EP3566861B1 - Vermahlungsschnecke - Google Patents

Vermahlungsschnecke Download PDF

Info

Publication number
EP3566861B1
EP3566861B1 EP18171451.0A EP18171451A EP3566861B1 EP 3566861 B1 EP3566861 B1 EP 3566861B1 EP 18171451 A EP18171451 A EP 18171451A EP 3566861 B1 EP3566861 B1 EP 3566861B1
Authority
EP
European Patent Office
Prior art keywords
worm
screw
stage
abrasion
grinding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18171451.0A
Other languages
English (en)
French (fr)
Other versions
EP3566861A1 (de
Inventor
Jürgen HEGER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heger & Co KG GmbH
Original Assignee
Heger & Co KG GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heger & Co KG GmbH filed Critical Heger & Co KG GmbH
Priority to EP18171451.0A priority Critical patent/EP3566861B1/de
Publication of EP3566861A1 publication Critical patent/EP3566861A1/de
Application granted granted Critical
Publication of EP3566861B1 publication Critical patent/EP3566861B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B9/00Presses specially adapted for particular purposes
    • B30B9/30Presses specially adapted for particular purposes for baling; Compression boxes therefor
    • B30B9/3089Extrusion presses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/22Extrusion presses; Dies therefor
    • B30B11/24Extrusion presses; Dies therefor using screws or worms
    • B30B11/246Screw constructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B9/00Presses specially adapted for particular purposes
    • B30B9/30Presses specially adapted for particular purposes for baling; Compression boxes therefor
    • B30B9/3082Presses specially adapted for particular purposes for baling; Compression boxes therefor with compression means other than rams performing a rectilinear movement

Definitions

  • the present invention relates to a grinding screw. This is particularly suitable for compacting and grinding highly abrasive fibrous materials.
  • Fibers that are harmful to health such as artificial mineral fibers (AMF), rock wool, glass wool and asbestos, are mostly produced when houses or industrial plants are demolished.
  • AMF artificial mineral fibers
  • rock wool rock wool
  • glass wool glass wool
  • asbestos Fibers that are harmful to health, such as artificial mineral fibers (AMF), rock wool, glass wool and asbestos, are mostly produced when houses or industrial plants are demolished.
  • AMF artificial mineral fibers
  • rock wool rock wool
  • glass wool and asbestos are mostly produced when houses or industrial plants are demolished.
  • Harmful fibrous materials were released during transshipment and valuable landfill space was consumed during landfill.
  • a beating screw can be used to compact and beating such pulps. These are filled into one to two cubic meter plastic or fabric bags under full protection and sealed. This grinding screw is part of a press into which the sacks are thrown through dust protection flaps without first being emptied be able. During the compression and grinding process, the structure of the material to be pressed is broken up by the screw and the material to be pressed is filled into big bags. The pressed material obtained in this way can easily be stored in landfills, does not take up much landfill volume and does not have to be driven over long distances to specialized landfills.
  • Said fibrous materials are highly abrasive materials. This leads to rapid wear of the grinding auger.
  • the grinding process takes place solely as a result of frictional forces on the inner walls of a channel in which the grinding screw is installed. As a result, optimal comminution of the fibers cannot be achieved. Also an optimal crushing of the bags is not possible in this way.
  • JP S54-132985 describes that a snail can be strengthened by adding trapezoidal sheets to the surface of its snail stages. Small gaps are provided between the sheets in order to be able to put the sheets together more easily.
  • the WO 00/30840 A1 provides for the retrofitting of an already worn screw with metal sheets that are trapezoidal along one screw stage and also have a trapezoidal cross-section. Although the sheets touch, their trapezoidal shape results in narrow gaps between the sheets.
  • the DE 10 2006 002 016 A1 describes a worm shaft whose worm helix is provided with peripheral surface irregularities in its peripheral area.
  • the worm spirals themselves do not have to be of irregular design, but can instead be provided with metal sheets which have external teeth.
  • a further object of the present invention is to further develop the grinding screw in such a way that its comminuting and grinding effect is improved.
  • a grinding screw having the features of claim 1, which has a plurality of essentially trapezoidal first abrasion plates. These are arranged on a surface of a screw stage of the grinding screw in such a way that a gap remains free between each two adjacent first abrasion plates.
  • the abrasion plates increase the wear resistance of the grinding screw, as they protect it from direct contact with abrasive fibrous materials. In addition, they also improve the crushing and grinding effect of the grinding screw.
  • the fibers are broken by pressure and lateral forces on the edges of the individual abrasion plates welded on, and this completely changes their structure. The result is a free-flowing product that can be highly compacted. Even plastic bags, which can be made of polyethylene, for example, or fabric bags can be torn into 10 cm to 30 cm shreds using the abrasion plates, which can be easily separated from the rest of the product using a vibrating screen if necessary.
  • the grinding process essentially takes place in one screw stage of the grinding screw and there only in one screw segment. It is therefore preferred that the first abrasion plates are arranged only on one screw flight length in a range from 180° to 360° are. This can be realized in particular by arranging 10 to 20 first abrasion plates in this area. Arranging the first abrasion plates in this area is sufficient to protect the area of the grinding screw most exposed to abrasion from wear. In addition, the arrangement of abrasion plates in this area is already sufficient to achieve a significant improvement in the crushing and grinding effect of the grinding screw. It is therefore not necessary to equip the entire grinding screw with abrasion plates.
  • a minimum width of the gap between each two adjacent first abrasion plates preferably corresponds at least to the thickness of the first abrasion plates. In addition, it is preferably at least 15 mm. This minimal width of the gap also has the advantage that the abrasion plates can be easily attached to the grinding screw by means of welding. Since the width of the gap increases from the edge of the screw stage towards its center due to the trapezoidal shape of the first abrasion plates, the gap has its minimum width at the edge of the screw stage.
  • the abrasion plates preferably have a plug-weld diameter which corresponds at least to their thickness and which is also preferably at least 15 mm.
  • a trapezoid has two bases and two sides.
  • the bases and the legs of the essentially trapezoidal first abrasion plates can be straight lines.
  • a first abrasion plate should also be understood as essentially trapezoidal if one or both base sides are curved.
  • at least one base page of the first abrasion plates is in the shape of a circular arc and particularly preferably both base sides are in the shape of a circular arc.
  • the circular arc shape allows a base facing the outer edge of the screw stage, which also has a circular arc shape, to be flush therewith.
  • the circular arc shape makes it possible for a base side, which faces a screw shaft of the grinding screw, to also run flush with this. Since the legs are straight lines, a constant width of the gap between two adjacent first abrasion plates is achieved.
  • the grinding screw is designed as a stepped screw with a first screw stage and a second screw stage.
  • An outside diameter of the first screw stage is larger than an outside diameter of the second screw stage.
  • the first abrasion plates are arranged on a surface of the second screw stage. Greater abrasion forces occur on this than on the first screw stage, so that by attaching the first abrasion plates both greater protection against wear and a greater improvement in the grinding and comminuting effect can be achieved than if the first abrasion plates were attached to the first screw stage.
  • Such a stepped screw is characterized by the outer diameter of its first screw stage, to which the characteristics of the grinding screw are related in the following. This outside diameter is in particular in the range from 150 mm to 1000 mm.
  • the second screw stage has an outside diameter which is 50% to 70% of the outside diameter of the first screw stage. As a result, particularly high pressure and transverse forces can be achieved on the second screw stage, which are advantageous for the grinding process.
  • the first screw stage has in particular one to three screw segments. These can be attached to the screw shaft by parallel welding.
  • the sheet metal thickness of the screw segments of the first Screw stage corresponds in particular to 2% to 3% of the outer diameter of the first screw stage.
  • the length of the first screw stage is in particular 100% to 150% of the outer diameter of the first screw stage.
  • the second screw stage has, in particular, two to four screw segments. Just like the screw segments of the first screw stage, these can also be attached to the screw shaft by parallel welding.
  • the sheet metal thickness of their base material is in particular 3% to 5% of the outer diameter of the first screw stage.
  • the length of the second screw stage is in particular 100% to 150% of the outer diameter of the first screw stage.
  • a screw pitch of the first screw stage is preferably greater than a screw pitch of the second screw stage.
  • the screw pitch of the first screw stage is preferably 70% to 100% of the outer diameter of the first screw stage over a range of 360°.
  • the screw pitch of the second screw stage is preferably 40% to 60% of the outer diameter of the first screw stage over a range of 360°. It can also be achieved in this way that higher pressure and transverse forces act on the second screw stage than on the first screw stage.
  • the screw segments of a grinding screw are arranged around a circular-cylindrical screw shaft.
  • the outside diameter This screw shank, which corresponds to the inner diameter of the screw stages, is in particular 20% to 30% of the outer diameter of the first screw stage.
  • One end of the screw shaft can be connected to a motor which drives the milling screw.
  • the other end of the screw shank is exposed and is therefore also subject to abrasion. It is therefore preferred that the grinding worm has a circular second abrasion plate on the end face of its worm shaft.
  • first screw stage provided with the first abrasion plates ends and meets the end face of the screw shank
  • this area of the grinding screw can also contribute to the grinding and comminution by breaking fibers at the edges of the gap between the first abrasion plates and the second abrasion plate.
  • Each abrasive plate preferably has a thickness equal to 1% to 6% of the outside diameter of the first stage screw. This makes it possible to simply attach the abrasion plates to the surface of the grinding screw in the manner required for their function.
  • the abrasion plates are preferably made of a composite material that has at least one cover layer and one carrier layer.
  • the carrier layer can be welded and enables the abrasion plates to be attached to the surface of the grinding screw, for example by means of plug welding.
  • the carrier layer preferably consists of a steel.
  • the top layer has a Vickers hardness of at least 700 HV10. This can be determined according to the DIN 32525-4 standard.
  • Preferred materials of the cover layer which have such a hardness, are iron-based alloys containing carbides.
  • these carbides are selected from the group consisting of chromium carbides, niobium carbides, titanium carbides, vanadium carbides, tungsten carbides and mixtures of these carbides.
  • FIG. 1 shows a grinding screw 10 according to a first embodiment of the invention, which is designed as a stepped screw. It has a first screw stage 11 and a second screw stage 12 which are arranged around a screw shank 13 .
  • the outside diameter AD1 of the first screw stage 11 is 770 mm and the outside diameter AD2 of the second screw stage 12 is 460 mm.
  • the inside diameter ID1 of both screw stages 11, 12, which corresponds to the outside diameter of the screw shaft 13, is 203 mm.
  • the first screw stage 11 consists of sheet metal layers with a total thickness DS1 of 20 mm.
  • the length LS1 of the first screw stage 11 is 900 mm and has two parallel welded screw segments. Its screw pitch ST1 is 600 mm over a range of 360°.
  • the second screw stage 12 consists of metal sheets with a total thickness DS2 of 30 mm. It has a length LS2 of 800 mm and has three screw segments welded in parallel. The screw pitch ST2 over a range of 360° is 400 mm. Sixteen first abrasion plates 20 are welded onto the second screw stage 12 by means of plug welding over a length of 400 mm and thus over a screw winding length VBW of 360°. This screw winding length VBW ends at the end of the grinding screw 10.
  • the first abrasion plates 20 are each designed to be essentially trapezoidal. They each have two straight legs and two arcuate bases. The base sides, which each face the outer edge of the second screw stage 12, follow its outer contour. The bases facing the screw shaft 13 are shaped so that the distance between these bases and the screw shaft is the same at all points.
  • a circular second abrasion plate 30 is welded onto the end face of the screw shaft 13 by means of plug welding. The outer diameter of the second abrasion plate 30 corresponds to the outer diameter ID1 of the screw shank 13.
  • a gap 40 remains free in each case between two adjacent first abrasion plates 20 . Extended due to the shape of the first abrasion plates this extends from the edge of the second screw stage 12 to the screw shank 13 . At the edge, its width SA1 is 15 mm and at the bases of the first abrasion plates 20, which end in front of the screw shaft 13, its width SA1 is 20 mm. A gap with a constant width SA2 of 15 mm runs between the base sides that face the screw shaft 13 and the screw shaft 13 or the second abrasion plate 30 .
  • each first abrasion plate 20 and the second abrasion plate 30 are welded to the second screw stage 12 or to the screw shank 13 by means of plug welding.
  • each first abrasion plate 20 has a weld hole 21 and the second abrasion plate 30 has six weld holes 31 . All welding holes 21, 31 each have a diameter SA3 of 20 mm.
  • the mutually adjacent first abrasion plates 20 are each offset from one another.
  • the offset VBV is 3 mm in each case.
  • the offset VBV is defined as the difference between the orthogonal distance of a top edge of a first abrasion plate 20 to the surface of the second screw stage and the corresponding orthogonal distance between the top edge of the adjacent abrasion plate 20 and the surface of screw stage 12, with the two edges being defined by the Gap 40 are separated from each other.
  • the first abrasion plates 20 and the second abrasion plate 30 each have a thickness VBD of 20 mm. They each consist of a top layer and a carrier layer.
  • the carrier layer is a layer of S235 steel, which can be welded to the surface of the second screw stage 12 in a plug welding process.
  • the cover layer consists of VAUTID® 100 (VAUTID Group Ostfildern, Germany). This is an iron-based alloy that contains chromium carbides and has a Vickers hardness of 740 HV10.
  • the cover layer consists of VAUTID® 143 (VAUTID Group).
  • the cover layer consists of VAUTID® 200 (VAUTID Group). This is an iron-based alloy containing vanadium carbides, titanium carbides and niobium carbides. It has a Vickers hardness of 850 HV10.
  • a grinding screw according to one of these exemplary embodiments is used for grinding artificial mineral fibers, wear mainly occurs on the first abrasion plates 20 and the second abrasion plate 30 .
  • the grinding screw 10 can be worked up by removing the second screw stage 12 or even just that area of the second screw stage 12 which has the first abrasion plates 20 and the second abrasion plate 30 over a screw winding length VBW , is separated from the remaining grinding screw 10 and replaced by a replacement piece.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Crushing And Grinding (AREA)

Description

  • Die vorliegende Erfindung betrifft eine Vermahlungsschnecke. Diese ist insbesondere geeignet, um hochabrasive Faserstoffe zu verdichten und zu zermahlen.
  • Stand der Technik
  • Gesundheitsschädliche Faserstoffe wie beispielsweise künstliche Mineralfasern (KMF), Steinwolle, Glaswolle und Asbest fallen meistens beim Abbruch von Häusern oder Industrieanlagen an. Zur Beseitigung dieser Abfälle mussten bislang weite Transportfahrten mit nicht ausgelasteten LKW zu spezialisierten Deponien durchgeführt werden. Beim Umschlag wurden gesundheitsschädliche Faserstoffe freigesetzt und bei der Deponierung wertvoller Deponierraum verbraucht.
  • Eine Vermahlungsschnecke kann zum Verdichten und Vermahlen derartiger Faserstoffe verwendet werden. Diese werden unter Vollschutz in ein bis zwei Kubikmeter große Kunststoff- oder Gewebesäcke abgefüllt und verschlossen. Diese Vermahlungsschnecke ist Teil einer Presse, in welche die Säcke, ohne diese vorher zu entleeren, durch Staubschutzklappen eingeworfen werden können. Beim Verdichtungs- und Vermahlungsvorgang wird die Struktur des Pressguts mittels der Schnecke aufgebrochen und das Pressgut in Big Bags gefüllt. Das so erhaltene Pressgut kann leicht auf Deponien eingelagert werden, nimmt nicht viel Deponievolumen ein und muss auch nicht über weite Wege zu spezialisierten Deponien gefahren werden.
  • Bei den besagten Faserstoffen handelt es sich um höchst abrasive Materialien. Dies führt zu einem schnellen Verschleiß der Vermahlungsschnecke. Außerdem erfolgt der Vermahlungsvorgang lediglich durch Reibungskräfte an den Innenwänden eines Kanals, in dem die Vermahlungsschnecke eingebaut ist. Hierdurch kann keine optimale Zerkleinerung der Fasern erzielt werden. Auch eine optimale Zerkleinerung der Säcke ist auf diese Weise nicht möglich.
  • Die JP S54-132985 beschreibt, dass eine Schnecke verstärkt werden kann, indem auf der Oberfläche ihrer Schneckenstufen trapezförmige Bleche angebracht werden. Dabei sind kleine Spalten zwischen den Blechen vorgesehen, um die Bleche einfacher aneinandersetzen zu können.
  • Die WO 00/30840 A1 sieht die die Nachrüstung einer bereits abgenutzten Schnecke mit Blechen vor, die entlang einer Schneckenstufe trapezförmig sind, und zudem auch noch einen trapezförmigen Querschnitt haben. Obwohl sich die Bleche berühren führt ihre Trapezform zu schmalen Spalten zwischen den Blechen.
  • Die DE 10 2006 002 016 A1 beschreibt eine Schneckenwelle, deren Schneckenwendel in ihrem Umfangsbereich mit peripheren Oberflächenunregelmä-ßigkeiten versehen sind. Dazu müssen die Schneckenwendel nicht selbst unregelmäßig ausgebildet sein, sondern können stattdessen mit Blechen versehen werden, welche eine Außenzahnung aufweisen.
  • Die US 2016/280459 A1 offenbart eine Vermahlungsschnecke gemäss dem Oberbegriff des Anspruchs 1.
  • Es ist deshalb eine Aufgabe der vorliegenden Erfindung, eine Vermahlungsschnecke bereitzustellen, die eine verbesserte Abrasionsbeständigkeit gegenüber abrasiven Fasermaterialen aufweist. Eine weitere Aufgabe der vorliegenden Erfindung besteht darin, die Vermahlungsschnecke so weiterzuentwickeln, dass ihre Zerkleinerungs- und Vermahlungswirkung verbessert wird.
  • Offenbarung der Erfindung
  • Diese Aufgaben werden durch eine Vermahlungsschnecke mit den Merkmalen des Anspruchs 1 gelöst, welche mehrere im Wesentlichen trapezförmige erste Abrasionsbleche aufweist. Diese sind so auf einer Oberfläche einer Schneckenstufe der Vermahlungsschnecke angeordnet, dass zwischen jeweils zwei benachbarten ersten Abrasionsblechen ein Spalt freibleibt. Die Abrasionsbleche erhöhen die Verschleißfestigkeit der Vermahlungsschnecke, da sie diese vor einem unmittelbaren Kontakt mit abrasiven Faserstoffen schützen. Außerdem verbessern sie auch die Zerkleinerungs- und Vermahlungswirkung der Vermahlungsschnecke. Die Fasern werden durch Druck- und Querkräfte an Kanten der einzelnen aufgeschweißten Abrasionsbleche gebrochen und dadurch wird deren Struktur komplett verändert. Das Ergebnis ist ein rieselfähiges Produkt, welches hoch verdichtet werden kann. Selbst Kunststoffsäcke, die beispielsweise aus Polyethylen bestehen können, oder Gewebesäcke können mittels der Abrasionsbleche in 10 cm bis 30 cm große Fetzen zerrissen werden, die bei Bedarf über ein Rüttelsieb leicht vom übrigen Produkt getrennt werden können.
  • Der Vermahlungsvorgang erfolgt im Wesentlichen in einer Schneckenstufe der Vermahlungsschnecke und dort auch nur in einem Schneckensegment. Deshalb ist es bevorzugt, dass die ersten Abrasionsbleche lediglich auf einer Schneckenwindungslänge in einem Bereich von 180° bis 360° angeordnet sind. Dies kann insbesondere dadurch realisiert werden, dass in diesem Bereich 10 bis 20 erste Abrasionsbleche angeordnet sind. Das Anordnen von ersten Abrasionsblechen in diesem Bereich reicht aus, um den am stärksten der Abrasion ausgesetzten Bereich der Vermahlungsschnecke vor Verschleiß zu schützen. Außerdem genügt bereits die Anordnung von Abrasionsblechen in diesem Bereich, um eine deutliche Verbesserung der Zerkleinerungs- und Vermahlungswirkung der Vermahlungsschnecke zu erreichen. Es ist deshalb nicht notwendig, die gesamte Vermahlungsschnecke mit Abrasionsblechen zu versehen.
  • Um ein gutes Zerbrechen von Fasern an den Kanten der ersten Abrasionsbleche zu ermöglichen, entspricht eine minimale Breite des Spaltes zwischen jeweils zwei benachbarten ersten Abrasionsblechen vorzugsweise mindestens der Dicke der ersten Abrasionsbleche. Außerdem beträgt sie bevorzugt mindestens 15 mm. Diese minimale Breite des Spaltes hat außerdem den Vorteil, dass ein einfaches Aufbringen der Abrasionsbleche auf der Vermahlungsschnecke mittels Schweißens ermöglicht wird. Da die Breite des Spaltes aufgrund der Trapezform der ersten Abrasionsbleche vom Rand der Schneckenstufe zu deren Mitte hin zunimmt, weist der Spalt seine minimale Breite am Rand der Schneckenstufe auf.
  • Das Schweißen kann insbesondere mittels Lochschweißens erfolgen. Hierzu weisen die Abrasionsbleche vorzugsweise einen Lochschweißdurchmesser auf, der mindestens ihrer Dicke entspricht und der weiterhin bevorzugt mindestens 15 mm beträgt.
  • Ein Trapez weist zwei Grundseiten und zwei Schenkel auf. Bei den Grundseiten und den Schenkeln der im Wesentlichen trapezförmigen ersten Abrasionsbleche kann es sich um Geraden handeln. Im Sinne der vorliegenden Erfindung soll ein erstes Abrasionsblech allerdings auch dann noch als im Wesentlichen trapezförmig verstanden werden, wenn eine oder beide Grundseiten gekrümmt sind. Es ist sogar bevorzugt, dass mindestens eine Grundseite der ersten Abrasionsbleche kreisbogenförmig ist und besonders bevorzugt sind beide Grundseiten kreisbogenförmig. Die Kreisbogenform ermöglicht es, dass eine Grundseite, welche dem äußeren Rand der Schneckenstufe zugewandt ist, welcher ebenfalls eine Kreisbogenform aufweist, bündig mit diesem verläuft. Weiterhin ermöglicht die Kreisbogenform es, dass eine Grundseite, die einem Schneckenschaft der Vermahlungsschnecke zugewandt ist, mit diesem ebenfalls bündig verläuft. Indem es sich bei den Schenkeln um Geraden handelt, wird eine konstante Breite des Spaltes zwischen jeweils zwei benachbarten ersten Abrasionsblechen erreicht.
  • Die Vermahlungsschnecke ist als Stufenschnecke mit einer ersten Schneckenstufe und einer zweiten Schneckenstufe ausgeführt. Dabei ist ein Außendurchmesser der ersten Schneckenstufe größer als ein Außendurchmesser der zweiten Schneckenstufe. Die ersten Abrasionsbleche sind auf einer Oberfläche der zweiten Schneckenstufe angeordnet. An dieser treten größere Abrasionskräfte auf als an der ersten Schneckenstufe, so dass hier durch das Anbringen der ersten Abrasionsbleche sowohl ein größerer Verschleißschutz als auch eine stärkere Verbesserung der Vermahlungs- und Zerkleinerungswirkung erreicht werden kann als wenn die ersten Abrasionsbleche an der ersten Schneckenstufe angebracht würden. Eine derartige Stufenschnecke wird durch den Außendurchmesser ihrer ersten Schneckenstufe charakterisiert, auf welchem im Folgenden die Merkmale der Vermahlungsschnecke bezogen werden. Dieser Außendurchmesser liegt im insbesondere im Bereich von 150 mm bis 1000 mm. Die zweite Schneckenstufe weist einen Au-ßendurchmesser auf, welcher 50 % bis 70 % des Außendurchmessers der ersten Schneckenstufe beträgt. Hierdurch können an der zweiten Schneckenstufe besonders hohe Druck- und Querkräfte erzielt werden, welche für den Vermahlungsvorgang vorteilhaft sind.
  • Die erste Schneckenstufe weist insbesondere ein bis drei Schneckensegmente auf. Diese können durch paralleles Verschweißen am Schneckenschaft angebracht sein. Die Blechstärke der Schneckensegmente der ersten Schneckenstufe entspricht insbesondere 2 % bis 3 % des Außendurchmessers der ersten Schneckenstufe. Die Länge der ersten Schneckenstufe beträgt insbesondere 100 % bis 150 % des Außendurchmessers der ersten Schneckenstufe.
  • Die zweite Schneckenstufe weist insbesondere zwei bis vier Schneckensegmente auf. Ebenso wie die Schneckensegmente der ersten Schneckenstufe können auch diese durch paralleles Verschweißen am Schneckenschaft angebracht werden. Die Blechstärke ihres Basismaterials beträgt insbesondere 3 % bis 5 % des Außendurchmessers der ersten Schneckenstufe. Die Länge der zweiten Schneckenstufe beträgt insbesondere 100 % bis 150 % des Außendurchmessers der ersten Schneckenstufe.
  • Eine Schneckensteigung der ersten Schneckenstufe ist vorzugsweise größer als eine Schneckensteigung der zweiten Schneckenstufe. Dabei beträgt die Schneckensteigung der ersten Schneckenstufe über einen Bereich von 360° vorzugsweise 70 % bis 100 % des Außendurchmessers der ersten Schneckenstufe. Die Schneckensteigung der zweiten Schneckenstufe beträgt über einen Bereich von 360° vorzugsweise 40 % bis 60 % des Außendurchmessers der ersten Schneckenstufe. Auch hierdurch kann erreicht werden, dass an der zweiten Schneckenstufe höhere Druck- und Querkräfte als an der ersten Schneckenstufe wirken.
  • Um die Vermahlungs- und Zerkleinerungswirkung der Vermahlungsschnecke noch weiter zu steigern, besteht zwischen zwei benachbarten Abrasionsblechen jeweils ein Versatz im Bereich von 0,1 % bis 0,7 % des Außendurchmessers der ersten Schneckenstufe. Ein solcher Versatz führt zu einem besonders effektiven Zerbrechen von Fasern an den Kanten der ersten Abrasionsbleche.
  • Die Schneckensegmente einer Vermahlungsschnecke sind um einen kreiszylinderförmigen Schneckenschaft herum angeordnet. Der Außendurchmesser dieses Schneckenschaftes, welcher dem Innendurchmesser der Schneckenstufen entspricht, beträgt insbesondere 20 % bis 30 % des Außendurchmessers der ersten Schneckenstufe. Ein Ende des Schneckenschaftes kann mit einem Motor verbunden werden, welcher die Vermahlungsschnecke antreibt. Das andere Ende des Schneckenschaftes liegt frei und ist deshalb ebenfalls Abrasion ausgesetzt. Es ist daher bevorzugt, dass die Vermahlungsschnecke an der Stirnseite ihres Schneckenschaftes ein kreisförmiges zweites Abrasionsblech aufweist. Dort wo die mit ersten Abrasionsblechen versehene erste Schneckenstufe endet und auf die Stirnseite des Schneckenschaftes trifft, befindet sich vorzugsweise zwischen den ersten Abrasionsblechen und dem zweiten Abrasionsblech ein Spalt, dessen Breite insbesondere der minimalen Breite des Spaltes zwischen jeweils zwei benachbarten ersten Abrasionsblechen entspricht. Auf diese Weise kann auch dieser Bereich der Vermahlungsschnecke zum Vermahlen und Zerkleinern beitragen, indem Fasern an den Kanten des Spaltes zwischen den ersten Abrasionsblechen und dem zweiten Abrasionsblech zerbrochen werden.
  • Jedes Abrasionsblech hat vorzugsweise eine Dicke, die 1 % bis 6 % des Außendurchmessers der ersten Schneckenstufe entspricht. Dies ermöglicht es die Abrasionsbleche einfache in der für ihre Funktion erforderlichen Weise auf der Oberfläche der Vermahlungsschnecke anzubringen.
  • Die Abrasionsbleche bestehen vorzugsweise aus einem Verbundmaterial, das zumindest eine Deckschicht und eine Trägerschicht aufweist. Die Trägerschicht ist schweißbar und ermöglicht es die Abrasionsbleche beispielsweise mittels Lochschweißens auf der Oberfläche der Vermahlungsschnecke aufzubringen. Hierzu besteht die Trägerschicht vorzugsweise aus einem Stahl. Um einen guten Verschleißschutz und eine gute Zerkleinerungswirkung der Abrasionsbleche zu gewährleisten, weist die Deckschicht mindestens einer Vickers-Härte von 700 HV10 auf. Diese kann gemäß der Norm DIN 32525-4 ermittelt werden.
  • Bevorzugte Materialien der Deckschicht, welche eine solche Härte aufweisen, sind Eisenbasislegierungen die Carbide enthalten. Diese Carbide sind insbesondere ausgewählt aus der Gruppe, die aus Chromcarbiden, Niobcarbiden, Titancarbiden, Vanadiumcarbiden, Wolframcarbiden und Gemischen dieser Carbide besteht.
  • Kurze Beschreibung der Zeichnungen Ausführungsbeispiele der Erfindung
  • Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in der nachfolgenden Beschreibung näher erläutert.
  • Fig. 1
    zeigt eine schematische Seitenansicht einer Vermahlungsschnecke gemäß einem Ausführungsbeispiel der Erfindung.
    Fig. 2
    zeigt eine schematische Vorderansicht der Vermahlungsschnecke gemäß Fig. 1.
    Fig. 3
    zeigt schematische eine Anordnung von Abrasionsblechen auf einer Vermahlungsschnecke gemäß einem Ausführungsbeispiel der Erfindung.
    Ausführungsbeispiele der Erfindung
  • Fig. 1 zeigt eine Vermahlungsschnecke 10 gemäß einem ersten Ausführungsbeispiel der Erfindung, welche als Stufenschnecke ausgeführt ist. Sie weist eine erste Schneckenstufe 11 und eine zweite Schneckenstufe 12 auf, die um einen Schneckenschaft 13 herum angeordnet sind. Der Außendurchmesser AD1 der ersten Schneckenstufe 11 beträgt 770 mm und der Außendurchmesser AD2 der zweiten Schneckenstufe 12 beträgt 460 mm. Der Innendurchmesser ID1 beider Schneckenstufen 11, 12, welcher dem Außendurchmesser des Schneckenschafts 13 entspricht, beträgt 203 mm.
  • Die erste Schneckenstufe 11 besteht aus Blechlagen mit einer Gesamtdicke DS1 von 20 mm. Die Länge LS1 der ersten Schneckenstufe 11 beträgt 900 mm und sie weist zwei parallel verschweißte Schneckensegmente auf. Über einen Bereich von 360° beträgt ihre Schneckensteigung ST1 600 mm.
  • Die zweite Schneckenstufe 12 besteht aus Blechen mit einer Dicke DS2 von insgesamt 30 mm. Sie hat eine Länge LS2 von 800 mm und weist drei parallel verschweißte Schneckensegmente auf. Die Schneckensteigung ST2 über einen Bereich von 360° beträgt 400 mm. Über eine Länge von 400 mm und damit über eine Schneckenwindungslänge VBW von 360° sind mittels Lochschweißens sechzehn erste Abrasionsbleche 20 auf der zweiten Schneckenstufe 12 aufgeschweißt. Diese Schneckenwindungslänge VBW endet dabei an der Stirnseite der Vermahlungsschnecke 10.
  • Wie in Fig. 2 dargestellt ist, sind die ersten Abrasionsbleche 20 jeweils im Wesentlichen trapezförmig ausgeführt. Sie weisen jeweils zwei gerade Schenkel und zwei kreisbogenförmige Grundseiten auf. Die Grundseiten, die jeweils dem Außenrand der zweiten Schneckenstufe 12 zugewandt sind, folgen dabei deren Außenkontur. Die Grundseiten, welche dem Schneckenschaft 13 zugewandt sind, sind so geformt, dass der Abstand zwischen diesen Grundseiten und dem Schneckenschaft an allen Punkten gleich ist. An der Stirnseite des Schneckenschaftes 13 ist ein kreisförmiges zweites Abrasionsblech 30 mittels Lochschweißens auf diesen aufgeschweißt. Der Außendurchmesser des zweiten Abrasionsbleches 30 entspricht dem Außendurchmesser ID1 des Schneckenschaftes 13.
  • Zwischen zwei benachbarten ersten Abrasionsblechen 20 bleibt jeweils ein Spalt 40 frei. Bedingt durch die Form der ersten Abrasionsbleche erweitert dieser sich vom Rand der zweiten Schneckenstufe 12 zum Schneckenschaft 13 hin. Am Rand beträgt seine Breite SA1 15 mm und an den Grundseiten der ersten Abrasionsbleche 20, welche vor dem Schneckenschaft 13 enden, beträgt seine Breite SA1 20 mm. Zwischen den Grundseiten, die dem Schneckenschaft 13 zugewandt sind und dem Schneckenschaft 13 bzw. dem zweiten Abrasionsblech 30, verläuft ein Spalt mit einer konstanten Breite SA2 von 15 mm.
  • Die ersten Abrasionsbleche 20 und das zweite Abrasionsblech 30 sind mittels Lochschweißens auf der zweiten Schneckenstufe 12 bzw. auf dem Schneckenschaft 13 aufgeschweißt. Hierzu weist jedes erste Abrasionsblech 20 ein Schweißloch 21 auf und das zweite Abrasionsblech 30 weist sechs Schweißlöcher 31 auf. Alle Schweißlöcher 21, 31 haben jeweils einen Durchmesser SA3 von 20 mm.
  • Wie in Fig. 3 dargestellt ist, sind die zueinander benachbarten ersten Abrasionsbleche 20 jeweils versetzt zueinander angeordnet. Der Versatz VBV beträgt jeweils 3 mm. Dabei ist der Versatz VBV als der Unterschied zwischen der orthogonalen Entfernung einer Oberkante eines ersten Abrasionsbleches 20 zur Oberfläche der zweiten Schneckenstufe und der entsprechenden orthogonalen Entfernung zwischen der Oberkante des benachbarten Abrasionsbleches 20 und der Oberfläche der Schneckenstufe 12 definiert, wobei die beiden Kanten jeweils durch den Spalt 40 voneinander getrennt sind.
  • Die ersten Abrasionsbleche 20 und das zweite Abrasionsblech 30 weisen jeweils eine Dicke VBD von 20 mm auf. Sie bestehen jeweils aus einer Deckschicht und einer Trägerschicht. Bei der Trägerschicht handelt es sich vorliegend um eine Schicht aus S235-Stahl, welcher in einem Lochschweißverfahren mit der Oberfläche der zweiten Schneckenstufe 12 verschweißt werden kann. Die Deckschicht besteht in einem ersten Ausführungsbeispiel aus VAUTID® 100 (VAUTID Group Ostfildern, Deutschland). Hierbei handelt es sich um eine Eisenbasislegierung, die Chromcarbide enthält und eine Vickers-Härte von 740 HV10 aufweist. In einem zweiten Ausführungsbeispiel besteht die Deckschicht aus VAUTID® 143 (VAUTID Group). Hierbei handelt es sich um eine Eisenbasislegierung, die Chromcarbide und Niobcarbide enthält und die eine Vickers-Härte von 750 HV10 aufweist. In einem dritten Ausführungsbeispiel besteht die Deckschicht aus VAUTID® 200 (VAUTID Group). Hierbei handelt es sich um eine Eisenbasislegierung, die Vanadiumcarbide, Titancarbide und Niobcarbide enthält. Sie weist eine Vickers-Härte von 850 HV10 auf.
  • Wird eine Vermahlungsschnecke gemäß einem dieser Ausführungsbeispiele zum Vermahlen von künstlichen Mineralfasern verwendet, so tritt ein Verschleiß hauptsächlich an den ersten Abrasionsblechen 20 und dem zweiten Abrasionsblech 30 auf. Sobald die Deckschicht der Abrasionsbleche 20, 30 weitgehend abgetragen ist, kann ein Aufarbeiten der Vermahlungsschnecke 10 erfolgen, indem die zweite Schneckenstufe 12 oder sogar nur jener Bereich der zweiten Schneckenstufe 12, welcher über eine Schneckenwindungslänge VBW die ersten Abrasionsbleche 20 und das zweite Abrasionsblech 30 aufweist, von der restlichen Vermahlungsschnecke 10 abgetrennt wird und durch ein Ersatzstück ersetzt wird.

Claims (11)

  1. Vermahlungsschnecke (10), aufweisend eine erste Schneckenstufe (11) und eine zweite Schneckenstufe (12), wobei der Außendurchmesser (AD2) der zweiten Schneckenstufe (12) 50 bis 70 % des Außendurchmessers (AD1) der ersten Schneckenstufe (AD1) beträgt, dadurch gekennzeichnet, dass mehrere im Wesentlichen trapezförmige erste Abrasionsbleche (20), so auf einer Oberfläche der zweiten Schneckenstufe (12) der Vermahlungsschnecke (10) angeordnet sind, dass zwischen jeweils zwei benachbarten ersten Abrasionsblechen (20) ein Spalt (40) freibleibt, und, dass zwischen zwei benachbarten ersten Abrasionsblechen (20) jeweils ein Versatz (VBV) im Bereich von 0,1 bis 0,7 % des Außendurchmessers (AD1) der ersten Schneckenstufe (11) besteht.
  2. Vermahlungsschnecke (10) nach Anspruch 1, dadurch gekennzeichnet, dass die ersten Abrasionsbleche auf einer Schneckenwindungslänge (VBW) in einem Bereich von 180° bis 360° angeordnet sind.
  3. Vermahlungsschnecke (10) nach Anspruch 2, dadurch gekennzeichnet, dass in dem Bereich 10 bis 20 erste Abrasionsbleche (20) angeordnet sind.
  4. Vermahlungsschnecke (10) nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet, dass eine Breite (SA1) des Spaltes (20) mindestens der Dicke (VBD) der ersten Abrasionsbleche (20) entspricht.
  5. Vermahlungsschnecke (10) nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet, dass mindestens eine Grundseite der ersten Abrasionsbleche kreisbogenförmig ist.
  6. Vermahlungsschnecke (10) nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet, dass eine Schneckensteigung (ST1) der ersten Schneckenstufe (11) größer als eine Schneckensteigung (ST2) der zweiten Schneckenstufe (12) ist.
  7. Vermahlungsschnecke nach Anspruch 6, dadurch gekennzeichnet, dass die Schneckensteigung (ST2) der zweiten Schneckenstufe (12) über einen Bereich von 360° 40 bis 60 % des Außendurchmessers (AD1) der ersten Schneckenstufe (11) beträgt.
  8. Vermahlungsschnecke (10) nach einem der Ansprüche 1 bis 7,
    dadurch gekennzeichnet, dass sie einen Schneckenschaft (13) aufweist, an dessen Stirnseite ein kreisförmiges zweites Abrasionsblech (30) angeordnet ist.
  9. Vermahlungsschnecke (10) nach einem der Ansprüche 1 bis 8,
    dadurch gekennzeichnet, dass jedes Abrasionsblech (20, 30) eine Dicke (VBD) hat, die 1 bis 6 % des Außendurchmessers (AD1) der ersten Schneckenstufe (11) entspricht.
  10. Vermahlungsschnecke (10) nach einem der Ansprüche 1 bis 9,
    dadurch gekennzeichnet, dass die Abrasionsbleche (20, 30) aus einem Verbundmaterial bestehen, das zumindest eine Deckschicht mit einer Vickers-Härte von mindestens 700 HV10 und eine schweißbare Trägerschicht aufweist.
  11. Vermahlungsschnecke (10) nach Anspruch 10, dadurch gekennzeichnet, dass die Deckschicht eine Eisenbasislegierung aufweist, die Carbide enthält, welche ausgewählt sind aus der Gruppe, bestehend aus Chromcarbiden, Niobcarbiden, Titancarbiden, Vanadiumcarbiden, Wolframcarbiden und Gemischen dieser Carbide.
EP18171451.0A 2018-05-09 2018-05-09 Vermahlungsschnecke Active EP3566861B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18171451.0A EP3566861B1 (de) 2018-05-09 2018-05-09 Vermahlungsschnecke

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP18171451.0A EP3566861B1 (de) 2018-05-09 2018-05-09 Vermahlungsschnecke

Publications (2)

Publication Number Publication Date
EP3566861A1 EP3566861A1 (de) 2019-11-13
EP3566861B1 true EP3566861B1 (de) 2022-04-06

Family

ID=62148159

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18171451.0A Active EP3566861B1 (de) 2018-05-09 2018-05-09 Vermahlungsschnecke

Country Status (1)

Country Link
EP (1) EP3566861B1 (de)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6058126B2 (ja) * 1978-04-06 1985-12-18 石川島播磨重工業株式会社 コンベア用スクリユの製作方法
US4466533A (en) * 1982-09-30 1984-08-21 Shwayder Warren M Blade edge wear clips
AT396915B (de) * 1991-07-19 1993-12-27 Pickart Josef Fahrzeug zum transport von müll od. dgl.
NO985381L (no) * 1998-11-19 2000-05-22 Pulping As Kvaerner FremgangsmÕte for oppretting av slitte skruevinger i en skruepresse
DE102006002016A1 (de) * 2006-01-13 2007-07-19 Andreas Kufferath Gmbh & Co. Kg Schneckenwelle für eine Schneckenpresse
CA2926762C (en) * 2013-11-19 2019-09-17 9103-8034 Quebec Inc. Screw conveyor system for compaction apparatus

Also Published As

Publication number Publication date
EP3566861A1 (de) 2019-11-13

Similar Documents

Publication Publication Date Title
DE2605751C3 (de) Schutzschilde für einen Hammerbrecherrotor
EP0443195B1 (de) Verschleissfeste Oberflächenpanzerung für die Walzen von Walzenmaschinen, insbesondere von Hochdruck-Walzenpressen
DE29811073U1 (de) Vorrichtung zum Sieben und/oder Zerkleinern von Siebmaterialien
EP0728523B1 (de) Walze, Verfahren zur Herstellung einer Walze sowie Gutbettwalzenmühle
WO2004112973A2 (de) Trommelsiebmaschine
DE102009060523A1 (de) Zerkleinerungsvorrichtung mit Gegenmessereinrichtung
EP1334771B1 (de) Aktenvernichter
DE1482420A1 (de) Schutzelemente fuer starker Abnutzung ausgesetzte Flaechen
WO2010020426A2 (de) Zerkleinerungsmaschine sowie verfahren zur herstellung eines hohlen rotors für eine solche
DE202019002939U1 (de) Schlegel
AT394588B (de) Zerkleinerungsflaechen aufweisendes segment fuer trommelrefiner und hiemit versehene anordnung
AT400452B (de) Fräsbrechermaschine
EP3566861B1 (de) Vermahlungsschnecke
EP0187252A2 (de) Prallmühle zum Zerkleinern von Gestein od. dgl.
EP0861696A1 (de) Scheibe für ein Scheibensieb oder einen Scheibenseparator
DE3011351C2 (de) Rotorenschere für die Abfallzerkleinerung
EP0567759A2 (de) Vorrichtung zum Pulverisieren von Gummibrocken
DE3406285C2 (de)
DE4431551C2 (de) Brecher mit einem Gestell, in dem ein angetriebener, steinbrechender Rotor gelagert ist
EP3750632A1 (de) Aufgabeeinheit für eine aufbereitungsanlage, insbesondere eine brech- oder siebanlage
EP0829198B1 (de) Häckselvorrichtung
DE3144613A1 (de) Siebfoerderrost mit rotierenden rostwalzen
DE2833688C2 (de) Desintegrator-Trommel
DE3808059C2 (de) Vorrichtung zum Zerkleinern von Müll od. dgl. Haufwerk
DE3123484C2 (de) Zerkleinerungsvorrichtung für faseriges Gut

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190405

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20211109

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1480932

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018009303

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220808

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220707

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220806

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018009303

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220509

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20230110

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220706

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230531

Year of fee payment: 6

Ref country code: FR

Payment date: 20230517

Year of fee payment: 6

Ref country code: DE

Payment date: 20230425

Year of fee payment: 6

Ref country code: CH

Payment date: 20230602

Year of fee payment: 6

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230704

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230516

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230517

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240522

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406