EP3569783B1 - Bauelement zur thermischen isolierung - Google Patents

Bauelement zur thermischen isolierung Download PDF

Info

Publication number
EP3569783B1
EP3569783B1 EP19163599.4A EP19163599A EP3569783B1 EP 3569783 B1 EP3569783 B1 EP 3569783B1 EP 19163599 A EP19163599 A EP 19163599A EP 3569783 B1 EP3569783 B1 EP 3569783B1
Authority
EP
European Patent Office
Prior art keywords
structural element
insulating body
elements
separating elements
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19163599.4A
Other languages
English (en)
French (fr)
Other versions
EP3569783A1 (de
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schoeck Bauteile GmbH
Original Assignee
Schoeck Bauteile GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schoeck Bauteile GmbH filed Critical Schoeck Bauteile GmbH
Publication of EP3569783A1 publication Critical patent/EP3569783A1/de
Application granted granted Critical
Publication of EP3569783B1 publication Critical patent/EP3569783B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/003Balconies; Decks
    • E04B1/0038Anchoring devices specially adapted therefor with means for preventing cold bridging
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/36Bearings or like supports allowing movement

Definitions

  • the invention relates to a component for thermal insulation between two concrete components separated by a joint, in particular a building wall on the one hand and a building ceiling on the other hand, the component having an insulating body to be arranged in the joint and reinforcement elements at least for absorbing and transmitting pressure and/or shear forces between these concrete components includes.
  • thermally insulating and load-transmitting components are known through numerous property rights of the patent seeker, for example through EP 0 866 185 A2 .
  • Similar components are from the DE 20 2011 001 710 U1 in the form of earthquake-proof profiles for creating breaks in cold bridges and from the modular component system for thermal insulation of the DE 197 22 051 A1 known.
  • the DE 20 2011 001 710 U1 discloses Z-shaped profiles, which are designed in such a way that they have at least one flat horizontal part and at least one flat vertical or sloping part in order to be able to absorb or transmit correspondingly differently directed loads.
  • the purpose of such a Z-shaped profile is to be able to pass on and dissipate the various load components, such as those that occur in particular during an earthquake.
  • EP 3 315 678 A1 discloses a prefabricated component for connecting a concrete cantilever slab to a structure, the prefabricated component having reinforcing plates 6 made of steel, the end faces of which are aligned obliquely with respect to tension or compression rods (reinforcement elements) that are still present. Due to the oblique design of the end faces of the stiffening plates, transverse forces can be absorbed and transmitted, so that additional transverse bars known from the prior art can be dispensed with.
  • thermally insulating components of the type mentioned at the outset have also become known, in which the reinforcement elements for absorbing compressive forces are designed either as thrust bearings with curved sliding surfaces on the end faces, so that relative movements between the thrust bearing and the adjacent concrete components are made possible with simultaneous tilting of the thrust bearing, or as Thrust bearings that are flush with the insulating body on the side facing a concrete component and rest against the concrete component with the interposition of a sliding plate, so that relative movements between the thrust bearing and the adjacent concrete component are made possible by sliding movement along the sliding plate.
  • the reinforcement elements for absorbing compressive forces are designed either as thrust bearings with curved sliding surfaces on the end faces, so that relative movements between the thrust bearing and the adjacent concrete components are made possible with simultaneous tilting of the thrust bearing, or as Thrust bearings that are flush with the insulating body on the side facing a concrete component and rest against the concrete component with the interposition of a sliding plate, so that relative movements between the thrust bearing and the adjacent concrete component are made possible by sliding movement along the sliding plate.
  • the size of the relative displacements with normal component dimensions can assume an order of magnitude that structural damage can no longer be ruled out.
  • the object of the present invention is to improve a component of the type described at the outset in such a way that large relative movements between the adjacent concrete components are made possible without any problems and large dynamic loads on the reinforcement elements are reduced.
  • the construction element has additional separating elements which protrude at least into one of the two concrete components and form predetermined crack locations therein for temperature-related changes in length relative to the other concrete component and in that the sections of the separating elements protruding into one of the two concrete components are at least approximately in one direction are oriented, which is inclined to the direction of longitudinal extent of the insulating body, this inclination being in a range between 90°+60° and 90°-60° relative to the longitudinal extent of the insulating body. In particular, this inclination is of the order of about 90°. Since the relative movement and/or the mutual change in length of the two concrete components usually takes place in the direction of the concrete components in which they have their greatest extent along the joint, this direction corresponds to the longitudinal direction of the insulating body.
  • the component according to the invention causes a partial separation or stretching of the concrete cross-section in the edge region near the joint such that relative displacements between the two concrete components can produce cracks in the associated concrete component, which run from the joint into the adjacent concrete cross-section. Since the crack width can increase from zero to a magnitude in the millimeter range, the length of the associated concrete component in the edge area close to the joint increases by this magnitude. Depending on the number and spacing of the separating elements, a corresponding increase in the length of the concrete component can be achieved through the accumulated crack width and a greater or lesser relative displacement between the concrete components can thereby be compensated for. Because if the cracks are in the shorter of the two concrete components, the length of the shorter concrete component can be increased in the area adjacent to the joint and adapted to the length of the other concrete component.
  • the invention allows a complete synchronization of expansion of the concrete components adjoining the component.
  • the separating elements preferably produce cracks which run transversely to the direction of the thermally induced change in length, because then relative displacements can be compensated for best.
  • the separating elements are not exactly transverse to the direction of the change in length, but to be arranged up to an angle of about 60°, because even then adequate compensation is still possible.
  • the separating elements are designed as flexible separating films. They can be planar, but also curved, in particular corrugated.
  • the separating elements are alternatively or additionally designed as flat, rectangular, rigid tear plates and/or as notch-forming molded parts in the form of wedges.
  • the separating elements can extend over the entire joint depth transversely to the longitudinal extent of the insulating body, ie over the entire height of the component. In general, however, it is sufficient if they only extend over part of the joint width, preferably leaving the joint edges free.
  • the separating elements are attached at least indirectly to the reinforcement elements, preferably to the elements for shear force and/or pressure transmission. It is particularly favorable when working with combined shearing force/compression elements, that is to say with compression elements which protrude in a form-fitting manner into their adjoining concrete components and can therefore also transmit shearing forces.
  • FIG. 1 and 2 one recognizes a vertically standing building wall 1 made of reinforced concrete, which carries a horizontally running building ceiling 3 made of reinforced concrete at its upper end via a component 2 according to the invention.
  • the ceiling lies with its horizontal underside 3a, with the component 2 being interposed, on the end face 1a of the building wall 1 running in the horizontal plane.
  • the component 2 has an insulating body 4 that fills the horizontal joint 14 between the wall 1 and the ceiling 3 .
  • the insulator has a longitudinal extension in direction L.
  • This direction L corresponds not only to the largest extent of the insulating body 4, but also to the largest extent of the two adjacent concrete components 1 and 3 along the joint 14. If these are exposed to different temperatures, they do not change their length along the joint to the same extent, which leads to relative movements between the two concrete components 1 and 3 in the direction L, ie along the longitudinal extension of the insulating body.
  • the construction element 2 also has a pressure element 5, which protrudes from the insulating body 4 at the top and bottom into the underside 3a of the ceiling 3 or into the end face 1a of the wall 1 and is thus integrated in a form-fitting manner into the reinforced concrete of the wall 1 and the ceiling 3 is.
  • this pressure element also acts as a reinforcement element that absorbs shear forces in the horizontal direction.
  • the pressure element 5 is designed as a cuboid block. It can of course also have a different shape instead. If the form-fitting engagement with the adjacent concrete components is dispensed with, additional reinforcement elements are used in the structural element 2 for the transmission of shear forces.
  • the component 2 comprises a plurality of separating elements in the form of tear plates 6 .
  • These tear plates are oriented approximately vertically and perpendicularly to the wall plane, i.e. approximately perpendicular to the thermally induced changes in length in direction L.
  • the tear plates extend almost over the entire joint depth T, being at least on one side, in the exemplary embodiment both to wall 1 and to Ceiling 3 project out over the insulating body 4 and thus immerse form-fitting in the front side 1a of the wall 1 and the underside 3a of the ceiling 3 and be concreted there.
  • the rupture plates 6 Due to the penetration of the rupture plates 6 into the wall 1 and the ceiling 3, the rupture plates detach in the event of thermally induced relative movements between the concrete components in each case the formation of small cracks in the concrete component, which lengthens to a lesser extent, through which the front side 1a of the wall 1 or the underside 3a of the ceiling 3 can increase its dimension in direction L with each crack plate 6 by a crack width R. Large relative movements between the concrete components can be compensated for by the large number of these crack plates 6 and the crack widths R "supplied" as a result.
  • Figures 3a and 3b show schematically an upper concrete component 13 and a lower concrete component 11 and a joint 24 left between them with a longitudinal extension L and a joint depth T, which corresponds to the distance between the two concrete components.
  • a plurality of thrust pressure bearings 15 are arranged along the longitudinal extent L of the joint 24 and are anchored on the underside 13a of the upper concrete component 13 on the one hand and on the upper side 11a of the lower concrete component 11 on the other hand.
  • the crack plates 6 (not shown) produce a large number of adjacent cracks 17 in the edge area of the upper concrete component 13 near the joint, with the cracks 17 extending from the underside 13a of the upper concrete component 13 into the upper concrete component 13 over a distance approximately corresponding to the joint depth T.
  • the cracks extend essentially in a plane that is perpendicular to the longitudinal extent L of the joint 24 and in figure 3 is oriented perpendicular to the plane of the drawing.
  • I 11 , I 13 , I 11' and I 13' are drawn in: I 11 is the distance between two adjacent thrust pressure bearings 15 in the area of the lower concrete component 11 and I 13 is the distance between the two thrust pressure bearings 15 in the area of the upper concrete component 13 . In Figure 3a the distances I 11 and I 13 are equal.
  • FIG. 12 now shows a state in which the length of the lower concrete component 11 has increased compared to the length of the upper concrete component 11. Since the thrust bearing 15 is anchored on the underside 13a of the upper concrete component 13 and on the upper side 11a of the lower concrete component 11, they ensure a positive connection between the upper concrete component 13 and thrust bearing 15 on the one hand and between the lower concrete component 11 and thrust bearing 15 on the other. If the lower concrete component 11 now elongates in the direction L, then this elongation is passed on to the upper concrete component 13 via the thrust bearing 15 and in the process exerts a force in the direction L on the upper concrete component 13 .
  • the cracks 17 can open when a corresponding force is applied, in that the mutual distance between the crack flanks 17a, 17b is correspondingly increased, the overall length of the upper concrete component 13 also increases, at least in the area of the underside 13a of the upper concrete component 13.
  • the opened cracks 17, the distances 11' and 13' are again the same size, but the crack width R of each crack 17 contributes to increasing the distance I 13' .
  • the accumulated cracks 17 make it possible to compensate for the relative displacements between two thermally separated concrete components 11 and 13 in that the cracks ensure that the concrete component, which is actually shorter, fans out at its edge region near the joint and becomes longer overall there.
  • the Figures 4 and 5 show an installation situation with a horizontal joint 24.
  • the ceiling 23 is not as in FIGS Figures 1 and 2 on the upper end of the wall 21, but abuts with its end face 23a laterally against a side face 21a of the wall running further upwards.
  • the component 22 according to the invention is arranged in the joint 24 between the wall 21 and the ceiling 23 . Its insulating body 24 fills said gap 24, whereas its pressure element 25 protrudes from the insulating body 24 both in the direction of the wall and towards the ceiling.
  • the insulating body 24 is traversed by a plurality of tear plates 26 .
  • These crack plates are arranged in a vertical plane transverse to the longitudinal extent L of the insulating body 24 and protrude into the wall 21 and the ceiling 23, so that thermally induced relative displacements between the wall and ceiling result in the crack formation described.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Building Environments (AREA)

Description

  • Die Erfindung betrifft ein Bauelement zur Wärmedämmung zwischen zwei durch eine Fuge getrennten Betonbauteilen, insbesondere einer Gebäudewand einerseits und einer Gebäudedecke andererseits, wobei das Bauelement einen in der Fuge anzuordnenden Isolierkörper sowie Bewehrungselemente zumindest zur Aufnahme und Übertragung von Druck- und/oder Schubkräften zwischen diesen Betonbauteilen umfasst.
  • Derartige thermisch isolierende und lastübertragende Bauelemente sind durch zahlreiche Schutzrechte der Patentsucherin bekannt, so z.B. durch EP 0 866 185 A2 . Ähnliche Bauelemente sind aus der DE 20 2011 001 710 U1 in Form von erdbebensicheren Profilen zum Herstellen von Kältebrückenunterbrechungen und aus dem modularen Bauelementsystem zur Wärmedämmung der DE 197 22 051 A1 bekannt.
  • Speziell die DE 20 2011 001 710 U1 offenbart Z-förmige Profile, welche derart ausgebildet sind, dass sie mindestens einen ebenen horizontalen Teil und mindestens einen ebenen vertikalen oder schrägen Teil aufweisen, um entsprechend verschieden gerichtete Belastungen aufnehmen bzw. übertragen zu können. Zweck eines solchen Z-förmigen Profils ist es, die verschiedenen Belastungskomponenten, wie sie beispielsweise insbesondere bei einem Erdbeben auftreten, weiterleiten und abführen zu können.
  • EP 3 315 678 A1 offenbart ein Fertigbauteil zum Anschluss einer Betonkragplatte an einem Bauwerk, wobei das Fertigbauteil Versteifungsplatten 6 aus Stahl aufweist, deren Stirnflächen schräg gegenüber weiterhin noch vorhandenen Zug- oder Druckstäben (Bewehrungselementen) ausgerichtet sind. Aufgrund der schrägen Ausgestaltung der Stirnflächen der Versteifungsplatten können Querkräfte aufgenommen und übertragen werden, sodass auf aus dem Stand der Technik bekannte zusätzliche Querstäbe verzichtet werden kann.
  • Aufgrund der thermischen Trennung der Betonbauteile können sie sehr unterschiedlichen Temperaturen ausgesetzt sein, sodass es zu thermisch bedingten Relativbewegungen zwischen den Betonbauteilen kommen kann. Diese Relativverschiebungen sind mit bekannten Bewehrungssystemen, die die Biegeschlankheit der statischen Komponenten zum Ausgleich der Relativverschiebung nutzen, nur bedingt zu kompensieren. Es sind daher auch thermisch isolierende Bauelemente der eingangs genannten Gattung bekanntgeworden, bei denen die Bewehrungselemente zur Aufnahme von Druckkräften entweder als Drucklager mit stirnseitigen gewölbten Gleitflächen ausgebildet sind, sodass Relativbewegungen zwischen dem Drucklager und den angrenzenden Betonbauteilen bei gleichzeitiger Kippung des Drucklagers ermöglicht werden, oder als Drucklager, die auf der einem Betonbauteil zugewandten Seite bündig mit dem Isolierkörper abschließen und dort unter Zwischenfügung einer Gleitplatte am Betonbauteil anliegen, sodass Relativbewegungen zwischen dem Drucklager und dem angrenzenden Betonbauteil durch Gleitbewegung entlang der Gleitplatte ermöglicht werden.
  • In beiden Fällen führen somit die thermisch bedingten Relativbewegungen zwischen den Betonbauteilen zu einer Relativbewegung im Bereich der Drucklager. Regelmäßig führen solche Relativbewegungen zu einer hohen dynamischen Belastung der Drucklager im Bereich ihrer Stirnseiten, die oft mit Geräuschentwicklungen einhergehen.
  • Sofern die thermisch isolierenden Bauelemente nicht in sehr kurzen Abständen mit die Betonbauteile durchquerenden Dehnfugen kombiniert werden bzw. werden können, so kann die Größe der Relativverschiebungen bei üblichen Bauteilabmessungen eine Größenordnung annehmen, die Bauschäden nicht mehr ausschließt.
  • Hiervon ausgehend liegt der vorliegenden Erfindung die Aufgabe zugrunde, ein Bauelement der eingangs beschriebenen Gattung dahingehend zu verbessern, dass große Relativbewegungen zwischen den angrenzenden Betonbauteilen problemlos ermöglicht werden und große dynamische Belastungen der Bewehrungselemente reduziert werden.
  • Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass das Bauelement zusätzliche Trennelemente aufweist, die zumindest in eines der beiden Betonbauteile hineinragen und darin Sollrissstellen für temperaturbedingte Längenänderungen relativ zum anderen Betonbauteil bilden und dass die in eines der beiden Betonbauteile hineinragenden Abschnitte der Trennelemente zumindest näherungsweise in einer Richtung orientiert sind, die zur Längserstreckungsrichtung des Isolierkörpers geneigt ist, wobei diese Neigung in einem Bereich zwischen 90° + 60° und 90° - 60° relativ zur Längserstreckung des Isolierkörpers liegt. Insbesondere liegt diese Neigung in der Größenordnung von etwa 90°. Da die Relativbewegung und/oder die gegenseitige Längenänderung der beiden Betonbauteile in der Regel in der Richtung der Betonbauteile erfolgt, in der diese entlang der Fuge ihr größtes Ausmaß aufweisen, entspricht diese Richtung der Längserstreckungsrichtung des Isolierkörpers.
  • Das erfindungsgemäße Bauelement bewirkt hierbei eine partielle Auftrennung bzw. Streckung des Betonquerschnittes im fugennahen Randbereich derart, dass bei Relativverschiebungen zwischen den beiden Betonbauteilen Risse im zugehörigen Betonbauteil erzeugt werden können, die ausgehend von der Fuge in den angrenzenden Betonquerschnitt hineinlaufen. Indem die Rissbreite von Null auf eine Größenordnung im Millimeterbereich anwachsen kann, wird die Länge des zugehörigen Betonbauteils im fugennahen Randbereich um diese Größenordnung größer. Je nach Anzahl und Abstand der Trennelemente lässt sich durch die aufkumulierte Rissbreite eine entsprechende Vergrößerung der Länge des Betonbauteils erzielen und dadurch eine mehr oder weniger große Relativverschiebung zwischen den Betonbauteilen kompensieren. Denn befinden sich in dem kürzeren der beiden Betonbauteile die Risse, so lässt sich hierdurch die Länge des kürzeren Betonbauteils im zur Fuge benachbarten Bereich vergrößern und an die Länge des anderen Betonbauteils anpassen.
  • Im Idealfall erlaubt die Erfindung eine komplette Ausdehnungssynchronisation der an das Bauteil angrenzenden Betonbauteile.
  • Vorzugsweise erzeugen die Trennelemente Risse, die quer zur Richtung der thermisch bedingten Längenänderung verlaufen, weil dann Relativverschiebungen am besten ausgeglichen werden können. Es liegt aber auch im Rahmen der Erfindung, die Trennelemente nicht genau quer zur Richtung der Längenänderung, sondern bis zu einem Winkel von etwa 60° anzuordnen, weil auch dann noch eine hinreichende Kompensation möglich ist.
  • Für die konstruktive Ausbildung der Trennelemente bieten sich dem Fachmann zahlreiche Möglichkeiten. Erfindungsgemäß sind die Trennelemente als biegeweiche Trennfolien ausgebildet. Sie können dabei plan, aber auch gekrümmt, insbesondere gewellt ausgebildet sein.
  • Erfindungsgemäß sind die Trennelemente alternativ oder ergänzend als plane, rechteckförmige, steife Rissbleche und/oder als kerbformgebende Formteile in Form von Keilen ausgebildet.
  • Grundsätzlich können sich die Trennelemente über die gesamte Fugentiefe quer zur Längserstreckung des Isolierkörpers erstrecken, also über die gesamte Höhe des Bauelementes. Im Allgemeinen genügt es aber, wenn sie sich nur über einen Teil der Fugenbreite erstrecken, vorzugsweise unter Freilassung der Fugenränder.
  • Zur Lagefixierung der Trennelemente im Bauelement empfiehlt es sich, dass sie zumindest mittelbar an den Bewehrungselementen angebracht sind, vorzugsweise an den Elementen zur Schubkraft- und/oder Druckübertragung. Besonders günstig ist es, wenn dabei mit kombinierten Schubkraft/Druckelementen gearbeitet wird, also mit Druckelementen, die formschlüssig in ihre angrenzenden Betonbauteile hineinragen und dadurch auch Schubkräfte übertragen können.
  • Es liegt aber auch im Rahmen der Erfindung, die Trennelemente nur im Isolierkörper zu fixieren, da sie selbst in statischer Hinsicht kaum belastet werden.
  • Wenn bei dem Gebäude, in das die erfindungsgemäßen Bauelemente eingebaut werden sollen, klare Vorhersagen hinsichtlich der Temperaturbelastung möglich sind, empfiehlt es sich, die Trennelemente nicht beidseitig, sondern nur einseitig aus dem Isolierkörper vorstehen zu lassen, nämlich auf der Seite desjenigen Betonbauteiles, das eine geringere Wärmedehnung erfährt, um durch die darin erzeugte Rissbildung dem anderen Bauteil mit der größeren temperaturabhängigen Dehnung folgen zu können.
  • Werden die Druck- und/oder Schubkraft übertragenden Bewehrungselemente zwischen den Sollrissstellen angeordnet, so ergibt sich der wesentliche Vorteil, dass die Relativbewegungen im Wesentlichen in den Bereichen zwischen diesen Bewehrungselementen stattfinden, so dass selbst große Relativbewegungen der Betonbauteile nicht dazu führen, dass die Bewehrungselemente an ihren Stirnseiten entsprechend großen Relativbewegungen gegenüber den angrenzenden Betonbauteilen ausgesetzt sind. Hierbei werden nicht nur die ungewünschten üblicherweise durch die Relativbewegungen verursachten Geräusche, sondern auch große dynamische Belastungen der Bewehrungselemente zur Aufnahme von Druck- und Schubkräften vermieden.
  • Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen und aus der Zeichnung; dabei zeigt:
  • Figur 1
    das erfindungsgemäße Bauelement zwischen einer Wand und einer Decke mit horizontal verlaufender Fuge in eingebautem Zustand;
    Figur 2
    einen Schnitt längs der Linie J-J in Figur 1;
    Figuren 3a und 3b
    eine schematische Darstellung der durch aufkumulierte Risse erzeugten Ausdehnungssynchronisation;
    Figur 4
    das erfindungsgemäße Bauelement zwischen einer Wand und einer Decke mit horizontaler Fuge in eingebautem Zustand;
    Figur 5
    eine Draufsicht auf Figur 3 von oben.
  • In den Figuren 1 und 2 erkennt man eine vertikal stehende Gebäudewand 1 aus Stahlbeton, die an ihrem oberen Ende über ein erfindungsgemäßes Bauelement 2 eine horizontal verlaufende Gebäudedecke 3 aus Stahlbeton trägt. Die Decke liegt hierbei mit ihrer horizontalen Unterseite 3a unter Zwischenfügung des Bauelements 2 auf der in horizontaler Ebene verlaufenden Stirnseite 1a der Gebäudewand 1 auf.
  • Das Bauelement 2 weist einen die horizontale Fuge 14 zwischen Wand 1 und Decke 3 ausfüllenden Isolierkörper 4 auf. Wie anhand des Schnittlinienverlaufs J-J aus Figur 1 und der Draufsicht auf diese Schnittebene in Figur 2 erkennbar ist, weist der Isolierkörper eine Längserstreckung in Richtung L auf. Diese Richtung L entspricht nicht nur dem größten Erstreckungsausmaß des Isolierkörpers 4, sondern auch dem größten Erstreckungsausmaß der beiden angrenzenden Betonbauteile 1 und 3 entlang der Fuge 14. Wenn diese unterschiedlichen Temperaturen ausgesetzt sind, so ändern sie ihre Länge entlang der Fuge nicht im selben Maß, wodurch es zu Relativbewegungen zwischen den beiden Betonbauteilen 1 und 3 in Richtung L, also entlang der Längserstreckung des Isolierkörpers kommt.
  • Das Bauelement 2 weist außerdem ein Druckelement 5 auf, das oben und unten aus dem Isolierkörper 4 in die Unterseite 3a der Decke 3 bzw. in die Stirnseite 1a der Wand 1 vorsteht und dadurch formschlüssig in den Stahlbeton der Wand 1 wie auch der Decke 3 eingebunden ist. Infolgedessen wirkt dieses Druckelement zugleich auch als Schubkräfte in horizontaler Richtung aufnehmendes Bewehrungselement.
  • Im Ausführungsbeispiel ist das Druckelement 5 als quaderförmiger Block ausgebildet. Es kann stattdessen selbstverständlich auch eine andere Form aufweisen. Falls dabei auf den formschlüssigen Eingriff mit den benachbarten Betonbauteilen verzichtet wird, werden zusätzliche Bewehrungselemente zur Schubkraftübertragung in das Bauelement 2 eingesetzt.
  • Wesentlich ist nun, dass das Bauelement 2 mehrere Trennelemente in Form von Rissblechen 6 umfasst. Diese Rissbleche sind etwa vertikal und senkrecht zur Wandebene orientiert, im Ergebnis also etwa senkrecht zur thermisch bedingten Längenänderungen in Richtung L. Die Rissbleche erstrecken sich nahezu über die gesamte Fugentiefe T, wobei sie zumindest einseitig, im Ausführungsbeispiel sowohl zur Wand 1 hin wie auch zur Decke 3 hin über den Isolierkörper 4 vorstehen und somit in die Stirnseite 1a der Wand 1 und die Unterseite 3a der Decke 3 formschlüssig eintauchen und dort betoniert werden.
  • Durch das Eindringen der Rissbleche 6 in die Wand 1 und die Decke 3 lösen die Rissbleche bei thermisch bedingten Relativbewegungen zwischen den Betonbauteilen jeweils die Bildung kleiner Risse im sich in geringerem Ausmaß längenden Betonbauteil aus, durch die die Stirnseite 1a der Wand 1 bzw. die Unterseite 3a der Decke 3 ihre Abmessung in Richtung L bei jedem Rissblech 6 um eine Rissbreite R vergrößern können. Durch die Vielzahl dieser Rissbleche 6 und die dadurch "mitgelieferten" Rissbreiten R lassen sich große Relativbewegungen zwischen den Betonbauteilen kompensieren.
  • Die Systematik dieser Kompensation von Relativbewegung bzw. Ausdehnungsunterschieden wird anhand einer Prinzipskizze in den Figuren 3a und 3b erläutert:
    Figuren 3a und 3b zeigen schematisch ein oberes Betonbauteil 13 und ein unteres Betonbauteil 11 sowie eine dazwischen belassene Fuge 24 mit einer Längserstreckung L und einer Fugentiefe T, die dem Abstand der beiden Betonbauteile entspricht. Entlang der Längserstreckung L der Fuge 24 sind mehrere Schubdrucklager 15 angeordnet, die einerseits an der Unterseite 13a des oberen Betonbauteils 13 und andererseits an der Oberseite 11a des unteren Betonbauteils 11 verankert sind.
  • Durch mehrere entlang der Fuge 24 verteilte und in Figur 3 nicht dargestellte Rissbleche 6 wird eine Vielzahl nebeneinanderliegender Risse 17 im fugennahen Randbereich des oberen Betonbauteils 13 erzeugt, wobei sich die Risse 17 ausgehend von der Unterseite 13a des oberen Betonbauteils 13 in das obere Betonbauteil 13 über ein der Fugentiefe T etwa entsprechendes Maß hinein erstrecken. Die Risse erstrecken sich dabei im Wesentlichen in einer Ebene, die senkrecht zur Längserstreckung L der Fuge 24 und in Figur 3 senkrecht zur Zeichenebene orientiert ist.
  • Um den Effekt der Risse 17 zu veranschaulichen, sind in den Figuren 3a und 3b Abstandsmaße I11, I13, I11' und I13' eingezeichnet: I11 ist im Bereich des unteren Betonbauteils 11 der Abstand zwischen zwei zueinander benachbarten Schubdrucklagern 15 und I13 ist im Bereich des oberen Betonbauteils 13 der Abstand zwischen den zwei Schubdrucklagern 15. In Figur 3a sind die Abstände I11 und I13 gleich groß.
  • Figur 3b zeigt nun einen Zustand, in dem sich die Länge des unteren Betonbauteils 11 gegenüber der Länge des oberen Betonbauteils 11 vergrößert hat. Da die Schubdrucklager 15 an der Unterseite 13a des oberen Betonbauteils 13 und an der Oberseite 11a des unteren Betonbauteils 11 verankert sind, sorgen diese für eine formschlüssige Verbindung zwischen oberem Betonbauteil 13 und Schubdrucklager 15 einerseits und zwischen unterem Betonbauteil 11 und Schubdrucklager 15 andererseits. Längt sich nun das untere Betonbauteil 11 in Richtung L, dann wird diese Längung über die Schubdrucklager 15 an das obere Betonbauteil 13 weitergegeben und übt hierbei eine Kraft in Richtung L auf das obere Betonbauteil 13 aus. Indem sich die Risse 17 bei entsprechender Kraftbeaufschlagung öffnen können, indem der gegenseitige Abstand der Rissflanken 17a, 17b entsprechend vergrößert wird, vergrößert sich auch die Gesamtlänge des oberen Betonbauteils 13 zumindest im Bereich der Unterseite 13a des oberen Betonbauteils 13. Zwar sind durch die geöffneten Risse 17 die Abstände 11' und 13' wiederum gleich groß, jedoch trägt jeweils die Rissbreite R eines jeden Risses 17 zur Vergrößerung des Abstandes I13' bei.
  • Insgesamt ist es durch die aufkumulierten Risse 17 möglich, die Relativverschiebungen zwischen zwei thermisch getrennten Betonbauteilen 11 und 13 auszugleichen, indem die Risse dafür sorgen, dass das an sich kürzere Betonbauteil sich an ihrem fugennahen Randbereich auffächert und dort insgesamt länger wird.
  • Die Figuren 4 und 5 zeigen eine Einbausituation mit horizontal verlaufender Fuge 24. In diesem Fall liegt die Decke 23 nicht wie in den Figuren 1 und 2 auf dem oberen Ende der Wand 21 auf, sondern stößt mit ihrer Stirnseite 23a seitlich gegen eine Seitenfläche 21a der nach oben weiterlaufende Wand. In der Fuge 24 zwischen Wand 21 und Decke 23 ist das erfindungsgemäße Bauelement 22 angeordnet. Sein Isolierkörper 24 füllt die genannte Fuge 24 aus, wogegen sein Druckelement 25 sowohl in Wandrichtung wie auch zur Decke hin aus dem Isolierkörper 24 vorsteht. Dadurch kommt es beim Betonieren der Wand 21 bzw. der Decke 23 zu einem formschlüssigen Eingriff mit dem Druckelement 25, welches dadurch gleichzeitig auch als Bewehrungselement zur Übertragung von Schubkräften fungiert.
  • Wesentlich ist auch hier, dass der Isolierkörper 24 von mehreren Rissblechen 26 durchquert ist. Diese Rissbleche sind in vertikaler Ebene quer zur Längserstreckung L des Isolierkörpers 24 angeordnet und ragen jeweils in die Wand 21 und die Decke 23 hinein, sodass es bei thermisch bedingten Relativverschiebungen zwischen Wand und Decke zu der beschriebenen Rissbildung kommt.

Claims (8)

  1. Bauelement (2, 22) zur Wärmedämmung zwischen zwei durch eine Fuge getrennten Betonbauteilen (1, 3, 11, 13, 21, 23), insbesondere einer Gebäudewand einerseits und einer Gebäudedecke andererseits, wobei das Bauelement (2, 22) einen in der Fuge anordenbaren Isolierkörper (4, 24) und Bewehrungselemente (5, 15, 25) zumindest zur Aufnahme und Übertragung von Druck- und/oder Schubkräften zwischen diesen Betonbauteilen umfasst, welche Bewehrungselemente (5, 15, 25) aus dem Isolierkörper vorstehen, und wobei das Bauelement (2, 22) zusätzliche Trennelemente (6, 26) aufweist, die zumindest einseitig über den Isolierkörper (4, 24) vorstehen und dazu geeignet sind, zumindest mit Teilbereichen in eines der beiden Betonbauteile (1, 3, 13, 21, 23) hineinzuragen und darin Sollrissstellen (7, 17, 27) für temperaturbedingte Längenänderungen relativ zum anderen Betonbauteil bilden, wobei die in eines der beiden Betonbauteile (1, 3, 13, 21, 23) hineinragbaren Teilbereiche der Trennelemente (6, 26) zumindest näherungsweise in einer Richtung orientiert sind, die relativ zur Längserstreckungsrichtung L des Isolierkörpers geneigt ist; dadurch gekennzeichnet,
    dass die Trennelemente (6, 26) als biegeweiche Trennfolien und/oder als plane, rechteckförmige, steife Rissbleche und/oder als kerbformgebende Formteile in Form von Keilen ausgebildet sind.
  2. Bauelement (2, 22) nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die Trennelemente (6, 26) im Wesentlichen in Ebenen verlaufen, die relativ zur Längserstreckungsrichtung des Isolierkörpers eine Neigung in einem Bereich zwischen 90° + 60° und 90° - 60° und insbesondere in der Größenordnung von etwa 90° aufweisen.
  3. Bauelement (2, 22) nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass sich die Trennelemente (6, 26) über eine gesamte Breite quer zur Längserstreckung des Isolierkörpers (4, 24) erstrecken.
  4. Bauelement (2, 22) nach einem der Ansprüche 1 oder 2,
    dadurch gekennzeichnet,
    dass sich die Trennelemente (6, 26) nur über einen Teil einer Breite quer zur Längserstreckung L des Isolierkörpers (4, 24) erstrecken, vorzugsweise unter Freilassung der Ränder.
  5. Bauelement (2, 22) nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Trennelemente (6, 26) zumindest mittelbar an Bewehrungselementen des Bauelementes und insbesondere an Bewehrungselementen zur Schubkraftübertragung angebracht sind.
  6. Bauelement (2, 22) nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Trennelemente (6, 26) insbesondere mittig zwischen zwei zueinander benachbarten Bewehrungselementen (5, 15, 25) angeordnet sind.
  7. Bauelement (2, 22) nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Trennelemente (6, 26) ganz oder teilweise vom Isolierkörper (4, 24) gehalten sind.
  8. Bauelement (2, 22) nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass es als Bausatz mit zusammensteckbaren Isolierkörpern (4, 24) und/oder Bewehrungselementen (5, 15, 25) und/oder Trennelementen (6, 26) ausgebildet ist.
EP19163599.4A 2018-05-18 2019-03-19 Bauelement zur thermischen isolierung Active EP3569783B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102018112072.9A DE102018112072A1 (de) 2018-05-18 2018-05-18 Bauelement zur thermischen Isolierung

Publications (2)

Publication Number Publication Date
EP3569783A1 EP3569783A1 (de) 2019-11-20
EP3569783B1 true EP3569783B1 (de) 2022-01-12

Family

ID=65818413

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19163599.4A Active EP3569783B1 (de) 2018-05-18 2019-03-19 Bauelement zur thermischen isolierung

Country Status (2)

Country Link
EP (1) EP3569783B1 (de)
DE (1) DE102018112072A1 (de)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3315678A1 (de) * 2016-10-25 2018-05-02 Ikona AG Fertigbauteil zum anschluss einer betonkragplatte an ein bauwerk

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19721524A1 (de) 1997-05-22 1998-11-26 Hsm Gmbh Verfahren zur Herstellung eines Prägezylinders
DE19722051A1 (de) * 1997-05-27 1998-12-03 Schoeck Bauteile Gmbh Modulares Bauelementsystem zur Wärmedämmung
DE202011001710U1 (de) * 2011-01-19 2014-02-26 Ouest Armatures Erdbebensichere Profile zum Herstellen von Kältebrückenunterbrechungen

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3315678A1 (de) * 2016-10-25 2018-05-02 Ikona AG Fertigbauteil zum anschluss einer betonkragplatte an ein bauwerk

Also Published As

Publication number Publication date
DE102018112072A1 (de) 2019-11-21
EP3569783A1 (de) 2019-11-20

Similar Documents

Publication Publication Date Title
AT511220A1 (de) Deckenelement zur ausbildung von gebäudedecken
EP2486196B1 (de) Verfahren und vorrichtung zum nachträglichen anfügen eines vorkragenden aussenteils an ein bestehendes tragendes gedäudeteil
EP1832690A2 (de) Bauelement zur Wärmedämmung
DE102005039025A1 (de) Bauelement zur Wärmedämmung
EP2610410A2 (de) Bauelement zur Wärmedämmung
EP0866185B1 (de) System zur Wärmedämmung
DE3128165A1 (de) Schalldaemmendes wandbausystem fuer industriebauten, sowie kassettenprofil hierfuer
EP3436638B1 (de) Übergangskonstruktion zur überbrückung einer bauwerksfuge
EP1630315A1 (de) Bauelement zur Schub- und Durchstanzbewehrung
CH677249A5 (en) Bridging grid for structural beams - is of rod construction, with short, bent spacer welded between upper and lower horizontals
EP2055845A2 (de) Kragplattenanschlusselement
EP1270833B1 (de) Bauelement zur Wärmedämmung
EP3569783B1 (de) Bauelement zur thermischen isolierung
DE102018112634B4 (de) Fugenprofil
EP2063037A1 (de) Decke für ein Bauwerk
CH711343B1 (de) Fertigbauteil zur Verbindung einer Betonkragplatte mit einem Betonbauwerk.
EP1860246A2 (de) Bauelement zur Wärmedämmung
EP2607560A2 (de) Plattenanschlusselement
EP4050170B1 (de) Bauwerk mit thermisch isolierendem bauelement
EP3754125B1 (de) Bauelement zum einbau in trennfugen von gebäuden
EP1754840B1 (de) Bauelement zur Wärmedämmung
EP3733988B1 (de) Thermisch isolierendes bauelement
DE102013019497B4 (de) Als Beton-Stahl-Verbundkonstruktion ausgebildete Dach- oder Deckenplatte
EP3315678A1 (de) Fertigbauteil zum anschluss einer betonkragplatte an ein bauwerk
EP3611310B1 (de) Brüstungsanker

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200520

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200717

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210811

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019003195

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1462484

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220215

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220512

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220412

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220512

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019003195

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

26N No opposition filed

Effective date: 20221013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220319

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230402

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240318

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240207

Year of fee payment: 6

Ref country code: GB

Payment date: 20240322

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20190319

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240320

Year of fee payment: 6

Ref country code: BE

Payment date: 20240320

Year of fee payment: 6