EP3577346B1 - Turboverdichter mit integrierten strömungskanälen - Google Patents

Turboverdichter mit integrierten strömungskanälen Download PDF

Info

Publication number
EP3577346B1
EP3577346B1 EP18729652.0A EP18729652A EP3577346B1 EP 3577346 B1 EP3577346 B1 EP 3577346B1 EP 18729652 A EP18729652 A EP 18729652A EP 3577346 B1 EP3577346 B1 EP 3577346B1
Authority
EP
European Patent Office
Prior art keywords
compressor
impeller
turbo
flow channels
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18729652.0A
Other languages
English (en)
French (fr)
Other versions
EP3577346A1 (de
Inventor
Walter Hofmann
Rolf Bickel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebm Papst Mulfingen GmbH and Co KG
Original Assignee
Ebm Papst Mulfingen GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebm Papst Mulfingen GmbH and Co KG filed Critical Ebm Papst Mulfingen GmbH and Co KG
Publication of EP3577346A1 publication Critical patent/EP3577346A1/de
Application granted granted Critical
Publication of EP3577346B1 publication Critical patent/EP3577346B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • F04D17/122Multi-stage pumps the individual rotor discs being, one for each stage, on a common shaft and axially spaced, e.g. conventional centrifugal multi- stage compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/16Combinations of two or more pumps ; Producing two or more separate gas flows
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps

Definitions

  • the invention relates to a turbo compressor, particularly for use in refrigeration technology.
  • Turbo compressors are a separate type of compressor in which energy is added to a flowing fluid through one or more rotating impellers. Turbo compressors work continuously and are characterized by a low pressure increase per compressor stage and a high volume throughput.
  • Both radial and axial compressors are known types, with the radial compressor having the fluid sucked axially into the impeller of the compressor stage and then blown out radially outwards.
  • flow is diverted behind each compressor stage.
  • the invention is therefore based on the object of providing a more compact turbo compressor for use in refrigeration technology, which has a lower pressure loss.
  • a turbocompressor with a compressor housing in which at least a first compressor stage and a second compressor stage are provided, with an impeller being arranged on a drive shaft in each of the first and second compressor stages and the impellers each generating a compressor flow during operation.
  • Within the compressor housing there are several flow channels integrated into the compressor housing, which flow connect the first and second stages and are arranged evenly distributed over a circumference of the compressor housing.
  • the flow cross section of each individual flow channel can be reduced and adjusted as required.
  • the flow guidance of the flow fluid between the first and second compressor stages can therefore also be locally influenced over the circumference of the compressor housing, so that the proportions of static and dynamic pressure can be variably coordinated or determined.
  • each individual flow channel is shorter due to the design integrated into the compressor housing and therefore the pressure losses are reduced.
  • the integration of the Flow channels in the compressor housing also reduce the overall structure and space requirements of the turbo compressor, increase robustness and reduce assembly effort.
  • the flow channels are arranged symmetrically distributed over the entire circumference of the compressor housing.
  • the symmetrical distribution enables a symmetrical outflow from the first compressor stage and a symmetrical inflow into the second compressor stage. This promotes an even flow distribution and therefore the efficiency of the turbo compressor.
  • the sum of the flow channel cross-sectional area (A1+A2+...+An) forms a total cross-sectional area that is greater than or equal to the product of the impeller diameter (Ur) of the impeller of the first compressor stage, the blow-out width (Sar) of the impeller of the first compressor stage and ⁇ . It follows that A1+A2+...+An ⁇ Ur ⁇ Sar ⁇ .
  • the flow channels have an oval flow channel cross section. It can be envisaged as an exemplary embodiment that the flow channel cross sections of the flow channels each have a cross section height (I) which is greater than or equal to a cross section width (b) running in the radial direction, the cross section height running perpendicular to the cross section width. We therefore have l ⁇ b.
  • the flow channels are three-dimensionally curved along their axial extent in the circumferential direction, ie the flow channels extend simultaneously in the axial direction and in the circumferential direction within the compressor housing.
  • the uniform distribution of the flow channels over the circumference of the compressor housing also includes a solution in which the compressor housing, when seen in an axial sectional view, is divided into four quadrants of equal size distributed around the direction of rotation of the impellers, has at least one flow channel in each of the four quadrants .
  • turbo compressor is characterized in that the impeller of the first compressor stage is separated in the axial direction from the impeller of the second compressor stage by an intermediate plate.
  • the turbocompressor is designed as a radial compressor, with the flow of the impeller of the first compressor stage being guided radially outwards along the intermediate plate and introduced into the flow channels in the radial outer area of the compressor housing.
  • the impeller of the first compressor stage is designed to be identical to the impeller of the second compressor stage.
  • a variant is also included in which the two impellers are designed to be identical in construction but of different dimensions, so that, for example, the impeller of the second compressor stage is larger than that of the first compressor stage.
  • a design of the turbo compressor in which the impeller of the first compressor stage has curved impeller blades is also advantageous in terms of flow technology, with a direction of curvature of the impeller blades running opposite to a bending direction of the flow channels which are curved in the circumferential direction.
  • the compressor housing is designed in one piece.
  • the flow channels can be achieved, for example, by the chill casting process known to those skilled in the art using lost core technology (e.g. lost core technology).
  • the compressor housing is at least partially formed from solid material and the flow channels extend through the solid material of the compressor housing.
  • the turbo compressor is preferably designed as a turbo refrigerant compressor in a radial compressor design.
  • the Figures 1 and 2 show a schematic example of an exemplary embodiment of a first and second compressor stage 13, 14 of a turbo compressor 1 in a partially cutaway view, wherein the turbo compressor 1 is designed as a turbo refrigerant compressor in a type of radial compressor.
  • the turbo compressor 1 has a one-piece compressor housing 2 with a drive shaft 12 extending therein along the axis of rotation, on which both the impeller 5 of the first compressor stage 13 and the impeller 6 of the second compressor stage 14 are attached.
  • the two impellers 5, 6 are spatially and fluidly separated in the axial direction by the intermediate plate 16.
  • the impeller 5 of the first compressor stage 13 sucks in a flow fluid axially parallel to the drive shaft 12 and forces it radially into the outlet diffuser 8, which extends radially outwards in the compressor housing 2, where it then enters the plurality of flow channels 4.
  • the flow channels 4 are symmetrical arranged evenly distributed over the entire circumference of the compressor housing 2 and integrated into the compressor housing 2. In doing so, they create a flow connection between the first and second compressor stages 13, 14.
  • the flow channels 4 end in the axial chamber 10 in front of the impeller 6 of the second compressor stage 14, so that the flow fluid can be sucked in axially by the impeller 6 and can be conveyed radially in the direction of the outlet 9.
  • the impellers 5, 6 each have impeller blades 17, 18 curved in the same direction.
  • the impellers 5, 6 are identical in type and design, they are just dimensioned differently.
  • Figure 2 shows a schematic axial top view from the side of the first compressor stage 13 Figure 1 with a representation of the course of the flow channels 4 as well as their cross-sectional size and cross-sectional shape.
  • Distributed symmetrically over the circumference of the compressor housing 2 and in identical radian dimensions a1, a2 are six geometrically identically shaped flow channels 4, each with a substantially oval flow channel cross-section 7, which is characterized by a cross-sectional height l and a cross-sectional width b, the cross-sectional width b in the radial direction and the cross-sectional height l runs perpendicular to this, ie in the tangential direction.
  • the cross-sectional height l is greater than the cross-sectional width b by a factor of 1.2.
  • the area of all flow channel cross sections 7 is larger than the product of a diameter of the impeller 5 of the first compressor stage 13, the blow-out width Sar of the impeller 5 of the first compressor stage 13 and ⁇ .
  • At least one flow channel 4 runs in each of the four quadrants.
  • a multi-part compressor housing can also be used, in which the first and second compressor stages are further axially spaced apart.
  • the flow channels are then integrated, for example, into a radial outer edge section of the compressor housing. Further components of the turbo compressor are not shown unless they are relevant to understanding the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

  • Die Erfindung betrifft einen Turboverdichter, insbesondere zum Einsatz in der Kältetechnik.
  • Turboverdichter sind eine eigene Gattung der Verdichter, bei denen durch ein oder mehrere rotierende Laufräder einem strömenden Fluid Energie zugesetzt wird. Turboverdichter arbeiten kontinuierlich und sind durch eine geringe Druckerhöhung pro Verdichterstufe und hohen Volumendurchsatz gekennzeichnet.
  • Als Bauarten sind sowohl Radial- als auch Axialverdichter bekannt, wobei beim Radialverdichter das Fluid axial in das Laufrad der Verdichterstufe angesaugt und anschließend nach radial außen ausgeblasen wird. Bei mehrstufigen Radialverdichtern erfolgt deshalb hinter jeder Verdichterstufe eine Strömungsum lenkung.
  • Bei einem zweistufigen Turboverdichter ist es notwendig und aus dem Stand der Technik bekannt, einen Strömungskanal zwischen der ersten und der zweiten Verdichterstufe vorzusehen. Bei bekannten Lösungen erfolgt dies zumeist durch eine Überleitung der Strömung von der ersten zur zweiten Verdichterstufe durch eine außerhalb des Verdichtergehäuses verlaufende Rohrleitung.
  • Dabei ist nachteilig, dass es durch die Rohrleitung zu einem unerwünscht hohen Druckverlust kommt. Zudem sind die Anteile an dynamischem und statischem Druck festgelegt und nicht beeinflussbar. Schließlich ist der Raumbedarf des Turboverdichters mit außerhalb des Verdichtergehäuses verlaufender Rohrleitung zur Verbindung der ersten und zweiten Verdichterstufe hoch. Druckschriftlicher Stand der Technik im vorliegenden technischen Gebiet ist in den Dokumenten GB 831,409 A , GB 753,231 A , GB 806,135 A , US 2017 030 372 A1 , EP 174 992 A1 und CN 106762841 A offenbart.
  • Der Erfindung liegt deshalb die Aufgabe zugrunde, einen kompakter bauenden Turboverdichter zum Einsatz in der Kältetechnik bereitzustellen, der einen geringeren Druckverlust aufweist.
  • Diese Aufgabe wird durch die Merkmalskombination gemäß Patentanspruch 1 gelöst.
  • Erfindungsgemäß wird ein Turboverdichter mit einem Verdichtergehäuse vorgeschlagen, in dem zumindest eine erste Verdichterstufe und eine zweite Verdichterstufe vorgesehen sind, wobei in der ersten und zweiten Verdichterstufe jeweils ein Laufrad auf einer Antriebswelle angeordnet ist und die Laufräder im Betrieb jeweils eine Verdichterströmung erzeugen. Innerhalb des Verdichtergehäuses sind mehrere in das Verdichtergehäuse integrierte, die erste und die zweite Stufe strömungsverbindende Strömungskanäle vorgesehen, die gleichmäßig über einen Umfang des Verdichtergehäuses verteilt angeordnet sind.
  • Durch den Einsatz einer Vielzahl von Strömungskanälen lässt sich der Strömungsquerschnitt jedes einzelnen Strömungskanals reduzieren und bedarfsgemäß anpassen. Die Strömungsführung des Strömungsfluids zwischen der ersten und zweiten Verdichterstufe ist mithin ebenfalls über den Umfang des Verdichtergehäuses verteilt lokal beeinflussbar, so dass die Anteile von statischem und dynamischem Druck variabel abgestimmt bzw. festgelegt werden können.
  • Weiterhin ist vorteilhaft, dass die Gesamtlänge jedes einzelnen Strömungskanals durch die in das Verdichtergehäuse integrierte Ausbildung kürzer ist und sich auch deshalb die Druckverluste verringern. Die Integration der Strömungskanäle in das Verdichtergehäuse verkleinert zudem den Gesamtaufbau und Raumbedarf des Turboverdichters, erhöht die Robustheit und verringert den Montageaufwand.
  • In einer vorteilhaften Ausführungsvariante des Turboverdichters ist vorgesehen, dass die Strömungskanäle symmetrisch über den gesamten Umfang des Verdichtergehäuses verteilt angeordnet sind. Die symmetrische Verteilung ermöglicht eine symmetrische Abströmung aus der ersten Verdichterstufe und eine symmetrische Zuströmung in die zweite Verdichterstufe. Dies fördert eine gleichmäßige Strömungsverteilung und mithin den Wirkungsgrad des Turboverdichters.
  • Ferner ist bei dem Turboverdichter als Ausführung vorsehbar, dass die Summe der Strömungskanalquerschnittsfläche (A1+A2+...+An) eine Gesamtquerschnittsfläche bildet, die größer oder gleich dem Produkt aus Laufraddurchmesser (Ur) des Laufrads der ersten Verdichterstufe, der Ausblasbreite (Sar) des Laufrads der ersten Verdichterstufe und π ist. Es gilt folglich A1+A2+...+An ≥ Ur · Sar ·π.
  • In einer strömungstechnisch vorteilhaften Ausführungsform weisen die Strömungskanäle einen ovalen Strömungskanalquerschnitt auf. Dabei ist als Ausführungsbeispiel vorsehbar, dass die Strömungskanalquerschnitte der Strömungskanäle jeweils eine Querschnittshöhe (I) aufweisen, die größer oder gleich groß zu einer in Radialrichtung verlaufenden Querschnittsbreite (b) ist, wobei die Querschnittshöhe senkrecht zur Querschnittsbreite verläuft. Es gilt somit l ≥ b.
  • Ferner ist bei dem Turboverdichter erfindungsgemäß vorgesehen, dass die Strömungskanäle entlang ihrer Axialerstreckung in Umfangsrichtung dreidimensional gebogen verlaufen, d.h. die Strömungskanäle erstrecken sich gleichzeitig in axialer Richtung und in Umfangsrichtung innerhalb des Verdichtergehäuses.
  • Die über den Umfang des Verdichtergehäuses gleichmäßige Verteilung der Strömungskanäle umfasst zudem eine Lösung, bei der das Verdichtergehäuse, wenn es in einer axialen Schnittansicht gesehen in vier gleich große um die Rotationsache der Laufräder verteilte Quadranten aufgeteilt ist, in jedem der vier Quadranten mindestens einen Strömungskanal aufweist.
  • Ferner ist eine Ausführungsvariante umfasst, bei der der Turboverdichter dadurch gekennzeichnet ist, dass das Laufrad der ersten Verdichterstufe in axialer Richtung von dem Laufrad der zweiten Verdichterstufe durch eine Zwischenplatte getrennt ist. Der Turboverdichter wird als Radialverdichter ausgebildet, wobei die Strömung des Laufrads der ersten Verdichterstufe entlang der Zwischenplatte nach radial außen geführt und im radialen Außenbereich des Verdichtergehäuses in die Strömungskanäle eingeleitet wird.
  • In einem Ausführungsbeispiel ist ferner vorgesehen, dass das Laufrad der ersten Verdichterstufe baugleich zu dem Laufrad der zweiten Verdichterstufe ausgebildet ist. Auch ist eine Variante umfasst, bei der die beiden Laufräder baugleich, jedoch unterschiedlich dimensioniert ausgebildet sind, so dass beispielsweise das Laufrad der zweiten Verdichterstufe größer baut als dasjenige der ersten Verdichterstufe.
  • Strömungstechnisch günstig ist ferner eine Ausführung des Turboverdichters, bei der das Laufrad der ersten Verdichterstufe gekrümmte Laufradschaufeln aufweist, wobei eine Krümmungsrichtung der Laufradschaufeln einer Biegungsrichtung der in Umfangsrichtung gebogen verlaufenden Strömungskanäle entgegenläuft.
  • In einer bezüglich der Teilezahl und des Montageaufwandes vorteilhaften Ausführungsform ist das Verdichtergehäuse einteilig ausgebildet. Bei einem einteiligen Verdichtergehäuse können die Strömungskanäle beispielsweise durch das dem Fachmann in der Technik bekannte Kokillengussverfahren mit Lost-Core-Technik (bspw. Kern-Ausschmelz-Technik) erreicht werden.
  • Dabei ist erfindungsgemäß vorgesehen, dass das Verdichtergehäuse zumindest teilweise aus Vollmaterial gebildet ist und sich die Strömungskanäle durch das Vollmaterial des Verdichtergehäuses hindurch erstrecken.
  • Der Turboverdichter ist vorzugsweise als Turbokältemittelverdichter in einer Bauart als Radialverdichter ausgebildet.
  • Andere vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen gekennzeichnet bzw. werden nachstehend zusammen mit der Beschreibung der bevorzugten Ausführung der Erfindung anhand der Figuren näher dargestellt. Es zeigen:
  • Fig. 1
    eine teilweise aufgeschnittene Ansicht der ersten und zweiten Verdichterstufe eines Turboverdichters;
    Fig. 2
    eine schematische axiale Draufsicht von der Seite der ersten Verdichterstufe.
  • Die Figuren 1 und 2 zeigen beispielhaft schematisch ein Ausführungsbeispiel einer ersten und zweiten Verdichterstufe 13, 14 eines Turboverdichters 1 in einer teilweise aufgeschnittenen Ansicht, wobei der Turboverdichter 1 als Turbokältemittelverdichter in einer Bauart eines Radialverdichters ausgebildet ist. Der Turboverdichter 1 weist ein einteiliges Verdichtergehäuse 2 mit einer darin sich entlang der Rotationsachse erstreckender Antriebswelle 12 auf, auf der sowohl das Laufrad 5 der ersten Verdichterstufe 13 als auch das Laufrad 6 der zweiten Verdichterstufe 14 befestigt sind. Die beiden Laufräder 5, 6 sind in axialer Richtung durch die Zwischenplatte 16 räumlich und strömungstechnisch getrennt. Das Laufrad 5 der ersten Verdichterstufe 13 saugt im Betrieb axial parallel zur Antriebswelle 12 ein Strömungsfluid an und drängt es radial in den sich in dem Verdichtergehäuse 2 nach radial auswärts erstreckenden Austrittsdiffusor 8, wo es anschließend in die Vielzahl der Strömungskanäle 4 eintritt. Die Strömungskanäle 4 sind symmetrisch über den gesamten Umfang des Verdichtergehäuses 2 gleichmäßig verteilt angeordnet und in das Verdichtergehäuse 2 integriert. Dabei erzeugen sie eine Strömungsverbindung zwischen der ersten und der zweiten Verdichterstufe 13, 14. In der zweiten Verdichterstufe 14 enden die Strömungskanäle 4 in der Axialkammer 10 vor dem Laufrad 6 der zweiten Verdichterstufe 14, so dass das Strömungsfluid von dem Laufrad 6 axial ansaugbar ist und radial in Richtung des Auslasses 9 gefördert werden kann. Die Laufräder 5, 6 weisen jeweils in gleicher Richtung gekrümmte Laufradschaufel 17, 18 auf. Zudem sind die Laufräder 5, 6 von der Art und Ausbildung baugleich, lediglich unterschiedlich groß dimensioniert.
  • Figur 2 zeigt eine schematische axiale Draufsicht von der Seite der ersten Verdichterstufe 13 aus Figur 1 mit einer Darstellung des Verlaufs der Strömungskanäle 4 sowie deren Querschnittsgröße und Querschnittsform. Über den Umfang des Verdichtergehäuses 2 symmetrisch und im jeweils identischen Bogenmaß a1, a2 verteilt sind sechs geometrisch identisch geformte Strömungskanäle 4 mit jeweils einem im Wesentlichen ovalen Strömungskanalquerschnitt 7, der durch eine Querschnittshöhe l und eine Querschnittsbreite b gekennzeichnet ist, wobei die Querschnittsbreite b in Radialrichtung und die Querschnittshöhe l senkrecht hierzu, d.h. in Tangentialrichtung verläuft. Die Querschnittshöhe l ist in der gezeigten Ausführung um den Faktor 1,2 größer als die Querschnittsbreite b. Die Fläche aller Strömungskanalquerschnitte 7 ist größer als das Produkt aus einem Durchmesser des Laufrads 5 der ersten Verdichterstufe 13, der Ausblasbreite Sar des Laufrads 5 der ersten Verdichterstufe 13 und π.
  • Wieder bezugnehmend auf Figur 2 ist der Verlauf der Strömungskanäle 4 unter Darstellung der verdeckten Kanten dargestellt, wobei zu erkennen ist, dass die Strömungskanäle jeweils entlang ihrer Axialerstreckung in Umfangsrichtung dreidimensional gebogen verlaufen und eine Sternform bilden. Die Krümmung der Laufradschaufeln 17 des Laufrads 5 der ersten Verdichterstufe 13 laufen bezüglich ihrer Krümmungsrichtung entgegengesetzt zur Biegungsrichtung der Strömungskanäle 4 in Umfangsrichtung.
  • In der Ansicht gemäß Figur 2 ist ferner zu erkennen, dass in jedem der vier Quadranten mindestens einen Strömungskanal 4 verläuft.
  • Die Erfindung beschränkt sich in ihrer Ausführung nicht auf das vorstehend angegebene Ausführungsbeispiel. Vielmehr kann auch ein mehrteiliges Verdichtergehäuse verwendet werden, bei dem die erste und zweite Verdichterstufe axial weiter beabstandet sind. Die Strömungskanäle werden dann beispielsweise in einen radialen Außenrandabschnitt des Verdichtergehäuses integriert. Weitere Bauteile des Turboverdichters sind nicht dargestellt, soweit sie für das Verständnis der Erfindung nicht relevant sind.

Claims (11)

  1. Turboverdichter (1) mit einem Verdichtergehäuse (2), in dem zumindest eine erste Verdichterstufe (13) und eine zweite Verdichterstufe (14) vorgesehen sind, wobei in der ersten und zweiten Verdichterstufe (13, 14) jeweils ein Laufrad (5, 6) auf einer Antriebswelle (12) angeordnet ist und die Laufräder (5, 6) im Betrieb jeweils eine Verdichterströmung erzeugen, wobei innerhalb des Verdichtergehäuses (2) mehrere in das Verdichtergehäuse (2) integrierte, die erste und die zweite Verdichterstufe (13, 14) strömungsverbindende Strömungskanäle (4) vorgesehen sind, die gleichmäßig über einen Umfang des Verdichtergehäuses (2) verteilt angeordnet sind, wobei das Verdichtergehäuse (2) zumindest teilweise aus Vollmaterial gebildet ist und sich die Strömungskanäle (4) durch das Vollmaterial des Verdichtergehäuses (2) hindurch erstrecken, dadurch gekennzeichnet, dass die Strömungskanäle (4) entlang ihrer Axialerstreckung in Umfangsrichtung dreidimensional gebogen verlaufen.
  2. Turboverdichter nach Anspruch 1, dadurch gekennzeichnet, dass die Strömungskanäle (4) symmetrisch über den gesamten Umfang des Verdichtergehäuses (2) verteilt angeordnet sind.
  3. Turboverdichter nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Strömungskanäle (4) jeweils eine Strömungskanalquerschnittsfläche (A1, A2, ... An) aufweisen und die Summe der Strömungskanalquerschnittflächen eine Gesamtquerschnittsfläche bildet, die größer oder gleich einem Produkt aus einem Durchmesser (Ur) des Laufrads (5) der ersten Verdichterstufe (13), einer Ausblasbreite (Sar) des Laufrads (5) der ersten Verdichterstufe (13) und π, so dass gilt A1+A2+... +An ≥ Ur · Sar · π.
  4. Turboverdichter nach einem der vorigen Ansprüche, dadurch gekennzeichnet, dass die Strömungskanäle (4) einen ovalen Strömungskanalquerschnitt aufweisen.
  5. Turboverdichter nach einem der vorigen Ansprüche, dadurch gekennzeichnet, dass die Strömungskanalquerschnitte der Strömungskanäle (4) jeweils eine Querschnittshöhe (l) aufweisen, die größer oder gleich groß zu einer in Radialrichtung verlaufenden Querschnittsbreite (b) ist, wobei die Querschnittshöhe (l) senkrecht zur Querschnittsbreite (b) verläuft, so dass gilt l ≥ b.
  6. Turboverdichter nach einem der vorigen Ansprüche, dadurch gekennzeichnet, dass das Verdichtergehäuse (2), das in einer axialen Schnittansicht gesehen in vier gleich große um eine Rotationsachse verteilte Quadranten aufteilbar ist, in jedem der vier Quadranten mindestens einen Strömungskanal (4) aufweist.
  7. Turboverdichter nach einem der vorigen Ansprüche, dadurch gekennzeichnet, dass das Laufrad (5) der ersten Verdichterstufe (13) in axialer Richtung von dem Laufrad (6) der zweiten Verdichterstufe (14) durch eine Zwischenplatte (16) getrennt ist.
  8. Turboverdichter nach einem der vorigen Ansprüche, dadurch gekennzeichnet, dass das Laufrad (5) der ersten Verdichterstufe (13) baugleich zu dem Laufrad (6) der zweiten Verdichterstufe (14) ausgebildet ist.
  9. Turboverdichter nach einem der vorigen Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das Laufrad (5) der ersten Verdichterstufe (13) gekrümmte Laufradschaufeln (17) aufweist, wobei eine Krümmungsrichtung der Laufradschaufeln (17) einer Biegungsrichtung der Strömungskanäle (4) in Umfangsrichtung entgegenläuft.
  10. Turboverdichter nach einem der vorigen Ansprüche, dadurch gekennzeichnet, dass das Verdichtergehäuse (2) einteilig ausgebildet ist.
  11. Turboverdichter nach einem der vorigen Ansprüche ausgebildet als Turbokältemittelverdichter.
EP18729652.0A 2017-06-27 2018-06-05 Turboverdichter mit integrierten strömungskanälen Active EP3577346B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017114233.9A DE102017114233A1 (de) 2017-06-27 2017-06-27 Turboverdichter mit integrierten Strömungskanälen
PCT/EP2018/064773 WO2019001911A1 (de) 2017-06-27 2018-06-05 Turboverdichter mit integrierten strömungskanälen

Publications (2)

Publication Number Publication Date
EP3577346A1 EP3577346A1 (de) 2019-12-11
EP3577346B1 true EP3577346B1 (de) 2024-02-14

Family

ID=61824148

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18729652.0A Active EP3577346B1 (de) 2017-06-27 2018-06-05 Turboverdichter mit integrierten strömungskanälen

Country Status (4)

Country Link
EP (1) EP3577346B1 (de)
CN (1) CN207212697U (de)
DE (1) DE102017114233A1 (de)
WO (1) WO2019001911A1 (de)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106762841A (zh) * 2016-12-05 2017-05-31 珠海格力电器股份有限公司 一种回流器与扩压器一体化结构及离心压缩机

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB753231A (en) * 1953-08-29 1956-07-18 Austin Motor Co Ltd Centrifugal compressors
CH331941A (de) * 1955-01-27 1958-08-15 Buechi Alfred J Dipl Ing Verfahren zur Herstellung eines Satzes von Zentrifugalfördermaschinen und nach diesem Verfahren hergestellter Maschinensatz
GB806135A (en) * 1956-03-09 1958-12-17 Bbc Brown Boveri & Cie Improvements in or relating to multi-stage centrifugal compressors
GB831409A (en) * 1957-05-29 1960-03-30 Oerlikon Maschf Improvements in or relating to multi-stage centrifugal compressors
ITTO20050558A1 (it) * 2005-08-05 2007-02-06 Fiat Ricerche Motocompressore a piu' stadi per la compressione di fluidi, ad esempio per autoveicoli
JP5611307B2 (ja) * 2012-11-06 2014-10-22 三菱重工業株式会社 遠心回転機械のインペラ、遠心回転機械
JP6133748B2 (ja) * 2013-10-09 2017-05-24 三菱重工業株式会社 インペラ及びこれを備える回転機械
FR3019860B1 (fr) * 2014-04-10 2016-05-06 Snecma Dispositif de transfert de fluide et procede de fabrication de celui-ci
DE102014218941A1 (de) * 2014-09-19 2016-03-24 Siemens Aktiengesellschaft Radialturbofluidenergiemaschine, Verfahren zur Montage

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106762841A (zh) * 2016-12-05 2017-05-31 珠海格力电器股份有限公司 一种回流器与扩压器一体化结构及离心压缩机

Also Published As

Publication number Publication date
CN207212697U (zh) 2018-04-10
EP3577346A1 (de) 2019-12-11
DE102017114233A1 (de) 2018-12-27
WO2019001911A1 (de) 2019-01-03

Similar Documents

Publication Publication Date Title
EP3408503B1 (de) Strömungsmaschine mit beschaufeltem diffusor
DE102008011644A1 (de) Gehäusestrukturierung für Axialverdichter im Nabenbereich
DE2436635C3 (de) Hydraulische Maschine
DE102007048703A1 (de) Mehrstufiger Turbomolekularpumpen-Pumpenrotor
DE102018128792A1 (de) Kompakter Diagonalventilator mit Nachleiteinrichtung
WO2016083382A1 (de) Kreiselpumpe mit einer leiteinrichtung
DE102007003088B3 (de) Strömungsmaschine in einem angetriebenen Rotor
EP3592987B1 (de) Halbspiralgehäuse
DE102009011082A1 (de) Multi-Inlet-Vakuumpumpe
EP3568597B1 (de) Rückführstufe und radialturbofluidenergiemaschine
EP3390832B1 (de) Rückführstufe einer radialturbofluidenergiemaschine
EP3088743B1 (de) Seitenkanal-vakuumpumpstufe mit einem unterbrecher, der auf der saugseite abgeschrägt ist
EP3577346B1 (de) Turboverdichter mit integrierten strömungskanälen
DE102015007100A1 (de) Selbstansaugende Pumpenaggregation
DE202017103826U1 (de) Turboverdichter mit integrierten Strömungskanälen
EP2409039A1 (de) Multi-inlet-vakuumpumpe
DE102009039119A1 (de) Vakuumpumpe und Anordnung mit Vakuumpumpe
EP3486494B1 (de) Radialgebläsegehäuse und radialgebläse
EP3577347B1 (de) Turboverdichter mit rückführstömungskanälen
EP3227560B1 (de) Verdichter mit einem dichtkanal
CH650563A5 (en) Diffuser in a centrifugal driven machine
EP4063663A1 (de) Schaufelloser strömungsdiffusor
DE102014114801B4 (de) Strömungsmaschine mit halbaxialem Laufrad
DE102019101277A1 (de) Axiallüfteranordnung für Fahrzeuge
EP3760871A1 (de) Diffusor für eine strömungsmaschine

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190904

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20211209

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230907

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20231208

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018014111

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D