeze mode, an anti-bacteria mode, a return mode and a defrost mode.
  • the starting mode corresponds to a transient regime implemented when starting the heat pump 30 after drawing off, that is to say consumption, of hot water in the tank 10.
  • Drawing of hot water in the tank 10 causes the tank 10 to be filled by the water distribution point 5 and the cold inlet 10EF of the lower part of the tank 10.
  • Such a cold water inlet modifies the temperature of the water in the lower part of the tank 10, which is controlled by the regulation thermostat TM1. If the value measured by the regulation thermostat 110 is less than a predetermined storage setpoint, for example 60 ° C, the management module 40 controls the start of the heat pump 30, in particular of the integrated circulator 320, and of the circulation pump 220 of the thermal transfer module 20.
  • the temperature of the water at the outlet of the heat exchanger 210 of the thermal transfer module 20 measured by the regulation temperature sensor 250 is in principle lower than the set value during this transient period.
  • the inlet channel and the bypass channel of the first three-way valve device 201 are placed in the open position
  • the outlet channel of the first three-way valve device 201 is placed in the closed position
  • the channel outlet and the bypass path of the second three-way valve device 202 are placed in the open position
  • the inlet port of the second three-way valve device 202 is placed in the closed position
  • the inlet port and the outlet of the third three-way valve device 203 are placed in the open position
  • the bypass path of the third three-way valve device 203 is placed in the closed position so that the warm water passes back into the heat exchanger 201 of the thermal transfer module 20, as shown on figure 2 , until its temperature is equal to or greater than the predetermined production setpoint.
  • the inlet port and the outlet port of the first three-way valve device 201 are set to the open position and the bypass port of the first three-way valve device 201 is set to the closed position in order to hot water at the desired temperature is injected into the tank 10.
  • system 1 operates in stabilized hot water production mode.
  • the temperature of the water produced at the hot outlet 210SC of the heat exchanger 210 is constant and equal to the predetermined production set point value.
  • the management module 40 controls the inlet channel and the outlet channel of the first three-way valve device 201 in the open position, the bypass channel of the first three-way valve device 201 is placed in the closed position, the bypass and the outlet port of the second three-way valve device 202 are placed in the open position, the inlet port of the second three-way valve device 202 is placed in the closed position, the inlet and outlet port of the third three-way valve device 203 are placed in the open position and the bypass of the third three-way valve device 203 is placed in the closed position.
  • the water circulates in this way, as shown in the figure 3 , in the secondary circuit C2, from the low inlet 10EB of the tank 10 to the high inlet 10EH of the tank 10 passing successively through the second three-way valve device 202, the circulation pump 220, the portion of secondary circuit 212 of the exchanger 210, the flowmeter 230, the third three-way valve device 203 and the first three-way valve device 201.
  • the antifreeze mode makes it possible, under certain conditions, particularly in the winter season, to guard against the risk of frost in the primary circuit C1 (part often installed outside).
  • the heat pump 30 can automatically start the antifreeze operation using the heat (energy) from the secondary circuit C2 or / and from the tank 10.
  • the temperature at the outlet of the secondary circuit C2 measured by the regulation temperature sensor 250 will be greater than the predetermined antifreeze setpoint value, the value from which the antifreeze operation is ensured.
  • the management module 40 controls the bypass channel and the input channel of the first three-way valve device 201 in the open position, the output channel of the first three-way valve device 201 in the closed position, the inlet path and the outlet path of the second three-way valve device 202 in the open position, the bypass path of the second three-way valve device 202 in the closed position, the inlet path and the outlet path of the third three-way valve device 203 in the open position and the bypass path of the third three-way valve device 203 in the closed position in order to implement the anti-freeze mode as illustrated in the figure figure 4 .
  • the management module 40 controls the inlet and outlet path of the second three-way valve device 202 in the open position, the bypass path of the second three-way valve device 202 in the closed position, the inlet path and the bypass of the third three-way valve device 203 in the open position and the outlet of the third three-way valve device 203 in the closed position in order to implement the anti-freeze mode as illustrated in the figure figure 5 . It should be noted that the positioning of the three-way of the first three-way valve device has no impact on this operating mode.
  • Thermal shock is an effective solution, often used as a preventive or / and curative means.
  • the effectiveness of the treatment depends on the temperature of the water used and the duration.
  • the thermal shock takes place at 70 ° C for at least 30 minutes or at 60 ° C for at least one hour.
  • the carbon dioxide heat pump 30 is configured to produce hot water above 70 ° C.
  • the anti-bacteria mode of the system 1 according to the invention makes it possible to avoid the use of electrical resistances to heat the water above 60 ° C, which makes it possible in particular to reduce the risk of operating faults and to reduce the electrical energy consumption of the system 1.
  • the anti-bacteria mode can be achieved in two ways with the system 1 according to the invention.
  • the anti-bacteria mode is implemented entirely by the heat pump 30 in two stages.
  • the management module 40 controls, according to “anti-bacteria mode”, the heat pump 30 and the circulation pump 220 in order to increase the temperature of the water in the tank 10 to a temperature setpoint.
  • desired treatment using the regulation temperature sensors 250 and 350, for example from 60 ° C + DT (° C), up to approximately the height of the first regulation thermostat 110. It is preferable to achieve the shock thermal during a period when there is no consumption (needs) of domestic hot water. In this case, the tank 10 is practically filled with hot water at the temperature of a storage setpoint.
  • the domestic hot water storage setpoint can for example advantageously be between 55 ° C and 60 ° C.
  • the heat pump 30 has the capacity to make it possible to produce hot water with a difference greater than 30 ° C between the cold inlet 210EF and the hot outlet 210SC of the heat exchanger 210, which easily allows to reach a temperature of 70 ° C after passing through the heat exchanger 210.
  • the management module 40 stops the operation of the heat pump 30, but lets the circulation pump 220 continue to operate for a predetermined period, called “circulation period", before stopping so that the temperature of the hot water in the entire tank is equal to or greater than the desired treatment setpoint in this anti-bacteria mode.
  • the value of DT (° C) can be advantageously chosen between 5 and 10 ° C.
  • the circulation time (after stopping the heat pump 30) is to be determined according to the distribution of the volume from top to bottom up to the level of the first regulation thermostat 110 (hot part) and that of the bottom up to the height of the first regulation thermostat 110 (cold part) of the tank 10, the flow rate of the circulation pump 220, the value of DT (° C) set and the temperature of the water in the lower part of the tank 10 depending on the season.
  • the anti-bacteria mode is implemented in two stages.
  • the management module 40 controls the heat pump 30 and the circulation pump 220 so that the temperature of the water in the tank 10 increases to a value, regulated by the management module 40 from measurements sent by the regulation temperature sensor 250, up to approximately the height of the first regulation thermostat 110.
  • the management module 40 stops the operation of the heat pump 30 and immediately starts the immersion heater 120 until the first control thermostat 110 detects a water temperature of the balloon 10 equal to or greater than the treatment setpoint increased by a temperature value, for example by 5 ° C. or more.
  • a temperature value for example by 5 ° C. or more.
  • the production of hot water and the injection into the tank 10 are identical to those described above.
  • the immersion heater 120 and the circulation pump 220 are stopped, for example, 5 to 10 minutes later from the moment when the first control thermostat 110 detects a water temperature equal to or greater than the set value. treatment increased by the temperature value (+ 5 ° C.
  • the regulation value applied to the regulation temperature sensor 250 can advantageously be equal to the treatment setpoint + 5 ° C. or more.
  • mode with loopback return to the tank Another operating mode is called “mode with loopback return to the tank”.
  • mode with loopback return to the tank insofar as the heat pump 30 and the tank 10 have the capacity both to meet the domestic hot water needs and at the same time to compensate for the heat losses of the domestic hot water circulation circuit for example , the production of domestic hot water and the injection of the hot water produced in the tank 10 will take place according to one of the cases described above, but the storage (or production) setpoint and the positioning of the tap Return circulation 130 should preferably be adapted to the profile of domestic hot water consumption and to the thermal losses of the looping, for example in the case of the production of domestic hot water.
  • a loop heater 260 may be necessary as an element of the module. thermal transfer unit 20, the operation and energy consumption of which are controlled by the management module 40, as illustrated in figure 7 .
  • the loop heater 260 receives the water located in the loop pipes which cools down by no longer returning to the tank, heats it and then reinjects it. the water thus heated directly in the hot water distribution circuit without going back to the tank 10.
  • the circulation pump 220 is stopped and the heat pump 30 manages this mode on its own. There is therefore no impact on the operation of the thermal transfer module 20 or on the balloon 10.
  • the heat pump 30 is equipped with a heating unit 370 (comprising for example at least one electrical resistance or any other suitable heating means), the energy necessary for the antifreeze operation is supplied by said heater unit 370.
  • the third three-way valve device 203 can be omitted, as shown in the figure. figure 8 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

DOMAINE TECHNIQUE ET OBJET DE L'INVENTIONTECHNICAL FIELD AND SUBJECT OF THE INVENTION

La présente invention concerne la production d'eau chaude et plus particulièrement un module de transfert thermique destiné à être connecté entre un ballon de stockage d'eau chaude, notamment un ballon d'eau chaude sanitaire, et une pompe à chaleur.The present invention relates to the production of hot water and more particularly to a thermal transfer module intended to be connected between a hot water storage tank, in particular a domestic hot water tank, and a heat pump.

L'invention vise notamment à permettre un fonctionnement d'un module de transfert thermique connecté à une pompe à chaleur à dioxyde de carbone selon plusieurs modes ou phases de fonctionnement.The invention aims in particular to allow operation of a thermal transfer module connected to a carbon dioxide heat pump according to several operating modes or phases.

ETAT DE LA TECHNIQUESTATE OF THE ART

La production d'eau chaude sanitaire utilise de manière connue un ballon de stockage d'eau chaude couplé à un module de chauffage. Dans une solution connue, le module de chauffage se présente sous la forme d'une pompe à chaleur reliée au ballon par un module de transfert thermique chargé de transférer la chaleur produite par le module de chauffage au ballon. Naturellement, l'eau stockée dans le ballon se répartit selon un gradient de température : l'eau la plus chaude étant dans la partie supérieure du ballon et l'eau la plus froide étant dans la partie inférieure du ballon.The production of domestic hot water uses in a known manner a hot water storage tank coupled to a heating module. In a known solution, the heating module is in the form of a heat pump connected to the tank by a thermal transfer module responsible for transferring the heat produced by the heating module to the tank. Naturally, the water stored in the tank is distributed according to a temperature gradient: the hottest water being in the upper part of the tank and the coldest water being in the lower part of the tank.

Aussi, de manière connue, le ballon de stockage d'eau chaude est connecté dans sa partie basse, d'une part, au niveau d'une entrée dite « entrée basse », à un circuit d'eau d'un distributeur d'eau courante afin d'approvisionner le ballon en eau et, d'autre part, au niveau d'une sortie dite « sortie basse », à l'entrée du module de transfert thermique, la sortie du module de transfert thermique débouchant dans la partie haute du ballon au niveau d'une entrée dite « entrée haute ». La pompe à chaleur comprend une entrée dite « entrée froide » et une sortie dite « sortie chaude », connectées au module de transfert thermique, et a pour fonction de chauffer le flux d'eau circulant entre l'entrée froide et la sortie chaude.Also, in a known manner, the hot water storage tank is connected in its lower part, on the one hand, at an inlet called "low inlet", to a water circuit of a water distributor. running water in order to supply the tank with water and, on the other hand, at an outlet called "low outlet", at the inlet of the heat transfer module, the outlet of the heat transfer module opening into the part top of the balloon at the level of a so-called "high inlet". The heat pump comprises an inlet called “cold inlet” and an outlet called “hot outlet”, connected to the heat transfer module, and its function is to heat the flow of water circulating between the cold inlet and the hot outlet.

Afin de recevoir la chaleur produit par la pompe à chaleur, le module de transfert thermique comporte un échangeur de chaleur présentant une entrée dite « entrée chaude » reliée à la sortie chaude de la pompe à chaleur et une sortie dite « sortie froide » reliée à l'entrée froide de la pompe à chaleur. L'échangeur comprend également une entrée dite « entrée froide » reliée à la partie basse du ballon et une sortie dite « sortie chaude » reliée à la partie haute du ballon via un premier dispositif de vanne à trois voies. Le premier dispositif de vanne à trois voies est relié à l'entrée haute du ballon par sa première voie appelée voie « de sortie », à l'entrée froide de l'échangeur de chaleur par sa deuxième voie appelée « voie de dérivation » et à la sortie chaude de l'échangeur de chaleur par sa troisième voie appelée voie d'entrée. Le circuit d'eau circulant dans la pompe à chaleur, qui fournit les calories lors de l'échange de chaleur, est appelé circuit primaire. Le circuit d'eau circulant entre le ballon et l'échangeur, qui reçoit les calories fournies par le circuit primaire, est appelé circuit secondaire.In order to receive the heat produced by the heat pump, the heat transfer module comprises a heat exchanger having an inlet called "hot inlet" connected to the hot outlet of the heat pump and an outlet called "cold outlet" connected to the cold inlet of the heat pump. The exchanger also comprises an inlet called “cold inlet” connected to the bottom part of the tank and an outlet called “hot outlet” connected to the top part of the tank via a first three-way valve device. The first three-way valve device is connected to the top inlet of the tank by its first channel called the “outlet” channel, to the cold inlet of the heat exchanger by its second channel called “bypass channel” and to the output heat exchanger through its third channel called the inlet channel. The water circuit circulating in the heat pump, which supplies the calories during the heat exchange, is called the primary circuit. The water circuit circulating between the tank and the exchanger, which receives the calories supplied by the primary circuit, is called the secondary circuit.

Depuis quelques années, la plupart des systèmes thermodynamiques existants sur le marché associent de petites capacités en volume de ballon à des puissances faibles de pompe à chaleur dites « classiques », c'est-à-dire utilisant des fluides frigorigènes de type HFC ou HCFC permettant une élévation de température de 5 à 8°C après un chauffage de l'eau par la pompe à chaleur. En conséquence, ce type de système ne s'adapte qu'aux particuliers ou aux petits immeubles collectifs, via un mode de production dit « d'accumulation » dans lequel l'eau chaude est stockée dans le ballon.In recent years, most of the existing thermodynamic systems on the market have combined small tank volume capacities with low so-called “conventional” heat pump powers, that is to say using HFC or HCFC type refrigerants. allowing a temperature rise of 5 to 8 ° C after heating the water by the heat pump. Consequently, this type of system is only suitable for individuals or small apartment buildings, via a so-called “accumulation” mode of production in which hot water is stored in the tank.

Certains systèmes thermodynamiques sont destinés à la production directe d'eau chaude sanitaire (ECS) pour des secteurs tertiaires, logements résidentiels collectifs et petites et moyennes industries. Toutefois, ces systèmes de production d'eau chaude sanitaire ne permettent pas la régulation de la température sur le circuit secondaire. Il y a également des systèmes avec une régulation de température, à l'aide d'une vanne à 3 voies sur le circuit primaire, nécessitant un ballon complexe et onéreux ayant un double réservoir de stockage et de production. Ces inconvénients rendent ces systèmes complexes et onéreux et donc inadaptés à la production d'eau chaude sanitaire dans les secteurs tertiaires et logements résidentiels collectifs.Certain thermodynamic systems are intended for the direct production of domestic hot water (DHW) for tertiary sectors, collective residential dwellings and small and medium industries. However, these domestic hot water production systems do not allow temperature regulation on the secondary circuit. There are also systems with temperature regulation, using a 3-way valve on the primary circuit, requiring a complex and expensive tank with a double storage and production tank. These drawbacks make these systems complex and expensive and therefore unsuitable for the production of domestic hot water in the tertiary sectors and collective residential dwellings.

C'est la raison pour laquelle la Demanderesse a développé en 2014 un module de transfert thermique avec régulation associée pour système thermodynamique de production d'eau chaude sanitaire à base d'une pompe à chaleur classique. Ce module avec la régulation de température sur le circuit secondaire s'adapte au principe du fonctionnement de pompe à chaleur classique et aux différents modes de production d'eau chaude sanitaire, tout en maîtrisant le phénomène de la stratification d'eau dans le ballon (réservoir) et garantissant ainsi un meilleur bilan énergétique. Ce module a fait l'objet d'une demande de brevet français portant le numéro de publication FR3031575 .This is the reason why the Applicant developed in 2014 a heat transfer module with associated regulation for a thermodynamic system for producing domestic hot water based on a conventional heat pump. This module with temperature regulation on the secondary circuit adapts to the principle of conventional heat pump operation and to the different domestic hot water production modes, while controlling the phenomenon of water stratification in the tank ( reservoir) and thus guaranteeing a better energy balance. This module was the subject of a French patent application bearing the publication number FR3031575 .

Cependant, de nos jours, les considérations relatives au développement durable ont provoqué l'émergence d'un certain nombre de normes, imposant notamment des limites à la consommation énergétique des bâtiments neufs pour le chauffage, la ventilation, la climatisation, la production d'eau chaude sanitaire et l'éclairage. Ainsi, par exemple, la Réglementation Technique (RT) 2012 a fixé en France les limites moyennes des consommations énergétiques d'un bâtiment neuf comme suit 25 kWhep/m2/an pour l'eau chaude sanitaire, soit 50% du besoin global du bâtiment, 15 kWhep/m2/an pour le chauffage, soit 30% du besoin global, 5 kWhep/m2/an pour l'éclairage, soit 10% du besoin global, et 5 kWhep/m2/an pour les équipements auxiliaires, soit 10% du besoin global. Des études comparatives réglementaires ont mis en évidence la nécessité de l'intégration des procédés de la production d'eau chaude (chauffage et sanitaire) par des énergies renouvelables, telles que l'énergie solaire ou les pompes à chaleur, pour être en conformité avec les exigences de la RT 2012.However, nowadays, considerations relating to sustainable development have led to the emergence of a number of standards, notably imposing limits on the energy consumption of new buildings for heating, ventilation, air conditioning, energy production. domestic hot water and lighting. Thus, for example, the Technical Regulations (RT) 2012 set in France the average limits for the energy consumption of a new building as follows: 25 kWhep / m 2 / year for domestic hot water, i.e. 50% of the overall need for the building. building, 15 kWhep / m 2 / year for heating, i.e. 30% of the overall need, 5 kWhep / m 2 / year for lighting, or 10% of the overall need, and 5 kWhep / m 2 / year for auxiliary equipment, or 10% of the overall need. Regulatory comparative studies have highlighted the need for the integration of hot water production processes (heating and sanitary) by renewable energies, such as solar energy or heat pumps, in order to comply with the requirements of RT 2012.

Suite à l'accord de Paris à l'occasion de la COP 21, l'État français et les acteurs de la construction se sont engagés vers une ambition sans précédent pour produire des bâtiments à énergie positive et bas carbone. La loi de transition énergétique pour la croissance verte permettra la mise en place d'un standard environnemental ambitieux pour les bâtiments neufs. Dès aujourd'hui, cette ambition se prépare pour contribuer à la lutte contre le changement climatique autour de deux grandes orientations pour la construction neuve : la généralisation des bâtiments à énergie positive (E+) et le déploiement de bâtiments à faible empreinte carbone tout au long de leur cycle de vie, depuis la conception jusqu'à la démolition (C-). C'est dans ce contexte que l'exploitation des pompes à chaleur (PAC) utilisant du dioxyde de carbone (CO2) comme fluide frigorigène (appelée ci-après PAC CO2) destinée au chauffage et à la production d'ECS (Eau Chaude Sanitaire) se développe rapidement du fait de ses performances énergétiques et aspects vertueux pour l'environnement.Following the Paris agreement on the occasion of COP 21, the French State and construction stakeholders have committed to an unprecedented ambition to produce positive energy and low carbon buildings. The energy transition law for green growth will allow the establishment of an ambitious environmental standard for new buildings. As of today, this ambition is being prepared to contribute to the fight against climate change around two major orientations for new construction: the generalization of positive energy (E +) buildings and the deployment of buildings with a low carbon footprint throughout. of their life cycle, from design to demolition (C-). It is in this context that the operation of heat pumps (PAC) using carbon dioxide (CO 2 ) as refrigerant (hereinafter called PAC CO 2 ) intended for heating and the production of DHW (Water Chaude Sanitaire) is developing rapidly due to its energy performance and virtuous aspects for the environment.

Le dioxyde de carbone (CO2, référencé de manière connue R744) est un fluide sans effet néfaste pour la santé humaine et sain pour l'environnement. C'est un réfrigérant naturel à très faible pouvoir de réchauffement global (GWP de l'ordre de 1) comparé aux HFC ou HCFC traditionnellement utilisés (qui présente un GWP 1300 à 2000 fois plus élevé). En outre, une PAC CO2 permet de produire directement de l'eau chaude jusqu'à 90°C, contrairement aux PAC classiques à HFC/HCFC qui ne permettent de produire de l'eau chaude que jusqu'à une température de l'ordre de 60° C. De plus, une PAC CO2 permet d'optimiser l'efficacité énergétique et d'assurer la puissance calorifique (constante) jusqu'à de très basses températures extérieures selon le principe connu du l'homme du métier sous le nom « d'inverter ». Le principe Inverter consiste à démarrer la pompe à chaleur progressivement en commençant à diminuer l'intensité tout en maintenant la température avec une faible vitesse de rotation du compresseur juste avant la température de consigne afin de ne consommer que la quantité nécessaire d'énergie, ce qui permet à la pompe à chaleur d'adapter sa puissance à l'inertie thermique et au besoin réel de chaleur dans l'installation. Ainsi, avec une PAC CO2, le fait de pouvoir travailler sans appoint (électrique) jusqu'à de basses températures ambiantes permet d'améliorer le bilan énergétique global du système thermodynamique. C'est donc un système à haute efficacité énergétique qui génère de faibles coûts de l'exploitation.Carbon dioxide (CO2, referenced in a known manner R744) is a fluid without harmful effects on human health and healthy for the environment. It is a natural refrigerant with very low global warming power (GWP of the order of 1) compared to the HFCs or HCFCs traditionally used (which has a GWP 1300 to 2000 times higher). In addition, a CO 2 heat pump can directly produce hot water up to 90 ° C, unlike conventional HFC / HCFC heat pumps which only produce hot water up to a temperature of around 60 ° C. In addition, a CO 2 heat pump makes it possible to optimize energy efficiency and ensure the calorific power (constant) down to very low outside temperatures according to the principle known to those skilled in the art under the name "inverter". The inverter principle consists of starting the heat pump gradually, starting to decrease the intensity while maintaining the temperature with a low speed of rotation of the compressor just before the set temperature in order to consume only the necessary amount of energy, this which allows the heat pump to adapt its power to thermal inertia and to the real need for heat in the installation. Thus, with a CO 2 heat pump, being able to work without (electrical) back-up up to low ambient temperatures makes it possible to improve the overall energy balance of the thermodynamic system. It is therefore a high energy efficiency system that generates low operating costs.

Les systèmes thermodynamiques à base de PAC CO2 commercialisés sur le marché présentent les points communs suivants : l'introduction directe d'eau froide sanitaire d'appoint dans l'échangeur thermique de la PAC CO2 et l'introduction directe de l'eau chaude de la sortie de PAC CO2 dans le ballon, quel que soit l'état du fonctionnement de la PAC CO2 dans la plupart des cas. Notamment, ces caractéristiques entrainent divers inconvénients. Tout d'abord, dans les cas d'application à l'eau chaude sanitaire, les appoints en eau froide sanitaire sont irréguliers et fréquents. La nature de l'eau est très diverse et variée (à l'équilibre ou corrosive et/ou entartrante) selon les conditions de service, alors que l'échangeur intégré dans la PAC CO2 est généralement en conduit hélicoïdal spiralé en cuivre, qui est sensible aux phénomènes d'entartrage et de corrosion de l'eau sous formes chimique et d'érosion (cas de grands débits). Pour la pérennité et la fiabilité de la PAC CO2, la qualité de l'eau requise est exigeante et doit être maîtrisée. En outre, après chaque puisage et avec l'appoint d'eau froide dans le ballon (réservoir), le PAC CO2 redémarre. Mais il faut à la PAC CO2 un certain temps pour qu'elle puisse établir son régime du fonctionnement stabilisé selon le principe Inverter. Durant ce temps-là, la température de l'eau à la sortie de la PAC CO2 étant variable et souvent inférieure à la valeur de consigne, cela provoque ainsi la dé-stratification d'eau chaude dans le ballon. Dans ce cas, on constate que, juste après un puisage, la température de l'eau à l'entrée du circuit primaire et celle à la sortie du circuit secondaire de l'échangeur de chaleur du module de transfert thermique augmentent rapidement jusqu'à une valeur maximale puis descendent aussitôt à une valeur minimale, et ensuite augmentent progressivement de nouveau et se stabilisent à la valeur de consigne. Cette phase transitoire dure 15 à 20 minutes environ, non négligeable dans un cycle de la production d'ECS.The thermodynamic systems based on PAC CO 2 marketed on the market have the following points in common: the direct introduction of supplementary sanitary cold water in the heat exchanger of the CO 2 heat pump and the direct introduction of hot water from the CO 2 heat pump outlet into the tank, regardless of the operating state of the CO 2 heat pump in most cases. In particular, these characteristics lead to various drawbacks. First of all, in cases of application to domestic hot water, the topping up of domestic cold water is irregular and frequent. The nature of the water is very diverse and varied (at equilibrium or corrosive and / or scaling) depending on the operating conditions, while the heat exchanger integrated in the CO 2 heat pump is generally in a spiral spiral copper duct, which is sensitive to the phenomena of scaling and corrosion of water in chemical and erosion forms (case of large flows). For the durability and reliability of the CO 2 heat pump, the required water quality is demanding and must be controlled. In addition, after each draw-off and with the addition of cold water in the tank (reservoir), the CO 2 heat pump restarts. However, the CO 2 heat pump needs a certain time for it to be able to establish its stabilized operating regime according to the inverter principle. During this time, the water temperature at the outlet of the CO 2 heat pump being variable and often lower than the set value, this thus causes the de-stratification of hot water in the tank. In this case, it can be seen that, just after drawing off, the temperature of the water at the inlet of the primary circuit and that at the outlet of the secondary circuit of the heat exchanger of the heat transfer module increase rapidly to a maximum value then immediately fall to a minimum value, and then gradually increase again and stabilize at the setpoint. This transitional phase lasts approximately 15 to 20 minutes, which is not negligible in a cycle of DHW production.

De plus, suivant l'emplacement et la saison, la PAC CO2 doit pouvoir effectuer des opérations telles qu'un cycle de dégivrage ou d'antigel. On utilise de l'énergie stockée dans le ballon pour le dégivrage durant lequel la température de l'eau à la sortie de la PAC CO2 est significativement inférieure à la consigne. Son injection en partie supérieure du ballon provoque la dé-stratification de l'eau chaude dans le ballon. En outre, selon les réglementations en vigueur, un choc thermique par élévation de la température d'eau dans le ballon à plus de 70°C peut être avantageusement utilisé contre le risque de la prolifération des légionnelles alors que la consigne de la production d'eau chaude sanitaire se situe généralement entre 55 et 60°C afin d'éviter le risque de brûlure. Cet aspect doit être pris en considération.In addition, depending on the location and the season, the PAC CO 2 must be able to perform operations such as a defrost or anti-freeze cycle. Energy stored in the tank is used for defrosting during which the water temperature at the outlet of the CO 2 heat pump is significantly lower than the set point. Its injection in the upper part of the tank causes the de-stratification of the hot water in the tank. In addition, according to the regulations in force, a thermal shock by raising the water temperature in the tank to more than 70 ° C can be advantageously used against the risk of the proliferation of legionella while the instruction of the production of domestic hot water is generally between 55 and 60 ° C to avoid the risk of scalding. This aspect must be taken into consideration.

La solution décrite dans la demande de brevet français FR3031575 peut s'avérer complexe à mettre en œuvre, notamment avec une PAC CO2 car elle ne prend pas en compte les spécificités d'une telle PAC CO2. De plus, la solution de vanne à trois voies utilisée avec une PAC classique telle que décrite dans l'art antérieur ne permet pas non plus de gérer des modes de fonctionnement différents du système de production d'eau chaude par PAC à CO2.The solution described in the patent application French FR3031575 can be complex to implement, especially with a CO 2 heat pump because it does not take into account the specificities of such a CO 2 heat pump. In addition, the three-way valve solution used with a conventional heat pump as described in the prior art does not make it possible to manage different operating modes of the system for producing hot water by CO 2 heat pump either.

Un module de transfert thermique selon le préambule de la revendication 1 est connu des documents EP 0 126 605 a ou EP 2 672 204 A .A thermal transfer module according to the preamble of claim 1 is known from documents EP 0 126 605 where EP 2 672 204 A .

Il n'existe pas aujourd'hui de solution permettant à la fois de résoudre au moins en partie ces inconvénients. Il existe donc le besoin d'une solution simple, fiable et efficace permettant de mesurer ces variations.Today there is no solution making it possible at the same time to resolve these drawbacks at least in part. There is therefore a need for a simple, reliable and efficient solution making it possible to measure these variations.

PRESENTATION GENERALE DE L'INVENTIONGENERAL PRESENTATION OF THE INVENTION

A cet effet, l'invention a tout d'abord pour objet un module de transfert thermique, ou hydro-thermique, pour la production d'eau chaude, en particulier d'eau chaude sanitaire, ledit module de transfert thermique étant destiné à être connecté entre un ballon de stockage d'eau chaude et une pompe à chaleur, ledit ballon comprenant au moins une entrée dite « entrée haute », une sortie dite « sortie haute », une entrée dite « entrée basse » et une sortie dite « sortie basse », ladite pompe à chaleur comprenant une sortie dite « sortie chaude » et une entrée dite « entrée froide » et un échangeur de chaleur interne apte à fournir de la chaleur entre ladite sortie chaude et ladite entrée froide en utilisant du dioxyde de carbone comme fluide frigorigène, ledit module de transfert thermique comprenant :

  • un premier dispositif de vanne à trois voies, comprenant une voie d'entrée, une voie de sortie, destinée à être connectée à l'entrée haute du ballon, et une voie de dérivation,
  • un échangeur de chaleur comprenant, d'une part, une entrée dite « entrée chaude » destinée à être reliée à la sortie chaude de la pompe à chaleur et une sortie dite « sortie froide » destinée à être reliée à l'entrée froide de la pompe à chaleur et, d'autre part, une entrée dite « entrée froide » et une sortie dite « sortie chaude » reliée à la voie d'entrée du premier dispositif de vanne à trois voies,
    le module de transfert thermique comprenant un deuxième dispositif de vanne à trois voies comprenant :
  • une voie d'entrée destinée à être reliée à la sortie basse du ballon,
  • une voie de sortie reliée, d'une part, à l'entrée froide de l'échangeur de chaleur du module de transfert thermique et, d'autre part, à la voie de dérivation du premier dispositif de vanne à trois voies, et
  • une voie de dérivation destinée à être reliée à un point de distribution d'eau et à l'entrée basse du ballon.
To this end, the invention firstly relates to a thermal transfer module, or hydro-thermal, for the production of hot water, in particular domestic hot water, said thermal transfer module being intended to be connected between a hot water storage tank and a heat pump, said tank comprising at least one inlet called "high inlet", one outlet called "high outlet", one inlet called "low inlet" and one outlet called "outlet low ”, said heat pump comprising an outlet called“ hot outlet ”and an inlet called“ cold inlet ”and an internal heat exchanger capable of supplying heat between said hot outlet and said cold inlet using carbon dioxide as refrigerant, said heat transfer module comprising:
  • a first three-way valve device, comprising an inlet path, an outlet path, intended to be connected to the top inlet of the tank, and a bypass path,
  • a heat exchanger comprising, on the one hand, an inlet called "hot inlet" intended to be connected to the hot outlet of the heat pump and an outlet called "cold outlet" intended to be connected to the cold inlet of the heat pump. heat pump and, on the other hand, an inlet called "cold inlet" and an outlet called "hot outlet" connected to the inlet channel of the first three-way valve device,
    the heat transfer module comprising a second three-way valve device comprising:
  • an inlet channel intended to be connected to the bottom outlet of the tank,
  • an outlet path connected, on the one hand, to the cold inlet of the heat exchanger of the heat transfer module and, on the other hand, to the bypass path of the first three-way valve device, and
  • a bypass path intended to be connected to a water distribution point and to the bottom inlet of the tank.

Le deuxième dispositif de vanne à trois voies permet avantageusement de prélever de l'eau dans la partie basse du ballon ou directement sur un point de distribution d'eau, par exemple d'un réseau de distribution d'eau de ville. Le premier dispositif de vanne à trois voies permet notamment de mettre en oeuvre un mode dit « de démarrage » couvrant la période transitoire de montée en température de l'eau circulant dans le module de transfert thermique en faisant re-circuler de l'eau prélevée sur un point de distribution d'eau d'un réseau de distribution d'eau dans le module de transfert thermique. Une fois le mode de démarrage achevé, le deuxième dispositif de vanne à trois voies permet de mettre en oeuvre un mode stabilisé avec une température d'eau à l'entrée de l'échangeur la plus basse possible dans lequel le module de transfert thermique envoie de l'eau chauffée dans le ballon présentant a un coefficient de performance (COP) plus élevé par rapport aux solutions de l'art antérieur de PAC CO2. Par ailleurs, le deuxième dispositif de vanne à trois voies permet de mettre en oeuvre à tout moment un mode antigel, dans lequel de l'eau est soit prélevée en partie basse du ballon, soit sur le point de distribution d'eau afin d'être chauffée par recirculation dans le module de transfert thermique. En outre, le module de transfert thermique selon l'invention peut également permettre de mettre en oeuvre un mode anti-bactéries, grâce au couplage avec une pompe à chaleur à dioxyde de carbone, un mode de retour, en utilisant un réchauffeur positionné en amont de la sortie d'eau chaude du ballon, ou un mode de dégivrage, en utilisant une unité de chauffage entre l'échangeur de chaleur du module de transfert thermique et l'échangeur de chaleur de la pompe à chaleur.The second three-way valve device advantageously makes it possible to take water from the lower part of the tank or directly from a water distribution point, for example from a city water distribution network. The first three-way valve device makes it possible in particular to implement a so-called “start-up” mode covering the transient period of rise in temperature of the water circulating in the heat transfer module by recirculating the withdrawn water. on a water distribution point of a water distribution network in the thermal transfer module. Once the start-up mode is complete, the second three-way valve device makes it possible to implement a stabilized mode with a water temperature at the inlet of the exchanger as low as possible in which the heat transfer module sends heated water into the tank having has a higher coefficient of performance (COP) compared to the solutions of the prior art of PAC CO 2 . Furthermore, the second three-way valve device makes it possible to implement an antifreeze mode at any time, in which water is either taken from the lower part of the tank, or from the water distribution point in order to be heated by recirculation in the thermal transfer module. In addition, the heat transfer module according to the invention can also make it possible to implement an anti-bacteria mode, thanks to the coupling with a carbon dioxide heat pump, a return mode, using a heater positioned upstream. from the hot water outlet of the tank, or a defrost mode, using a heating unit between the heat exchanger of the heat transfer module and the heat exchanger of the heat pump.

De préférence, le module de transfert thermique comprend, entre la voie d'entrée du premier dispositif de vanne à trois voies et la sortie chaude de l'échangeur de chaleur, un troisième dispositif de vanne à trois voies comprenant une voie d'entrée reliée à la sortie chaude de l'échangeur de chaleur, une voie de sortie reliée à la voie d'entrée du premier dispositif de vanne à trois voies, et une voie de dérivation destinée à être reliée au point de distribution d'eau et à l'entrée basse du ballon. Dans cette forme de réalisation, la voie d'entrée du premier dispositif de vanne à trois voies est reliée à la voie de sortie du troisième dispositif de vanne à trois voies mais n'est plus reliée directement à la sortie chaude de l'échangeur. Le troisième dispositif de vanne à trois voies permet de mettre en oeuvre un mode antigel, notamment dans le cas où la chaleur stockée dans le module de transfert thermique n'est pas suffisante.Preferably, the heat transfer module comprises, between the inlet port of the first three-way valve device and the hot outlet of the heat exchanger, a third three-way valve device comprising a connected inlet port. at the hot outlet of the heat exchanger, an outlet path connected to the inlet path of the first three-way valve device, and a bypass path intended to be connected to the water distribution point and to the low entry of the balloon. In this embodiment, the inlet path of the first three-way valve device is connected to the outlet path of the third three-way valve device but is no longer directly connected to the hot outlet of the exchanger. The third three-way valve device makes it possible to implement an antifreeze mode, in particular in the case where the heat stored in the heat transfer module is not sufficient.

Avantageusement, le module de transfert thermique comprend, un circuit de distribution d'eau chaude étant connecté à la sortie haute du ballon, un réchauffeur apte à recevoir l'eau présente dans ledit circuit de distribution d'eau chaude, à chauffer l'eau reçue et à réinjecter l'eau ainsi chauffée dans ledit circuit de distribution d'eau chaude. Un tel réchauffeur permet de mettre en oeuvre un mode dit « de retour » en prélevant l'eau stockée dans le circuit de distribution d'eau chaude, qui refroidit lorsque ledit circuit de distribution d'eau chaude est fermé, afin de la réchauffer avant de la réinjecter dans ledit circuit de distribution d'eau chaude.Advantageously, the heat transfer module comprises, a hot water distribution circuit being connected to the top outlet of the tank, a heater capable of receiving the water present in said hot water distribution circuit, of heating the water. received and reinjecting the water thus heated into said hot water distribution circuit. Such a heater makes it possible to implement a so-called "return" mode by taking the water stored in the hot water distribution circuit, which cools when said hot water distribution circuit is closed, in order to heat it beforehand. to reinject it into said hot water distribution circuit.

Dans une forme de réalisation, le premier dispositif de vanne à trois voies, le deuxième dispositif de vanne à trois voies et le troisième dispositif de vanne à trois voies se présentent chacun sous la forme d'une vanne à trois voies monobloc, de préférence une électrovanne à trois voies monobloc, ce qui permet de simplifier l'architecture du module de transfert thermique.In one embodiment, the first three-way valve device, the second three-way valve device and the third three-way valve device are each in the form of a one-piece three-way valve, preferably one. Monobloc three-way solenoid valve, which simplifies the architecture of the thermal transfer module.

Dans une autre forme de réalisation, au moins l'un du premier dispositif de vanne à trois voies, du deuxième dispositif de vanne à trois voies ou du troisième dispositif de vanne à trois voies comprennent chacun deux vannes à deux voies reliées l'une à l'autre par l'une de leurs deux voies afin de former un dispositif de vanne à trois voies.In another embodiment, at least one of the first three-way valve device, the second three-way valve device, or the third three-way valve device each comprises two two-way valves connected together. the other by one of their two ways in order to form a three-way valve device.

Selon un aspect de l'invention, le module de transfert thermique comprend un capteur de température de régulation monté entre la sortie chaude de l'échangeur de chaleur du module de transfert thermique et la voie d'entrée du premier ou du troisième dispositif de vanne à trois voies afin notamment de surveiller la température pendant un mode dit « de démarrage » et pouvoir basculer dans un mode dit « stabilisé » une fois que l'eau circulant dans le module de transfert thermique est suffisamment chaude.According to one aspect of the invention, the heat transfer module comprises a regulating temperature sensor mounted between the hot outlet of the heat exchanger of the heat transfer module and the inlet path of the first or of the third valve device. three-way in order in particular to monitor the temperature during a so-called “start-up” mode and to be able to switch to a so-called “stabilized” mode once the water circulating in the heat transfer module is sufficiently hot.

De manière avantageuse, le module de transfert thermique comprend un débitmètre monté entre la sortie chaude de l'échangeur de chaleur du module de transfert thermique et la voie d'entrée du premier dispositif de vanne à trois voies ou la voie d'entrée du troisième dispositif de vanne à trois voies le cas échéant.Advantageously, the thermal transfer module comprises a flowmeter mounted between the hot outlet of the heat exchanger of the thermal transfer module and the inlet path of the first three-way valve device or the inlet path of the third. three-way valve device if applicable.

Avantageusement encore, le module de transfert thermique comprend une pompe de circulation, de préférence à débit variable, montée entre la voie de sortie du deuxième dispositif de vanne à trois voies et l'entrée froide de l'échangeur de chaleur du module de transfert thermique afin de permettre une circulation efficace de l'eau dans le module de transfert thermique avec un débit approprié.Also advantageously, the heat transfer module comprises a circulation pump, preferably with variable flow rate, mounted between the outlet port of the second three-way valve device and the cold inlet of the heat exchanger of the heat transfer module. in order to allow efficient circulation of water in the thermal transfer module with an appropriate flow rate.

L'invention concerne également un système de production d'eau chaude, notamment sanitaire, ledit système comprenant un module de transfert thermique tel que présenté précédemment et un module de gestion apte à commander les vannes du premier dispositif de vanne à trois voies, du deuxième dispositif de vanne à trois voies et, le cas échéant, du troisième dispositif de vanne à trois voies, dans leurs différentes positions d'une part, et à piloter également le fonctionnement de la pompe à chaleur et du module thermique d'autre part. De préférence, le module de gestion est également apte à gérer les divers équipements et instruments intégrés sur le ballon.The invention also relates to a system for producing hot water, in particular sanitary water, said system comprising a heat transfer module as presented above and a management module capable of controlling the valves of the first three-way valve device, of the second. three-way valve device and, where appropriate, the third three-way valve device, in their different positions on the one hand, and also to control the operation of the heat pump and of the thermal module on the other hand. Preferably, the management module is also able to manage the various equipment and instruments integrated on the ball.

Selon une caractéristique de l'invention, le système comprend une pompe à chaleur, ladite pompe à chaleur comprenant une sortie dite « sortie chaude », reliée à l'entrée chaude de l'échangeur de chaleur du module de transfert thermique, et une entrée dite « entrée froide », reliée à la sortie froide de l'échangeur de chaleur du module de transfert thermique, et étant apte à fournir de la chaleur entre ladite sortie chaude et ladite entrée froide en utilisant du dioxyde de carbone comme fluide frigorigène.According to one characteristic of the invention, the system comprises a heat pump, said heat pump comprising an outlet called “hot outlet”, connected to the hot inlet of the heat exchanger of the thermal transfer module, and an inlet said “cold inlet”, connected to the cold outlet of the heat exchanger of the heat transfer module, and being able to supply heat between said hot outlet and said cold inlet using carbon dioxide as refrigerant.

Dans une forme de réalisation, le module de transfert thermique ou la pompe à chaleur comprend une unité de chauffage, comprenant par exemple au moins une résistance électrique ou tout autre moyen de chauffage adapté, afin de mettre en oeuvre un mode de dégivrage dans lequel la pompe de circulation du module de transfert thermique est à l'arrêt et dans lequel la pompe à chaleur peut se dégivrer grâce à l'énergie fournie par l'unité de chauffage intégrée lorsque cela est nécessaire.In one embodiment, the thermal transfer module or the heat pump comprises a heating unit, comprising for example at least one electrical resistance or any other suitable heating means, in order to implement a defrost mode in which the heat transfer module circulation pump is stopped and in which the heat pump can defrost using the energy supplied by the integrated heating unit when needed.

Selon un aspect de l'invention, le système comprend un ballon de stockage d'eau chaude, ledit ballon comprenant au moins une entrée dite « entrée haute » reliée à la voie de sortie du premier dispositif de vanne à trois voies, une sortie dite « sortie haute » destinée à être reliée à un circuit de distribution d'eau chaude, une entrée dite « entrée basse » reliée à un point de distribution d'eau et une sortie dite « sortie basse » reliée à la voie d'entrée du deuxième dispositif de vanne à trois voies, la voie de dérivation du deuxième dispositif de vanne à trois voies étant reliée au point de distribution d'eau et à l'entrée basse du ballon.According to one aspect of the invention, the system comprises a hot water storage tank, said tank comprising at least one inlet called “high inlet” connected to the outlet path of the first three-way valve device, a so-called outlet. "High outlet" intended to be connected to a hot water distribution circuit, an inlet called "low inlet" connected to a water distribution point and an outlet called "low outlet" connected to the inlet channel of the second three-way valve device, the bypass of the second three-way valve device being connected to the water distribution point and to the bottom inlet of the tank.

PRESENTATION DES FIGURESPRESENTATION OF FIGURES

L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple, et se référant aux dessins annexés donnés à titre d'exemples non limitatifs, dans lesquels des références identiques sont données à des objets semblables et sur lesquels :

  • la figure 1 illustre une forme de réalisation du système selon l'invention,
  • la figure 2 illustre une forme de réalisation du système selon l'invention en mode de démarrage,
  • la figure 3 illustre une forme de réalisation du système selon l'invention en mode stabilisé,
  • la figure 4 illustre une forme de réalisation du système selon l'invention en mode antigel dans un premier cas de figure,
  • la figure 5 illustre une forme de réalisation du système selon l'invention en mode antigel dans un deuxième cas de figure,
  • la figure 6 illustre une forme de réalisation du système selon l'invention en mode anti-bactéries,
  • la figure 7 illustre une forme de réalisation du système selon l'invention en mode de retour,
  • la figure 8 illustre une forme de réalisation du système selon l'invention un mode de dégivrage.
The invention will be better understood on reading the description which will follow, given solely by way of example, and referring to the appended drawings given by way of nonlimiting examples, in which identical references are given to similar objects. and on which:
  • the figure 1 illustrates an embodiment of the system according to the invention,
  • the figure 2 illustrates an embodiment of the system according to the invention in start-up mode,
  • the figure 3 illustrates an embodiment of the system according to the invention in stabilized mode,
  • the figure 4 illustrates an embodiment of the system according to the invention in antifreeze mode in a first scenario,
  • the figure 5 illustrates an embodiment of the system according to the invention in antifreeze mode in a second scenario,
  • the figure 6 illustrates an embodiment of the system according to the invention in anti-bacteria mode,
  • the figure 7 illustrates an embodiment of the system according to the invention in return mode,
  • the figure 8 illustrates an embodiment of the system according to the invention a defrost mode.

Il faut noter que les figures exposent l'invention de manière détaillée pour mettre en oeuvre l'invention, lesdites figures pouvant bien entendu servir à mieux définir l'invention le cas échéant.It should be noted that the figures set out the invention in detail in order to implement the invention, said figures being able of course to serve to better define the invention if necessary.

DESCRIPTION DETAILLEE DE L'INVENTIONDETAILED DESCRIPTION OF THE INVENTION

La présente invention sera décrite ci-après dans son application à la production d'eau chaude sanitaire mais peut trouver son application plus largement à tout système de production d'eau chaude. On a représenté à la figure 1 un exemple de système 1 de production d'eau chaude sanitaire. Le système 1 comprend un ballon 10 de stockage d'eau chaude sanitaire, un module de transfert thermique 20, une pompe à chaleur 30 et un module de gestion 40.The present invention will be described below in its application to the production of domestic hot water but can find its application more broadly to any hot water production system. We have represented at the figure 1 an example of a domestic hot water production system 1. System 1 comprises a domestic hot water storage tank 10, a thermal transfer module 20, a heat pump 30 and a management module 40.

Dans cet exemple, le ballon 10 comprend une entrée dite « entrée basse » 10EB, connectée à un point de distribution d'eau 5 d'un réseau de distribution (non représenté), une sortie dite « sortie basse » 10SB, une entrée dite « entrée haute » 10EH, une sortie dite « haute » 10SH, reliée à un circuit de distribution d'eau chaude 101.In this example, the tank 10 comprises an inlet called "low inlet" 10EB, connected to a water distribution point 5 of a distribution network (not shown), an outlet called "low outlet" 10SB, an inlet called “High inlet” 10EH, a so-called “high” outlet 10SH, connected to a hot water distribution circuit 101.

De manière non limitative de la portée de la présente invention, le ballon 10 comprend en outre un premier thermostat de régulation 110, un deuxième thermostat de régulation 112, un thermoplongeur 120 de secours (ou résistance de secours) montée à l'intérieur du ballon 10, des sondes internes de température SV1, SV2, SV3, SV4 montées à quatre niveaux dans le ballon 10 et un piquage 130 destiné au retour d'eau circulant dans le circuit de distribution d'eau chaude 101 (appelé retour de bouclage). On notera que, dans une autre forme de réalisation, ces sondes internes de température SV1, SV2, SV3, SV4 pourraient être plus ou moins de quatre.In a non-limiting manner to the scope of the present invention, the balloon 10 further comprises a first regulation thermostat 110, a second regulation thermostat 112, an emergency immersion heater 120 (or emergency resistor) mounted inside the balloon. 10, internal temperature sensors SV1, SV2, SV3, SV4 mounted at four levels in the tank 10 and a tap 130 intended for the return of water circulating in the hot water distribution circuit 101 (called the circulation return). Note that, in another embodiment, these internal temperature probes SV1, SV2, SV3, SV4 could be more or less than four.

Le premier thermostat de régulation 110 permet de fixer la consigne de stockage d'eau chaude sanitaire et de piloter le fonctionnement de la pompe à chaleur 30. Le deuxième thermostat de régulation 112 est un organe de sécurité qui permet de prévenir le phénomène de surchauffe dans le ballon 10, de manière connue en soi. Le thermoplongeur 120 se présente de préférence sous la forme d'une résistance électrique. Les sondes internes de température SV1, SV2, SV3, SV4 permettant au module de gestion 40 de surveiller et de connaître, en temps réel, la quantité d'eau chaude dans le ballon 10. Ces sondes internes de température SV1, SV2, SV3, SV4 peuvent être intégrées dans les dispositifs du ballon 10, comme diffuseurs pour certains piquages d'entrée d'eaux froide ou chaude, de manière connue en soi.The first regulation thermostat 110 makes it possible to fix the domestic hot water storage setpoint and to control the operation of the heat pump 30. The second regulation thermostat 112 is a safety device which makes it possible to prevent the phenomenon of overheating in the heat pump. the ball 10, in a manner known per se. The immersion heater 120 is preferably in the form of an electrical resistance. The internal temperature sensors SV1, SV2, SV3, SV4 allowing the management module 40 to monitor and know, in real time, the quantity of hot water in the tank 10. These internal temperature sensors SV1, SV2, SV3, SV4 can be integrated into the devices of the tank 10, as diffusers for certain cold or hot water inlet tappings, in a manner known per se.

La pompe à chaleur 30 comprend une sortie dite « sortie chaude » 30SC et une entrée dite « entrée froide » 30EF. Le module de transfert thermique 20, également appelé « module thermo-hydraulique », est connecté entre le ballon 10 et la pompe à chaleur 30. Le module de gestion 40 est relié aux dispositifs du ballon 10 de stockage d'eau chaude sanitaire, au module de transfert thermique 20 et à la pompe à chaleur 30 pour permettre le pilotage du système 1 par le comme cela sera décrit ci-après.The heat pump 30 comprises an outlet called “hot outlet” 30SC and an inlet called “cold inlet” 30EF. The thermal transfer module 20, also called a “thermo-hydraulic module”, is connected between the tank 10 and the heat pump 30. The management module 40 is connected to the devices of the tank 10 for storing domestic hot water, at the thermal transfer module 20 and to the heat pump 30 to allow the control of the system 1 by the as will be described below.

Toujours en référence à la figure 1, le module de transfert thermique 20 comprend un premier dispositif de vanne à trois voies 201 et un deuxième dispositif de vanne à trois voies 202 et un échangeur de chaleur 210. Dans cet exemple non limitatif, le module de transfert thermique 20 comprend en outre un troisième dispositif de vanne à trois voies 203. Sur les figures, pour chaque dispositif de vanne à trois voies 201, 202, 203, la voie de sortie est notée 1, la voie de dérivation est notée 2 et la voie d'entrée est notée 3. Une portion de circuit dite « d'injection » 100 permet d'injecter l'eau chaude venant de l'échangeur 210 directement dans le circuit de distribution d'eau 101 ou bien directement dans le ballon 10 en cas de non tirage d'eau chaude dans le circuit de distribution d'eau 101 par un robinet.Still with reference to the figure 1 , the heat transfer module 20 comprises a first three-way valve device 201 and a second three-way valve device 202 and a heat exchanger 210. In this non-limiting example, the heat transfer module 20 further comprises a third three-way valve device 203. In the figures, for each three-way valve device 201, 202, 203, the outlet channel is denoted 1, the bypass channel is denoted 2 and the inlet channel is denoted 3. A portion of the so-called “injection” circuit 100 makes it possible to inject the hot water coming from the exchanger 210 directly into the water distribution circuit 101 or else directly into the tank 10 in the event of non-draft. hot water in the water distribution circuit 101 through a tap.

De préférence, comme illustré dans l'exemple de la figure 1, le module de transfert thermique 20 comprend en outre une pompe de circulation 220, un débitmètre 230, un capteur de température dit « froid » 240 et un capteur de régulation de température 250.Preferably, as illustrated in the example of figure 1 , the heat transfer module 20 further comprises a circulation pump 220, a flowmeter 230, a so-called “cold” temperature sensor 240 and a temperature regulation sensor 250.

L'échangeur de chaleur 210 comprend, d'une part, une entrée dite « entrée chaude » 210EC et une sortie dite « sortie froide » 210SF reliées entre elles par une portion de circuit dite « primaire» 211 et, d'autre part, une entrée dite « entrée froide » 210EF et une sortie dite « sortie chaude » 210SC reliées entre elles par une portion de circuit dite « secondaire » 212, la portion de circuit primaire 211 donnant des calories, c'est-à-dire de la chaleur, à la portion de circuit secondaire 212 en fonctionnement du système 1. L'entrée chaude 210EC de l'échangeur de chaleur 210 est reliée à la sortie chaude 30SC de la pompe à chaleur 30. La sortie froide 210SF de l'échangeur de chaleur 210 est reliée à l'entrée froide 30EF de la pompe à chaleur 30.The heat exchanger 210 comprises, on the one hand, a so-called "hot inlet" 210EC and an outlet called "cold outlet" 210SF interconnected by a so-called "primary" circuit portion 211 and, on the other hand, an input called "cold input" 210EF and an output called "hot output" 210SC interconnected by a so-called "secondary" circuit portion 212, the primary circuit portion 211 providing calories, that is to say heat. heat, to the portion of the secondary circuit 212 in operation of system 1. The hot inlet 210EC of the heat exchanger 210 is connected to the hot outlet 30SC of the heat pump 30. The cold outlet 210SF of the heat exchanger heat 210 is connected to the cold input 30EF of the heat pump 30.

De préférence, le premier dispositif de vanne à trois voies 201, le deuxième dispositif de vanne à trois voies 202 et le troisième dispositif de vanne à trois voies 203 sont des électrovannes à trois voies. En variante, on notera toutefois que le premier dispositif de vanne à trois voies 201, le deuxième dispositif de vanne à trois voies 202 et/ou le troisième dispositif de vanne à trois voies 203 pourraient être chacun réalisés à partir d'un assemblage de deux électrovannes à deux voies, de manière connue en soi.Preferably, the first three-way valve device 201, the second three-way valve device 202 and the third three-way valve device 203 are three-way solenoid valves. As a variant, however, it will be noted that the first three-way valve device 201, the second three-way valve device 202 and / or the third three-way valve device 203 could each be made from an assembly of two. two-way solenoid valves, in a manner known per se.

Le premier dispositif de vanne à trois voies 201 est connecté par sa voie de sortie à l'entrée haute 10EH du ballon 10, par sa voie de dérivation à la voie de sortie du deuxième dispositif de vanne à trois voies 202 et par sa voie d'entrée à la voie de sortie du troisième dispositif de vanne à trois voies 203.The first three-way valve device 201 is connected by its outlet path to the top inlet 10EH of the tank 10, by its bypass path to the outlet path of the second three-way valve device 202 and by its path d 'inlet to the outlet port of the third three-way valve device 203.

Le deuxième dispositif de vanne à trois voies 202 est connecté par sa voie d'entrée à la sortie basse 10SB du ballon 10, par sa voie de dérivation à un point de distribution d'eau 5 et à l'entrée basse 10EB du ballon 10 et par sa voie de sortie à l'entrée de la pompe de circulation 220, la sortie de la pompe de circulation 220 étant connectée à l'entrée froide 210EF de l'échangeur de chaleur 210. Le point de distribution d'eau 5 peut par exemple être un point de connexion à un réseau de distribution d'eau potable.The second three-way valve device 202 is connected by its inlet path to the bottom outlet 10SB of the tank 10, by its bypass path to a water distribution point 5 and to the bottom inlet 10EB of the tank 10. and by its outlet path at the inlet of the circulation pump 220, the outlet of the circulation pump 220 being connected to the cold inlet 210EF of the heat exchanger 210. The water distribution point 5 can for example be a point of connection to a drinking water distribution network.

Le troisième dispositif de vanne à trois voies 203 est connecté par sa voie de sortie à la voie d'entrée du premier dispositif de vanne à trois voies 201, par sa voie de dérivation au point de distribution d'eau 5 et à l'entrée basse 10EB du ballon 10, et par sa voie d'entrée à la sortie du débitmètre 230, l'entrée du débitmètre 230 étant connectée à la sortie chaude 210SC de l'échangeur de chaleur 210.The third three-way valve device 203 is connected by its outlet path to the inlet path of the first three-way valve device 201, by its bypass path to the water distribution point 5 and to the inlet low 10EB of the tank 10, and by its inlet path to the outlet of the flowmeter 230, the inlet of the flowmeter 230 being connected to the hot outlet 210SC of the heat exchanger 210.

Le capteur de température froid 240 est monté entre la voie de sortie du deuxième dispositif de vanne à trois voies 202 et l'entrée de la pompe de circulation 220. Le capteur de régulation de température 250 est monté entre la sortie chaude 210SC de l'échangeur de chaleur 210 et l'entrée du débitmètre 240.The cold temperature sensor 240 is mounted between the outlet of the second three-way valve device 202 and the inlet of the circulation pump 220. The temperature control sensor 250 is mounted between the hot outlet 210SC of the heat exchanger 210 and the flow meter inlet 240.

L'entrée haute 10EH du ballon 10 est reliée à la voie de sortie du premier dispositif de vanne à trois voies 201, l'entrée basse 10EB du ballon 10 est reliée au point de distribution d'eau 5 et la sortie basse 10SB du ballon 10 est reliée à la voie d'entrée du deuxième dispositif de vanne à trois voies 202, la voie de dérivation du deuxième dispositif de vanne à trois voies 202 étant reliée au point de distribution d'eau 5 et à l'entrée basse 10EB du ballon 10.The high inlet 10EH of the tank 10 is connected to the outlet path of the first three-way valve device 201, the low inlet 10EB of the tank 10 is connected to the water distribution point 5 and the low outlet 10SB of the tank 10 is connected to the inlet path of the second three-way valve device 202, the bypass path of the second three-way valve device 202 being connected to the water distribution point 5 and to the lower inlet 10EB of the ball 10.

La pompe à chaleur 30 est apte à fournir de la chaleur entre sa sortie chaude 30SC et son entrée froide 30EF en utilisant du dioxyde de carbone comme fluide frigorigène. Dans cet exemple, la pompe à chaleur 30 comprend un échangeur de chaleur interne 310 comportant une portion de circuit primaire 311 délimitée entre une entrée chaude 310EC et une sortie froide 310SF et une portion de circuit secondaire 312 délimitée entre une entrée froide 310EF et une sortie chaude 310SC. La pompe à chaleur 30 comprend, outre l'échangeur de chaleur interne 310 (condenseur), un détenteur 315, un évaporateur 316 et un compresseur 317 afin de fournir de la chaleur à la portion de circuit secondaire 312. Cette architecture de pompe à chaleur 30 étant connue en soi, elle ne sera pas davantage détaillée ici.The heat pump 30 is able to supply heat between its hot outlet 30SC and its cold inlet 30EF using carbon dioxide as refrigerant. In this example, the heat pump 30 comprises an internal heat exchanger 310 comprising a portion of the primary circuit 311 delimited between a hot inlet 310EC and a cold outlet 310SF and a portion of the secondary circuit 312 delimited between a cold inlet 310EF and an outlet hot 310SC. The heat pump 30 comprises, in addition to the internal heat exchanger 310 (condenser), a holder 315, an evaporator 316 and a compressor 317 in order to supply heat to the portion of the secondary circuit 312. This heat pump architecture 30 being known per se, it will not be further detailed here.

La pompe à chaleur 30 comprend également un circulateur intégré 320 dont la sortie est connectée à l'entrée froide 310EF de l'échangeur de chaleur interne 310, un capteur de température 330, monté entre l'entrée froide 30EF de la pompe à chaleur 30 et l'entrée du circulateur intégré 320, un débitmètre 340, connecté entre la sortie chaude 310SC de l'échangeur de chaleur interne 310 et la sortie chaude 30SC de la pompe à chaleur 30, un capteur de température de régulation 350, monté entre la sortie chaude 310SC de l'échangeur de chaleur interne 310 et l'entrée du débitmètre 340, et un capteur de température 360, monté entre la sortie du débitmètre 340 et la sortie chaude 30SC de la pompe à chaleur 30. On notera que, dans une autre forme de réalisation du système 1, les capteurs de température 330, 360, le capteur de température de régulation 350 et le débitmètre 340 pourraient être hors de la pompe à chaleur 30, par exemple entre la pompe à chaleur 30 et le module de transfert thermique 20. Notamment, ces éléments pourraient par exemple avantageusement être intégrés dans le module de transfert thermique 20.The heat pump 30 also includes an integrated circulator 320 whose output is connected to the cold inlet 310EF of the internal heat exchanger 310, a temperature sensor 330, mounted between the cold inlet 30EF of the heat pump 30 and the inlet of the integrated circulator 320, a flowmeter 340, connected between the hot outlet 310SC of the internal heat exchanger 310 and the hot outlet 30SC of the heat pump 30, a regulation temperature sensor 350, mounted between the hot outlet 310SC of the internal heat exchanger 310 and the inlet of the flowmeter 340, and a temperature sensor 360, mounted between the outlet of the flowmeter 340 and the hot outlet 30SC of the heat pump 30. It will be noted that, in another embodiment of the system 1, the temperature sensors 330, 360, the temperature sensor control temperature 350 and the flowmeter 340 could be outside the heat pump 30, for example between the heat pump 30 and the thermal transfer module 20. In particular, these elements could for example advantageously be integrated in the thermal transfer module 20.

La boucle formée successivement par la portion de circuit secondaire 312 de l'échangeur de chaleur interne 310 de la pompe à chaleur 30, le débitmètre 340, la portion de circuit primaire 211 de l'échangeur de chaleur 210 du module de transfert thermique 20 et le circulateur intégré 320 constitue le circuit primaire C1 du système 1 de production d'eau chaude.The loop formed successively by the portion of the secondary circuit 312 of the internal heat exchanger 310 of the heat pump 30, the flowmeter 340, the portion of the primary circuit 211 of the heat exchanger 210 of the heat transfer module 20 and the integrated circulator 320 constitutes the primary circuit C1 of the hot water production system 1.

La boucle formée successivement par la sortie chaude 210SC de l'échangeur de chaleur 210 du module de transfert thermique 20, le débitmètre 230, le troisième dispositif de vanne à trois voies 203, le premier dispositif de vanne à trois voies 201, le ballon 10, le deuxième dispositif de vanne à trois voies 202, la pompe de circulation 220 et la portion de circuit secondaire 212 de l'échangeur de chaleur 210 constitue le circuit secondaire C2 du système 1 de production d'eau chaude.The loop formed successively by the hot outlet 210SC of the heat exchanger 210 of the heat transfer module 20, the flowmeter 230, the third three-way valve device 203, the first three-way valve device 201, the tank 10 , the second three-way valve device 202, the circulation pump 220 and the portion of the secondary circuit 212 of the heat exchanger 210 constitutes the secondary circuit C2 of the system 1 for producing hot water.

Afin de permettre le fonctionnement du système 1 dans différents modes, le module de gestion 40 est apte à commander le premier dispositif de vanne à trois voies 201, le deuxième dispositif de vanne à trois voies 202 et, le cas échéant, le troisième dispositif de vanne à trois voies 203, dans différentes configurations. Le module de gestion 40 reçoit également les mesures de températures faites par les capteurs de température 240, 250, 330, 350, 360, les mesures de débit effectuées par les débitmètres 230, 340 et est apte à commander la pompe de circulation 220, le fonctionnement de la pompe à chaleur 30, le thermoplongeur 120 et autres dispositifs montés dans le ballon 10 le cas échéant.In order to allow the operation of the system 1 in different modes, the management module 40 is able to control the first three-way valve device 201, the second three-way valve device 202 and, where appropriate, the third control device. three-way valve 203, in different configurations. The management module 40 also receives the temperature measurements made by the temperature sensors 240, 250, 330, 350, 360, the flow measurements made by the flow meters 230, 340 and is able to control the circulation pump 220, the operation of the heat pump 30, the immersion heater 120 and other devices mounted in the tank 10 if necessary.

L'invention va maintenant être décrite dans sa mise en oeuvre en référence aux figures 2 à 8.The invention will now be described in its implementation with reference to figures 2 to 8 .

Le système 1 selon l'invention peut avantageusement fonctionner dans plusieurs modes de fonctionnement. Plus particulièrement, le module de gestion 40 peut commander le premier dispositif de vanne à trois voies 201, le deuxième dispositif de vanne à trois voies 202 et le troisième dispositif de vanne à trois voies 203, ainsi que les débitmètres 230, 340, la pompe 220, le thermoplongeur 120 et le circulateur intégré 320 afin que le système 1 fonctionne dans différents modes.The system 1 according to the invention can advantageously operate in several operating modes. More particularly, the management module 40 can control the first three-way valve device 201, the second three-way valve device 202 and the third three-way valve device 203, as well as the flow meters 230, 340, the pump 220, immersion heater 120 and built-in circulator 320 so that system 1 operates in different modes.

Le système 1 peut ainsi avantageusement fonctionner selon un mode de démarrage, un mode stabilisé, un mode antigel, un mode anti-bactéries, un mode de retour et un mode de dégivrage.The system 1 can thus advantageously operate according to a starting mode, a stabilized mode, an antifreeze mode, an anti-bacteria mode, a return mode and a defrost mode.

Le mode de démarrage correspond à un régime transitoire mis en oeuvre lors du démarrage de la pompe à chaleur 30 après un puisage, c'est-à-dire une consommation, d'eau chaude dans le ballon 10. Un puisage d'eau chaude dans le ballon 10 entraîne un remplissage du ballon 10 par le point de distribution d'eau 5 et l'entrée froide 10EF de la partie basse du ballon 10. Une telle entrée d'eau froide modifie la température de l'eau en partie basse du ballon 10, qui est contrôlée par le thermostat de régulation TM1. Si la valeur mesurée par le thermostat de régulation 110 est inférieure à une consigne de stockage prédéterminée, par exemple de 60 °C, le module de gestion 40 commande le démarrage de la pompe à chaleur 30, notamment du circulateur intégré 320, et de la pompe de circulation 220 du module de transfert thermique 20.The starting mode corresponds to a transient regime implemented when starting the heat pump 30 after drawing off, that is to say consumption, of hot water in the tank 10. Drawing of hot water in the tank 10 causes the tank 10 to be filled by the water distribution point 5 and the cold inlet 10EF of the lower part of the tank 10. Such a cold water inlet modifies the temperature of the water in the lower part of the tank 10, which is controlled by the regulation thermostat TM1. If the value measured by the regulation thermostat 110 is less than a predetermined storage setpoint, for example 60 ° C, the management module 40 controls the start of the heat pump 30, in particular of the integrated circulator 320, and of the circulation pump 220 of the thermal transfer module 20.

Comme mentionné ci-dessus, le démarrage de la pompe à chaleur 30, juste après un puisage, ne peut conduire généralement à un régime stable. En effet, la température de l'eau à la sortie de l'échangeur de chaleur 210 du module de transfert thermique 20 mesurée par le capteur de température de régulation 250 est en principe inférieure à la valeur de consigne durant cette période transitoire. Dans ce cas, la voie d'entrée et la voie de dérivation du premier dispositif de vannes à trois voies 201 sont placées en position ouverte, la voie de sortie du premier dispositif de vanne à trois voies 201 est placée en position fermée, la voie de sortie et la voie de dérivation du deuxième dispositif de vanne à trois voies 202 sont placées en position ouverte, la voie d'entrée du deuxième dispositif de vanne à trois voies 202 est placée en position fermée, la voie d'entrée et la voie de sortie du troisième dispositif de vanne à trois voies 203 sont placées en position ouverte et la voie de dérivation du troisième dispositif de vanne à trois voies 203 est placée en position fermée afin que l'eau tiède repasse dans l'échangeur de chaleur 201 du module de transfert thermique 20, comme illustré sur la figure 2, jusqu'à ce que sa température soit égale ou supérieure à la consigne de production prédéterminée. En ce moment-là, la voie d'entrée et la voie de sortie du premier dispositif de vanne à trois voies 201 sont placées en position ouverte et la voie de dérivation du premier dispositif de vanne à trois voies 201 est placée en position fermée afin que l'eau chaude à la température désirée soit injectée dans le ballon 10.As mentioned above, starting the heat pump 30, just after drawing off, cannot generally lead to a stable regime. Indeed, the temperature of the water at the outlet of the heat exchanger 210 of the thermal transfer module 20 measured by the regulation temperature sensor 250 is in principle lower than the set value during this transient period. In this case, the inlet channel and the bypass channel of the first three-way valve device 201 are placed in the open position, the outlet channel of the first three-way valve device 201 is placed in the closed position, the channel outlet and the bypass path of the second three-way valve device 202 are placed in the open position, the inlet port of the second three-way valve device 202 is placed in the closed position, the inlet port and the outlet of the third three-way valve device 203 are placed in the open position and the bypass path of the third three-way valve device 203 is placed in the closed position so that the warm water passes back into the heat exchanger 201 of the thermal transfer module 20, as shown on figure 2 , until its temperature is equal to or greater than the predetermined production setpoint. At this time, the inlet port and the outlet port of the first three-way valve device 201 are set to the open position and the bypass port of the first three-way valve device 201 is set to the closed position in order to hot water at the desired temperature is injected into the tank 10.

Une fois le mode transitoire de démarrage réalisé, le système 1 fonctionne en mode stabilisé de production d'eau chaude. Ainsi, une fois en régime stabilisé, la température de l'eau produite au niveau de la sortie chaude 210SC de l'échangeur de chaleur 210 est constante et égale à la valeur de consigne de production prédéterminée. Pour basculer dans ce mode stabilisé, le module de gestion 40 commande la voie d'entrée et la voie de sortie du premier dispositif de vannes à trois voies 201 en position ouverte, la voie de dérivation du premier dispositif de vanne à trois voies 201 est placée en position fermée, la voie de dérivation et la voie de sortie du deuxième dispositif de vanne à trois voies 202 sont placées en position ouverte, la voie d'entrée du deuxième dispositif de vanne à trois voies 202 est placée en position fermée, la voie d'entrée et la voie de sortie du troisième dispositif de vanne à trois voies 203 sont placées en position ouverte et la voie de dérivation du troisième dispositif de vanne à trois voies 203 est placée en position fermée. L'eau circule ainsi, comme illustré sur la figure 3, dans le circuit secondaire C2, de l'entrée basse 10EB du ballon 10 jusqu'à l'entrée haute 10EH du ballon 10 en passant successivement par le deuxième dispositif de vannes à trois voies 202, la pompe de circulation 220, la portion de circuit secondaire 212 de l'échangeur 210, le débitmètre 230, le troisième dispositif de vannes à trois voies 203 et le premier dispositif de vannes à trois voies 201.Once the transient start-up mode has been achieved, system 1 operates in stabilized hot water production mode. Thus, once in a stabilized state, the temperature of the water produced at the hot outlet 210SC of the heat exchanger 210 is constant and equal to the predetermined production set point value. To switch to this stabilized mode, the management module 40 controls the inlet channel and the outlet channel of the first three-way valve device 201 in the open position, the bypass channel of the first three-way valve device 201 is placed in the closed position, the bypass and the outlet port of the second three-way valve device 202 are placed in the open position, the inlet port of the second three-way valve device 202 is placed in the closed position, the inlet and outlet port of the third three-way valve device 203 are placed in the open position and the bypass of the third three-way valve device 203 is placed in the closed position. The water circulates in this way, as shown in the figure 3 , in the secondary circuit C2, from the low inlet 10EB of the tank 10 to the high inlet 10EH of the tank 10 passing successively through the second three-way valve device 202, the circulation pump 220, the portion of secondary circuit 212 of the exchanger 210, the flowmeter 230, the third three-way valve device 203 and the first three-way valve device 201.

Le mode antigel permet, dans certaines conditions, notamment en saison hivernale, de parer au risque de gel dans le circuit primaire C1 (partie souvent installée à l'extérieur). Selon la température extérieure et l'humidité de l'air mesurées, la pompe à chaleur 30 peut lancer automatiquement l'opération d'antigel en utilisant la chaleur (énergie) du circuit secondaire C2 ou/et du ballon 10.The antifreeze mode makes it possible, under certain conditions, particularly in the winter season, to guard against the risk of frost in the primary circuit C1 (part often installed outside). Depending on the outside temperature and the humidity of the air measured, the heat pump 30 can automatically start the antifreeze operation using the heat (energy) from the secondary circuit C2 or / and from the tank 10.

Dans le cas où l'énergie stockée dans une partie du circuit secondaire C2 est suffisante, la température à la sortie du circuit secondaire C2 mesurée par le capteur de température de régulation 250 sera supérieure à la valeur de consigne d'antigel prédéterminée, la valeur à partir de laquelle l'opération d'antigel est assurée. Dans ce cas, le module de gestion 40 commande la voie de dérivation et la voie d'entrée du premier dispositif de vannes à trois voies 201 en position ouverte, la voie de sortie du premier dispositif de vanne à trois voies 201 en position fermée, la voie d'entrée et la voie de sortie du deuxième dispositif de vanne à trois voies 202 en position ouverte, la voie de dérivation du deuxième dispositif de vanne à trois voies 202 en position fermée, la voie d'entrée et la voie de sortie du troisième dispositif de vanne à trois voies 203 en position ouverte et la voie de dérivation du troisième dispositif de vanne à trois voies 203 en position fermée afin de mettre en oeuvre le mode antigel comme illustré sur la figure 4.In the event that the energy stored in a part of the secondary circuit C2 is sufficient, the temperature at the outlet of the secondary circuit C2 measured by the regulation temperature sensor 250 will be greater than the predetermined antifreeze setpoint value, the value from which the antifreeze operation is ensured. In this case, the management module 40 controls the bypass channel and the input channel of the first three-way valve device 201 in the open position, the output channel of the first three-way valve device 201 in the closed position, the inlet path and the outlet path of the second three-way valve device 202 in the open position, the bypass path of the second three-way valve device 202 in the closed position, the inlet path and the outlet path of the third three-way valve device 203 in the open position and the bypass path of the third three-way valve device 203 in the closed position in order to implement the anti-freeze mode as illustrated in the figure figure 4 .

Dans le cas contraire, où la chaleur (énergie) stockée dans la partie du circuit secondaire C2 n'est pas suffisante, le complément de la chaleur sera donc prélevé dans l'eau du ballon 10. Dans ce cas, le module de gestion 40 commande la voie d'entrée et la voie de sortie du deuxième dispositif de vanne à trois voies 202 en position ouverte, la voie de dérivation du deuxième dispositif de vanne à trois voies 202 en position fermée, la voie d'entrée et la voie de dérivation du troisième dispositif de vanne à trois voies 203 en position ouverte et la voie de sortie du troisième dispositif de vanne à trois voies 203 en position fermée afin de mettre en oeuvre le mode antigel comme illustré sur la figure 5. Il est à noter que le positionnement des trois voies du premier dispositif de vannes à trois voies n'a pas d'impact sur ce mode de fonctionnement.Otherwise, where the heat (energy) stored in the part of the secondary circuit C2 is not sufficient, the additional heat will therefore be taken from the water in the tank 10. In this case, the management module 40 controls the inlet and outlet path of the second three-way valve device 202 in the open position, the bypass path of the second three-way valve device 202 in the closed position, the inlet path and the bypass of the third three-way valve device 203 in the open position and the outlet of the third three-way valve device 203 in the closed position in order to implement the anti-freeze mode as illustrated in the figure figure 5 . It should be noted that the positioning of the three-way of the first three-way valve device has no impact on this operating mode.

Le mode anti-bactérie permet de détruire les bactéries présentes dans le ballon 10. En effet, il peut être nécessaire de prévenir le risque de prolifération de bactéries, notamment de type légionnelle, dans un système 1 de production d'eau chaude sanitaire. Le choc thermique est une solution efficace, souvent utilisée comme moyen préventif ou/et curatif. L'efficacité du traitement dépend de la température de l'eau utilisée et de la durée. De préférence, le choc thermique se réalise à 70°C pendant au moins 30 minutes ou à 60°C au moins une heure. La pompe à chaleur 30 à dioxyde de carbone est configurée pour produire de l'eau chaude de plus de 70°C.The anti-bacteria mode makes it possible to destroy the bacteria present in the tank 10. In fact, it may be necessary to prevent the risk of proliferation of bacteria, in particular of the legionella type, in a system 1 for producing domestic hot water. Thermal shock is an effective solution, often used as a preventive or / and curative means. The effectiveness of the treatment depends on the temperature of the water used and the duration. Preferably, the thermal shock takes place at 70 ° C for at least 30 minutes or at 60 ° C for at least one hour. The carbon dioxide heat pump 30 is configured to produce hot water above 70 ° C.

Le mode anti-bactéries du système 1 selon l'invention permet d'éviter l'utilisation de résistances électriques pour chauffer l'eau au-delà de 60° C, ce qui permet notamment de réduire le risque de défauts de fonctionnement et de réduire la consommation en énergie électrique du système 1. Le mode anti-bactéries peut être réalisé de deux façons avec le système 1 selon l'invention.The anti-bacteria mode of the system 1 according to the invention makes it possible to avoid the use of electrical resistances to heat the water above 60 ° C, which makes it possible in particular to reduce the risk of operating faults and to reduce the electrical energy consumption of the system 1. The anti-bacteria mode can be achieved in two ways with the system 1 according to the invention.

Dans un premier cas, en référence à la figure 6, le mode anti-bactéries est mis en oeuvre entièrement par la pompe à chaleur 30 en deux temps. Dans un premier temps, le module de gestion 40 commande, selon « mode anti-bactéries », la pompe à chaleur 30 et la pompe de circulation 220 afin d'augmenter la température de l'eau dans le ballon 10 à une consigne de température de traitement désirée à l'aide des capteurs de température de régulation 250 et 350, par exemple de 60°C + DT (°C), jusqu'environ à la hauteur du premier thermostat de régulation 110. Il est préférable de réaliser le choc thermique pendant une période où il n'y a pas de consommations (besoins) en eau chaude sanitaire. Dans ce cas, le ballon 10 se trouve pratiquement rempli en eau chaude à la température d'une consigne de stockage. La consigne de stockage d'eau chaude sanitaire peut par exemple avantageusement se situer entre 55°C et 60°C. La pompe à chaleur 30 a la capacité de permettre de produire de l'eau chaude avec une différence supérieure à 30°C entre l'entrée froide 210EF et la sortie chaude 210SC de l'échangeur de chaleur 210, ce qui permet aisément d'atteindre une température de 70°C après un passage à travers l'échangeur de chaleur 210. Dans un second temps, quand le premier thermostat de régulation 110 détecte une température très proche de 60°C (valeur à déterminer suivant la tolérance de la pompe à chaleur 30), le module de gestion 40 arrête le fonctionnement de la pompe à chaleur 30, mais laisse la pompe de circulation 220 continuer à fonctionner pendant une durée prédéterminée, appelée « durée de circulation », avant son arrêt afin que la température de l'eau chaude dans tout le ballon soit égale ou supérieure à la consigne de traitement souhaitée dans ce mode anti-bactéries. La valeur de DT (°C) peut être avantageusement choisie entre 5 et 10°C. Le temps de circulation (après l'arrêt de la pompe à chaleur 30) est à déterminer selon la répartition du volume du haut vers bas jusqu'au niveau du premier thermostat de régulation 110 (partie chaude) et celui du bas jusqu'à la hauteur du premier thermostat de régulation 110 (partie froide) du ballon 10, le débit de la pompe de circulation 220, la valeur de DT (°C) fixée et la température de l'eau en partie inférieure du ballon 10 suivant la saison.In a first case, with reference to the figure 6 , the anti-bacteria mode is implemented entirely by the heat pump 30 in two stages. Initially, the management module 40 controls, according to “anti-bacteria mode”, the heat pump 30 and the circulation pump 220 in order to increase the temperature of the water in the tank 10 to a temperature setpoint. desired treatment using the regulation temperature sensors 250 and 350, for example from 60 ° C + DT (° C), up to approximately the height of the first regulation thermostat 110. It is preferable to achieve the shock thermal during a period when there is no consumption (needs) of domestic hot water. In this case, the tank 10 is practically filled with hot water at the temperature of a storage setpoint. The domestic hot water storage setpoint can for example advantageously be between 55 ° C and 60 ° C. The heat pump 30 has the capacity to make it possible to produce hot water with a difference greater than 30 ° C between the cold inlet 210EF and the hot outlet 210SC of the heat exchanger 210, which easily allows to reach a temperature of 70 ° C after passing through the heat exchanger 210. Secondly, when the first control thermostat 110 detects a temperature very close to 60 ° C (value to be determined according to the tolerance of the pump heat 30), the management module 40 stops the operation of the heat pump 30, but lets the circulation pump 220 continue to operate for a predetermined period, called "circulation period", before stopping so that the temperature of the hot water in the entire tank is equal to or greater than the desired treatment setpoint in this anti-bacteria mode. The value of DT (° C) can be advantageously chosen between 5 and 10 ° C. The circulation time (after stopping the heat pump 30) is to be determined according to the distribution of the volume from top to bottom up to the level of the first regulation thermostat 110 (hot part) and that of the bottom up to the height of the first regulation thermostat 110 (cold part) of the tank 10, the flow rate of the circulation pump 220, the value of DT (° C) set and the temperature of the water in the lower part of the tank 10 depending on the season.

Dans un deuxième cas, où les conditions climatiques ne permettent pas de réaliser le choc thermique entièrement par la pompe à chaleur 30, le mode anti-bactéries est mis en oeuvre en deux étapes. Dans une première étape, le module de gestion 40 commande la pompe à chaleur 30 et la pompe de circulation 220 afin que la température de l'eau dans le ballon 10 augmente jusqu'à une valeur, régulée par le module de gestion 40 à partir des mesures envoyées par le capteur de température de régulation 250, jusqu'environ à la hauteur du premier thermostat de régulation 110. Dans une deuxième étape, une fois que le premier thermostat de régulation 110 détecte une température proche de 60°C (valeur à déterminer suivant la tolérance de la pompe à chaleur 30), le module de gestion 40 arrête le fonctionnement de la pompe à chaleur 30 et démarre aussitôt le thermoplongeur 120 jusqu'à ce que le premier thermostat de régulation 110 détecte une température de l'eau du ballon 10 égale ou supérieure à la valeur de consigne de traitement augmentée d'une valeur de température, par exemple de 5°C ou plus . La production d'eau chaude et l'injection dans le ballon 10 sont identiques à celles décrites précédemment. L'arrêt du thermoplongeur 120 et de la pompe de circulation 220 s'effectue par exemple 5 à 10 minutes plus tard à partir du moment où le premier thermostat de régulation 110 détecte une température de l'eau égale ou supérieure à la valeur de consigne de traitement augmentée de la valeur de température (+ 5°C ou plus dans cet exemple) afin d'assurer que le ballon 10 est entièrement rempli d'eau dont la température est égale ou légèrement supérieure à la consigne du traitement. Il est à noter que durant cette opération de choc thermique, la valeur de régulation appliquée au capteur de température de régulation 250 peut avantageusement être égale à la consigne du traitement + 5°C ou plus.In a second case, where the climatic conditions do not allow the thermal shock to be carried out entirely by the heat pump 30, the anti-bacteria mode is implemented in two stages. In a first step, the management module 40 controls the heat pump 30 and the circulation pump 220 so that the temperature of the water in the tank 10 increases to a value, regulated by the management module 40 from measurements sent by the regulation temperature sensor 250, up to approximately the height of the first regulation thermostat 110. In a second step, once the first regulation thermostat 110 detects a temperature close to 60 ° C (value at determine according to the tolerance of the heat pump 30), the management module 40 stops the operation of the heat pump 30 and immediately starts the immersion heater 120 until the first control thermostat 110 detects a water temperature of the balloon 10 equal to or greater than the treatment setpoint increased by a temperature value, for example by 5 ° C. or more. The production of hot water and the injection into the tank 10 are identical to those described above. The immersion heater 120 and the circulation pump 220 are stopped, for example, 5 to 10 minutes later from the moment when the first control thermostat 110 detects a water temperature equal to or greater than the set value. treatment increased by the temperature value (+ 5 ° C. or more in this example) in order to ensure that the tank 10 is completely filled with water, the temperature of which is equal to or slightly higher than the treatment setpoint. It should be noted that during this thermal shock operation, the regulation value applied to the regulation temperature sensor 250 can advantageously be equal to the treatment setpoint + 5 ° C. or more.

Un autre mode de fonctionnement est appelé « mode avec retour de bouclage dans le ballon ». En effet, dans la mesure où la pompe à chaleur 30 et le ballon 10 ont la capacité à la fois de répondre aux besoins en eau chaude sanitaire et en même temps de compenser les déperditions thermiques du circuit du bouclage d'eau chaude sanitaire par exemple, la production d'eau chaude sanitaire et l'injection de l'eau chaude produite dans le ballon 10 se produiront selon l'un des cas de figure décrits précédemment, mais la consigne du stockage (ou de production) et le positionnement du piquage 130 de retour bouclage doivent de préférence s'adapter au profil des consommations en eau chaude sanitaire et aux déperditions thermique du bouclage, par exemple dans le cas de la production d'eau chaude sanitaire.Another operating mode is called “mode with loopback return to the tank”. Indeed, insofar as the heat pump 30 and the tank 10 have the capacity both to meet the domestic hot water needs and at the same time to compensate for the heat losses of the domestic hot water circulation circuit for example , the production of domestic hot water and the injection of the hot water produced in the tank 10 will take place according to one of the cases described above, but the storage (or production) setpoint and the positioning of the tap Return circulation 130 should preferably be adapted to the profile of domestic hot water consumption and to the thermal losses of the looping, for example in the case of the production of domestic hot water.

Dans le cas où la pompe à chaleur 30 n'a pas la capacité d'assurer la compensation des déperditions thermiques du circuit de bouclage d'eau chaude, l'intégration d'un réchauffeur 260 de boucle peut être nécessaire comme un élément du module de transfert thermique 20 dont le fonctionnement et la consommation énergétique sont contrôlés par le module de gestion 40, comme illustré sur la figure 7. Le réchauffeur 260 de boucle reçoit l'eau située dans les tuyauteries du bouclage qui se refroidit en n'étant plus revenue dans le ballon, la réchauffe puis réinjecte directement l'eau ainsi chauffée dans le circuit de distribution d'eau chaude sans repasser dans le ballon 10.In the event that the heat pump 30 does not have the capacity to compensate for the heat losses of the hot water circulation circuit, the integration of a loop heater 260 may be necessary as an element of the module. thermal transfer unit 20, the operation and energy consumption of which are controlled by the management module 40, as illustrated in figure 7 . The loop heater 260 receives the water located in the loop pipes which cools down by no longer returning to the tank, heats it and then reinjects it. the water thus heated directly in the hot water distribution circuit without going back to the tank 10.

En mode de dégivrage, la pompe de circulation 220 est à l'arrêt et la pompe à chaleur 30 gère seule ce mode. Il n'y a donc pas d'impact sur le fonctionnement du module de transfert thermique 20 ou sur le ballon 10. En variante ou en complément, lorsque le module de transfert thermique 20 ou, comme illustré sur la figure 8, la pompe à chaleur 30 est équipé(e) d'une unité de chauffage 370 (comprenant par exemple au moins une résistance électrique ou tout autre moyen de chauffage adapté), l'énergie nécessaire pour l'opération d'antigel est fournie par ladite unité de chauffage 370. Dans ce cas, le troisième dispositif de vanne à trois voies 203 peut être supprimé, comme illustré sur la figure 8.In defrosting mode, the circulation pump 220 is stopped and the heat pump 30 manages this mode on its own. There is therefore no impact on the operation of the thermal transfer module 20 or on the balloon 10. As a variant or in addition, when the thermal transfer module 20 or, as illustrated in FIG. figure 8 , the heat pump 30 is equipped with a heating unit 370 (comprising for example at least one electrical resistance or any other suitable heating means), the energy necessary for the antifreeze operation is supplied by said heater unit 370. In this case, the third three-way valve device 203 can be omitted, as shown in the figure. figure 8 .

Claims (10)

  1. A thermal transfer module (20) for producing hot water, in particular domestic hot water, said thermal transfer module (20) being intended to be connected between a hot water storage tank (10) and a heat pump (30), said tank (10) comprising at least a so-called "high inlet" (10EH), a so-called "high outlet" (10SH), a so-called "low inlet" (10EB) and a so-called "low outlet" (10SB), said heat pump (30) comprising a so-called "hot outlet" (30SC) and a so-called "cold inlet" (30EF) and an inner heat exchanger (310) capable of providing heat between said hot outlet (30SC) and said cold inlet (30EF) by using carbon dioxide as a coolant, said thermal transfer module (20) comprising:
    - a first three-way valve device (201), comprising an inlet way, an outlet way, intended to be connected to the high inlet (10EH) of the tank (10), and a bypass way,
    - a heat exchanger (210) comprising, on the one hand, a so-called "hot inlet" (210EC) for being connected with the hot outlet (30SC) of the heat pump (30) and a so-called "cold outlet" (210SF) for being connected to the cold inlet (30EF) of the heat pump (30) and, on the other hand, a so-called "cold inlet" (210EF) and a so-called "hot outlet" (210SC) connected to the inlet way of the first three-way valve device (201),
    the thermal transfer module (20) comprising a second three-way valve device (202) comprising:
    - an inlet way for being connected to the low outlet (10SB) of the tank (10), said thermal transfer module being characterised in that the second three-way valve device (202) comprises:
    - an outlet way connected, on the one hand, to the cold inlet (210EF) of the heat exchanger (210) of the thermal transfer module (20) and, on the other hand, to the bypass way of the first three-way valve device (201), and
    - a by-pass way for being connected to a water dispensing point (5) and to the low inlet (10EB) of the tank (10).
  2. The thermal transfer module (20) according to claim 1, comprising, between the inlet way of the first three-way valve device (201) and the hot outlet (210SC) of the heat exchanger (210), a third three-way valve device (203) comprising:
    - an inlet way connected to the hot outlet (210SC) of the heat exchanger (210),
    - an outlet way connected to the inlet way of the first three-way valve device (201), and
    - a bypass way for being connected to the water dispensing point (5) and to the low inlet (10EB) of the tank (10).
  3. The thermal transfer module (20) according to one of the previous claims, comprising a hot water dispensing circuit (101) being connected to the high outlet (10SH) of the tank (10), a heater (260) capable of:
    - receiving water present in said hot water dispensing circuit (101),
    - heating water received, and
    - returning water thus heated into said hot water dispensing circuit (101).
  4. The thermal transfer module (20) according to one of the previous claims, wherein the first three-way valve device (201) and second three-way valve device (202) and, if applicable, the third three-way valve device (203) each come as a one-piece three-way valve.
  5. The thermal transfer module (20) according to the previous claim, wherein the first three-way valve device (201), second three-way valve device (202) and third three-way valve device (203) each come as a one-piece three-way solenoid valve.
  6. The thermal transfer module (20) according to one of claims 1 to 3, wherein at least one of the first three-way valve device (201), second three-way valve device (202) or, if applicable, third three-way valve device (203) each comprise two two-way valves connected to each other by one of their two ways in order to form a three-way valve device.
  7. The thermal transfer module (20) according to one of the previous claims, comprising a regulation temperature sensor (250) mounted between the hot outlet (210SC) of the heat exchanger (210) of the thermal transfer module (20) and the inlet way of the first three-way valve device (201).
  8. A system (1) for producing hot water, said system (1) comprising a thermal transfer module (20) according to one of the previous claims and a management module (40) capable of controlling the valves of the first three-way valve device (201), second three-way valve device (202) and, if applicable, third three-way valve device (203), in their different positions.
  9. The system (1) according to the previous claim, further comprising a heat pump (30), said heat pump (30) comprising a so-called "hot outlet" (30SC), connected to the hot inlet (210EC) of the heat exchanger (210) of the thermal transfer module (20), and a so-called "cold inlet" (30EF), connected to the cold outlet (210SF) of the heat exchanger (210) of the thermal transfer module (20), and being capable of providing heat between said hot outlet (30SC) and said cold inlet (30EF) by using carbon dioxide as a coolant.
  10. The system (1) according to one of claims 8 or 9, comprising a hot water storage tank (10), said tank (10) comprising at least a so-called "high inlet" (10EH) connected to the outlet way of the first three-way valve device (201), a so-called "high outlet" (10SH) for being connected to a hot water dispensing circuit (101), a so-called "low inlet" (10EB) connected to a water dispensing point (5) and a so-called "low outlet" (10SB) connected to the inlet way of the second three-way valve device (202), the bypass way of the second three-way valve device (202) being connected to the water dispensing point (5) and to the low inlet (10EB) of the tank (10).
EP19179677.0A 2018-06-13 2019-06-12 Heat transfer module for hot water production Active EP3581853B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1855153A FR3082606B1 (en) 2018-06-13 2018-06-13 THERMAL TRANSFER MODULE FOR THE PRODUCTION OF HOT WATER

Publications (2)

Publication Number Publication Date
EP3581853A1 EP3581853A1 (en) 2019-12-18
EP3581853B1 true EP3581853B1 (en) 2021-08-04

Family

ID=63407421

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19179677.0A Active EP3581853B1 (en) 2018-06-13 2019-06-12 Heat transfer module for hot water production

Country Status (2)

Country Link
EP (1) EP3581853B1 (en)
FR (1) FR3082606B1 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4498622A (en) * 1983-05-23 1985-02-12 Borg-Warner Corporation Quick recovery heat pump water heater
JP4988486B2 (en) * 2007-05-31 2012-08-01 株式会社コロナ Hot water storage water heater
JP5012695B2 (en) * 2008-06-26 2012-08-29 株式会社デンソー Hot water system
CN103415749B (en) * 2011-03-09 2015-09-09 东芝开利株式会社 Binary refrigeration cycle device
FR2995979B1 (en) * 2012-09-24 2018-09-21 Electricite De France INSTALLATION OF HEATING WATER HEATER WITH HEATING FUNCTION
JP2015175540A (en) * 2014-03-14 2015-10-05 パナソニックIpマネジメント株式会社 Heat exchange device for hot water supply and hot water supply device including the same
FR3031575B1 (en) 2015-01-12 2018-11-16 Lacaze Energies THERMAL TRANSFER MODULE WITH ASSOCIATED REGULATION FOR THERMODYNAMIC SYSTEM FOR HOT WATER PRODUCTION
JP2016217657A (en) * 2015-05-22 2016-12-22 ダイキン工業株式会社 Hydraulic temperature adjustment unit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
FR3082606A1 (en) 2019-12-20
FR3082606B1 (en) 2020-07-03
EP3581853A1 (en) 2019-12-18

Similar Documents

Publication Publication Date Title
EP1963758A1 (en) Refrigeration-generation solar unit for an air-conditioning system, heat-generation solar unit, corresponding devices and corresponding control method
FR2982661A1 (en) INSTALLATION FOR TEMPERATURE CONTROL AND HOT WATER PRODUCTION AND METHOD FOR IMPLEMENTING SUCH INSTALLATION
EP1724531B1 (en) System and method for heating sanitary hot water using residual heat of waste water
EP1978311A2 (en) System solar heating autonomous and independent of another energy source
EP3129729A1 (en) Energy system with improved efficiency
WO2014044864A1 (en) Domestic water heating facility having a heating function
FR2501837A1 (en) HEATING SYSTEM COMPRISING A HEATING BOILER AND A HEAT PUMP
RU2668861C2 (en) In-line heated solar thermal storage collector
EP3581853B1 (en) Heat transfer module for hot water production
EP3108196A1 (en) Thermal energy storage and delivery device
EP2863130A1 (en) System for the thermal regulation of a building
WO2013093246A1 (en) Method for managing a heat pump system, heat pump system, and heating equipment including such a system
EP3044521B1 (en) Solar energy system for domestic hot water production and cooling
EP0117796B1 (en) Air conditioning installation for a building
FR3088990A1 (en) Heating system
FR2912809A1 (en) Solar heating system for e.g. industrial building, has tanks supplied with solar energy, where system uses coolant presenting high ebullition temperature, low volatility, low kinematic viscosity coefficient and low expansion coefficient
EP3910249B1 (en) System for producing and distributing heat and cold and method for managing same
FR2946126A1 (en) Heating device for heating e.g. kitchen of dwelling, has auxiliary configuration in which circulation of fluid in secondary branch is authorized, so that buried sensor, calorie intake source and heat pump are set in series on closed loop
EP3480526B1 (en) Installation for heating and/or for producing domestic hot water in a building
FR2937410A1 (en) Heat pump for transporting e.g. refrigerant, in e.g. building, has compressor protection kit collecting excess energy to protect movement setting unit, with temperature of fluid at suction compatible with characteristics of compressor
FR2913755A1 (en) Ventilation device for heat regulation system of e.g. dwelling, has turbine mounted in cylindrical case and comprising rotation shaft integrated to ventilation unit, where turbine is rotated by circulation of heat transfer fluid in case
EP3660415A1 (en) Apparatus for thermal control of a building, associated installation and method
FR3115098A1 (en) Thermodynamic heater with optimized regulation
FR3046667A1 (en) IMPROVED HEATING AND COOLING INSTALLATION, ESPECIALLY OF A LOCAL, AND METHODS OF CONTROLLING AND PLACING SAID INSTALLATION
WO2009143933A2 (en) Self-contained solar heating system separate from another energy source

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200609

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201208

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

INTC Intention to grant announced (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20210511

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1417357

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210815

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019006550

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210804

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1417357

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211104

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211206

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211104

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602019006550

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602019006550

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220612

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220612

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230103

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20190612