EP3571450B1 - Heat pump arrangement and method for operating a heat pump arrangement - Google Patents

Heat pump arrangement and method for operating a heat pump arrangement Download PDF

Info

Publication number
EP3571450B1
EP3571450B1 EP18706390.4A EP18706390A EP3571450B1 EP 3571450 B1 EP3571450 B1 EP 3571450B1 EP 18706390 A EP18706390 A EP 18706390A EP 3571450 B1 EP3571450 B1 EP 3571450B1
Authority
EP
European Patent Office
Prior art keywords
working fluid
heat pump
heat
arrangement
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18706390.4A
Other languages
German (de)
French (fr)
Other versions
EP3571450A1 (en
Inventor
Mark Reissig
Florian REISSNER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Global GmbH and Co KG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP3571450A1 publication Critical patent/EP3571450A1/en
Application granted granted Critical
Publication of EP3571450B1 publication Critical patent/EP3571450B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/006Cooling of compressor or motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means

Definitions

  • the invention relates to a heat pump arrangement according to the preamble of patent claim 1. Furthermore, the invention relates to a method for operating a heat pump arrangement according to the preamble of patent claim 5.
  • Heat pumps use thermal energy (heat) from a heat source to evaporate a working fluid. It is advantageous here if the evaporation temperature of the working fluid is as high as possible, since this results in a low pressure ratio and thus a high coefficient of performance (COP for short). Consequently, the smallest possible temperature difference between the heat source and the evaporation temperature is advantageous. Typically, a temperature difference of about five Kelvin is used, so that at a temperature of the heat source of 80 degrees Celsius, an evaporation temperature of 75 degrees Celsius is provided.
  • the present invention is based on the object of improving the use of a low-temperature heat source for a heat pump.
  • the heat pump arrangement comprises a compressor, a condenser and an evaporator, which are fluidically coupled by means of a working circuit for a working fluid.
  • the heat pump arrangement comprises a heat exchanger, a jet pump and a bypass line, the bypass line being configured to guide at least part of the working fluid downstream of the jet pump and upstream of the evaporator to the heat exchanger and back to the jet pump.
  • the working cycle of the heat pump arrangement can accordingly be divided into a primary and a secondary working cycle.
  • the primary working circuit forms a heat pump circuit.
  • the secondary working circuit is formed by the bypass line.
  • the primary and secondary working circuits are fluidically coupled with respect to the working fluid.
  • the working circuit or the working circuits have a direction with respect to which an element of the heat pump arrangement is arranged before or after a further element of the heat pump arrangement.
  • a low-temperature heat source which is thermally coupled to the heat exchanger can be efficiently integrated into the working circuit of the heat pump.
  • the thermal energy of the heat source is at least partially transferred to the working fluid within the bypass line.
  • the working fluid warmed up in this way is returned to the jet pump and is used there preferably as a suction medium, the original working fluid coming from the condenser (non-expanded condensate) being provided as the driving medium.
  • This is advantageous for driving the Bypass line no additional structural components, such as pumps, required.
  • the energetic efficiency of the heat pump arrangement is advantageously further improved as a result, since, for example, no pump for the bypass line has to be supplied with electrical energy.
  • the jet pump is provided as an expansion valve and as a pump for the working fluid, the pumping action being provided by the non-expanded, condensed working fluid used as the driving medium.
  • jet pump has a particularly simple structure, typically has no moving components and is particularly robust and low-maintenance.
  • a working fluid is compressed within a working circuit by means of a compressor, condensed by means of a condenser and evaporated by means of an evaporator.
  • part of the working fluid is conducted by means of a bypass line after a jet pump of the heat pump arrangement and before the evaporator to a heat exchanger for heat exchange and back to the jet pump.
  • the jet pump is designed as an ejector.
  • the jet pump generates a negative pressure on the basis of which the bypass line can be operated, that is to say due to which the working fluid in the bypass line is sucked back into the primary working circuit.
  • the bypass line is designed to guide the working fluid back to a suction connection of the jet pump.
  • the working fluid is fed back to at least one suction connection of the jet pump via the bypass line.
  • the heat exchanger is designed as a heat exchanger of a cooling device.
  • bypass line is thermally coupled to the cooling device by means of a common heat exchanger, so that the heat exchange takes place by means of the heat exchanger of the cooling device.
  • the heat dissipated by the cooling device for cooling is advantageously reused. This increases the energetic efficiency of the heat pump arrangement and the cooling device.
  • the cooling device is designed to cool the compressor.
  • the compressor of the heat pump is cooled by the cooling device.
  • the heat dissipated by the cooling of the compressor is fed back to the heat pump circuit by means of the heat exchanger in the bypass line, so that the energetic efficiency of the heat pump arrangement is further increased.
  • the waste heat that is generated by the operation of the compressor is therefore not completely lost, but is at least partially recovered and fed back into the heat pump circuit.
  • the cooling device is designed to cool a transmission device of the compressor
  • the cooling device is particularly preferably designed as a transmission oil cooling system.
  • an oil which is typically provided for cooling the transmission device, is fed from the transmission device to the heat exchanger.
  • the heat exchanger is designed as an oil cooler.
  • the bypass line comprises an expansion valve, the expansion valve being arranged upstream of the heat exchanger.
  • the pressure of the working fluid within the bypass line can advantageously be set in such a way that a defined heating or evaporation of the working fluid takes place in the heat exchanger.
  • the pressure of the working fluid is set upstream of the heat exchanger within the bypass line by means of the at least one expansion valve.
  • the evaporation pressure of the working fluid within the evaporator can be adjusted by means of the jet pump.
  • the jet pump is provided as an expansion valve.
  • the heat pump arrangement comprises a working fluid which has at least one substance from the group of fluoroketones and / or hydrofluoroolefins and / or hydrofluorochloroolefins.
  • At least one fluoroketone and / or hydrofluoroolefins and / or hydrofluorochlorolefins are used as the working fluid.
  • a high-temperature heat pump is advantageously formed, which makes it possible to give off its heat at a temperature level above 100 degrees Celsius or make it available for a heat consumer.
  • working fluids with fluoroketones and / or hydrofluoroolefins and / or hydrofluorochloroolefins are particularly advantageous in order to absorb the heat at a low temperature level by means of the heat exchanger.
  • Another advantage of the working fluids mentioned is their technical manageability. They are characterized by good environmental compatibility and their safety properties, such as no flammability or a very low global warming potential.
  • FIGURE shows a schematic circuit diagram of a heat pump arrangement according to an embodiment of the present invention.
  • a heat pump arrangement 1 according to an embodiment of the present invention is shown schematically.
  • the heat pump arrangement 1 has a compressor 2, a condenser 6, an evaporator 8 and a jet pump 42.
  • the heat pump arrangement further comprises a primary and secondary working circuit 101, 102 for a working fluid.
  • the primary working circuit 101 forms a heat pump circuit in which the working fluid is compressed in the compressor 2, condensed in the condenser 6, evaporated in the evaporator 8 and expanded by means of the jet pump 42.
  • a heat pump is formed by the compressor 2, the condenser 6, the evaporator 8 and the jet pump 42.
  • the secondary working circuit 102 is formed by means of a bypass line 4, which branches off after the jet pump 42 and before the evaporator 8 and leads at least part of the working fluid back to a suction connection of the jet pump 42 via a heat exchanger 41.
  • the working circuits 101, 102 are consequently connected fluidically in parallel with respect to the working fluid.
  • the jet pump 42 is designed as an ejector, so that a negative pressure is generated that draws the working fluid back in from the bypass line 4.
  • the flow through the bypass line 4 with the working fluid is driven by the working fluid itself, so that the working fluid is designed at the same time as the driving medium for the jet pump 42.
  • no additional pump is advantageously required to drive the bypass line 4.
  • the heat exchanger 41 is coupled to a cooling line 12 of an oil cooling system.
  • the heat exchanger can be thermally coupled to any heat source, in particular to low-temperature waste heat sources.
  • the waste heat is passed through the heat exchanger 41 to the working fluid in the Bypass line 4 at least partially transferred.
  • the pressure at which said heat transfer takes place in the heat exchanger 41 can be set by means of an expansion valve 40.
  • the oil cooling is provided for cooling a gear device 21 of the compressor 2.
  • the cooling lines 12 are fluidically coupled to the transmission device 21.
  • the compressor 2 or its transmission device 21 is advantageously cooled.
  • the waste heat of the transmission device 21 is - in contrast to known cooling systems of a compressor - not completely lost, since at least a part is transferred to the working fluid of the heat pump by means of the heat exchanger 41 and by means of the bypass line 4 provided according to the invention.
  • This increases the energetic efficiency of the heat pump arrangement 1, which in the exemplary embodiment shown essentially forms a heat pump. In other words, the heat pump arrangement 1 provides an improved heat pump.
  • the compressor 2 comprises an electric motor 22 for its operation, which can also be cooled by means of the oil cooling.
  • the jet pump 42 in connection with the bypass line 4 therefore enables the integration of a heat source with a comparatively low temperature level, without additional power-consuming components, for example pumps.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Compressor (AREA)

Description

Die Erfindung betrifft eine Wärmepumpenanordnung gemäß dem Obergriff des Patentanspruches 1. Weiterhin betrifft die Erfindung ein Verfahren zum Betrieb einer Wärmepumpenanordnung gemäß dem Oberbegriff des Patentanspruches 5.The invention relates to a heat pump arrangement according to the preamble of patent claim 1. Furthermore, the invention relates to a method for operating a heat pump arrangement according to the preamble of patent claim 5.

Wärmepumpen verwenden thermische Energie (Wärme) einer Wärmequelle um ein Arbeitsfluid zu verdampfen. Hierbei ist es von Vorteil, wenn die Verdampfungstemperatur des Arbeitsfluids möglichst hoch ist, da dadurch ein niedriges Druckverhältnis und somit eine hohe Leistungszahl (englisch: Coefficient of Performance; kurz COP) erreicht wird. Folglich ist ein möglichst geringer Temperaturunterschied zwischen der Wärmequelle und der Verdampfungstemperatur vorteilhaft. Typischerweise wird ein Temperaturunterschied von etwa fünf Kelvin verwendet, sodass bei einer Temperatur der Wärmequelle von 80 Grad Celsius eine Verdampfungstemperatur von 75 Grad Celsius vorgesehen ist.Heat pumps use thermal energy (heat) from a heat source to evaporate a working fluid. It is advantageous here if the evaporation temperature of the working fluid is as high as possible, since this results in a low pressure ratio and thus a high coefficient of performance (COP for short). Consequently, the smallest possible temperature difference between the heat source and the evaporation temperature is advantageous. Typically, a temperature difference of about five Kelvin is used, so that at a temperature of the heat source of 80 degrees Celsius, an evaporation temperature of 75 degrees Celsius is provided.

Soll eine Wärmequelle mit einer vergleichsweise niedrigen Temperatur, beispielsweise 50 Grad Celsius, verwendet werden, so würde dies zu einer entsprechend niedrigen Verdampfungstemperatur, beispielsweise 45 Grad Celsius, führen. Dadurch würde jedoch die Leistungszahl deutlich verringert werden. Dokument US2014345318 offenbart eine Wärmepumpenanordnung gemäß dem Oberbegriff des Anspruchs 1.If a heat source with a comparatively low temperature, for example 50 degrees Celsius, is to be used, this would lead to a correspondingly low evaporation temperature, for example 45 degrees Celsius. However, this would significantly reduce the COP. document US2014345318 discloses a heat pump arrangement according to the preamble of claim 1.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, die Verwendung einer niedertemperierten Wärmequelle für eine Wärmepumpe zu verbessern.The present invention is based on the object of improving the use of a low-temperature heat source for a heat pump.

Die Aufgabe wird durch eine Wärmepumpenanordnung mit den Merkmalen des unabhängigen Patentanspruches 1 sowie durch ein Verfahren zum Betrieb einer Wärmepumpenanordnung mit den Merkmalen des unabhängigen Patentanspruches 5 gelöst. In den abhängigen Patentansprüchen sind vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung angegeben.The object is achieved by a heat pump arrangement having the features of independent patent claim 1 and by a method for operating a heat pump arrangement having the features of independent patent claim 5. In the The dependent claims provide advantageous configurations and developments of the invention.

Die erfindungsgemäße Wärmepumpenanordnung umfasst einen Verdichter, einen Kondensator und einen Verdampfer, die mittels eines Arbeitskreislaufes für ein Arbeitsfluid fluidisch gekoppelt sind. Erfindungsgemäß umfasst die Wärmepumpenanordnung einen Wärmetauscher, eine Strahlpumpe und eine Bypassleitung, wobei die Bypassleitung dazu ausgestaltet ist, wenigstens einen Teil des Arbeitsfluids nach der Strahlpumpe und vor dem Verdampfer zum Wärmetauscher und zurück zur Strahlpumpe zu führen.The heat pump arrangement according to the invention comprises a compressor, a condenser and an evaporator, which are fluidically coupled by means of a working circuit for a working fluid. According to the invention, the heat pump arrangement comprises a heat exchanger, a jet pump and a bypass line, the bypass line being configured to guide at least part of the working fluid downstream of the jet pump and upstream of the evaporator to the heat exchanger and back to the jet pump.

Der Arbeitskreislauf der Wärmepumpenanordnung kann demnach in einen primären und einen sekundären Arbeitskreislauf eingeteilt werden. Hierbei bildet der primäre Arbeitskreislauf einen Wärmepumpenkreislauf aus. Der sekundäre Arbeitskreislauf wird durch die Bypassleitung ausgebildet. Der primäre und sekundäre Arbeitskreislauf sind bezüglich des Arbeitsfluid fluidisch gekoppelt.The working cycle of the heat pump arrangement can accordingly be divided into a primary and a secondary working cycle. Here, the primary working circuit forms a heat pump circuit. The secondary working circuit is formed by the bypass line. The primary and secondary working circuits are fluidically coupled with respect to the working fluid.

Der Arbeitskreislauf beziehungsweise die Arbeitskreisläufe weisen eine Richtung auf, bezüglich derer ein Element der Wärmepumpenanordnung vor oder nach einem weiteren Element der Wärmepumpenanordnung angeordnet ist.The working circuit or the working circuits have a direction with respect to which an element of the heat pump arrangement is arranged before or after a further element of the heat pump arrangement.

Durch die erfindungsgemäß vorgesehene Strahlpumpe und den erfindungsgemäß vorgesehenen Wärmetauscher kann eine niedertemperierte Wärmequelle, die mit dem Wärmetauscher thermisch gekoppelt ist, effizient in den Arbeitskreislauf der Wärmepumpe eingebunden werden. Mittels des Wärmetauschers wird die thermische Energie der Wärmequelle wenigstens teilweise auf das Arbeitsfluid innerhalb der Bypassleitung übertragen. Das dadurch aufgewärmte Arbeitsfluid wird zur Strahlpumpe zurückgeleitet und dient dort bevorzugt als Saugmedium, wobei als Treibmedium das ursprüngliche vom Kondensator kommende Arbeitsfluid (nicht expandiertes Kondensat) vorgesehen ist. Dadurch sind vorteilhafterweise für das Treiben der Bypassleitung keine zusätzlichen baulichen Komponenten, beispielsweise Pumpen, erforderlich. Vorteilhaftweise wird dadurch die energetische Effizienz der Wärmepumpenanordnung weiter verbessert, da beispielsweise keine Pumpe für die Bypassleitung mit elektrischer Energie versorgt werden muss.By means of the jet pump provided according to the invention and the heat exchanger provided according to the invention, a low-temperature heat source which is thermally coupled to the heat exchanger can be efficiently integrated into the working circuit of the heat pump. By means of the heat exchanger, the thermal energy of the heat source is at least partially transferred to the working fluid within the bypass line. The working fluid warmed up in this way is returned to the jet pump and is used there preferably as a suction medium, the original working fluid coming from the condenser (non-expanded condensate) being provided as the driving medium. This is advantageous for driving the Bypass line no additional structural components, such as pumps, required. The energetic efficiency of the heat pump arrangement is advantageously further improved as a result, since, for example, no pump for the bypass line has to be supplied with electrical energy.

Mit anderen Worten ist erfindungsgemäß die Strahlpumpe als Expansionsventil und als Pumpe für das Arbeitsfluid vorgesehen, wobei die Pumpwirkung durch das als Treibmedium verwendete nicht expandierte kondensierte Arbeitsfluid bereitgestellt wird. Dadurch kann ein typisches Expansionsventil im primären Arbeitskreislauf der Wärmepumpenanordnung eingespart werden.In other words, according to the invention, the jet pump is provided as an expansion valve and as a pump for the working fluid, the pumping action being provided by the non-expanded, condensed working fluid used as the driving medium. As a result, a typical expansion valve in the primary working circuit of the heat pump arrangement can be saved.

Weitere Vorteile der Strahlpumpe sind, dass diese besonders einfach aufgebaut ist, typischerweise keine beweglichen Bauteile aufweist und besonders robust und wartungsarm ist.Further advantages of the jet pump are that it has a particularly simple structure, typically has no moving components and is particularly robust and low-maintenance.

Bei dem erfindungsgemäßen Verfahren zum Betrieb einer Wärmepumpenanordnung wird ein Arbeitsfluid innerhalb eines Arbeitskreislaufes mittels eines Verdichters verdichtet, mittels eines Kondensators kondensiert und mittels eines Verdampfers verdampft. Erfindungsgemäß wird ein Teil des Arbeitsfluids mittels einer Bypassleitung nach einer Strahlpumpe der Wärmepumpenanordnung und vor dem Verdampfer zu einem Wärmetauscher zum Wärmeaustausch und zurück zur Strahlpumpe geführt.In the method according to the invention for operating a heat pump arrangement, a working fluid is compressed within a working circuit by means of a compressor, condensed by means of a condenser and evaporated by means of an evaporator. According to the invention, part of the working fluid is conducted by means of a bypass line after a jet pump of the heat pump arrangement and before the evaporator to a heat exchanger for heat exchange and back to the jet pump.

Es ergeben sich zur erfindungsgemäßen Wärmepumpenanordnung gleichartige und gleichwertige Vorteile des erfindungsgemäßen Verfahrens.Similar and equivalent advantages of the method according to the invention result for the heat pump arrangement according to the invention.

Erfindungsgemäß ist die Strahlpumpe als Ejektor ausgebildet.According to the invention, the jet pump is designed as an ejector.

Mit anderen Worten erzeugt die Strahlpumpe einen Unterdruck, aufgrund dessen die Bypassleitung betreibbar ist, das heißt aufgrund dessen das Arbeitsfluid in der Bypassleitung in den primären Arbeitskreislauf zurückgesaugt wird.In other words, the jet pump generates a negative pressure on the basis of which the bypass line can be operated, that is to say due to which the working fluid in the bypass line is sucked back into the primary working circuit.

Hierbei ist die Bypassleitung erfindungsgemäß dazu ausgestaltet das Arbeitsfluid zurück zu einem Sauganschluss der Strahlpumpe zu führen.According to the invention, the bypass line is designed to guide the working fluid back to a suction connection of the jet pump.

Mit anderen Worten wird das Arbeitsfluid über die Bypassleitung zurück zu wenigstens dem einen Sauganschluss der Strahlpumpe geführt.In other words, the working fluid is fed back to at least one suction connection of the jet pump via the bypass line.

Gemäß der Erfindung ist der Wärmetauscher als ein Wärmetauscher einer Kühlvorrichtung ausgebildet.According to the invention, the heat exchanger is designed as a heat exchanger of a cooling device.

Mit anderen Worten ist die Bypassleitung mittels eines gemeinsamen Wärmetauschers thermisch mit der Kühlvorrichtung gekoppelt, sodass der Wärmeaustausch mittels des Wärmetauschers der Kühlvorrichtung erfolgt. Vorteilhafterweise wird dadurch die durch die Kühlvorrichtung zur Kühlung abgeführte Wärme weiterverwendet. Dadurch wird die energetische Effizienz der Wärmepumpenanordnung und der Kühlvorrichtung erhöht.In other words, the bypass line is thermally coupled to the cooling device by means of a common heat exchanger, so that the heat exchange takes place by means of the heat exchanger of the cooling device. As a result, the heat dissipated by the cooling device for cooling is advantageously reused. This increases the energetic efficiency of the heat pump arrangement and the cooling device.

Erfindungsgemäß ist die Kühlvorrichtung zur Kühlung des Verdichters ausgebildet.According to the invention, the cooling device is designed to cool the compressor.

Mit anderen Worten wird der Verdichter der Wärmepumpe durch die Kühlvorrichtung gekühlt. Hierbei wird die durch die Kühlung des Verdichters abgeführte Wärme wieder dem Wärmepumpenkreislauf mittels des Wärmetauschers in der Bypassleitung zugeführt, sodass die energetische Effizienz der Wärmepumpenanordnung weiter erhöht wird. Die Abwärme, die durch den Betrieb des Verdichters erzeugt wird, geht daher nicht vollständig verloren, sondern wird wenigstens teilweise zurückgewonnen und dem Wärmepumpenkreislauf wieder zugeführt.In other words, the compressor of the heat pump is cooled by the cooling device. Here, the heat dissipated by the cooling of the compressor is fed back to the heat pump circuit by means of the heat exchanger in the bypass line, so that the energetic efficiency of the heat pump arrangement is further increased. The waste heat that is generated by the operation of the compressor is therefore not completely lost, but is at least partially recovered and fed back into the heat pump circuit.

Weiterhin ergibt sich der Vorteil, dass externe Kühlkreisläufe oder Kühlvorrichtungen zur Kühlung des Verdichters eingespart werden können. Dadurch werden die Investitionskosten verringert. Ferner wird die bauliche Kompaktheit der Anlage verbessert, da zusätzliche Elemente zur Abführung der Abwärme des Verdichters, beispielsweise Kühlrippen oder Kühltürme, eingespart werden können.Furthermore, there is the advantage that external cooling circuits or cooling devices for cooling the compressor can be saved. This reduces the investment costs. Furthermore, the structural compactness of the system is improved, since additional elements for dissipating the waste heat from the compressor, for example cooling fins or cooling towers, can be saved.

Erfindungsgemäß ist die Kühlvorrichtung zur Kühlung einer Getriebevorrichtung des Verdichters ausgebildetAccording to the invention, the cooling device is designed to cool a transmission device of the compressor

Insbesondere ist die Kühlvorrichtung besonders bevorzugt als Getriebeölkühlung ausgestaltet.In particular, the cooling device is particularly preferably designed as a transmission oil cooling system.

Hierbei wird ein Öl, welches typischerweise zur Kühlung der Getriebevorrichtung vorgesehen ist, von der Getriebevorrichtung zum Wärmetauscher geführt. Mit anderen Worten ist der Wärmetauscher als Ölkühler ausgebildet.Here, an oil, which is typically provided for cooling the transmission device, is fed from the transmission device to the heat exchanger. In other words, the heat exchanger is designed as an oil cooler.

Gemäß einer vorteilhaften Ausgestaltung der Erfindung umfasst die Bypassleitung ein Expansionsventil, wobei das Expansionsventil vor dem Wärmetauscher angeordnet ist.According to an advantageous embodiment of the invention, the bypass line comprises an expansion valve, the expansion valve being arranged upstream of the heat exchanger.

Dadurch kann vorteilhafterweise der Druck des Arbeitsfluids innerhalb der Bypassleitung derart eingestellt werden, dass eine festgelegte Erwärmung oder eine Verdampfung des Arbeitsfluid im Wärmetauscher erfolgt. Mit anderen Worten wird der Druck des Arbeitsfluids vor dem Wärmetauscher innerhalb der Bypassleitung mittels des wenigstens einen Expansionsventils eingestellt.In this way, the pressure of the working fluid within the bypass line can advantageously be set in such a way that a defined heating or evaporation of the working fluid takes place in the heat exchanger. In other words, the pressure of the working fluid is set upstream of the heat exchanger within the bypass line by means of the at least one expansion valve.

Weiterhin kann gemäß einer bevorzugten Ausgestaltung der Erfindung der Verdampfungsdruck des Arbeitsfluids innerhalb des Verdampfers mittels der Strahlpumpe eingestellt werden.Furthermore, according to a preferred embodiment of the invention, the evaporation pressure of the working fluid within the evaporator can be adjusted by means of the jet pump.

Dadurch wird eine Anpassung des Verdampfungsdrucks ohne ein zusätzliches Expansionsventil innerhalb des primären Wärmepumpenkreislaufes ermöglicht. Mit anderen Worten ist die Strahlpumpe als Expansionsventil vorgesehen.This enables the evaporation pressure to be adjusted without an additional expansion valve within the primary heat pump circuit enables. In other words, the jet pump is provided as an expansion valve.

In einer vorteilhaften Weiterbildung der Erfindung umfasst die Wärmepumpenanordnung ein Arbeitsfluid, welches wenigstens einen Stoff aus der Gruppe der Fluorketone und/oder Hydrofluorolefine und/oder Hydrofluorchlorolefine aufweist.In an advantageous development of the invention, the heat pump arrangement comprises a working fluid which has at least one substance from the group of fluoroketones and / or hydrofluoroolefins and / or hydrofluorochloroolefins.

Mit anderen Worten wird als Arbeitsfluid wenigstens ein Fluorketon und/oder Hydrofluorolefine und/oder Hydrofluorchlorolefine verwendet.In other words, at least one fluoroketone and / or hydrofluoroolefins and / or hydrofluorochlorolefins are used as the working fluid.

Dadurch wird vorteilhafterweise eine Hochtemperaturwärmepumpe ausgebildet, die es ermöglicht ihre Wärme auf einem Temperaturniveau oberhalb von 100 Grad Celsius abzugeben beziehungsweise für einen Wärmeverbraucher bereitzustellen. Weiterhin sind Arbeitsfluide mit Fluorketonen und/oder Hydrofluorolefine und/oder Hydrofluorchlorolefine besonders vorteilhaft um die Wärme auf niedrigem Temperaturniveau mittels des Wärmetauschers aufzunehmen.As a result, a high-temperature heat pump is advantageously formed, which makes it possible to give off its heat at a temperature level above 100 degrees Celsius or make it available for a heat consumer. Furthermore, working fluids with fluoroketones and / or hydrofluoroolefins and / or hydrofluorochloroolefins are particularly advantageous in order to absorb the heat at a low temperature level by means of the heat exchanger.

Ein weiterer Vorteil der genannten Arbeitsfluide ist ihre technische Handhabbarkeit. Sie zeichnen sich durch eine gute Umweltverträglichkeit sowie durch ihre Sicherheitseigenschaften, wie beispielsweise keine Brennbarkeit oder ein sehr geringes Treibhauspotential, aus.Another advantage of the working fluids mentioned is their technical manageability. They are characterized by good environmental compatibility and their safety properties, such as no flammability or a very low global warming potential.

Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus dem im Folgenden beschriebenen Ausführungsbeispielen sowie anhand der Zeichnung. Dabei zeigt die einzige Figur ein schematisches Schaltdiagramm einer Wärmepumpenanordnung gemäß einer Ausgestaltung der vorliegenden Erfindung.Further advantages, features and details of the invention emerge from the exemplary embodiments described below and with reference to the drawing. The single FIGURE shows a schematic circuit diagram of a heat pump arrangement according to an embodiment of the present invention.

Gleichartige, gleichwertige oder gleichwirkende Elemente können in der Figur mit denselben Bezugszeichen versehen sein.Identical, equivalent or identically acting elements can be provided with the same reference symbols in the figure.

In der Figur ist eine Wärmepumpenanordnung 1 gemäß einer Ausgestaltung der vorliegenden Erfindung schematisch dargestellt.In the figure, a heat pump arrangement 1 according to an embodiment of the present invention is shown schematically.

Die Wärmepumpenanordnung 1 weist einen Verdichter 2, einen Kondensator 6, einen Verdampfer 8 sowie eine Strahlpumpe 42 auf. Weiterhin umfasst die Wärmepumpenanordnung einen primären und sekundären Arbeitskreislauf 101, 102 für ein Arbeitsfluid auf. Der primäre Arbeitskreislauf 101 bildet einen Wärmepumpenkreislauf auf, bei welchem das Arbeitsfluid im Verdichter 2 verdichtet, im Kondensator 6 kondensiert, im Verdampfer 8 verdampft und mittels der Strahlpumpe 42 expandiert wird. Mit anderen Worten wird durch den Verdichter 2, den Kondensator 6, den Verdampfer 8 und der Strahlpumpe 42 eine Wärmepumpe ausgebildet.The heat pump arrangement 1 has a compressor 2, a condenser 6, an evaporator 8 and a jet pump 42. The heat pump arrangement further comprises a primary and secondary working circuit 101, 102 for a working fluid. The primary working circuit 101 forms a heat pump circuit in which the working fluid is compressed in the compressor 2, condensed in the condenser 6, evaporated in the evaporator 8 and expanded by means of the jet pump 42. In other words, a heat pump is formed by the compressor 2, the condenser 6, the evaporator 8 and the jet pump 42.

Der sekundäre Arbeitskreislauf 102 wird mittels einer Bypassleitung 4 gebildet, die nach der Strahlpumpe 42 und vor dem Verdampfer 8 abzweigt, und wenigstens einen Teil des Arbeitsfluids über einen Wärmetauscher 41 zurück zu einem Sauganschluss der Strahlpumpe 42 führt. Die Arbeitskreisläufe 101, 102 sind folglich bezüglich des Arbeitsfluids fluidisch parallel verschaltet.The secondary working circuit 102 is formed by means of a bypass line 4, which branches off after the jet pump 42 and before the evaporator 8 and leads at least part of the working fluid back to a suction connection of the jet pump 42 via a heat exchanger 41. The working circuits 101, 102 are consequently connected fluidically in parallel with respect to the working fluid.

Die Strahlpumpe 42 ist als Ejektor ausgebildet, sodass ein Unterdruck erzeugt wird, der das Arbeitsfluid wieder aus der Bypassleitung 4 ansaugt. Mit anderen Worten wird die Durchströmung der Bypassleitung 4 mit dem Arbeitsfluid durch das Arbeitsfluid selbst getrieben, sodass das Arbeitsfluid gleichzeitig als Treibmedium für die Strahlpumpe 42 ausgebildet ist. Dadurch ist vorteilhafterweise keine zusätzliche Pumpe zum treiben der Bypassleitung 4 erforderlich.The jet pump 42 is designed as an ejector, so that a negative pressure is generated that draws the working fluid back in from the bypass line 4. In other words, the flow through the bypass line 4 with the working fluid is driven by the working fluid itself, so that the working fluid is designed at the same time as the driving medium for the jet pump 42. As a result, no additional pump is advantageously required to drive the bypass line 4.

Der Wärmetauscher 41 ist mit einer Kühlleitung 12 einer Ölkühlung gekoppelt. Grundsätzlich kann der Wärmetauscher mit jeder Wärmequelle, insbesondere mit niedertemperierten Abwärmequellen, thermisch gekoppelt sein. Die Abwärme wird über den Wärmetauscher 41 an das Arbeitsfluid in der Bypassleitung 4 wenigstens teilweise übertragen. Der Druck, bei welcher die genannte Wärmeübertragung im Wärmetauscher 41 erfolgt, kann mittels eines Expansionsventils 40 eingestellt werden.The heat exchanger 41 is coupled to a cooling line 12 of an oil cooling system. In principle, the heat exchanger can be thermally coupled to any heat source, in particular to low-temperature waste heat sources. The waste heat is passed through the heat exchanger 41 to the working fluid in the Bypass line 4 at least partially transferred. The pressure at which said heat transfer takes place in the heat exchanger 41 can be set by means of an expansion valve 40.

In der vorliegenden Erfindung ist die Ölkühlung für die Kühlung einer Getriebevorrichtung 21 des Verdichters 2 vorgesehen. Hierzu sind die Kühlleitungen 12 mit der Getriebevorrichtung 21 fluidisch gekoppelt. Dadurch wird vorteilhafterweise der Verdichter 2 beziehungsweise seine Getriebevorrichtung 21 gekühlt. Die Abwärme der Getriebevorrichtung 21 geht - im Gegensatz zu bekannten Kühlungen eines Verdichters - nicht vollständig verloren, da wenigstens ein Teil mittels des Wärmetauschers 41 und mittels der erfindungsgemäß vorgesehenen Bypassleitung 4 an das Arbeitsfluid der Wärmepumpe übertragen wird. Dadurch wird die energetische Effizienz der Wärmepumpenanordnung 1, die im dargestellten Ausführungsbeispiel im Wesentlichen eine Wärmepumpe ausbildet, erhöht. Mit anderen Worten stellt die Wärmepumpenanordnung 1 eine verbesserte Wärmepumpe bereit.In the present invention, the oil cooling is provided for cooling a gear device 21 of the compressor 2. For this purpose, the cooling lines 12 are fluidically coupled to the transmission device 21. As a result, the compressor 2 or its transmission device 21 is advantageously cooled. The waste heat of the transmission device 21 is - in contrast to known cooling systems of a compressor - not completely lost, since at least a part is transferred to the working fluid of the heat pump by means of the heat exchanger 41 and by means of the bypass line 4 provided according to the invention. This increases the energetic efficiency of the heat pump arrangement 1, which in the exemplary embodiment shown essentially forms a heat pump. In other words, the heat pump arrangement 1 provides an improved heat pump.

Weiterhin umfasst der Verdichter 2 einen elektrischen Motor 22 zu dessen Betrieb, der ebenfalls mittels der Ölkühlung gekühlt werden kann.Furthermore, the compressor 2 comprises an electric motor 22 for its operation, which can also be cooled by means of the oil cooling.

Die Strahlpumpe 42 in Verbindung mit der Bypassleitung 4 ermöglicht daher die Einbindung einer Wärmequelle mit einem vergleichsweise niedrigen Temperaturniveau, ohne zusätzliche stromverbrauchende Bauteile, beispielsweise Pumpen.The jet pump 42 in connection with the bypass line 4 therefore enables the integration of a heat source with a comparatively low temperature level, without additional power-consuming components, for example pumps.

Obwohl die Erfindung im Detail durch die bevorzugten Ausführungsbeispiele näher illustriert und beschrieben wurde, so ist die Erfindung nicht durch die offenbarten Beispiele eingeschränkt und andere Variationen können vom Fachmann hieraus abgeleitet werden, solange sie innerhalb des durch die anliegenden Ansprüche definierten Schutzbereichs bleiben.Although the invention has been illustrated and described in more detail by the preferred exemplary embodiments, the invention is not restricted by the disclosed examples and other variations can be derived therefrom by the person skilled in the art, as long as they remain within the scope of protection defined by the appended claims.

Claims (8)

  1. Heat pump arrangement (1) comprising a compressor (2), a condenser (6) and an evaporator (8), which are fluidically coupled by means of a working circuit (100) for a working fluid, wherein the heat pump arrangement (1) comprises a heat exchanger (41), a jet pump (42) in the form of an ejector and a bypass line (4), wherein the bypass line (4) is configured to conduct at least a part of the working fluid after the jet pump (42) and before the evaporator (8) to the heat exchanger (41) and before the evaporator (8) back to a suction connector of the jet pump (42), characterized in that the heat exchanger (41) is coupled to cooling lines (12) of an oil cooling arrangement, wherein the cooling lines (12) are fluidically coupled to a gearing device (21) of the compressor (2), wherein the oil cooling arrangement is configured for cooling the gearing device (21).
  2. Heat pump arrangement (1) according to Claim 1, characterized in that the oil cooling arrangement is in the form of a gearing-oil cooling arrangement.
  3. Heat pump arrangement (1) according to Claim 1 or 2, characterized in that the bypass line (4) comprises an expansion valve (40), wherein the expansion valve (40) is arranged before the heat exchanger (41).
  4. Heat pump arrangement (1) according to one of the preceding claims, characterized in that said heat pump arrangement comprises the working fluid, wherein the working fluid comprises at least one substance from the group of fluoroketones and/or hydrofluoroolefins and/or hydrofluorochloroolefins.
  5. Method for operating a heat pump arrangement (1) according to one of the preceding claims, in which method a working fluid is, within a working circuit (100), compressed by means of a compressor (2), condensed by means of a condenser (6) and evaporated by means of an evaporator (8), wherein at least a part of the working fluid is, by means of a bypass line (4), conducted after a jet pump (42), in the form of an ejector, of the heat pump arrangement (1) and before the evaporator (8) to a heat exchanger (41) for the purpose of heat exchange and before the evaporator (8) back to a suction connector of the jet pump (42), characterized in that the heat exchanger (41) is coupled to cooling lines (12) of an oil cooling arrangement, wherein the cooling lines (12) are fluidically coupled to a gearing device (21) of the compressor (2), wherein the gearing device (21) is cooled by means of the oil cooling arrangement.
  6. Method according to Claim 5, characterized in that the pressure of the working fluid before the heat exchanger (41) is set within the bypass line (4) by means of an expansion valve (40) .
  7. Method according to Claim 5 or 6, characterized in that the evaporation pressure of the working fluid within the evaporator (8) is set by means of the jet pump (42).
  8. Method according to one of Claims 5 to 7, characterized in that a fluid comprising a fluoroketone and/or hydrofluoroolefins and/or hydrofluorochloroolefins is used as the working fluid.
EP18706390.4A 2017-02-24 2018-01-23 Heat pump arrangement and method for operating a heat pump arrangement Active EP3571450B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017203043.7A DE102017203043A1 (en) 2017-02-24 2017-02-24 Heat pump assembly and method of operating a heat pump assembly
PCT/EP2018/051506 WO2018153589A1 (en) 2017-02-24 2018-01-23 Heat pump arrangement and method for operating a heat pump arrangement

Publications (2)

Publication Number Publication Date
EP3571450A1 EP3571450A1 (en) 2019-11-27
EP3571450B1 true EP3571450B1 (en) 2020-12-30

Family

ID=61256889

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18706390.4A Active EP3571450B1 (en) 2017-02-24 2018-01-23 Heat pump arrangement and method for operating a heat pump arrangement

Country Status (7)

Country Link
EP (1) EP3571450B1 (en)
JP (1) JP2020508433A (en)
KR (1) KR20190105228A (en)
CN (1) CN110337573A (en)
DE (1) DE102017203043A1 (en)
DK (1) DK3571450T3 (en)
WO (1) WO2018153589A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140345318A1 (en) * 2011-11-17 2014-11-27 Denso Corporation Ejector-type refrigeration cycle device

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5043345U (en) * 1973-08-14 1975-05-01
JPS5218242A (en) * 1975-08-01 1977-02-10 Sharp Corp Refrigerating cycle
KR20060128041A (en) * 2004-03-04 2006-12-13 이 아이 듀폰 디 네모아 앤드 캄파니 Haloketone refrigerant compositions and uses thereof
MX2021005417A (en) * 2008-07-30 2022-05-18 Honeywell Int Inc Compositions containing difluoromethane and fluorine substituted olefins.
ES2601854T3 (en) 2009-02-27 2017-02-16 Vestas Wind Systems A/S A wind turbine and a method for cooling a component that generates heat from a wind turbine
JP5370028B2 (en) 2009-09-10 2013-12-18 株式会社デンソー Ejector
JP5328713B2 (en) * 2010-04-27 2013-10-30 三菱電機株式会社 Refrigeration cycle equipment
JP2012172917A (en) * 2011-02-22 2012-09-10 Nippon Soken Inc Cooling device
TWI577949B (en) 2013-02-21 2017-04-11 強生控制科技公司 Lubrication and cooling system
WO2014158329A1 (en) * 2013-03-25 2014-10-02 Carrier Corporation Compressor bearing cooling
JP6186998B2 (en) 2013-07-31 2017-08-30 株式会社デンソー Air conditioner for vehicles
JP5999050B2 (en) 2013-08-29 2016-09-28 株式会社デンソー Ejector refrigeration cycle and ejector
DE102014200160A1 (en) 2014-01-09 2015-07-09 Siemens Aktiengesellschaft Vehicle with a compression refrigeration machine
JP2015194300A (en) * 2014-03-31 2015-11-05 荏原冷熱システム株式会社 turbo refrigerator
JP6448936B2 (en) * 2014-07-15 2019-01-09 三菱重工サーマルシステムズ株式会社 Oil recovery device for turbo refrigerator
CN204593934U (en) * 2014-12-11 2015-08-26 华南理工大学 A kind of electric motor car Waste Heat Reuse frequency conversion heat pump air-conditioning system
CN105823256B (en) * 2016-03-22 2018-11-06 东南大学 A kind of compressor returns the working method of oil cooled heat pump apparatus of air source
CN105890210B (en) 2016-06-01 2018-09-07 珠海格力电器股份有限公司 High-temperature air conditioning unit
CN205669895U (en) * 2016-06-01 2016-11-02 珠海格力电器股份有限公司 High-temperature air conditioning unit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140345318A1 (en) * 2011-11-17 2014-11-27 Denso Corporation Ejector-type refrigeration cycle device

Also Published As

Publication number Publication date
CN110337573A (en) 2019-10-15
WO2018153589A1 (en) 2018-08-30
DK3571450T3 (en) 2021-03-08
EP3571450A1 (en) 2019-11-27
DE102017203043A1 (en) 2018-08-30
KR20190105228A (en) 2019-09-16
JP2020508433A (en) 2020-03-19

Similar Documents

Publication Publication Date Title
DE102007041944B3 (en) Apparatus for energy conversion, combined heat and power plant with such an apparatus and method for operating an ORC plant
EP3159506B1 (en) Functional synergies in the integration of orc systems in combustion engines
EP3918199B1 (en) Cooling arrangement and method for cooling a compressed-air generator with at least two stages
DE102007041457A1 (en) Method and device for converting the heat energy of a low-temperature heat source into mechanical energy
DE102017211256B4 (en) Refrigeration system for a vehicle with a refrigerant circuit having a heat exchanger
DE102012220442A1 (en) Vacuum pump system for evacuating a chamber and method for controlling a vacuum pump system
DE102018202906A1 (en) The fuel cell system
DE102014204257A1 (en) cooler
EP2357349A1 (en) System for using the waste heat of a combustion engine with anti-freeze device
DE102013003015B4 (en) Heat pump and air conditioning system for vehicles with such a heat pump and method for operating the same
EP2744985A2 (en) High-pressure gas drive unit
EP3571450B1 (en) Heat pump arrangement and method for operating a heat pump arrangement
DE102016215836A1 (en) Apparatus and method for energy recovery
DE202009016576U1 (en) Apparatus for heat recovery comprising two heat pumps
EP3060767B1 (en) Device and method for an orc process with multi-stage expansion
DE102016220634A1 (en) Waste heat power plant with gradual heat supply
EP3586072B1 (en) Device and method for increasing the heat yield of a heat source
DE102012100645B4 (en) ORC - Organic Rankine cycle
DE102017208078A1 (en) Apparatus and method for increasing the heat output of a heat source
DE102021101268B4 (en) Fuel cell device and method for operating a fuel cell device
DE102014011579A1 (en) Cooling device for a motor vehicle
EP2645461A1 (en) Cooling circuit for cooling an electrochemical cell and method for operating such a cooling circuit
DE2651888A1 (en) Steam turbine waste heat recovery circuit - has part of heat exchange medium passed through condenser driven by turbine
DE102017101304A1 (en) Heat transfer unit
EP3052772B1 (en) Device and method for an orc cycle

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190819

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200828

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1350337

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018003490

Country of ref document: DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20210302

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: FI

Ref legal event code: FGE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210330

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210430

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210123

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210430

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018003490

Country of ref document: DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

26N No opposition filed

Effective date: 20211001

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20211202 AND 20211209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210123

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201230

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180123

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20231228

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240118

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240129

Year of fee payment: 7

Ref country code: GB

Payment date: 20240123

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240125

Year of fee payment: 7

Ref country code: DK

Payment date: 20240125

Year of fee payment: 7