EP3572628B1 - Steam turbine assembly - Google Patents

Steam turbine assembly Download PDF

Info

Publication number
EP3572628B1
EP3572628B1 EP19173420.1A EP19173420A EP3572628B1 EP 3572628 B1 EP3572628 B1 EP 3572628B1 EP 19173420 A EP19173420 A EP 19173420A EP 3572628 B1 EP3572628 B1 EP 3572628B1
Authority
EP
European Patent Office
Prior art keywords
turbine
shaft
steam turbine
bevel gear
designed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19173420.1A
Other languages
German (de)
French (fr)
Other versions
EP3572628A1 (en
Inventor
Holger HERTWIG
Detlef Haje
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Global GmbH and Co KG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP3572628A1 publication Critical patent/EP3572628A1/en
Application granted granted Critical
Publication of EP3572628B1 publication Critical patent/EP3572628B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/12Combinations with mechanical gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D13/00Combinations of two or more machines or engines
    • F01D13/003Combinations of two or more machines or engines with at least two independent shafts, i.e. cross-compound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/40Transmission of power
    • F05D2260/403Transmission of power through the shape of the drive components
    • F05D2260/4031Transmission of power through the shape of the drive components as in toothed gearing

Definitions

  • the invention relates to a steam turbine arrangement according to the preamble of independent claim 1.
  • steam turbines When certain circumstances occur, in particular when high steam parameters are present, steam turbines must be designed with multiple housings, such as from the EP 3301267 known. This means that the steam is not expanded in a single turbine from the entry to the exit parameters, rather the overall expansion is split up into several sub-turbines.
  • Conventional steam turbine arrangements comprise either two partial turbines, consisting of a high pressure and a low pressure turbine, or three partial turbines, comprising a high pressure turbine, a medium pressure turbine and a low pressure turbine.
  • the low-pressure turbine in which the last part of the expansion is realized has an axial outflow. Such an arrangement requires the positioning of the low pressure turbine at the end of the strand.
  • the generator is preferably and usually arranged at the other end of the line.
  • FIG. 1 An order accordingly Figure 1 has the technical problem that the handling of electrical accidents can only be realized to a very limited extent.
  • the rotor of the high-pressure turbine usually has a comparatively small rotational moment of inertia compared to the comparatively large rotational moment of inertia of the low-pressure turbine and the generator. So far, there have been several approaches to make the interference torques for the high-pressure turbine bearable, but these lead to considerable additional costs.
  • One solution is to oversize all of the modules involved so that they can withstand all disturbing torques without breaking. In addition to the considerable additional costs, the oversizing of the components also leads to a deterioration in the rotor dynamic behavior.
  • Another solution provides for a slip clutch to be arranged between the partial turbines, thereby limiting the torque that is passed through to a value that the components can endure.
  • the behavior of the slip clutches in the event of a malfunction can only be calculated in advance to a limited extent and it is questionable whether they are able to endure several malfunctions without significantly changing their properties.
  • Another solution is to position the turbine parts on both sides of the generator.
  • the object of the present invention is to overcome the disadvantages described above and to provide a steam turbine arrangement which makes electrical faults easier to handle.
  • the steam turbine arrangement according to the invention comprising at least a first partial turbine designed as a high-pressure turbine and a second partial turbine designed as a low-pressure turbine, and a generator, the second partial turbine and the generator being connected to one another via a first shaft, are characterized in that the steam turbine arrangement at least a first bevel gear, comprising a first ring gear arranged on the first shaft and a first pinion arranged on a second shaft, and wherein the second shaft is connected to the first sub-turbine, so that the first sub-turbine transfers its power to the first via the first bevel gear Wave transmits. Due to the steam turbine arrangement according to the invention, the moments occurring in the event of an electrical fault are not passed through the partial turbine designed as a high-pressure turbine.
  • the second partial turbine which is designed as a low-pressure turbine, is designed in such a way that it can withstand the disturbing torque and therefore does not have to be modified. So there is no need to oversize the components.
  • a further embodiment of the invention provides that the steam turbine arrangement has a third partial turbine designed as a medium-pressure turbine, the first bevel gear, another one arranged on a third shaft has second pinion, and wherein the third shaft is connected to the third turbine part, so that the third turbine part transmits its power to the first shaft via the first bevel gear.
  • the concept can be applied to a three-casing line with a medium-pressure turbine, which is opposite the high-pressure turbine.
  • the high pressure and low pressure turbines access the common first ring gear.
  • a further embodiment of the invention provides that the steam turbine arrangement comprises a third partial turbine designed as a medium pressure turbine and a second bevel gear, and has a second ring gear arranged on the first shaft and a third pinion arranged on the third shaft, and the third shaft with the third sub-turbine is connected so that the third sub-turbine transmits its power to the first shaft via the second bevel gear.
  • the concept can alternatively also be applied to a three-casing line consisting of high-pressure, medium-pressure and low-pressure turbines. Compared to the concept described above, this concept offers the additional advantage that the high-pressure and medium-pressure turbines can be operated at different speeds from one another and deviating from the generator speed.
  • Another embodiment of the invention provides that the axis angle ⁇ between the first shaft and the second shaft and / or the axis angle ⁇ between the first shaft and the third shaft is less than 90 °, preferably less than 50 °.
  • the reduction in the axis angle enables the possible tooth width to be increased.
  • the transmissible power of the bevel gear increases, which makes it suitable for larger power ranges, such as those frequently encountered in the steam turbine.
  • a further embodiment of the invention provides that at least one ring gear and / or at least one pinion in the axial direction Direction to the respective shaft is arranged. Position errors can be compensated for by the adjustable axial position of the pinion or the ring gear during operation. This can prevent or at least limit the deformation and misalignment of the highly stressed toothing.
  • Magnetic bearings, adjustable oil bearings (in particular hydrostatic bearings) or other bearing types or bearing arrangements (mechanically or hydraulically displaceable bearing bodies or bearing housings or the like) are suitable for adjusting the axial position. The axial position can be adjusted by a control intervention.
  • the measurement acquisition can include, for example, the following parameters: axial position, radial position, noises / vibrations, bearing temperature.
  • gear ratios of the bevel gear are less than 4, preferably less than 3.
  • gear ratios of less than 4, better less than 3 should be aimed for, since otherwise conical tooth-specific tooth width restrictions will apply.
  • gear ratios of less than 4 can be increased by a factor of 1.5.
  • FIG. 1 shows a steam turbine assembly according to the prior art.
  • the steam turbine arrangement comprises a first partial turbine 1 designed as a high-pressure turbine and a second partial turbine 2 designed as a low-pressure turbine and axially outflowing.
  • the steam turbine arrangement comprises a generator 3.
  • the two partial turbines 1 and 2 are connected to one another via a common first shaft 4. Due to the requirement that the last part of the expansion must have an axial outflow, it is necessary that the second partial turbine be arranged at the end of the strand, ie at one end of the first shaft 4.
  • the generator 3 is usually and preferably at the other end of the line.
  • first partial turbine 1 which is designed as a high-pressure turbine
  • first partial turbine 1 designed as a high-pressure turbine
  • first partial turbine 1 designed as a high-pressure turbine has a comparatively low rotational moment of inertia compared to the rotational moment of inertia of the second partial turbine 2 and of the generator 3.
  • the shaft of the high-pressure turbine In order for the shaft of the high-pressure turbine to be able to withstand the disturbance torque in the event of an electrical fault, its rotor must be made very solid. This leads to considerable additional costs for the steam turbine arrangement.
  • FIG 2 shows a first embodiment of a steam turbine arrangement according to the invention.
  • the steam turbine arrangement comprises a first partial turbine 1 designed as a high-pressure turbine and a second partial turbine 2 designed as a low-pressure turbine and axially outflowing. Furthermore, the steam turbine arrangement has a generator 3, the second partial turbine 2 and the generator 3 being connected to one another via a first shaft 4 .
  • the steam turbine arrangement has a first bevel gear 5, which comprises a first ring gear 6 arranged on the first shaft 4 and a first pinion 8 arranged on a second shaft 7.
  • the second shaft 7 is connected to the first sub-turbine 1, so that the first sub-turbine 1 transmits its power to the first shaft 4 via the first bevel gear 5.
  • the power of the first partial turbine 1, which is designed as a high-pressure turbine is transmitted to the first shaft 4 via the first bevel gear 5.
  • a possible disturbance torque which occurs, for example, due to an electrical fault, is no longer passed through the first partial turbine 1 as in the prior art.
  • the second sub-turbine 2 which is designed as a low-pressure turbine, is usually designed in such a way that it can withstand the interference torques without damage.
  • the topology enables an axial outflow in connection with a generator driven on one side and at the same time requires minimal space. Costly oversizing of the components of the first sub-turbine can be dispensed with.
  • the use of slip clutches to limit the occurring moments can also be dispensed with.
  • FIG 3 shows a second steam turbine arrangement according to the invention.
  • the steam turbine arrangement comprises a third sub-turbine 9 designed as a medium-pressure turbine.
  • the sub-turbine 1 designed as a high-pressure turbine and the sub-turbine 9 designed as a medium-pressure turbine face each other.
  • the first sub-turbine 1 and the third sub-turbine 9 access the same first bevel gear 5.
  • a further second pinion 11 arranged on a third shaft 10 is provided, the third shaft 10 being connected to the third sub-turbine 9, so that the third sub-turbine 9 transmits its power to the first shaft 4 via the first bevel gear 5.
  • both the partial turbine 1 designed as a high-pressure turbine and the partial turbine 9 designed as a medium-pressure turbine are decoupled in such a way that, in the event of an electrical fault, the moments that occur do not have to be conducted through these two partial turbines.
  • both the first sub-turbine 1 and the third sub-turbine 9 can be dimensioned without overdimensioning the components that would be necessary for the high moments in the event of a fault. This results in considerable cost savings.
  • Figure 4 shows a further steam turbine arrangement according to the invention.
  • the steam turbine arrangement in turn comprises a first partial turbine 1 designed as a high-pressure turbine, a second partial turbine 2 designed as a low-pressure turbine and axially outflowing, and a third partial turbine 9 designed as a medium-pressure turbine.
  • the second partial turbine 2 which is designed as a low-pressure turbine, is connected to the generator 3 via the first shaft 4.
  • the steam turbine arrangement in turn comprises a first bevel gear transmission 5, comprising a first ring gear 6 arranged on the first shaft 4 and a first pinion 8 arranged on the second shaft 7, the second shaft 7 being connected to the first partial turbine 1, so that the first partial turbine 1 transmits its power to the first shaft 4 via the first bevel gear 5.
  • the steam turbine arrangement comprises a second bevel gear 12, comprising a second ring gear 13 arranged on the first shaft 4 and a third pinion 14 arranged on the third shaft 10.
  • the third shaft 10 is connected to the third partial turbine 9, so that the third Sub-turbine 9 transmits its power to the first shaft 4 via the second bevel gear 12.
  • the steam turbine arrangement thus has two bevel gear transmissions 5, 12, the first bevel gear transmission 5 being connected to the partial turbine 1 designed as a high-pressure turbine and the second bevel gear transmission 12 being connected to the partial turbine 9 designed as a medium-pressure turbine.
  • Such an arrangement with two bevel gear drives has the advantage that the speed of the first sub-turbine and the speed of the second sub-turbine can be set and optimized independently of one another. This results in further increases in efficiency.
  • axial position sensors 16 are arranged on the first shaft and / or the second shaft / third shaft 7, 10, which measure the exact position of the basement wheel 6, 13 and / or the pinion 8, 11 and 14 , process the information and give a corresponding signal to the adjustable axial bearings 15, which then move the pinions 8, 11, 14 or the bevel gears 6, 13 axially and ensure that the axial play is as small as possible.
  • the steam turbine arrangement according to the invention makes it possible for the first time to have a topology which, in the case of an axial outflow in connection with a plurality of partial turbines, enables a generator driven on one side with a minimal space requirement.
  • Both the high-pressure turbine and the medium-pressure turbine can have different speeds that are different from the generator speed, independently of one another and independently of the downstream low-pressure turbine. This increases the efficiency of the steam turbine arrangement in contrast to the steam turbine arrangements previously used.
  • the costs for the turbine arrangement can be significantly reduced by the reduced design effort.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

Die Erfindung betrifft eine Dampfturbinenanordnung nach dem Oberbegriff des unabhängigen Patentanspruchs 1.The invention relates to a steam turbine arrangement according to the preamble of independent claim 1.

Beim Eintreten bestimmter Umstände insbesondere beim Vorliegen hoher Dampfparameter müssen Dampfturbinen mehrgehäusig ausgeführt werden, wie zum Beispiel aus der EP 3301267 bekannt. D.h., dass der Dampf nicht in einer einzelnen Turbine von den Eintritts- bis zu den Austrittsparametern entspannt wird, die Gesamtexpansion wird vielmehr auf mehrere Teilturbinen aufgeteilt. Übliche Dampfturbinenanordnungen umfassen entweder zwei Teilturbinen, bestehend aus einer Hochdruck und einer Niederdruckturbine oder drei Teilturbinen, umfassend eine Hochdruckturbine, eine Mitteldruckturbine und eine Niederdruckturbine. Bei manchen Dampfturbinenanordnungen ist es gefordert, dass die Niederdruckturbine, in der der letzte Teil der Expansion realisiert wird, eine axiale Abströmung aufweist. Eine solche Anordnung erfordert die Positionierung der Niederdruckturbine am Strangende. Am anderen Strangende ist vorzugsweise und üblicherweise der Generator angeordnet. Hierdurch sind die beiden Strangenden belegt und der bzw. die Teilturbinen (Hochdruck-, Mitteldruckturbine) in der der vorgelagerte Teil der Expansion stattfindet, muss zwischen der axial abströmenden Niederdruckturbine und dem Generator positioniert werden. Eine solche Turbinenanordnung ist in Figur 1 dargestellt. Eine Anordnung entsprechend Figur 1 weist das technische Problem auf, dass die Handhabung elektrischer Störfälle mit ihr nur sehr bedingt realisierbar sind. Der Läufer der Hochdruckturbine besitzt üblicherweise ein vergleichsweise kleines Rotationsträgheitsmoment verglichen mit dem vergleichsweise großen Rotationsträgheitsmoment der Niederdruckturbine und des Generators. Um die Störmomente für die Hochdruckturbine erträglich zu machen, gibt es bislang mehrere Ansätze, die jedoch zu erheblichen Mehrkosten führen.When certain circumstances occur, in particular when high steam parameters are present, steam turbines must be designed with multiple housings, such as from the EP 3301267 known. This means that the steam is not expanded in a single turbine from the entry to the exit parameters, rather the overall expansion is split up into several sub-turbines. Conventional steam turbine arrangements comprise either two partial turbines, consisting of a high pressure and a low pressure turbine, or three partial turbines, comprising a high pressure turbine, a medium pressure turbine and a low pressure turbine. In some steam turbine arrangements, it is required that the low-pressure turbine in which the last part of the expansion is realized has an axial outflow. Such an arrangement requires the positioning of the low pressure turbine at the end of the strand. The generator is preferably and usually arranged at the other end of the line. As a result, the two ends of the strand are occupied and the turbine or turbines (high-pressure, medium-pressure turbine) in which the upstream part of the expansion takes place must be positioned between the axially outflowing low-pressure turbine and the generator. Such a turbine arrangement is in Figure 1 shown. An order accordingly Figure 1 has the technical problem that the handling of electrical accidents can only be realized to a very limited extent. The rotor of the high-pressure turbine usually has a comparatively small rotational moment of inertia compared to the comparatively large rotational moment of inertia of the low-pressure turbine and the generator. So far, there have been several approaches to make the interference torques for the high-pressure turbine bearable, but these lead to considerable additional costs.

Eine Lösung besteht in der Überdimensionierung aller beteiligten Baugruppen, so dass sie alle Störmomente ohne Bruch ertragen. Neben den erheblichen Mehrkosten führt die Überdimensionierung der Bauteile auch zu einer Verschlechterung des rotordynamischen Verhaltens.
Eine weitere Lösung sieht vor, eine Rutschkupplung zwischen den Teilturbinen anzuordnen und hierdurch den durchgeleiteten Drehmomente auf einen Wert zu begrenzen, den die Bauteile ertragen. Das Verhalten der Rutschkupplungen im Störfall ist jedoch nur bedingt voraus berechenbar und es ist fraglich, ob sie in der Lage sind, mehrere Störfälle ohne wesentliche Änderung ihrer Eigenschaften zu ertragen.
Eine weitere Lösung besteht darin, die Teilturbinen beidseits des Generators zu positionieren. Diese Anordnung bringt aber den Nachteil mit sich, dass zur Wartung des Generators (ziehen des Induktors) eine der beiden Teilturbinen oder der Generator selbst zur Seite gerückt werden muss. Dies bedeutet einen erheblichen Mehrplatzbedarf im Maschinenhaus, welcher nicht immer vorhanden ist. Darüber hinaus führt der Generator mit beidseitigem Antrieb zu erhöhten Mehrkosten beim Generator und zu einem Mehraufwand bei der Durchführung der Wartung. Auch sind nicht alle vom Kunden vorgeschriebenen Lieferanten in der Lage, Generatoren mit beidseitigem Antrieb zu fertigen.
Eine weitere Möglichkeit besteht darin, alle Hauptkomponenten der Dampfturbinenanordnung koaxial zu positionieren. Die Teilturbinen übertragen dabei die Leistung auf ein Getriebe das deren Leistung summiert und an den Generator überträgt. Der Nachteil dieser Topologie ist jedoch, dass der Achsabstand, den die Getriebe sinnvollerweise aufweisen, nicht mit dem Achsabstand der Turbine in Einklang zu bringen ist. Die Turbinen bedingen einen wesentlich größeren Achsabstand.
One solution is to oversize all of the modules involved so that they can withstand all disturbing torques without breaking. In addition to the considerable additional costs, the oversizing of the components also leads to a deterioration in the rotor dynamic behavior.
Another solution provides for a slip clutch to be arranged between the partial turbines, thereby limiting the torque that is passed through to a value that the components can endure. However, the behavior of the slip clutches in the event of a malfunction can only be calculated in advance to a limited extent and it is questionable whether they are able to endure several malfunctions without significantly changing their properties.
Another solution is to position the turbine parts on both sides of the generator. However, this arrangement has the disadvantage that one of the two sub-turbines or the generator itself has to be moved aside for maintenance of the generator (pulling the inductor). This means that there is a considerable need for multiple workstations in the machine house, which is not always available. In addition, the generator with a drive on both sides leads to increased additional costs for the generator and to additional expenditure when carrying out maintenance. In addition, not all suppliers specified by the customer are able to manufacture generators with double-sided drive.
Another option is to coaxially position all of the main components of the steam turbine assembly. The partial turbines transfer the power to a gearbox that sums up their power and transfers it to the generator. The disadvantage of this topology, however, is that the center distance that the gearboxes expediently have cannot be reconciled with the center distance of the turbine. The turbines require a much larger center distance.

Aufgabe der vorliegenden Erfindung ist es, die zuvor beschriebenen Nachteile zu überwinden, und eine Dampfturbinenanordnung bereitzustellen, welche elektrische Störfälle besser handhabbar macht.The object of the present invention is to overcome the disadvantages described above and to provide a steam turbine arrangement which makes electrical faults easier to handle.

Die Aufgabe wird gelöst durch eine Dampfturbinenanordnung nach den Merkmalen des unabhängigen Patentanspruchs 1.The object is achieved by a steam turbine arrangement according to the features of independent patent claim 1.

Weitere Ausgestaltungen der Erfindung, die einzeln oder in Kombination miteinander einsetzbar sind, sind Gegenstand der Unteransprüche.Further embodiments of the invention, which can be used individually or in combination with one another, are the subject of the dependent claims.

Die erfindungsgemäße Dampfturbinenanordnung, umfassend wenigstens eine erste, als Hochdruckturbine ausgebildete, Teilturbine und eine zweite, als Niederdruckturbine ausgebildete Teilturbine sowie einen Generator, wobei die zweite Teilturbine und der Generator über eine erste Welle miteinander verbunden sind, zeichnen sich dadurch aus, dass die Dampfturbinenanordnung wenigstens ein erstes Kegelradgetriebe, umfassend ein auf der ersten Welle angeordnetes erstes Tellerrad und ein auf einer zweiten Welle angeordnetes erstes Ritzel aufweist und wobei die zweite Welle mit der ersten Teilturbine verbunden ist, so dass die erste Teilturbine ihre Leistung über das erste Kegelradgetriebe, an die erste Welle überträgt.
Durch die erfindungsgemäße Dampfturbinenanordnung werden im elektrischen Störfall die auftretenden Momente nicht durch die als Hochdruckturbine ausgebildete Teilturbine hindurch geleitet. Die zweite als Niederdruckturbine ausgebildete Teilturbine ist von Hause aus derart ausgebildet, dass sie das Störmoment erträgt und muss somit nicht modifiziert werden. Somit ist keine Überdimensionierung der Komponenten notwendig. Auch der Einsatz einer Rutschkupplung, wie dies bislang der Fall war, ist nicht nötig. Trotzdem ist der Einsatz von Generatoren mit einseitigem Antrieb möglich. Ein weiterer Vorteil besteht darin, dass die Drehzahl der Hochdruckturbinen möglichst effektiv und punktgenau durch das Kegelradgetriebe einstellbar ist.
The steam turbine arrangement according to the invention, comprising at least a first partial turbine designed as a high-pressure turbine and a second partial turbine designed as a low-pressure turbine, and a generator, the second partial turbine and the generator being connected to one another via a first shaft, are characterized in that the steam turbine arrangement at least a first bevel gear, comprising a first ring gear arranged on the first shaft and a first pinion arranged on a second shaft, and wherein the second shaft is connected to the first sub-turbine, so that the first sub-turbine transfers its power to the first via the first bevel gear Wave transmits.
Due to the steam turbine arrangement according to the invention, the moments occurring in the event of an electrical fault are not passed through the partial turbine designed as a high-pressure turbine. The second partial turbine, which is designed as a low-pressure turbine, is designed in such a way that it can withstand the disturbing torque and therefore does not have to be modified. So there is no need to oversize the components. The use of a slip clutch, as was previously the case, is also not necessary. Nevertheless, the use of generators with one-sided drive is possible. Another advantage is that the speed of the high-pressure turbines can be set as effectively and precisely as possible by the bevel gear.

Eine weitere Ausgestaltung der Erfindung sieht vor, dass die Dampfturbinenanordnung eine dritte, als Mitteldruckturbine ausgebildete Teilturbine aufweist, wobei das erste Kegelradgetriebe, ein weiteres, auf einer dritten Welle angeordnetes zweites Ritzel aufweist, und wobei die dritte Welle mit der dritten Teilturbine verbunden ist, so dass die dritte Teilturbine deren Leistung über das erste Kegelradgetriebe, an die erste Welle überträgt. Durch diese Anordnung der Teilturbinen ist das Konzept auf einen dreigehäusigen Strang mit einer Mitteldruckturbine, welche der Hochdruckturbine gegenübersteht anwendbar. Die Hochdruck- und die Niederdruckturbine greifen dabei auf das gemeinsame erste Tellerrad zu.A further embodiment of the invention provides that the steam turbine arrangement has a third partial turbine designed as a medium-pressure turbine, the first bevel gear, another one arranged on a third shaft has second pinion, and wherein the third shaft is connected to the third turbine part, so that the third turbine part transmits its power to the first shaft via the first bevel gear. As a result of this arrangement of the partial turbines, the concept can be applied to a three-casing line with a medium-pressure turbine, which is opposite the high-pressure turbine. The high pressure and low pressure turbines access the common first ring gear.

Ein weitere Ausgestaltung der Erfindung sieht vor, dass die Dampfturbinenanordnung eine dritte, als Mitteldruckturbine ausgebildete Teilturbine sowie ein zweites Kegelradgetriebe, umfasst und ein auf der ersten Welle angeordnetes zweites Tellerrad und ein auf dem dritten Welle angeordnetes drittes Ritzel aufweist und wobei die dritte Welle mit der dritten Teilturbine verbunden ist, so dass die dritte Teilturbine ihre Leistung über das zweite Kegelradgetriebe, an die erste Welle überträgt. Mit dieser Anordnung lässt sich alternativ ebenfalls das Konzept auf einen dreigehäusigen Strang bestehend aus Hochdruck-, Mitteldruck- und Niederdruckturbine anwenden. Gegenüber dem zuvor beschriebenen Konzept bietet dieses Konzept noch den zusätzlichen Vorteil, dass die Hochdruck- und die Mitteldruckturbine mit unterschiedlichen Drehzahlen voneinander und von der Generatordrehzahl abweichend, betrieben werden können.A further embodiment of the invention provides that the steam turbine arrangement comprises a third partial turbine designed as a medium pressure turbine and a second bevel gear, and has a second ring gear arranged on the first shaft and a third pinion arranged on the third shaft, and the third shaft with the third sub-turbine is connected so that the third sub-turbine transmits its power to the first shaft via the second bevel gear. With this arrangement, the concept can alternatively also be applied to a three-casing line consisting of high-pressure, medium-pressure and low-pressure turbines. Compared to the concept described above, this concept offers the additional advantage that the high-pressure and medium-pressure turbines can be operated at different speeds from one another and deviating from the generator speed.

Eine weitere erfindungsgemäße Ausgestaltung der Erfindung sieht vor, dass der Achswinkel ∑ zwischen der ersten Welle und der zweiten Welle und/oder der Achswinkel ∑ zwischen der ersten Welle und der dritten Welle kleiner als 90°, vorzugsweise kleiner als 50° ist. Die Verringerung des Achswinkels ermöglicht eine Erhöhung der möglichen Zahnbreite. Hierdurch nimmt die übertragbare Leistung des Kegelradgetriebes zu, wodurch es auch für größere Leistungsbereiche, wie sie bei der Dampfturbine häufig auftreten, geeignet ist.Another embodiment of the invention provides that the axis angle ∑ between the first shaft and the second shaft and / or the axis angle ∑ between the first shaft and the third shaft is less than 90 °, preferably less than 50 °. The reduction in the axis angle enables the possible tooth width to be increased. As a result, the transmissible power of the bevel gear increases, which makes it suitable for larger power ranges, such as those frequently encountered in the steam turbine.

Eine weitere Ausgestaltung der Erfindung sieht vor, dass wenigstens ein Tellerrad und/oder wenigstens ein Ritzel in axialer Richtung zur jeweiligen Welle verschiebbar angeordnet ist. Durch die einstellbare Axialposition des Ritzels bzw. des Tellerrads während des Betriebes können Lagefehler kompensiert werden. Hierdurch kann die Verformung und Fehlausrichtung der hoch beanspruchten Verzahnung verhindert oder zumindest begrenzt werden. Zur Verstellung der Axialposition kommen bspw. Magnetlager, einstellbare Öllager (insbesondere hydrostatische Lager) oder andere Lagertypen oder Lageranordnungen (mechanisch oder hydraulisch verschiebbare Lagerkörper oder Lagergehäuse oder ähnliches) in Frage. Die Axialposition kann durch einen leittechnischen Eingriff angepasst werden. Hierzu sind vorzugsweise eine messtechnische Erfassung der Eingriffssituation (Eingriffsbedingungen) und eine Regelung der Position der Axiallager, des Ritzels bzw. des Tellerrades (Relativposition) nötig. Die messtechnische Erfassung kann z.B. die folgenden Parameter umfassen: Axialposition, Radialposition, Geräusche/Schwingungen, Lagertemperatur.A further embodiment of the invention provides that at least one ring gear and / or at least one pinion in the axial direction Direction to the respective shaft is arranged. Position errors can be compensated for by the adjustable axial position of the pinion or the ring gear during operation. This can prevent or at least limit the deformation and misalignment of the highly stressed toothing. Magnetic bearings, adjustable oil bearings (in particular hydrostatic bearings) or other bearing types or bearing arrangements (mechanically or hydraulically displaceable bearing bodies or bearing housings or the like) are suitable for adjusting the axial position. The axial position can be adjusted by a control intervention. For this purpose, a measurement of the engagement situation (engagement conditions) and a regulation of the position of the axial bearings, the pinion or the ring gear (relative position) are preferably necessary. The measurement acquisition can include, for example, the following parameters: axial position, radial position, noises / vibrations, bearing temperature.

Eine weitere erfindungsgemäße Ausgestaltung der Erfindung sieht vor, dass die Übersetzungsverhältnisse der Kegelradgetriebe kleiner als 4, vorzugsweise kleiner als 3 sind. Durch die Begrenzung des Übersetzungsverhältnisses können trotz hoher Leistungen sinnvolle konstruktive Lösungen ermöglicht werden (z.B. Ritzendurchmesser, Lagerung der Ritzel, etc.). Für volltourige Maschinen (Abtrieb mit Netzfrequenz) sind Übersetzungsverhältnisse kleiner als 4, besser kleiner als 3 anzustreben, da anderenfalls kegelverzahnungsspezifische Zahnbreitenbeschränkungen zum Tragen kommen. Für halbtourige Maschinen können diese Werte um den Faktor 1,5 erhöht werden.Another embodiment of the invention provides that the gear ratios of the bevel gear are less than 4, preferably less than 3. By limiting the gear ratio, reasonable constructive solutions can be made possible despite high performance (e.g. pinion diameter, pinion bearing, etc.). For full-speed machines (output with line frequency), gear ratios of less than 4, better less than 3 should be aimed for, since otherwise conical tooth-specific tooth width restrictions will apply. For half-speed machines, these values can be increased by a factor of 1.5.

Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen erläutert. Es zeigt:

-Figur 1
eine Dampfturbinenanordnung nach dem Stand der Technik;
-Figur 2
ein erstes Ausführungsbeispiel einer erfindungsgemäßen Dampfturbinenanordnung mit zwei Teilturbinen;
-Figur 3
ein weiteres erfindungsgemäßes Ausführungsbeispiel einer Dampfturbinenanordnung mit drei Teilturbine;
-Figur 4
eine weiteres alternatives erfindungsgemäße Ausführungsbeispiel einer Dampfturbinenanordnung mit drei Teilturbinen;
-Figur 5
eine Detailansicht einer erfindungsgemäßen Dampfturbinenanordnung mit einem Achswinkel ∑ kleiner 90°.
The invention is explained below using exemplary embodiments. It shows:
-Figure 1
a steam turbine arrangement according to the prior art;
-Figure 2
a first embodiment of a steam turbine arrangement according to the invention with two partial turbines;
-Figure 3
another inventive embodiment of a steam turbine arrangement with three turbine parts;
-Figure 4
a further alternative exemplary embodiment according to the invention of a steam turbine arrangement with three partial turbines;
-Figure 5
a detailed view of a steam turbine arrangement according to the invention with an axis angle ∑ less than 90 °.

Die Figuren zeigen jeweils zum Teil stark vereinfachte Darstellungen, bei denen im Wesentlichen
nur die jeweils für die Erläuterung notwendigen Bauteile dargestellt sind. Gleiche bzw. funktionsgleiche Bauteile sind figurübergreifend mit denselben Bezugszeichen versehen.
The figures each show partially simplified representations, in which essentially
only the components necessary for the explanation are shown. Identical or functionally identical components are provided with the same reference symbols in all figures.

Figur 1 zeigt eine Dampfturbinenanordnung nach dem Stand der Technik. Die Dampfturbinenanordnung umfasst eine erste, als Hochdruckturbine ausgebildete Teilturbine 1 und eine zweite, als Niederdruckturbine ausgebildete und axial abströmende Teilturbine 2. Des Weiteren umfasst die Dampfturbinenanordnung einen Generator 3. Die beiden Teilturbinen 1 und 2 sind über eine gemeinsame erste Welle 4 miteinander verbunden. Aufgrund der Anforderung, dass der letzte Teil der Expansion eine axiale Abströmung aufweisen muss, ist es erforderlich, dass die zweite Teilturbine am Strangende, d.h. an einem Ende der ersten Welle 4 angeordnet sein muss. Am anderen Strangende steht üblicherweise und vorzugsweise der Generator 3. Dadurch ist es notwendig, dass die erste, als Hochdruckturbine ausgebildete Teilturbine 1 zwischen der axial abströmenden Niederdruckturbine 2 und dem Generator 3 auf der gemeinsamen ersten Welle 4 angeordnet ist. Eine solche Dampfturbinenanordnung hat den Nachteil, dass bei einem Auftreten elektrischer Störfälle, das Störmoment durch die erste Teilturbine 1 hindurch geleitet werden muss. Dies ist insoweit problematisch, dass die als Hochdruckturbine ausgebildete erste Teilturbine 1 ein vergleichsweise geringes Rotationsträgheitsmoment, verglichen mit dem Rotationsträgheitsmoment der als Niederdruckturbine ausgebildeten zweiten Teilturbine 2 und des Generators 3 aufweist. Dieses technische Problem ist umso größer je größer die Asymmetrie bezüglich Leistung und Rotationsträgheitsmoment der einzelnen Teilturbinenwellen ist. Damit die Welle der Hochdruckturbine bei einem elektrischen Störfall den Störmoment ertragen kann, muss deren Läufer sehr massiv ausgeführt werden. Dies führt zu erheblichen Mehrkosten der Dampfturbinenanordnung. Figure 1 shows a steam turbine assembly according to the prior art. The steam turbine arrangement comprises a first partial turbine 1 designed as a high-pressure turbine and a second partial turbine 2 designed as a low-pressure turbine and axially outflowing. Furthermore, the steam turbine arrangement comprises a generator 3. The two partial turbines 1 and 2 are connected to one another via a common first shaft 4. Due to the requirement that the last part of the expansion must have an axial outflow, it is necessary that the second partial turbine be arranged at the end of the strand, ie at one end of the first shaft 4. The generator 3 is usually and preferably at the other end of the line. This makes it necessary for the first partial turbine 1, which is designed as a high-pressure turbine, to be arranged on the common first shaft 4 between the axially outflowing low-pressure turbine 2 and the generator 3. Such a steam turbine arrangement has the disadvantage that in the event of electrical malfunctions, the disturbance torque must be conducted through the first sub-turbine 1. This is problematic to the extent that the first partial turbine 1 designed as a high-pressure turbine has a comparatively low rotational moment of inertia compared to the rotational moment of inertia of the second partial turbine 2 and of the generator 3. The greater the asymmetry in terms of power and rotational moment of inertia of the individual sub-turbine shafts, the greater the technical problem. In order for the shaft of the high-pressure turbine to be able to withstand the disturbance torque in the event of an electrical fault, its rotor must be made very solid. This leads to considerable additional costs for the steam turbine arrangement.

Figur 2 zeigt ein erstes erfindungsgemäßes Ausführungsbeispiel einer Dampfturbinenanordnung. Die Dampfturbinenanordnung umfasst eine erste, als Hochdruckturbine ausgebildete Teilturbine 1 und eine zweite als Niederdruckturbine ausgebildete und axial abströmende Teilturbine 2. Des Weiteren weist die Dampfturbinenanordnung einen Generator 3 auf, wobei die zweite Teilturbine 2 und der Generator 3 über eine erste Welle 4 miteinander verbunden sind. Die Dampfturbinenanordnung weist ein erstes Kegelradgetriebe 5 auf, welches ein auf der ersten Welle 4 angeordnetes erstes Tellerrad 6 und ein auf einer zweiten Welle 7 angeordnetes erstes Ritzel 8 umfasst. Die zweite Welle 7 ist mit der ersten Teilturbine 1 verbunden, so dass die erste Teilturbine 1 ihre Leistung über das erste Kegelradgetriebe 5 an die erste Welle 4 überträgt. Durch diese Topologie wird die Leistung der als Hochdruckturbine ausgebildeten ersten Teilturbine 1 über das erste Kegelradgetriebe 5 an die erste Welle 4 übertragen. Hierdurch wird ein mögliches Störmoment, welches bspw. aufgrund eines elektrischen Störfalls auftritt, nicht mehr wie beim Stand der Technik durch die erste Teilturbine 1 hindurch geleitet. Hierdurch muss das Störmoment auch nicht wie bislang limitiert werden. Die als Niederdruckturbine ausgebildete zweite Teilturbine 2 ist üblicherweise so ausgelegt, dass sie die Störmomente ohne Schäden übersteht. Die Topologie ermöglicht erstmals eine axiale Abströmung in Verbindung mit einem einseitig angetriebenen Generator bei gleichzeitig minimalem Platzbedarf. Dabei kann auf eine kostenintensive Überdimensionierung der Komponenten der ersten Teilturbine verzichtet werden. Ebenfalls kann auf den Einsatz von Rutschkupplungen zur Limitierung der auftretenden Momente verzichtet werden. Figure 2 shows a first embodiment of a steam turbine arrangement according to the invention. The steam turbine arrangement comprises a first partial turbine 1 designed as a high-pressure turbine and a second partial turbine 2 designed as a low-pressure turbine and axially outflowing. Furthermore, the steam turbine arrangement has a generator 3, the second partial turbine 2 and the generator 3 being connected to one another via a first shaft 4 . The steam turbine arrangement has a first bevel gear 5, which comprises a first ring gear 6 arranged on the first shaft 4 and a first pinion 8 arranged on a second shaft 7. The second shaft 7 is connected to the first sub-turbine 1, so that the first sub-turbine 1 transmits its power to the first shaft 4 via the first bevel gear 5. Through this topology, the power of the first partial turbine 1, which is designed as a high-pressure turbine, is transmitted to the first shaft 4 via the first bevel gear 5. As a result, a possible disturbance torque, which occurs, for example, due to an electrical fault, is no longer passed through the first partial turbine 1 as in the prior art. As a result, the disturbance torque does not have to be limited as before. The second sub-turbine 2, which is designed as a low-pressure turbine, is usually designed in such a way that it can withstand the interference torques without damage. For the first time, the topology enables an axial outflow in connection with a generator driven on one side and at the same time requires minimal space. Costly oversizing of the components of the first sub-turbine can be dispensed with. The use of slip clutches to limit the occurring moments can also be dispensed with.

Ein weiterer Vorteil gegenüber der aus dem Stand der Technik bekannten Einwellentopologie liegt darin, dass die Drehzahl der als Hochdruckturbine ausgebildeten Teilturbine punktgenau, d.h. möglichst effektiv über das erste Kegelradgetriebe eingestellt werden kann. Hierdurch ergeben sich zusätzliche Wirkungsgradvorteile.Another advantage over the single-shaft topology known from the prior art is that the speed of the partial turbine designed as a high-pressure turbine is precise, i.e. can be set as effectively as possible via the first bevel gear. This results in additional efficiency advantages.

Figur 3 zeigt eine zweite erfindungsgemäße Dampfturbinenanordnung. Bei der Dampfturbinenanordnung nach Figur 3 wurde das Konzept auf einen dreigehäusigen Strang erweitert. Die Dampfturbinenanordnung umfasst dabei eine dritte, als Mitteldruckturbine ausgebildete Teilturbine 9. Die als Hochdruckturbine ausgebildete Teilturbine 1 und die als Mitteldruckturbine ausgebildete Teilturbine 9 stehen sich dabei gegenüber. Die erste Teilturbine 1 und die dritte Teilturbine 9 greifen auf dasselbe erste Kegelradgetriebe 5 zu. Dazu ist ein weiteres auf einer dritten Welle 10 angeordnetes zweites Ritzel 11 vorgesehen, wobei die dritte Welle 10 mit der dritten Teilturbine 9 verbunden ist, so dass die dritte Teilturbine 9 ihre Leistung über das erste Kegelradgetriebe 5 an die erste Welle 4 überträgt. Durch die erfindungsgemäße Dampfturbinenanordnung sind sowohl die als Hochdruckturbine ausgebildete Teilturbine 1 als auch die als Mitteldruckturbine ausgebildete Teilturbine 9 so entkoppelt, dass im elektrischen Störfall die auftretenden Momente nicht durch diese beiden Teilturbinen hindurch geleitet werden müssen. Somit können sowohl die erste Teilturbine 1 als auch die dritte Teilturbine 9 ohne eine Überdimensionierung der Komponenten, welche für die hohen Momente im Störfall notwendig wären, dimensioniert werden. Hierdurch ergeben sich erhebliche Kosteneinsparungen. Figure 3 shows a second steam turbine arrangement according to the invention. According to the steam turbine arrangement Figure 3 the concept was expanded to a three-housing line. The steam turbine arrangement comprises a third sub-turbine 9 designed as a medium-pressure turbine. The sub-turbine 1 designed as a high-pressure turbine and the sub-turbine 9 designed as a medium-pressure turbine face each other. The first sub-turbine 1 and the third sub-turbine 9 access the same first bevel gear 5. For this purpose, a further second pinion 11 arranged on a third shaft 10 is provided, the third shaft 10 being connected to the third sub-turbine 9, so that the third sub-turbine 9 transmits its power to the first shaft 4 via the first bevel gear 5. Due to the steam turbine arrangement according to the invention, both the partial turbine 1 designed as a high-pressure turbine and the partial turbine 9 designed as a medium-pressure turbine are decoupled in such a way that, in the event of an electrical fault, the moments that occur do not have to be conducted through these two partial turbines. Thus, both the first sub-turbine 1 and the third sub-turbine 9 can be dimensioned without overdimensioning the components that would be necessary for the high moments in the event of a fault. This results in considerable cost savings.

Figur 4 zeigt eine weitere erfindungsgemäße Dampfturbinenanordnung. Die Dampfturbinenanordnung umfassen wiederum wie beim Ausführungsbeispiel 3 eine erste als Hochdruckturbine ausgebildete Teilturbine 1, eine zweite als Niederdruckturbine ausgebildete und axial abströmende Teilturbine 2 sowie eine dritte als Mitteldruckturbine ausgebildete Teilturbine 9. Figure 4 shows a further steam turbine arrangement according to the invention. As in embodiment 3, the steam turbine arrangement in turn comprises a first partial turbine 1 designed as a high-pressure turbine, a second partial turbine 2 designed as a low-pressure turbine and axially outflowing, and a third partial turbine 9 designed as a medium-pressure turbine.

Die zweite als Niederdruckturbine ausgebildete Teilturbine 2 ist über die erste Welle 4 mit dem Generator 3 verbunden. Die Dampfturbinenanordnung umfasst wiederum ein erstes Kegelradgetriebe 5, umfassend ein auf der ersten Welle 4 angeordnetes erstes Tellerrad 6 und ein auf der zweiten Welle 7 angeordnetes erstes Ritzel 8, wobei die zweite Welle 7 mit der ersten Teilturbine 1 verbunden ist, so dass die erste Teilturbine 1 ihre Leistung über das erste Kegelradgetriebe 5 an die erste Welle 4 überträgt. Des Weiteren umfasst die Dampfturbinenanordnung ein zweites Kegelradgetriebe 12, umfassend ein auf der ersten Welle 4 angeordnetes zweites Tellerrad 13 und ein auf der dritten Welle 10 angeordnetes drittes Ritzel 14. Die dritte Welle 10 ist dabei mit der dritten Teilturbine 9 verbunden, so dass die dritte Teilturbine 9 ihre Leistung über das zweite Kegelradgetriebe 12, an die erste Welle 4 überträgt. Im Gegensatz zum Ausführungsbeispiel nach Figur 3 weist die Dampfturbinenanordnung somit zwei Kegelradgetriebe 5, 12 auf, wobei das erste Kegelradgetriebe 5 mit der als Hochdruckturbine ausgebildeten Teilturbine 1 und das zweite Kegelradgetriebe 12 mit der als Mitteldruckturbine ausgebildeten Teilturbine 9 verbunden ist. Eine solche Anordnung mit zwei Kegelradgetrieben hat den Vorteil, dass die Drehzahl der ersten Teilturbine und die Drehzahl der zweiten Teilturbine unabhängig voneinander eingestellt und optimiert werden kann. Hierdurch ergeben sich weitere Wirkungsgradsteigerungen.The second partial turbine 2, which is designed as a low-pressure turbine, is connected to the generator 3 via the first shaft 4. The steam turbine arrangement in turn comprises a first bevel gear transmission 5, comprising a first ring gear 6 arranged on the first shaft 4 and a first pinion 8 arranged on the second shaft 7, the second shaft 7 being connected to the first partial turbine 1, so that the first partial turbine 1 transmits its power to the first shaft 4 via the first bevel gear 5. Furthermore, the steam turbine arrangement comprises a second bevel gear 12, comprising a second ring gear 13 arranged on the first shaft 4 and a third pinion 14 arranged on the third shaft 10. The third shaft 10 is connected to the third partial turbine 9, so that the third Sub-turbine 9 transmits its power to the first shaft 4 via the second bevel gear 12. In contrast to the embodiment according to Figure 3 The steam turbine arrangement thus has two bevel gear transmissions 5, 12, the first bevel gear transmission 5 being connected to the partial turbine 1 designed as a high-pressure turbine and the second bevel gear transmission 12 being connected to the partial turbine 9 designed as a medium-pressure turbine. Such an arrangement with two bevel gear drives has the advantage that the speed of the first sub-turbine and the speed of the second sub-turbine can be set and optimized independently of one another. This results in further increases in efficiency.

Figur 5 zeigt eine Ausgestaltung eines Kegelradgetriebes 5, 12 wie es in einer erfindungsgemäßen Dampfturbinenanordnung eingesetzt werden kann. Bei Kegelradgetrieben, bei denen die Wellen in einem Winkel von 90° zueinander stehen, ist die Leistung des Kegelradgetriebes beschränkt. Um die übertragbare Leistung des Kegelradgetriebes zu erhöhen, ist vorgesehen, dass der Achswinkel ∑ zwischen der ersten Welle 4 und der zweiten Welle 7 und/oder der Achswinkel ∑ zwischen der ersten Welle 4 und der dritten Welle 10 kleiner als 90°, vorzugsweise kleiner als 50°, ist. Der flachere Achswinkel ∑ ermöglicht eine wesentliche Erhöhung der möglichen Zahnbreite und damit der möglichen Leistungsübertragung. Um trotz hoher zu übertragender Leistungen sinnvolle konstruktive Lösungen insbesondere im Hinblick auf den Ritzeldurchmesser und die Lagerung der Ritzel zu ermöglichen, sollte das Übersetzungsverhältnis für volltourige Turbinen (Abtrieb mit Netzfrequenz) kleiner als 4, besser kleiner als 3, sein; da anderenfalls kegelverzahnungsspezifische Zahnbreitenbeschränkungen zum Tragen kommen. Für halbtourige Turbinen können diese Werte um den Faktor 1,5 erhöht werden. Für hohe Leistungsübertragungen sollte zudem, zumindest für volltourige Turbinen, eine hohe Umfangsgeschwindigkeit angestrebt werden. Eine Spiralverzahnung trägt stark zu einer hohen übertragenden Leistung bei, ebenso wie eine Breitenballigkeit der Verzahnung und die Ausführung geeigneter Zahnkorrekturen. Zur Begrenzung von Verformungen und Fehlausrichtungen der hoch beanspruchten Verzahnung sind grundsätzlich unterschiedliche Maßnahmen, die einzeln oder in Kombination eingesetzt werden können, möglich. Diese wäre z.B.:

  • ein während des Betriebs einstellbares und in Axialrichtung verschiebbares Ritzel, um Lagefehler kompensieren zu können (Verlagerungsempfindlichkeit der Kegelverzahnung). Hierfür eignen sich insbesondere Magnetlager und einstellbare Öllager (insbesondere hydrostatische Lager) sowie andere Lagertypen oder Lageranordnungen, die in axialer Position durch einen leittechnischen Angriff angepasst werden können.
  • Messtechnische Erfassung der Eingriffssituation (Eingriffsbedingungen) und Regelung der Axiallage des Ritzels (Relativposition zur Radscheibe). Die messtechnische Erfassung kann dabei z.B. die folgenden Parameter umfassen: Axialpositionen, Radialpositionen, Geräusche/Schwingungen, Lagertemperaturen.
  • Limitierung der axialen Lageänderung des Kegelrades durch kurze Abstände zwischen Axiallager und Verzahnung und gegebenenfalls einstellbare Axialposition beim Ritzel.
  • Lagerung der Ritzelwelle möglichst beidseitig (begünstigt durch einen kleinen Achswinkel und eine Begrenzung des Übersetzungsverhältnisses).
  • Wahl der Richtung und des Steigungswinkels der Spiralverzahnung derart, dass die aus dem Zahneingriff resultierenden Querkräfte zumindest teilweise kompensiert werden.
Figure 5 shows an embodiment of a bevel gear 5, 12 as it can be used in a steam turbine arrangement according to the invention. In the case of bevel gearboxes, in which the shafts are at an angle of 90 ° to one another, the performance of the bevel gearbox is limited. In order to increase the transferable power of the bevel gear, it is provided that the axis angle ∑ between the first shaft 4 and the second shaft 7 and / or the axis angle ∑ between the first shaft 4 and the third shaft 10 is less than 90 °, preferably less than 50 °. The flatter axis angle ∑ enables a significant increase in the possible tooth width and thus the possible power transmission. To be transmitted despite high Performances to enable reasonable constructive solutions, especially with regard to the pinion diameter and the bearing of the pinions, should the gear ratio for full-speed turbines (output with mains frequency) be less than 4, better less than 3; otherwise, cone-specific tooth width restrictions will apply. For half-speed turbines, these values can be increased by a factor of 1.5. For high power transmissions, a high peripheral speed should also be aimed for, at least for full-speed turbines. A spiral toothing contributes greatly to a high transmission performance, as does a wide crowning of the toothing and the execution of suitable tooth corrections. To limit deformations and misalignments of the highly stressed gearing, different measures that can be used individually or in combination are possible. This would be, for example:
  • a pinion that can be adjusted and moved in the axial direction during operation in order to be able to compensate for position errors (sensitivity of the bevel gear to displacement). Magnetic bearings and adjustable oil bearings (in particular hydrostatic bearings) and other bearing types or bearing arrangements which can be adjusted in the axial position by a control attack are particularly suitable for this.
  • Measurement of the engagement situation (engagement conditions) and regulation of the axial position of the pinion (relative position to the wheel disc). The measurement acquisition can include, for example, the following parameters: axial positions, radial positions, noises / vibrations, bearing temperatures.
  • Limitation of the axial change in position of the bevel gear by short distances between the axial bearing and the toothing and, if necessary, adjustable axial position on the pinion.
  • Bearing of the pinion shaft on both sides if possible (favored by a small axis angle and a limitation of the gear ratio).
  • Selection of the direction and the pitch angle of the spiral toothing in such a way that the transverse forces resulting from the tooth engagement are at least partially compensated for.

Zur Erfassung der Axialposition des Tellerrades 6, 13 sind auf der ersten Welle und/oder der zweiten Welle/dritten Welle 7,10 Axialpositionssensoren 16 angeordnet, die die exakte Position des Kellerrades 6, 13 und/oder des Ritzels 8, 11 und 14 messen, die Information verarbeiten und ein entsprechendes Signal an die einstellbaren Axiallager 15 geben, die dann die Ritzel 8, 11, 14 bzw. die Kegelräder 6, 13 axial verschieben und dafür sorgen, dass das Axialspiel möglichst gering ist.To detect the axial position of the ring gear 6, 13, axial position sensors 16 are arranged on the first shaft and / or the second shaft / third shaft 7, 10, which measure the exact position of the basement wheel 6, 13 and / or the pinion 8, 11 and 14 , process the information and give a corresponding signal to the adjustable axial bearings 15, which then move the pinions 8, 11, 14 or the bevel gears 6, 13 axially and ensure that the axial play is as small as possible.

Zusammenfassend lässt sich somit festhalten, dass durch die erfindungsgemäße Dampfturbinenanordnung erstmals eine Topologie möglich ist, welche bei einer axialen Abströmung in Verbindung mit mehreren Teilturbinen, einen einseitig angetriebenen Generator, bei minimalem Platzbedarf ermöglicht. Dabei können sowohl die Hochdruckturbine als auch die Mitteldruckturbine unabhängig voneinander und unabhängig von der nachgeschalteten Niederdruckturbine unterschiedliche und von der Generatordrehzahl abweichende Drehzahlen aufweisen. Hierdurch nimmt der Wirkungsgrad der Dampfturbinenanordnung im Gegensatz zu den bislang verwendeten Dampfturbinenanordnungen zu. Gleichzeitig können durch den verringerten Konstruktionsaufwand die Kosten für die Turbinenanordnung deutlich gesenkt werden.In summary, it can thus be stated that the steam turbine arrangement according to the invention makes it possible for the first time to have a topology which, in the case of an axial outflow in connection with a plurality of partial turbines, enables a generator driven on one side with a minimal space requirement. Both the high-pressure turbine and the medium-pressure turbine can have different speeds that are different from the generator speed, independently of one another and independently of the downstream low-pressure turbine. This increases the efficiency of the steam turbine arrangement in contrast to the steam turbine arrangements previously used. At the same time, the costs for the turbine arrangement can be significantly reduced by the reduced design effort.

Claims (6)

  1. Steam turbine arrangement, comprising at least a first part turbine (1), designed as a high-pressure turbine, and a second part turbine (2), designed as a low-pressure turbine, and a generator (3), wherein the second part turbine (2) and the generator (3) are connected to one another via a first shaft (4),
    characterized in that
    the steam turbine arrangement has at least one first bevel gear (5), comprising a first crown wheel (6) arranged on the first shaft (4) and a first pinion (8) arranged on a second shaft (7),
    and wherein the second shaft (7) is connected to the first part turbine (1) such that the first part turbine (1) transmits its power, via the first bevel gear (5), to the first shaft (4).
  2. Steam turbine arrangement according to Claim 1, characterized in that
    the steam turbine arrangement has a third part turbine (9) designed as an intermediate-pressure turbine, wherein the first bevel gear (5) has a further second pinion (11) arranged on a third shaft (10), and wherein the third shaft (10) is connected to the third part turbine (9) so that the third part turbine (9) transmits its power, via the first bevel gear (5), to the first shaft (4).
  3. Steam turbine arrangement according to Claim 1, characterized in that
    the steam turbine arrangement has a third part turbine (9) designed as an intermediate-pressure turbine and a second bevel gear (12), comprising a second crown wheel (13) arranged on the first shaft (4) and a third pinion (14) arranged on the third shaft (10), and wherein the third shaft (10) is connected to the third part turbine (9) so that the third part turbine (9) transmits its power, via the second bevel gear (12), to the first shaft (4).
  4. Steam turbine arrangement according to one of the preceding claims,
    characterized in that
    the axis angle ∑ between the first shaft (4) and the second shaft (7) and/or the axis angle ∑ between the first shaft (4) and the third shaft (10) is less than 90°, preferably less than 50°.
  5. Steam turbine arrangement according to one of the preceding claims,
    characterized in that
    the at least one crown wheel (6, 13) and/or at least one pinion (8, 11, 14) is/are arranged so as to be displaceable in the axial direction with respect to the respective shaft (4, 7, 10).
  6. Steam turbine arrangement according to one of the preceding claims,
    characterized in that
    the gear ratios of the bevel gears (5, 12) are less than 4, preferably less than 3.
EP19173420.1A 2018-05-23 2019-05-09 Steam turbine assembly Active EP3572628B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102018208087.9A DE102018208087A1 (en) 2018-05-23 2018-05-23 steam turbine assembly

Publications (2)

Publication Number Publication Date
EP3572628A1 EP3572628A1 (en) 2019-11-27
EP3572628B1 true EP3572628B1 (en) 2020-07-29

Family

ID=66476444

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19173420.1A Active EP3572628B1 (en) 2018-05-23 2019-05-09 Steam turbine assembly

Country Status (2)

Country Link
EP (1) EP3572628B1 (en)
DE (1) DE102018208087A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022015892A (en) * 2020-07-10 2022-01-21 東芝エネルギーシステムズ株式会社 Turbine power generation system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0240845B2 (en) * 1985-07-24 1990-09-13 Maekawa Seisakusho Kk DORYOKUHATSUSEISOCHINIOKERUGENDOKITOHATSUDENKINORENKETSUHOHO
EP2434103B1 (en) * 2010-09-24 2014-11-26 Siemens Aktiengesellschaft High speed turbine arrangement
JP5592752B2 (en) * 2010-10-22 2014-09-17 川崎重工業株式会社 Power generation system
DE102015001418A1 (en) * 2015-02-06 2016-08-11 Man Diesel & Turbo Se Geared turbine machine
EP3301267A1 (en) * 2016-09-29 2018-04-04 Siemens Aktiengesellschaft Method and device for operating a turbo set

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102018208087A1 (en) 2019-11-28
EP3572628A1 (en) 2019-11-27

Similar Documents

Publication Publication Date Title
EP1279867B1 (en) Power-split-transmission
EP1080353B1 (en) Stress test rig for helicopter transmissions
EP0021223B1 (en) Gearing with axial thrust compensation
EP1559928B1 (en) Epicyclic gear train transmission for wind power plant
DE102012107419A1 (en) Angle change mechanism for open rotor structure
EP2929176B1 (en) Turn drive for a wind turbine and method for rotating the rotor shaft of a wind turbine
DE112009000016B4 (en) Transmission, in particular dual-clutch transmission
EP3017213B1 (en) Electric drive
EP2431632B1 (en) Splitted drive for a wind turbine
EP2279360B1 (en) Multi-gear powershift transmission
WO2012016830A1 (en) Gas turbine rotor comprising an axially displaceable turbine rotor shaft
DE102004036005A1 (en) Wind turbine gearboxes
EP1999388B1 (en) Gearbox with shim
EP0459352B1 (en) Branched transmission
EP3572628B1 (en) Steam turbine assembly
DE102014216178A1 (en) Power transmission device
DE3805710A1 (en) MANUAL TRANSMISSION
DE102011004077A1 (en) Harmonic drive used as electromechanical camshaft phaser for three-wave system, has wave generator having ring with elliptical outer periphery mounted on outer periphery of bearing, and axial spacing is formed between ring gears
EP3638499B1 (en) Shiftable transmission in rolling mill technology
EP3507192B1 (en) Drive arrangement for a ship with means for state monitoring
EP2238370B1 (en) Transmission
EP2416026A1 (en) Power transmission for a gas turbine
EP3614006A1 (en) Machine for producing or processing a fibrous material
EP3491271A1 (en) Drive device and method for speed limitation
WO2009135807A1 (en) Manually or automatically switched transmission or double-clutch transmission in intermediate gear design

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191018

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200330

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1296047

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019000100

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502019000100

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200729

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201029

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201130

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201030

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019000100

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

26N No opposition filed

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210509

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20190509

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230525

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230509

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240529

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20240424

Year of fee payment: 6