EP3566779B1 - Atomiser and corresponding operating method - Google Patents

Atomiser and corresponding operating method Download PDF

Info

Publication number
EP3566779B1
EP3566779B1 EP19178996.5A EP19178996A EP3566779B1 EP 3566779 B1 EP3566779 B1 EP 3566779B1 EP 19178996 A EP19178996 A EP 19178996A EP 3566779 B1 EP3566779 B1 EP 3566779B1
Authority
EP
European Patent Office
Prior art keywords
stream
shrouding
nozzles
atomiser
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19178996.5A
Other languages
German (de)
French (fr)
Other versions
EP3566779A1 (en
Inventor
Hans-Jürgen Nolte
Frank Herre
Andreas Fischer
Peter Marquardt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Duerr Systems AG
Original Assignee
Duerr Systems AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Duerr Systems AG filed Critical Duerr Systems AG
Publication of EP3566779A1 publication Critical patent/EP3566779A1/en
Application granted granted Critical
Publication of EP3566779B1 publication Critical patent/EP3566779B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/04Discharge apparatus, e.g. electrostatic spray guns characterised by having rotary outlet or deflecting elements, i.e. spraying being also effected by centrifugal forces
    • B05B5/0426Means for supplying shaping gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/16Arrangements for controlling delivery; Arrangements for controlling the spray area for controlling the spray area
    • B05B12/18Arrangements for controlling delivery; Arrangements for controlling the spray area for controlling the spray area using fluids, e.g. gas streams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/001Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means incorporating means for heating or cooling, e.g. the material to be sprayed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/04Discharge apparatus, e.g. electrostatic spray guns characterised by having rotary outlet or deflecting elements, i.e. spraying being also effected by centrifugal forces
    • B05B5/0403Discharge apparatus, e.g. electrostatic spray guns characterised by having rotary outlet or deflecting elements, i.e. spraying being also effected by centrifugal forces characterised by the rotating member
    • B05B5/0407Discharge apparatus, e.g. electrostatic spray guns characterised by having rotary outlet or deflecting elements, i.e. spraying being also effected by centrifugal forces characterised by the rotating member with a spraying edge, e.g. like a cup or a bell

Definitions

  • the invention relates to a rotary atomizer and a corresponding painting device.
  • the respective coating agent e.g. filler, basecoat, clearcoat
  • atomizers e.g. high-speed air or ultrasonic atomizers
  • the wet paint mainly loses volatile components during atomization and application, such as solvents in solvent-based paints or water in water-based paints, which evaporate into the ambient air.
  • the percentage of solids in the applied wet paint changes compared to the percentage of solids in the wet paint before atomization.
  • this increase in the proportion of solids during application is determined by the application parameters, such as the rotational speed of the rotary atomizer, the outflow quantity, the amount of guiding air and the painting distance.
  • the increase in the proportion of solids during application is influenced by the ambient conditions, such as air humidity, air rate of descent and air temperature in the painting booth, since these ambient conditions affect the evaporation of the solvent content or the water content.
  • the most frequently used variant for air conditioning the painting booths is heated and humidified by means of heating registers and washers.
  • the dependence on the weather situation is disadvantageous, due to weather conditions that cannot be corrected (e.g. summer with humid air). If the ambient conditions are unsuitable, painting errors can occur, such as Runner and strongly fluctuating painting results.
  • this variant of air conditioning requires a large amount of energy.
  • the additional adapter disrupts the otherwise smooth outer contour of the rotary atomizer, which increases the tendency towards soiling and makes cleaning the rotary atomizer more difficult.
  • the air-conditioned air must be supplied to the adapter via additional hoses, which are stressed by material fatigue when the painting robot moves frequently and quickly and can eventually tear off.
  • the additional adapter hinders the handling of the rotary atomizer, since the external dimensions and the inertia of the rotary atomizer increase due to the additional adapter. For example, because of the larger external dimensions, the rotary atomizer with the additional adapter can no longer be inserted into small openings in order to coat surfaces located there.
  • Another disadvantage of the additional adapter is the relatively large axial distance between the sheath flow nozzles in the adapter and the bell cup atomizing edge, so that the energy and quantity of the sheath flow are usually not sufficient to achieve really defined evaporation conditions.
  • WO 2005/110618 A1 discloses a rotary atomizer with a bell cup and directing air nozzles to emit a directing air flow that directs particles applied by the bell cup to the object to be painted.
  • JP 58092475 A discloses a rotary atomizer with a nozzle from which swirled atomizing air is directed onto the sprayed coating agent jet.
  • EP 1 362 640 A1 also discloses a rotary atomizer with guide air nozzles, which additionally has a ring of air bores or an annular nozzle-like air gap in an electrode ring placed on the outer housing of the atomizer, from which the air is guided like a shell over the surface of the outer housing.
  • the invention is therefore based on the object of improving the known painting systems.
  • the sheath flow is not emitted by a separate adapter, but rather by sheath flow nozzles that are structurally integrated into the atomizer.
  • This structural integration of the sheath flow nozzles in the atomizer offers the advantage that the smooth outer contour of the atomizer housing is not disturbed by the sheath flow technology, so that the nebulizer's tendency to soiling and the ease of cleaning are not impaired.
  • the structural integration of the sheath flow nozzles in the atomizer enables the conditioned air for the sheath flow to be supplied via the normal connection flange of the atomizer.
  • the separate hoses provided in the prior art for supplying the conditioned air can be dispensed with, which eliminates the problem of hose tears.
  • the invention advantageously enables a reduction in the axial distance between the enveloping flow nozzles and the bell cup spray edge, so that the energy and quantity of the enveloping flow are sufficient to produce really defined evaporation conditions.
  • Another advantage of the inventive integration of the sheath flow nozzles in the atomizer is better handling, since the external dimensions and inertia of the atomizer according to the invention are hardly or not at all increased compared to a conventional atomizer without sheath flow technology.
  • sheath flow nozzles in the atomizer can be achieved within the scope of the invention, for example, in that the sheath flow nozzles are arranged in the atomizer housing. As an alternative, however, there is also the possibility that the sheath flow nozzles are arranged in a guiding air ring or some other integral component of the atomizer.
  • the invention encompasses the general technical teaching of influencing the evaporation conditions and thus the change in the solid content during application by creating a defined microclimate in the vicinity of the coating agent jet, so that complex air conditioning of the entire paint booth is less important or can even be omitted .
  • the invention is not limited to those painting systems in which conventional air conditioning of the painting booth is dispensed with, but also includes painting systems in which, in addition to creating a defined microclimate in the vicinity of the coating agent jet, the entire painting booth is air-conditioned.
  • the invention provides a rotary atomizer which, in addition to a bell plate for applying a coating agent jet to a component to be coated, has at least one enveloping stream nozzle via which an air-conditioned enveloping stream is emitted which at least partially surrounds the coating agent jet and thereby enters the vicinity of the coating agent jet creates a defined microclimate, which ensures specified evaporation conditions.
  • the air-conditioned enveloping stream preferably surrounds the coating agent jet in the form of a jacket over its entire circumference and / or over its entire length between the application element and the component to be coated.
  • the envelope flow is heated, cooled, dried or humidified in relation to the ambient air.
  • the envelope flow is heated, cooled, dried or humidified in relation to the ambient air.
  • the envelope flow is heated, cooled, dried or humidified in relation to the ambient air.
  • the envelope flow is heated, cooled, dried or humidified in relation to the ambient air.
  • the envelope flow is heated, cooled, dried or humidified in relation to the ambient air.
  • the envelope flow is heated, cooled, dried or humidified in relation to the ambient air.
  • drying or moistening of the sheath flow on the other hand.
  • the envelope flow is preferably heated by an air heater, which is preferably structurally separated from the atomizer.
  • an air heater which is preferably structurally separated from the atomizer.
  • the heating elements also being able to be arranged close to the outlet in the region of the sheath flow nozzle, which leads to low thermal losses.
  • the enveloping flow is preferably not heated by electrical heating elements in the atomizer, but rather by the separate air heater mentioned above.
  • the sheath flow preferably has an outlet temperature of more than + 40 ° C. and / or less than + 100 ° C. directly at the sheath flow nozzle, any intermediate values within this value range being possible.
  • the exit temperature of the sheath flow can be varied depending on the coating agent used. For example, water evaporates less as a solvent as an organic solvent, so that the outlet temperature of the sheath flow can be increased when applying water-based varnish compared to the application of solvent-based varnish.
  • the envelope flow preferably has a volume flow of more than 500 l / min and / or less than 2500 l / min, any intermediate values being possible within this interval.
  • the sheath flow preferably consists of air, which is available in the form of compressed air in painting systems anyway.
  • gases are particularly suitable that have a greater heat capacity, greater electrical insulation capacity and / or a higher moisture saturation limit than air.
  • the greater heat capacity has the advantage that the sheath flow loses only slightly in temperature after exiting the sheath flow nozzle, which ensures defined evaporation conditions.
  • a greater electrical insulation capacity is advantageous in the case of an electrostatic atomizer, since the insulation capacity of the sheath current prevents the electrostatically charged coating agent particles from discharging and thus ensures a high level of application efficiency.
  • a high moisture saturation limit of the gas used for the sheath stream is advantageous if the sheath stream is to take up a large amount of solvent from the coating agent jet.
  • the sheath flow can therefore also consist, for example, of sulfur hexafluoride (SF 6 ) or inert gases (for example carbon dioxide (CO 2 ) and nitrogen).
  • the atomizer according to the invention has an inner housing and an outer housing, with between the inner housing and the outer housing a sheath flow line for passing the air-conditioned sheath flow to the sheath flow nozzle.
  • the atomizer according to the invention is therefore preferably designed in such a way that the sheath flow within the atomizer in the sheath flow feed line up to the sheath flow nozzle by less than 140 ° C, 120 ° C, 100 ° C, 90 ° C, 80 ° C, 70 ° C, 60 ° C, 50 ° C, 40 ° C, 30 ° C, 20 °, 10 ° C or less than 5 ° C.
  • the rotary atomizer according to the invention has guiding air nozzles for emitting a guiding air jet, the guiding air jet shaping the coating agent jet.
  • an inner directing air jet and an outer directing air jet are provided, which offers greater flexibility when shaping the coating agent jet.
  • the enveloping flow nozzles are provided in addition to the directing air nozzles and are separated from them.
  • the directing air nozzles are attached on the inside, while the enveloping flow nozzles are attached on the outside.
  • the enveloping flow not only envelops or envelops the coating agent jet, but also the directing air flow, so that the directing air flow between the Sheath flow and the coating agent jet runs.
  • This arrangement is advantageous because the jacket-shaped enveloping of the coating agent jet by the enveloping stream is facilitated or made possible by the fact that the directing air jet forms the coating agent jet.
  • the number of sheath flow nozzles is preferably greater than 20 and / or less than 60, any intermediate values being possible within this interval.
  • the sheath flow nozzles preferably each have nozzle openings with a width or with a diameter of more than 1 mm and / or less than 8 mm.
  • the sheath flow nozzles therefore preferably have larger nozzle openings than the directing air nozzles.
  • the sheath flow nozzle is designed as a ring-shaped circumferential slit nozzle.
  • the slot nozzle preferably has a slot width in the range of 0.1-1 mm, while the slot diameter is preferably in the range of 50-100 mm.
  • Slit nozzles of this type are made, for example, as steering air nozzles EP 0 092 043 A2 known. The content of this publication should therefore be included in the present description with regard to the structural design of the slotted nozzle.
  • the rotatable bell cup has a predetermined bell cup edge.
  • a coating agent for example wet paint or powder paint
  • a component to be coated for example a motor vehicle body part
  • the enveloping flow nozzles can be angled in the circumferential direction of the bell cup and thus have a predetermined swirl angle, wherein the enveloping flow nozzles can be angled either in the direction of rotation of the bell cup or against the direction of rotation of the bell cup.
  • the swirl angle of the sheath flow nozzles can be in the range of 0-45 °, with any intermediate values being possible.
  • the atomizer according to the invention can optionally be a powder atomizer or a wet paint atomizer.
  • the invention not only comprises the rotary atomizer according to the invention described above as a single component, but also a painting device (e.g. a painting robot or a painting plant) with such an atomizer.
  • a painting device e.g. a painting robot or a painting plant
  • the painting device preferably has an air-conditioning device for air-conditioning the sheath flow, the air-conditioning device being connected downstream with the sheath flow nozzle (s).
  • the air conditioning device can have a conventional air heater in order to heat the air flow.
  • the air-conditioning device can have a cooling device that cools the sheath flow.
  • the air-conditioning device has a dehumidifying device which dehumidifies the envelope flow.
  • the air conditioning device can therefore be constructed like a conventional air conditioning system.
  • an air-conditioned enveloping stream is released which at least partially surrounds the coating agent jet.
  • the spatial position of the component surface to be coated is preferably determined and the envelope current is influenced as a function of the determined spatial position.
  • the spatial location of the The component surface to be coated can also be used to determine the spatial position of the rotary atomizer, since the rotary atomizer is generally guided according to the spatial position of the component surface to be coated.
  • the spatial position of the rotary atomizer can in turn be determined from the position control signals of the robot controller.
  • the temperature, the moisture content and / or the volume flow of the envelope flow can then be influenced.
  • a sheath flow with a lower moisture content, a higher temperature and / or a greater volume flow is preferably emitted than when an essentially horizontal component surface is coated.
  • the enveloping flow can be adjusted so that the solids content of the coating agent jet increases by more than 5%, 10%, 25% or even 50% between the release on the application element and the impact on the component surface to be coated.
  • Figure 1 shows, in simplified form, a rotary atomizer 1 which is largely of conventional construction and can be used, for example, for painting motor vehicle body parts.
  • the rotary atomizer 1 has a conventional bell cup 2 which is rotatably mounted about a bell cup axis 3 and is driven by a turbine 4. At the edge of the bell cup, the bell cup 2 emits a coating agent jet 5, the coating agent jet 5 being shown here only schematically.
  • the rotary atomizer 1 has numerous inner directing air nozzles 6 which are arranged concentrically around the bell cup axis 3 and emit an inner directing air jet 7 onto the outer surface of the bell cup 2, the inner directing air jet 7 forming the coating agent jet 5.
  • the rotary atomizer 1 has a plurality of external directing air nozzles 8, via which an external directing air jet 9 is emitted, which additionally shapes the coating agent jet 5.
  • the rotary atomizer 1 has numerous enveloping flow nozzles 10, which are also arranged concentrically around the bell disk axis 3 and emit an air-conditioned enveloping flow 11, which surrounds the coating agent jet 5 in a jacket-like manner and thus ensures defined evaporation conditions.
  • the emerging sheath flow 11 When exiting the sheath flow nozzles 10, the emerging sheath flow 11 entrains a secondary flow 12 of ambient air, the entrained secondary flow 12 making up 0-50% of the sheath flow 11 emerging from the sheath flow nozzles 10.
  • the enveloping stream 11, the coating agent and the guiding air are supplied through a connection flange 13 to which two separate guiding air lines 14, 15 can be connected.
  • enveloping flow lines 16, 17, 18 and an optional enveloping flow line 19 can be connected to the connecting flange 13 in order to feed the air-conditioned enveloping flow 11 to the rotary atomizer 1.
  • the sheath flow lines 16-19 are connected to an air heater 20 and an air volume regulator 21, so that the volume flow and the temperature of the sheath flow 11 can be varied.
  • the enveloping flow 11 is fed from the connection flange 13 to the enveloping flow nozzles 10 through a enveloping flow duct between an inner housing 22 and an outer housing 23 of the rotary atomizer 1.
  • the number of sheath flow nozzles 10 can be in the range from 20 to 60, the individual sheath flow nozzles 10 each having nozzle openings with a width of 1-8 mm.
  • the axial distance between the sheath flow nozzles 10 and the bell cup edge of the bell cup 2 can be between 5 and 100 mm.
  • Figure 2a shows schematically the painting of a vertical component surface 24 by the rotary atomizer 1. Due to the vertical orientation of the component surface 24, there is a risk of runs due to the force of gravity g acting on the applied paint particles. In order to avoid such runners, the solids content of the coating agent jet 5 impinging on the vertical component surface 24 is increased in a targeted manner by the temperature T1 of the envelope flow 11 from the air heater 20 (cf. Fig. 1 ) is specifically increased. As a result, the coating agent jet 5 impinging on the vertical component surface 24 contains fewer liquid solvent components and is therefore less prone to running. The greater evaporation of the solvent fractions from the coating agent jet 5 into the surrounding enveloping stream 11 is shown here by block arrows.
  • Figure 3 shows, in a greatly simplified form, a block diagram of a painting device according to the invention with a robot controller 26 which controls a multi-axis painting robot 27 with position control data, the painting robot 27 guiding the rotary atomizer 1.
  • the position control data are also passed on from the robot controller 26 to a computing unit 28, which uses it to determine the inclination ⁇ of the component surface to be coated.
  • the inclination ⁇ of the component surface is then passed on to an envelope flow control 29, which influences the envelope flow 11 as a function of the inclination ⁇ of the component surface.
  • the sheath flow controller 29 controls a sheath flow dryer 30, a sheath flow heater 31 and a sheath flow valve 32.
  • the enveloping flow 11 is influenced here as a function of the inclination ⁇ of the component surface to be coated in such a way that the coating agent is prevented from running on the component surface.
  • the enveloping flow is heated and dried more intensely when coating vertically aligned component surfaces than when coating horizontally aligned component surfaces.
  • the robot controller 26, the computing unit 28 and the sheath flow controller 29 can be integrated into a common electronic control unit 33. There is also the possibility here that the robot controller 26, the computing unit 28 and / or the envelope flow controller 29 are implemented as software modules.

Landscapes

  • Electrostatic Spraying Apparatus (AREA)
  • Nozzles (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

Die Erfindung betrifft einen Rotationszerstäuber, sowie eine entsprechende Lackiereinrichtung.The invention relates to a rotary atomizer and a corresponding painting device.

Bei der Lackierung von Bauteilen (z.B. Kraftfahrzeugkarosserieteilen) wird das jeweilige Beschichtungsmittel (z.B. Füller, Basislack, Klarlack) in der Regel durch Zerstäuber (z.B. Hochrotations- Luft- oder Ultraschallzerstäuber) zerstäubt und mittels Lenkluft und elektrostatischer Aufladung des Beschichtungsmittels auf das zu beschichtende Bauteil aufgetragen. Bei einer Lackierung mit Nasslack verliert der Nasslack bei der Zerstäubung und während der Applikation vor allem leicht flüchtige Bestandteile, wie Lösemittel bei lösemittelbasierten Lacken oder Wasser bei Wasserlacken, die in die Umgebungsluft abdunsten. Dadurch verändert sich der prozentuale Festkörperanteil des applizierten Nasslacks gegenüber dem prozentualen Festkörperanteil des Nasslacks vor der Zerstäubung.When painting components (e.g. motor vehicle body parts), the respective coating agent (e.g. filler, basecoat, clearcoat) is usually atomized by atomizers (e.g. high-speed air or ultrasonic atomizers) and applied to the component to be coated by means of guiding air and electrostatic charging of the coating agent . When painting with wet paint, the wet paint mainly loses volatile components during atomization and application, such as solvents in solvent-based paints or water in water-based paints, which evaporate into the ambient air. As a result, the percentage of solids in the applied wet paint changes compared to the percentage of solids in the wet paint before atomization.

Zum einen wird diese Zunahme des Festkörperanteils bei der Applikation von den Applikationsparametern bestimmt, wie beispielsweise Drehzahl des Rotationszerstäubers, Ausflussmenge, Lenkluftmenge und Lackierabstand.On the one hand, this increase in the proportion of solids during application is determined by the application parameters, such as the rotational speed of the rotary atomizer, the outflow quantity, the amount of guiding air and the painting distance.

Zum anderen wird die Zunahme des Festkörperanteils bei der Applikation von den Umgebungsbedingungen beeinflusst, wie beispielsweise Luftfeuchtigkeit, Luftsinkgeschwindigkeit und Lufttemperatur in der Lackierkabine, da diese Umgebungsbedingungen die Abdunstung des Lösemittelanteils bzw. des Wasseranteils beeinflussen.On the other hand, the increase in the proportion of solids during application is influenced by the ambient conditions, such as air humidity, air rate of descent and air temperature in the painting booth, since these ambient conditions affect the evaporation of the solvent content or the water content.

Bei den bekannten Lackieranlagen zur Lackierung von Kraftfahrzeugkarosserieteilen wird deshalb ein großer Aufwand betrieben, um den Lufthaushalt in der Lackierkabine konstant zu halten, damit die Abdunstbedingungen und damit die Zunahme des Festkörperanteils bei der Applikation möglichst konstant bleiben. Nachteilig an den bekannten Lackieranlagen ist also der große apparative Aufwand für die Klimatisierung der Lackierkabine.In the known painting systems for painting motor vehicle body parts, a great deal of effort is therefore made to keep the air balance in the painting booth constant so that the evaporation conditions and thus the increase in the solids content remain as constant as possible during application. The disadvantage of the known painting systems is the large amount of equipment required for air conditioning the painting booth.

In der am häufigsten verwendeten Variante zur Klimatisierung der Lackierkabinen erfolgt ein Heizen und Befeuchten mittels Heizregister und Wäscher. Hierbei ist die Abhängigkeit von der Wetterlage nachteilig, aufgrund nicht zu korrigierender Wetterlagen (z.B. Sommer mit feuchter Luft). Bei ungeeigneten Umgebungsbedingungen können deshalb Lackierfehler auftreten, wie z.B. Läufer und stark schwankende Lackierergebnisse. Darüber hinaus erfordert diese Variante der Klimatisierung einen großen Energieeinsatz.The most frequently used variant for air conditioning the painting booths is heated and humidified by means of heating registers and washers. Here, the dependence on the weather situation is disadvantageous, due to weather conditions that cannot be corrected (e.g. summer with humid air). If the ambient conditions are unsuitable, painting errors can occur, such as Runner and strongly fluctuating painting results. In addition, this variant of air conditioning requires a large amount of energy.

In einer anderen Variante der Klimatisierung erfolgt dagegen eine Vollklimatisierung analog üblichen Klimaanlagen mit einer kombinierten Kühlung und Entfeuchtung, wodurch der Energieaufwand allerdings nochmals steigt.In another variant of the air conditioning, on the other hand, there is full air conditioning in the same way as conventional air conditioning systems with combined cooling and dehumidification, which, however, increases the energy consumption again.

Aus US 2005/0181142 A1 ist es bekannt, den Beschichtungsmittelstrahl eines Rotationszerstäubers mit einem Hüllstrom von klimatisierter Luft zu umgeben, wobei der Hüllstrom an der Außenseite des Beschichtungsmittelstrahls definierte Abdunstbedingungen herstellt, so dass der Aufwand für die Klimatisierung der gesamten Lackierkabine verringert werden kann. Der Hüllstrom wird hierbei von einem separaten Adapter abgegeben, der ringförmig ausgebildet ist und im Betrieb außen auf dem Zerstäubergehäuse sitzt. Diese bekannte Art der Hüllstromerzeugung weist jedoch zahlreiche Nachteile auf.Out US 2005/0181142 A1 It is known to surround the coating agent jet of a rotary atomizer with a sheath flow of conditioned air, the sheath flow producing defined evaporation conditions on the outside of the coating agent jet so that the effort for air conditioning the entire painting booth can be reduced. The enveloping current is emitted by a separate adapter, which is ring-shaped and sits on the outside of the atomizer housing during operation. However, this known type of envelope power generation has numerous disadvantages.

Zum einen stört der zusätzliche Adapter die ansonsten glatte Außenkontur des Rotationszerstäubers, wodurch die Verschmutzungsneigung erhöht und die Reinigung des Rotationszerstäubers erschwert wird.On the one hand, the additional adapter disrupts the otherwise smooth outer contour of the rotary atomizer, which increases the tendency towards soiling and makes cleaning the rotary atomizer more difficult.

Zum anderen muss die Zuleitung der klimatisierten Luft zu dem Adapter über zusätzliche Schläuche erfolgen, die bei häufigen und schnellen Bewegungen des Lackierroboters durch Materialermüdung belastet werden und schließlich abreißen können.On the other hand, the air-conditioned air must be supplied to the adapter via additional hoses, which are stressed by material fatigue when the painting robot moves frequently and quickly and can eventually tear off.

Darüber hinaus behindert der zusätzliche Adapter die Handhabung des Rotationszerstäubers, da die Außenabmessungen und die Massenträgheit des Rotationszerstäubers durch den zusätzlichen Adapter zunehmen. Beispielsweise kann der Rotationszerstäuber mit dem zusätzlichen Adapter aufgrund der größeren Außenabmessungen nicht mehr in kleine Öffnungen eingeführt werden, um dort befindliche Oberflächen zu beschichten.In addition, the additional adapter hinders the handling of the rotary atomizer, since the external dimensions and the inertia of the rotary atomizer increase due to the additional adapter. For example, because of the larger external dimensions, the rotary atomizer with the additional adapter can no longer be inserted into small openings in order to coat surfaces located there.

Ein weiterer Nachteil des zusätzlichen Adapters besteht in dem relativ großen axialen Abstand zwischen den Hüllstromdüsen in dem Adapter und der Glockentellerzerstäubungskante, so dass Energie und Menge des Hüllstroms in der Regel nicht ausreichen, um wirklich definierte Abdunstbedingungen zu erreichen.Another disadvantage of the additional adapter is the relatively large axial distance between the sheath flow nozzles in the adapter and the bell cup atomizing edge, so that the energy and quantity of the sheath flow are usually not sufficient to achieve really defined evaporation conditions.

WO 2005/110618 A1 offenbart einen Rotationszerstäuber mit einem Glockenteller und Lenkluftdüsen, um einen Lenkluftstrom abzugeben, der von dem Glockenteller applizierte Partikel zu dem zu lackierenden Objekt lenkt. WO 2005/110618 A1 discloses a rotary atomizer with a bell cup and directing air nozzles to emit a directing air flow that directs particles applied by the bell cup to the object to be painted.

JP 58092475 A offenbart einen Rotationszerstäuber mit einer Düse, aus der gedrallte Zerstäubungsluft auf den abgesprühten Beschichtungsmittelstrahl gerichtet wird. JP 58092475 A discloses a rotary atomizer with a nozzle from which swirled atomizing air is directed onto the sprayed coating agent jet.

EP 1 362 640 A1 offenbart ebenfalls einen Rotationszerstäuber mit Lenkluftdüsen, der zusätzlich hierzu in einem auf das Außengehäuse des Zerstäubers aufgesetzten Elektrodenring einen Kranz von Luftbohrungen oder einen kreisringförmigen düsenartigen Luftspalt hat, aus denen die Luft wie eine Hülle über die Oberfläche des Außengehäuses geleitet wird. EP 1 362 640 A1 also discloses a rotary atomizer with guide air nozzles, which additionally has a ring of air bores or an annular nozzle-like air gap in an electrode ring placed on the outer housing of the atomizer, from which the air is guided like a shell over the surface of the outer housing.

Ferner ist zum Stand der Technik auf US 2004/81769 A1 , DE 197 49 072 C1 und DE 102 32 863 A1 hinzuweisen.It is also based on the prior art US 2004/81769 A1 , DE 197 49 072 C1 and DE 102 32 863 A1 to point out.

Der Erfindung liegt deshalb die Aufgabe zugrunde, die bekannten Lackieranlagen zu verbessern.The invention is therefore based on the object of improving the known painting systems.

Diese Aufgabe wird durch einen Rotationszerstäuber gemäß den Ansprüchen gelöst.This object is achieved by a rotary atomizer according to the claims.

Im Rahmen der Erfindung wird der Hüllstrom jedoch im Gegensatz zu dem vorstehend diskutierten Stand der Technik nicht durch einen separaten Adapter abgegeben, sondern durch Hüllstromdüsen, die in den Zerstäuber baulich integriert sind. Diese bauliche Integration der Hüllstromdüsen in den Zerstäuber bietet den Vorteil, dass die glatte Außenkontur des Zerstäubergehäuses durch die Hüllstromtechnik nicht gestört wird, so dass die Verschmutzungsneigung und die Reinigungsfreundlichkeit des Zerstäubers nicht beeinträchtigt werden. Darüber hinaus ermöglicht es die bauliche Integration der Hüllstromdüsen in den Zerstäuber, dass die klimatisierte Luft für den Hüllstrom über den normalen Anschlussflansch des Zerstäubers zugeführt wird. Dadurch können die im Stand der Technik vorgesehenen separaten Schläuche zur Zuleitung der klimatisierten Luft entfallen, wodurch das Problem der Schlauchabrisse entfällt.In the context of the invention, however, in contrast to the prior art discussed above, the sheath flow is not emitted by a separate adapter, but rather by sheath flow nozzles that are structurally integrated into the atomizer. This structural integration of the sheath flow nozzles in the atomizer offers the advantage that the smooth outer contour of the atomizer housing is not disturbed by the sheath flow technology, so that the nebulizer's tendency to soiling and the ease of cleaning are not impaired. In addition, the structural integration of the sheath flow nozzles in the atomizer enables the conditioned air for the sheath flow to be supplied via the normal connection flange of the atomizer. As a result, the separate hoses provided in the prior art for supplying the conditioned air can be dispensed with, which eliminates the problem of hose tears.

Darüber hinaus ermöglicht die Erfindung vorteilhaft eine Verringerung des axialen Abstands zwischen den Hüllstromdüsen und der Glockentellerabsprühkante, so dass Energie und Menge des Hüllstroms ausreichen, um wirklich definierte Abdunstbedingungen herzustellen.In addition, the invention advantageously enables a reduction in the axial distance between the enveloping flow nozzles and the bell cup spray edge, so that the energy and quantity of the enveloping flow are sufficient to produce really defined evaporation conditions.

Ein weiterer Vorteil der erfindungsgemäßen Integration der Hüllstromdüsen in den Zerstäuber besteht in der besseren Handhabung, da die Außenabmessungen und die Massenträgheit des erfindungsgemäßen Zerstäubers gegenüber einem herkömmlichen Zerstäuber ohne Hüllstromtechnik kaum oder gar nicht erhöht sind.Another advantage of the inventive integration of the sheath flow nozzles in the atomizer is better handling, since the external dimensions and inertia of the atomizer according to the invention are hardly or not at all increased compared to a conventional atomizer without sheath flow technology.

Die bauliche Integration der Hüllstromdüsen in den Zerstäuber kann im Rahmen der Erfindung beispielsweise dadurch erreicht werden, dass die Hüllstromdüsen in dem Zerstäubergehäuse angeordnet sind. Es besteht jedoch alternativ auch die Möglichkeit, dass die Hüllstromdüsen in einem Lenkluftring oder einem sonstigen integralen Bauteil des Zerstäubers angeordnet sind.The structural integration of the sheath flow nozzles in the atomizer can be achieved within the scope of the invention, for example, in that the sheath flow nozzles are arranged in the atomizer housing. As an alternative, however, there is also the possibility that the sheath flow nozzles are arranged in a guiding air ring or some other integral component of the atomizer.

Die Erfindung umfasst die allgemeine technische Lehre, die Abdunstbedingungen und damit die Veränderung des Festkörperanteils bei der Applikation dadurch zu beeinflussen, dass in der Umgebung des Beschichtungsmittelstrahls ein definiertes Mikroklima erzeugt wird, so dass eine aufwendige Klimatisierung der gesamten Lackierkabine weniger wichtig ist oder sogar entfallen kann.The invention encompasses the general technical teaching of influencing the evaporation conditions and thus the change in the solid content during application by creating a defined microclimate in the vicinity of the coating agent jet, so that complex air conditioning of the entire paint booth is less important or can even be omitted .

Die Erfindung ist jedoch nicht auf solche Lackieranlagen beschränkt, bei denen auf eine herkömmliche Klimatisierung der Lackierkabine verzichtet wird, sondern umfasst auch Lackieranlagen, bei denen zusätzlich zu der Schaffung eines definierten Mikroklimas in der Umgebung des Beschichtungsmittelstrahls eine Klimatisierung der gesamten Lackierkabine erfolgt.However, the invention is not limited to those painting systems in which conventional air conditioning of the painting booth is dispensed with, but also includes painting systems in which, in addition to creating a defined microclimate in the vicinity of the coating agent jet, the entire painting booth is air-conditioned.

Die Erfindung sieht einen Rotationszerstäuber vor, der zusätzlich zu einem Glockenteller zur Applikation eines Beschichtungsmittelstrahls auf ein zu beschichtendes Bauteil mindestens eine Hüllstromdüse aufweist, über die ein klimatisierter Hüllstrom abgegeben wird, der den Beschichtungsmittelstrahl mindestens teilweise umgibt und dadurch in der Umgebung des Beschichtungsmittelstrahls ein definiertes Mikroklima erzeugt, was für vorgegebene Abdunstbedingungen sorgt. Vorzugsweise umgibt der klimatisierte Hüllstrom den Beschichtungsmittelstrahl mantelförmig auf seinem gesamten Umfang und/oder auf seiner gesamten Länge zwischen dem Applikationselement und dem zu beschichtenden Bauteil.The invention provides a rotary atomizer which, in addition to a bell plate for applying a coating agent jet to a component to be coated, has at least one enveloping stream nozzle via which an air-conditioned enveloping stream is emitted which at least partially surrounds the coating agent jet and thereby enters the vicinity of the coating agent jet creates a defined microclimate, which ensures specified evaporation conditions. The air-conditioned enveloping stream preferably surrounds the coating agent jet in the form of a jacket over its entire circumference and / or over its entire length between the application element and the component to be coated.

Im Rahmen der Klimatisierung des Hüllstroms besteht die Möglichkeit, dass der Hüllstrom gegenüber der Umgebungsluft erwärmt, gekühlt, getrocknet oder befeuchtet ist. Weiterhin besteht die Möglichkeit einer Kombination einer Erwärmung bzw. Kühlung einerseits und einer Trocknung bzw. Befeuchtung des Hüllstroms andererseits.As part of the air conditioning of the envelope flow, there is the possibility that the envelope flow is heated, cooled, dried or humidified in relation to the ambient air. There is also the possibility of a combination of heating or cooling on the one hand and drying or moistening of the sheath flow on the other hand.

Die Erwärmung des Hüllstroms erfolgt vorzugsweise durch einen Lufterhitzer, der vorzugsweise von dem Zerstäuber baulich getrennt ist. Alternativ besteht auch die Möglichkeit, den Hüllstrom durch Heizschläuche oder elektrische Heizelemente aufzuheizen, wobei die Heizelemente auch austrittsnah im Bereich der Hüllstromdüse angeordnet sein können, was zu geringen thermischen Verlusten führt. Bei einem elektrostatischen Zerstäuber erfolgt die Erwärmung des Hüllstroms jedoch aus Gründen des Explosionsschutzes vorzugsweise nicht durch elektrische Heizelemente in dem Zerstäuber, sondern durch den vorstehend erwähnten separaten Lufterhitzer.The envelope flow is preferably heated by an air heater, which is preferably structurally separated from the atomizer. Alternatively, there is also the possibility of heating the sheath flow by means of heating hoses or electrical heating elements, the heating elements also being able to be arranged close to the outlet in the region of the sheath flow nozzle, which leads to low thermal losses. In the case of an electrostatic atomizer, however, for reasons of explosion protection, the enveloping flow is preferably not heated by electrical heating elements in the atomizer, but rather by the separate air heater mentioned above.

Vorzugsweise weist der Hüllstrom unmittelbar an der Hüllstromdüse eine Austrittstemperatur von mehr als +40°C und/oder weniger als +100°C auf, wobei beliebige Zwischenwerte innerhalb dieses Wertebereichs möglich sind.The sheath flow preferably has an outlet temperature of more than + 40 ° C. and / or less than + 100 ° C. directly at the sheath flow nozzle, any intermediate values within this value range being possible.

Die Austrittstemperatur des Hüllstroms kann hierbei in Abhängigkeit von dem verwendeten Beschichtungsmittel variiert werden. Beispielsweise dunstet Wasser als Lösemittel weniger ab als organische Lösemittel, so dass die Austrittstemperatur des Hüllstroms bei der Applikation von Wasserlack gegenüber der Applikation von Lösemittellack angehoben werden kann. Vorzugsweise weist der Hüllstrom einen Volumenstrom von mehr als 500 l/min und/oder weniger als 2500 l/min auf, wobei beliebige Zwischenwerte innerhalb dieses Intervalls möglich sind.The exit temperature of the sheath flow can be varied depending on the coating agent used. For example, water evaporates less as a solvent as an organic solvent, so that the outlet temperature of the sheath flow can be increased when applying water-based varnish compared to the application of solvent-based varnish. The envelope flow preferably has a volume flow of more than 500 l / min and / or less than 2500 l / min, any intermediate values being possible within this interval.

Weiterhin ist zu erwähnen, dass der Hüllstrom vorzugsweise aus Luft besteht, die in Lackieranlagen ohnehin in Form von Druckluft zur Verfügung stehen. Im Rahmen der Erfindung besteht jedoch auch die Möglichkeit, ein anderes Gas als Luft für den Hüllstrom zu verwenden. Hierzu bieten sich besonders Gase an, die eine größere Wärmekapazität, ein größeres elektrisches Isolationsvermögen und/oder eine höhere Feuchtigkeitssättigungsgrenze aufweisen als Luft. Die größere Wärmekapazität bietet hierbei den Vorteil, dass der Hüllstrom nach dem Austreten aus der Hüllstromdüse nur geringfügig an Temperatur verliert, was für definierte Abdunstbedingungen sorgt. Ein größeres elektrisches Isolationsvermögen ist dagegen bei einem elektrostatischen Zerstäuber vorteilhaft, da das Isolationsvermögen des Hüllstroms eine Endladung der elektrostatisch aufgeladenen Beschichtungsmittelteilchen verhindert und dadurch für einen hohen Auftragswirkungsgrad sorgt. Eine hohe Feuchtigkeitssättigungsgrenze des für den Hüllstrom verwendeten Gases ist dagegen vorteilhaft, wenn der Hüllstrom viel Lösemittel aus dem Beschichtungsmittelstrahl aufnehmen soll. Der Hüllstrom kann also beispielsweise auch aus Schwefelhexafluorid (SF6) oder inerten Gasen (z.B. Kohlendioxid (CO2) und Stickstoff) bestehen.It should also be mentioned that the sheath flow preferably consists of air, which is available in the form of compressed air in painting systems anyway. In the context of the invention, however, there is also the possibility of using a gas other than air for the sheath flow. For this purpose, gases are particularly suitable that have a greater heat capacity, greater electrical insulation capacity and / or a higher moisture saturation limit than air. The greater heat capacity here has the advantage that the sheath flow loses only slightly in temperature after exiting the sheath flow nozzle, which ensures defined evaporation conditions. On the other hand, a greater electrical insulation capacity is advantageous in the case of an electrostatic atomizer, since the insulation capacity of the sheath current prevents the electrostatically charged coating agent particles from discharging and thus ensures a high level of application efficiency. On the other hand, a high moisture saturation limit of the gas used for the sheath stream is advantageous if the sheath stream is to take up a large amount of solvent from the coating agent jet. The sheath flow can therefore also consist, for example, of sulfur hexafluoride (SF 6 ) or inert gases (for example carbon dioxide (CO 2 ) and nitrogen).

Zur Zuführung des Hüllstroms weist der erfindungsgemäße ationszerstäuber ein Innengehäuse und ein Außengehäuse auf, wobei zwischen dem Innengehäuse und dem Außengehäuse eine Hüllstromzuleitung zur Durchleitung des klimatisierten Hüllstroms zu der Hüllstromdüse verläuft. Dies bietet den Vorteil, dass der Hüllstrom bei der Durchleitung durch den Zerstäuber nur relativ geringfügig abgekühlt wird und deshalb an der Hüllstromdüse noch eine ausreichend hohe Temperatur aufweist. Der erfindungsgemäße Zerstäuber ist deshalb vorzugsweise so ausgelegt, dass der Hüllstrom innerhalb des Zerstäubers in der Hüllstromzuleitung bis zu der Hüllstromdüse nur um weniger 140°C, 120°C, 100°C, 90°C, 80°C, 70°C, 60°C, 50°C, 40°C, 30°C, 20°, 10°C oder weniger als 5°C abgekühlt wird.To supply the sheath flow, the atomizer according to the invention has an inner housing and an outer housing, with between the inner housing and the outer housing a sheath flow line for passing the air-conditioned sheath flow to the sheath flow nozzle. This offers the advantage that the sheath flow is only cooled down relatively slightly when it is passed through the atomizer and therefore still has a sufficiently high temperature at the sheath flow nozzle. The atomizer according to the invention is therefore preferably designed in such a way that the sheath flow within the atomizer in the sheath flow feed line up to the sheath flow nozzle by less than 140 ° C, 120 ° C, 100 ° C, 90 ° C, 80 ° C, 70 ° C, 60 ° C, 50 ° C, 40 ° C, 30 ° C, 20 °, 10 ° C or less than 5 ° C.

Es ist jedoch im Rahmen der Erfindung auch alternativ möglich, den Hüllstrom aus der Lenkluftzuführung zu speisen, so dass der Anschlussflansch des Rotationszerstäubers mit den dort vorgesehenen Flanschanschlüssen nicht verändert werden muss. Weiterhin besteht im Rahmen der Erfindung die Möglichkeit, dass der erfindungsgemäße Rotationszerstäuber Lenkluftdüsen zur Abgabe eines Lenkluftstrahls aufweist, wobei der Lenkluftstrahl den Beschichtungsmittelstrahl formt. Hierbei sind ein innerer Lenkluftstrahl und ein äußerer Lenkluftstrahl vorgesehen, was bei der Formung des Beschichtungsmittelstrahls eine größere Flexibilität bietet.However, it is also alternatively possible within the scope of the invention to feed the enveloping flow from the directing air supply, so that the connection flange of the rotary atomizer with the flange connections provided there does not have to be changed. Furthermore, within the scope of the invention, there is the possibility that the rotary atomizer according to the invention has guiding air nozzles for emitting a guiding air jet, the guiding air jet shaping the coating agent jet. Here, an inner directing air jet and an outer directing air jet are provided, which offers greater flexibility when shaping the coating agent jet.

Erfindungsgemäß sind die Hüllstromdüsen zusätzlich zu den Lenkluftdüsen vorgesehen und von diesen getrennt.According to the invention, the enveloping flow nozzles are provided in addition to the directing air nozzles and are separated from them.

Bei einer solchen Kombination von Hüllstromdüsen und Lenkluftdüsen sind die Lenkluftdüsen innen angebracht, während die Hüllstromdüsen außen angebracht sind. Dies bedeutet, dass der Hüllstrom nicht nur den Beschichtungsmittelstrahl umhüllt bzw. ummantelt, sondern auch den Lenkluftstrom, so dass der Lenkluftstrom zwischen dem Hüllstrom und dem Beschichtungsmittelstrahl verläuft. Diese Anordnung ist vorteilhaft, weil die mantelförmige Umhüllung des Beschichtungsmittelstrahls durch den Hüllstrom dadurch erleichtert bzw. ermöglicht wird, dass der Lenkluftstrahl den Beschichtungsmittelstrahl formt.With such a combination of enveloping flow nozzles and directing air nozzles, the directing air nozzles are attached on the inside, while the enveloping flow nozzles are attached on the outside. This means that the enveloping flow not only envelops or envelops the coating agent jet, but also the directing air flow, so that the directing air flow between the Sheath flow and the coating agent jet runs. This arrangement is advantageous because the jacket-shaped enveloping of the coating agent jet by the enveloping stream is facilitated or made possible by the fact that the directing air jet forms the coating agent jet.

Die Anzahl der Hüllstromdüsen ist vorzugsweise größer als 20 und/oder kleiner als 60, wobei beliebige Zwischenwerte innerhalb dieses Intervalls möglich sind.The number of sheath flow nozzles is preferably greater than 20 and / or less than 60, any intermediate values being possible within this interval.

Weiterhin weisen die Hüllstromdüsen vorzugsweise jeweils Düsenöffnungen mit einer Breite bzw. mit einem Durchmesser von mehr als 1 mm und/oder weniger als 8 mm auf. Die Hüllstromdüsen weisen also vorzugsweise größere Düsenöffnungen auf als die Lenkluftdüsen.Furthermore, the sheath flow nozzles preferably each have nozzle openings with a width or with a diameter of more than 1 mm and / or less than 8 mm. The sheath flow nozzles therefore preferably have larger nozzle openings than the directing air nozzles.

In einer Variante der Erfindung ist die Hüllstromdüse als ringförmig umlaufende Spaltdüse ausgebildet. Die Spaltdüse weist hierbei vorzugsweise eine Spaltbreite im Bereich von 0,1-1 mm auf, während der Spaltdurchmesser vorzugsweise im Bereich von 50-100 mm liegt. Derartige Spaltdüsen sind als Lenkluftdüsen beispielsweise aus EP 0 092 043 A2 bekannt. Der Inhalt dieser Druckschrift ist deshalb hinsichtlich der konstruktiven Gestaltung der Spaltdüse der vorliegenden Beschreibung zuzurechnen.In a variant of the invention, the sheath flow nozzle is designed as a ring-shaped circumferential slit nozzle. The slot nozzle preferably has a slot width in the range of 0.1-1 mm, while the slot diameter is preferably in the range of 50-100 mm. Slit nozzles of this type are made, for example, as steering air nozzles EP 0 092 043 A2 known. The content of this publication should therefore be included in the present description with regard to the structural design of the slotted nozzle.

Der drehbare Glockenteller hat eine vorgegebene Glockentellerkante. Hierbei liegt zwischen der Hüllstromdüse und der Glockentellerkante vorzugsweise ein axialer Abstand von mehr als 5 mm und/oder weniger als 100 mm.The rotatable bell cup has a predetermined bell cup edge. In this case, there is preferably an axial distance of more than 5 mm and / or less than 100 mm between the sheath flow nozzle and the bell cup edge.

Mittels des Glockentellers kann ein Beschichtungsmittel (z.B. Nasslack oder Pulverlack) auf ein zu beschichtendes Bauteil (z.B. ein Kraftfahrzeugkarosserieteil) appliziert werden.A coating agent (for example wet paint or powder paint) can be applied to a component to be coated (for example a motor vehicle body part) by means of the bell cup.

Weiterhin können die Hüllstromdüsen in Umfangsrichtung des Glockentellers angewinkelt sein und somit einen vorgegebenen Drallwinkel aufweisen, wobei die Hüllstromdüsen entweder in Drehrichtung des Glockentellers oder entgegen der Drehrichtung des Glockentellers angewinkelt sein können. Der Drallwinkel der Hüllstromdüsen kann hierbei im Bereich von 0-45° liegen, wobei wiederum beliebige Zwischenwerte möglich sind. Ferner ist zu erwähnen, dass es sich bei dem erfindungsgemäßen Zerstäuber wahlweise um einen Pulverzerstäuber oder einen Nasslackzerstäuber handeln kann.Furthermore, the enveloping flow nozzles can be angled in the circumferential direction of the bell cup and thus have a predetermined swirl angle, wherein the enveloping flow nozzles can be angled either in the direction of rotation of the bell cup or against the direction of rotation of the bell cup. The swirl angle of the sheath flow nozzles can be in the range of 0-45 °, with any intermediate values being possible. It should also be mentioned that the atomizer according to the invention can optionally be a powder atomizer or a wet paint atomizer.

Darüber hinaus umfasst die Erfindung nicht nur den vorstehend beschriebenen erfindungsgemäßen Rotationszerstäuber als einzelnes Bauteil, sondern auch eine Lackiereinrichtung (z.B. einen Lackierroboter oder eine Lackieranlage) mit einem derartigen Zerstäuber.In addition, the invention not only comprises the rotary atomizer according to the invention described above as a single component, but also a painting device (e.g. a painting robot or a painting plant) with such an atomizer.

Die erfindungsgemäße Lackiereinrichtung weist zusätzlich zu dem Rotationszerstäuber vorzugsweise eine Klimatisierungseinrichtung zur Klimatisierung des Hüllstroms auf, wobei die Klimatisierungseinrichtung stromabwärts mit der bzw. den Hüllstromdüsen verbunden ist. Beispielsweise kann die Klimatisierungseinrichtung einen herkömmlichen Lufterhitzer aufweisen, um den Luftstrom zu erwärmen. Weiterhin kann die Klimatisierungseinrichtung eine Kühleinrichtung aufweisen, die den Hüllstrom kühlt. Darüber hinaus besteht auch die Möglichkeit, dass die Klimatisierungseinrichtung eine Entfeuchtungseinrichtung aufweist, welche den Hüllstrom entfeuchtet. Die Klimatisierungseinrichtung kann also wie eine herkömmliche Klimaanlage aufgebaut sein.In addition to the rotary atomizer, the painting device according to the invention preferably has an air-conditioning device for air-conditioning the sheath flow, the air-conditioning device being connected downstream with the sheath flow nozzle (s). For example, the air conditioning device can have a conventional air heater in order to heat the air flow. Furthermore, the air-conditioning device can have a cooling device that cools the sheath flow. In addition, there is also the possibility that the air-conditioning device has a dehumidifying device which dehumidifies the envelope flow. The air conditioning device can therefore be constructed like a conventional air conditioning system.

Gemäß der Erfindung wird zusätzlich zu der Abgabe eines Beschichtungsmittelstrahls ein klimatisierter Hüllstrom abgegeben, der den Beschichtungsmittelstrahl mindestens teilweise umgibt.According to the invention, in addition to the emission of a coating agent jet, an air-conditioned enveloping stream is released which at least partially surrounds the coating agent jet.

Im Rahmen der Erfindung besteht die Möglichkeit, den Hüllstrom in Abhängigkeit von der räumlichen Lage der zu beschichtenden Bauteiloberfläche zu beeinflussen. So kann der applizierte Lack bei der Lackierung von vertikalen Bauteiloberflächen leichter verlaufen als bei der Lackierung von waagerechten Bauteiloberflächen, so dass der Festkörperanteil bei der Lackierung von vertikalen Bauteiloberflächen gegenüber der Lackierung von waagerechten Bauteiloberflächen erhöht werden sollte. Deshalb wird vorzugsweise die räumliche Lage der zu beschichtenden Bauteiloberfläche ermittelt und der Hüllstrom in Abhängigkeit von der ermittelten räumlichen Lage beeinflusst. Anstelle der räumlichen Lage der zu beschichtenden Bauteiloberfläche kann auch die räumliche Lage des Rotationszerstäubers ermittelt werden, da der Rotationszerstäuber in der Regel entsprechend der räumlichen Lage der zu beschichtenden Bauteiloberfläche geführt wird.In the context of the invention, there is the possibility of influencing the envelope flow as a function of the spatial position of the component surface to be coated. For example, the applied paint can run more easily when painting vertical component surfaces than when painting horizontal component surfaces, so that the solid content should be increased when painting vertical component surfaces compared to painting horizontal component surfaces. Therefore, the spatial position of the component surface to be coated is preferably determined and the envelope current is influenced as a function of the determined spatial position. Instead of the spatial location of the The component surface to be coated can also be used to determine the spatial position of the rotary atomizer, since the rotary atomizer is generally guided according to the spatial position of the component surface to be coated.

Bei einer Verwendung eines mehrachsigen Lackierroboters kann die räumliche Lage des Rotationszerstäubers wiederum aus den Positions-Steuersignalen der Robotersteuerung ermittelt werden.When using a multi-axis painting robot, the spatial position of the rotary atomizer can in turn be determined from the position control signals of the robot controller.

In Abhängigkeit von der räumlichen Lage der zu beschichtenden Bauteiloberfläche und/oder des Rotationszerstäubers kann dann die Temperatur, der Feuchtigkeitsgehalt und/oder der Volumenstrom des Hüllstroms beeinflusst werden.Depending on the spatial position of the component surface to be coated and / or the rotary atomizer, the temperature, the moisture content and / or the volume flow of the envelope flow can then be influenced.

Vorzugsweise wird hierbei bei einer Beschichtung einer im Wesentlichen vertikalen Bauteiloberfläche ein Hüllstrom mit einem geringeren Feuchtigkeitsgehalt, einer größeren Temperatur und/oder einem größeren Volumenstrom abgegeben als bei einer Beschichtung einer im Wesentlichen waagerechten Bauteiloberfläche.In this case, when an essentially vertical component surface is coated, a sheath flow with a lower moisture content, a higher temperature and / or a greater volume flow is preferably emitted than when an essentially horizontal component surface is coated.

Der Hüllstrom kann hierbei so eingestellt werden, dass der Festkörperanteil des Beschichtungsmittelstrahls zwischen der Abgabe an dem Applikationselement und dem Auftreffen auf der zu beschichtenden Bauteiloberfläche um mehr als 5%, 10%, 25% oder gar 50% zunimmt.The enveloping flow can be adjusted so that the solids content of the coating agent jet increases by more than 5%, 10%, 25% or even 50% between the release on the application element and the impact on the component surface to be coated.

Andere vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen gekennzeichnet oder werden nachstehend zusammen mit der Beschreibung des bevorzugten Ausführungsbeispiels der Erfindung anhand der Figuren näher erläutert. Es zeigen:

Figur 1
eine schematische Darstellung eines erfindungsgemäßen Rotationszerstäubers mit zahlreichen Hüllstromdüsen,
Figuren 2a und 2b
schematische Darstellungen zur Variation des Hüllstroms bei einer Lackierung von vertikalen und waagerechten Bauteiloberflächen, sowie
Figur 3
ein stark vereinfachtes Blockschaltbild einer erfindungsgemäßen Lackiereinrichtung.
Other advantageous developments of the invention are characterized in the subclaims or are explained in more detail below together with the description of the preferred embodiment of the invention with reference to the figures. Show it:
Figure 1
a schematic representation of a rotary atomizer according to the invention with numerous sheath flow nozzles,
Figures 2a and 2b
schematic representations of the variation of the envelope flow when painting vertical and horizontal component surfaces, as well as
Figure 3
a greatly simplified block diagram of a painting device according to the invention.

Figur 1 zeigt in vereinfachter Form einen Rotationszerstäuber 1, der weitgehend herkömmlich aufgebaut ist und beispielsweise zur Lackierung von Kraftfahrzeugkarosserieteilen eingesetzt werden kann. Figure 1 shows, in simplified form, a rotary atomizer 1 which is largely of conventional construction and can be used, for example, for painting motor vehicle body parts.

Als Applikationselement weist der Rotationszerstäuber 1 einen herkömmlichen Glockenteller 2 auf, der um eine Glockentellerachse 3 drehbar gelagert ist und von einer Turbine 4 angetrieben wird. An der Glockentellerkante gibt der Glockenteller 2 einen Beschichtungsmittelstrahl 5 ab, wobei der Beschichtungsmittelstrahl 5 hier nur schematisch dargestellt ist.As an application element, the rotary atomizer 1 has a conventional bell cup 2 which is rotatably mounted about a bell cup axis 3 and is driven by a turbine 4. At the edge of the bell cup, the bell cup 2 emits a coating agent jet 5, the coating agent jet 5 being shown here only schematically.

Weiterhin weist der Rotationszerstäuber 1 zahlreiche innere Lenkluftdüsen 6 auf, die konzentrisch um die Glockentellerachse 3 angeordnet sind und einen inneren Lenkluftstrahl 7 auf die äußere Mantelfläche des Glockentellers 2 abgeben, wobei der innere Lenkluftstrahl 7 den Beschichtungsmittelstrahl 5 formt.Furthermore, the rotary atomizer 1 has numerous inner directing air nozzles 6 which are arranged concentrically around the bell cup axis 3 and emit an inner directing air jet 7 onto the outer surface of the bell cup 2, the inner directing air jet 7 forming the coating agent jet 5.

Darüber hinaus weist der Rotationszerstäuber 1 mehrere äußere Lenkluftdüsen 8 auf, über die ein äußerer Lenkluftstrahl 9 abgegeben wird, der den Beschichtungsmittelstrahl 5 zusätzlich formt.In addition, the rotary atomizer 1 has a plurality of external directing air nozzles 8, via which an external directing air jet 9 is emitted, which additionally shapes the coating agent jet 5.

Weiterhin weist der Rotationszerstäuber 1 zahlreiche Hüllstromdüsen 10 auf, die ebenfalls konzentrisch um die Glockentellerachse 3 angeordnet sind und einen klimatisierten Hüllstrom 11 abgeben, der den Beschichtungsmittelstrahl 5 mantelförmig umgibt und dadurch für definierte Abdunstbedingungen sorgt.Furthermore, the rotary atomizer 1 has numerous enveloping flow nozzles 10, which are also arranged concentrically around the bell disk axis 3 and emit an air-conditioned enveloping flow 11, which surrounds the coating agent jet 5 in a jacket-like manner and thus ensures defined evaporation conditions.

Beim Austreten aus den Hüllstromdüsen 10 reißt der austretenden Hüllstrom 11 einen Nebenstrom 12 von Umgebungsluft mit, wobei der mitgerissene Nebenstrom 12 0-50% des aus den Hüllstromdüsen 10 austretenden Hüllstroms 11 ausmacht.When exiting the sheath flow nozzles 10, the emerging sheath flow 11 entrains a secondary flow 12 of ambient air, the entrained secondary flow 12 making up 0-50% of the sheath flow 11 emerging from the sheath flow nozzles 10.

Die Zuführung des Hüllstroms 11, des Beschichtungsmittels und der Lenkluft erfolgt durch einen Anschlussflansch 13, an den zwei getrennte Lenkluftleitungen 14, 15 angeschlossen werden können. Darüber hinaus können an den Anschlussflansch 13 Hüllstromleitungen 16, 17, 18 und eine optionale Hüllstromleitung 19 angeschlossen werden, um den klimatisierten Hüllstrom 11 dem Rotationszerstäuber 1 zuzuführen. Die Hüllstromleitungen 16-19 sind hierzu mit einem Lufterhitzer 20 und einem Luftmengenregler 21 verbunden, so dass der Volumenstrom und die Temperatur des Hüllstroms 11 variiert werden kann.The enveloping stream 11, the coating agent and the guiding air are supplied through a connection flange 13 to which two separate guiding air lines 14, 15 can be connected. In addition, enveloping flow lines 16, 17, 18 and an optional enveloping flow line 19 can be connected to the connecting flange 13 in order to feed the air-conditioned enveloping flow 11 to the rotary atomizer 1. For this purpose, the sheath flow lines 16-19 are connected to an air heater 20 and an air volume regulator 21, so that the volume flow and the temperature of the sheath flow 11 can be varied.

Die Zuführung des Hüllstroms 11 von dem Anschlussflansch 13 zu den Hüllstromdüsen 10 erfolgt durch eine Hüllstromdurchleitung zwischen einem Innengehäuse 22 und einem Außengehäuse 23 des Rotationszerstäubers 1.The enveloping flow 11 is fed from the connection flange 13 to the enveloping flow nozzles 10 through a enveloping flow duct between an inner housing 22 and an outer housing 23 of the rotary atomizer 1.

In diesem Ausführungsbeispiel kann die Anzahl der Hüllstromdüsen 10 im Bereich von 20 bis 60 liegen, wobei die einzelnen Hüllstromdüsen 10 jeweils Düsenöffnungen mit einer Breite von 1-8 mm aufweisen.In this exemplary embodiment, the number of sheath flow nozzles 10 can be in the range from 20 to 60, the individual sheath flow nozzles 10 each having nozzle openings with a width of 1-8 mm.

Weiterhin ist zu erwähnen, dass der axiale Abstand zwischen den Hüllstromdüsen 10 und der Glockentellerkante des Glockentellers 2 zwischen 5 und 100 mm liegen kann.It should also be mentioned that the axial distance between the sheath flow nozzles 10 and the bell cup edge of the bell cup 2 can be between 5 and 100 mm.

Figur 2a zeigt schematisch die Lackierung einer vertikalen Bauteiloberfläche 24 durch den Rotationszerstäuber 1. Aufgrund der vertikalen Ausrichtung der Bauteiloberfläche 24 besteht aufgrund der auf die aufgebrachten Lackteilchen wirkenden Schwerkraft g die Gefahr von Läufern. Zur Vermeidung derartiger Läufer wird der Festkörperanteil des auf die vertikale Bauteiloberfläche 24 auftreffenden Beschichtungsmittelstrahls 5 gezielt erhöht, in dem die Temperatur T1 des Hüllstroms 11 von dem Lufterhitzer 20 (vgl. Fig. 1) gezielt erhöht wird. Dadurch enthält der auf die vertikale Bauteiloberfläche 24 auftreffende Beschichtungsmittelstrahl 5 weniger flüssige Lösemittelanteile und neigt deshalb weniger zum Verlaufen. Die stärkere Abdunstung der Lösemittelanteile aus dem Beschichtungsmittelstrahl 5 in den umgebenden Hüllstrom 11 ist hierbei durch Blockpfeile dargestellt. Figure 2a shows schematically the painting of a vertical component surface 24 by the rotary atomizer 1. Due to the vertical orientation of the component surface 24, there is a risk of runs due to the force of gravity g acting on the applied paint particles. In order to avoid such runners, the solids content of the coating agent jet 5 impinging on the vertical component surface 24 is increased in a targeted manner by the temperature T1 of the envelope flow 11 from the air heater 20 (cf. Fig. 1 ) is specifically increased. As a result, the coating agent jet 5 impinging on the vertical component surface 24 contains fewer liquid solvent components and is therefore less prone to running. The greater evaporation of the solvent fractions from the coating agent jet 5 into the surrounding enveloping stream 11 is shown here by block arrows.

In Figur 2b ist dagegen die Lackierung einer waagerechten Bauteiloberfläche 25 durch den Rotationszerstäuber 1 dargestellt. Aufgrund der waagerechten Ausrichtung der Bauteiloberfläche 25 ist die Gefahr eines Verlaufens des Beschichtungsmittels auf der Bauteiloberfläche 25 geringer, so dass weniger flüssige Lösemittelanteile aus dem Beschichtungsmittelstrahl 5 in den Hüllstrom 11 abdunsten müssen. Der Hüllstrom 11 weist deshalb bei der Lackierung der waagerechten Bauteiloberfläche 25 eine kleinere Temperatur T2<T1 als bei der Lackierung der vertikalen Bauteiloberfläche 24 auf.In Figure 2b however, the painting of a horizontal component surface 25 by the rotary atomizer 1 is shown. Due to the horizontal alignment of the component surface 25, the risk of the coating agent running on the component surface 25 is lower, so that fewer liquid solvent components have to evaporate from the coating agent jet 5 into the sheath flow 11. The enveloping stream 11 therefore has the horizontal Component surface 25 has a lower temperature T2 <T1 than when painting the vertical component surface 24.

Figur 3 zeigt in stark vereinfachter Form ein Blockschaltbild einer erfindungsgemäßen Lackiereinrichtung mit einer Robotersteuerung 26, die einen mehrachsigen Lackierroboter 27 mit Positions-Steuerdaten ansteuert, wobei der Lackierroboter 27 den Rotationszerstäuber 1 führt. Figure 3 shows, in a greatly simplified form, a block diagram of a painting device according to the invention with a robot controller 26 which controls a multi-axis painting robot 27 with position control data, the painting robot 27 guiding the rotary atomizer 1.

Die Positions-Steuerdaten werden von der Robotersteuerung 26 auch an eine Recheneinheit 28 weiter gegeben, die daraus die Neigung α der zu beschichtenden Bauteiloberfläche ermittelt.The position control data are also passed on from the robot controller 26 to a computing unit 28, which uses it to determine the inclination α of the component surface to be coated.

Die Neigung α der Bauteiloberfläche wird dann an eine Hüllstromsteuerung 29 weiter gegeben, die den Hüllstrom 11 in Abhängigkeit von der Neigung α der Bauteiloberfläche beeinflusst. Hierzu steuert die Hüllstromsteuerung 29 einen Hüllstromtrockner 30, einen Hüllstromerhitzer 31 und ein Hüllstromventil 32 an. Der Hüllstrom 11 wird hierbei in Abhängigkeit von der Neigung α der zu beschichtenden Bauteiloberfläche so beeinflusst, dass ein Verlaufen des Beschichtungsmittels auf der Bauteiloberfläche verhindert wird. Hierzu wird der Hüllstrom bei einer Beschichtung von vertikal ausgerichteten Bauteiloberflächen stärker erwärmt und getrocknet als bei einer Beschichtung von waagerecht ausgerichteten Bauteiloberflächen.The inclination α of the component surface is then passed on to an envelope flow control 29, which influences the envelope flow 11 as a function of the inclination α of the component surface. For this purpose, the sheath flow controller 29 controls a sheath flow dryer 30, a sheath flow heater 31 and a sheath flow valve 32. The enveloping flow 11 is influenced here as a function of the inclination α of the component surface to be coated in such a way that the coating agent is prevented from running on the component surface. For this purpose, the enveloping flow is heated and dried more intensely when coating vertically aligned component surfaces than when coating horizontally aligned component surfaces.

Hierbei ist zu erwähnen, dass die Robotersteuerung 26, die Recheneinheit 28 und die Hüllstromsteuerung 29 in eine gemeinsame elektronische Steuereinheit 33 integriert sein können. Hierbei besteht auch die Möglichkeit, dass die Robotersteuerung 26, die Recheneinheit 28 und/oder die Hüllstromsteuerung 29 als Software-Module implementiert sind.It should be mentioned here that the robot controller 26, the computing unit 28 and the sheath flow controller 29 can be integrated into a common electronic control unit 33. There is also the possibility here that the robot controller 26, the computing unit 28 and / or the envelope flow controller 29 are implemented as software modules.

Die Erfindung ist nicht auf die vorstehend beschriebenen bevorzugten Ausführungsbeispiele beschränkt. Vielmehr ist eine Vielzahl von Varianten und Abwandlungen möglich, die ebenfalls von dem Erfindungsgedanken Gebrauch machen und deshalb in den Schutzbereich fallen.The invention is not restricted to the preferred exemplary embodiments described above. Rather, a large number of variants and modifications are possible which also make use of the inventive concept and therefore fall within the scope of protection.

Bezugszeichenliste:List of reference symbols:

11
RotationszerstäuberRotary atomizer
22
GlockentellerBell plate
33
GlockentellerachseBell cup axis
44th
Turbineturbine
55
BeschichtungsmittelstrahlCoating agent jet
66th
Innere LenkluftdüsenInner steering air nozzles
77th
Innerer LenkluftstrahlInner steering air jet
88th
Äußere LenkluftdüsenExternal steering air nozzles
99
Äußerer LenkluftstrahlExternal directing air jet
1010
HüllstromdüsenSheath flow nozzles
1111
HüllstromEnvelope flow
1212
NebenstromSidestream
1313th
AnschlussflanschConnection flange
1414th
LenkluftleitungSteering air duct
1515th
LenkluftleitungSteering air duct
16-1916-19
HüllstromleitungenSheath power lines
2020th
LufterhitzerAir heater
2121st
LuftmengenreglerAir flow regulator
2222nd
InnengehäuseInner casing
2323
AußengehäuseOuter casing
2424
Vertikale BauteiloberflächeVertical component surface
2525th
Waagerechte BauteiloberHorizontal component top
2626th
RobotersteuerungRobot control
2727
LackierroboterPainting robot
2828
RecheneinheitArithmetic unit
2929
HüllstromsteuerungEnvelope flow control
3030th
HüllstromtrocknerSheath flow dryer
3131
HüllstromerhitzerShell flow heater
3232
HüllstromventilSheath flow valve
3333
SteuereinheitControl unit

Claims (13)

  1. Rotary atomiser having
    a) a rotatable bell disc (2) with a predefined bell disc edge for application of a coating composition jet (5) to a component (24, 25) to be coated,
    b) an atomiser housing, which has an inner housing (22) and an outer housing (23),
    c) at least one shrouding stream nozzle (10) arranged in the atomiser housing for delivering a conditioned shrouding stream (11) which surrounds the coating composition jet (5) at least partially, wherein a shrouding stream passage for conducting the conditioned shrouding stream (11) to the shrouding stream nozzle (10) is provided, which shrouding stream passage runs between the inner housing (22) and the outer housing (23),
    d) inner shaping air nozzles (6) for delivering an inner shaping air jet (7) for shaping the coating composition jet (5), and outer shaping air nozzles (8) for delivering an outer shaping air jet (9) for shaping the coating composition jet (5), wherein the shrouding stream nozzles (10) are provided in addition to the inner shaping air nozzles (6) and the outer shaping air nozzles (8), and wherein the shaping air nozzles are mounted internally while the shrouding stream nozzles are mounted externally, so that the shrouding stream shrouds the coating composition jet (5) and the shaping air stream and the shaping air stream runs between the shrouding stream and the coating composition jet (5),
    e) and having a connection flange (13) provided for mounting the atomiser (1) on a robot, wherein the connection flange has multiple connections via which the shrouding stream inter alia can be fed to the atomiser (1).
  2. Rotary atomiser (1) according to claim 1, characterised in that there is an axial distance of
    - more than 2, 5, 10, 15 mm and/or
    - less than 150, 100, 75 or 50 mm
    between the shrouding stream nozzle (10) and the bell disc edge.
  3. Rotary atomiser (1) according to claim 1 or 2, characterised in that the shrouding stream nozzles (10) are angled in the circumferential direction of the bell disc (2) and have a predefined angle of twist.
  4. Rotary atomiser (1) according to claim 3, characterised in that the shrouding stream nozzles (10) are angled either
    a) in the direction of rotation of the bell disc (2) or
    b) contrary to the direction of rotation of the bell disc (2).
  5. Rotary atomiser (1) according to claim 3 or 4, characterised in that the angle of twist of the shrouding stream nozzles (10) is in the range of from 0 to 45°.
  6. Rotary atomiser (1) according to any one of the preceding claims, characterised in that the shrouding stream nozzles (10) each have a nozzle opening with a width of
    - more than 1, 2 or 5 mm and/or
    - less than 15, 10, 8 or 6 mm.
  7. Rotary atomiser (1) according to any one of the preceding claims, characterised in that the number of shrouding stream nozzles (10) is
    - greater than 5, 10, 20, 30 and/or
    - less than 100, 60, 50 or 40.
  8. Rotary atomiser according to any one of the preceding claims, characterised in that the shrouding stream nozzle is a slit nozzle which extends in an annular manner.
  9. Rotary atomiser (1) according to any one of the preceding claims, characterised in that the shrouding stream (11) has an outlet temperature, directly at the shrouding stream nozzle (10), of
    - more than +30°C, +40°C or +60°C and/or
    - less than +200°C, +150°C, +100°C or +75°C.
  10. Rotary atomiser (1) according to any one of the preceding claims, characterised in that the shrouding stream (11) has a volume flow rate of
    - more than 250 l/min, 500 l/min, 750 l/min and/or
    - less than 2500 l/min, 2000 l/min, 1500 l/min or 1000 l/min.
  11. Rotary atomiser (1) according to any one of the preceding claims, characterised in that the atomiser housing (23) has a smooth outer contour.
  12. Painting device having a rotary atomiser according to any one of the preceding claims and having a conditioning device (20, 21, 30-32) for conditioning the shrouding stream (11), wherein the conditioning device (20, 21, 30-32) is connected downstream to the shrouding stream nozzle (10).
  13. Painting device according to claim 12, characterised in that the conditioning device (20, 21, 30-32) has an air heater (20).
EP19178996.5A 2006-04-28 2007-04-05 Atomiser and corresponding operating method Active EP3566779B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006019890A DE102006019890B4 (en) 2006-04-28 2006-04-28 Atomizer and associated operating method
EP07007204.6A EP1849527B1 (en) 2006-04-28 2007-04-05 Atomiser and appropriate operating method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP07007204.6A Division EP1849527B1 (en) 2006-04-28 2007-04-05 Atomiser and appropriate operating method

Publications (2)

Publication Number Publication Date
EP3566779A1 EP3566779A1 (en) 2019-11-13
EP3566779B1 true EP3566779B1 (en) 2020-12-02

Family

ID=38283495

Family Applications (2)

Application Number Title Priority Date Filing Date
EP19178996.5A Active EP3566779B1 (en) 2006-04-28 2007-04-05 Atomiser and corresponding operating method
EP07007204.6A Active EP1849527B1 (en) 2006-04-28 2007-04-05 Atomiser and appropriate operating method

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP07007204.6A Active EP1849527B1 (en) 2006-04-28 2007-04-05 Atomiser and appropriate operating method

Country Status (5)

Country Link
US (1) US7971805B2 (en)
EP (2) EP3566779B1 (en)
JP (1) JP5548330B2 (en)
DE (1) DE102006019890B4 (en)
ES (2) ES2857835T3 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006019890B4 (en) * 2006-04-28 2008-10-16 Dürr Systems GmbH Atomizer and associated operating method
DE102007006547B4 (en) 2007-02-09 2016-09-29 Dürr Systems GmbH Shaping air ring and corresponding coating method
FR2917309B1 (en) * 2007-06-13 2013-10-25 Sames Technologies ROTATING PROJECTOR OF COATING PRODUCT AND INSTALLATION COMPRISING SUCH A PROJECTOR.
DE102007030724A1 (en) * 2007-07-02 2009-01-08 Dürr Systems GmbH Coating device and coating method with constant shaping air temperature
DE102007062132A1 (en) * 2007-12-21 2009-07-02 Dürr Systems GmbH Test method and test device for functional testing of a painting device
JP5490369B2 (en) * 2008-03-12 2014-05-14 ランズバーグ・インダストリー株式会社 Rotary electrostatic coating apparatus and coating pattern control method
GB2469539B (en) * 2009-09-21 2011-03-09 Dau Binh Chiu Rotary device and method for transmitting material
DE102012001896A1 (en) * 2012-02-01 2013-08-01 Eisenmann Ag rotary atomizers
JP5681779B1 (en) * 2013-11-08 2015-03-11 ランズバーグ・インダストリー株式会社 Electrostatic coating machine
ITFI20130286A1 (en) * 2013-11-25 2015-05-26 Eurosider Sas Di Milli Ottavio & C AUTOMATIC PNEUMATIC PAINTING SYSTEM.
US10076712B2 (en) 2014-09-11 2018-09-18 Mediamation, Inc. Systems and methods for fluid delivery in seat systems
US9307841B2 (en) 2014-09-11 2016-04-12 Mediamation, Inc. Systems and methods for fluid delivery in seat systems
JP6181094B2 (en) * 2015-02-16 2017-08-16 トヨタ自動車株式会社 Rotary atomizing electrostatic coating machine and its shaping air ring
KR101692347B1 (en) * 2015-04-17 2017-01-03 주식회사 에스엠뿌레 Sprayer and spray control apparatus
JP6669537B2 (en) * 2015-04-17 2020-03-18 トヨタ車体株式会社 Painting equipment and painting method
JP6569828B1 (en) * 2017-10-24 2019-09-04 日本精工株式会社 Blow device, parts, bearing, linear motion device, steering device, vehicle, and machine device manufacturing method
EP4094842A1 (en) * 2021-05-28 2022-11-30 Graco Minnesota Inc. Rotory bell atomizer shaping air configuration, air cap apparatus and corresponding method
US20210387213A1 (en) * 2021-05-28 2021-12-16 Graco Minnesota Inc. Rotory bell atomizer shaping air configuration and air cap apparatus

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3857511A (en) * 1973-07-31 1974-12-31 Du Pont Process for the spray application of aqueous paints by utilizing an air shroud
DE3001209C2 (en) * 1980-01-15 1985-07-25 Behr, Hans, 7000 Stuttgart Device for atomizing liquid paint, in particular paint atomizer
JPS5892475A (en) * 1981-11-27 1983-06-01 Asahi Okuma Ind Co Ltd Electrostatic coater
DE3214314A1 (en) 1982-04-19 1983-10-20 J. Wagner AG, 9450 Altstätten ELECTROSTATIC SPRAYER
JPS59166859U (en) * 1983-04-20 1984-11-08 松下電器産業株式会社 spray device
US4936510A (en) * 1986-06-26 1990-06-26 The Devilbiss Company Rotary automizer with air cap and retainer
US4798341A (en) * 1987-09-28 1989-01-17 The Devilbiss Company Spray gun for robot mounting
JPH02277567A (en) * 1989-04-20 1990-11-14 Nissan Motor Co Ltd Rotary atomizer type coating device
JP2510296B2 (en) * 1989-09-29 1996-06-26 トリニティ工業株式会社 Rotary atomizing electrostatic coating machine
JPH0631236A (en) * 1992-07-13 1994-02-08 Toyota Motor Corp Electrostatic coating method for metallic paint
JPH06134353A (en) * 1992-10-23 1994-05-17 Ransburg Automot Kk Electrostatic coater
JP3473718B2 (en) * 1994-07-22 2003-12-08 日産自動車株式会社 Rotary atomization electrostatic coating method and apparatus
JPH0899052A (en) * 1994-09-29 1996-04-16 Abb Ransburg Kk Rotary atomizing head-type coating apparatus
JPH08108103A (en) * 1994-10-13 1996-04-30 Abb Ransburg Kk Rotational spray head type coating apparatus
JPH0938528A (en) * 1995-08-01 1997-02-10 Abb Ind Kk Method and device for static coating
JPH09225350A (en) * 1996-02-28 1997-09-02 Mazda Motor Corp Method for rotary atomization coating and apparatus therefor
JP3365203B2 (en) * 1996-04-17 2003-01-08 トヨタ自動車株式会社 Rotary atomizing coating equipment
KR100265890B1 (en) * 1996-12-03 2000-09-15 라붸 린도베르 Rotating atomization head type coating apparatus
DE19749072C1 (en) * 1997-11-06 1999-06-10 Herbert Huettlin Multi-component atomizer nozzle
JP2000325860A (en) * 1999-05-18 2000-11-28 Kansai Paint Co Ltd Coating method
FR2797789B1 (en) * 1999-08-30 2001-11-23 Sames Sa METHOD AND DEVICE FOR MOUNTING A SUB-ASSEMBLY INCLUDING AT LEAST ONE COATING PROJECTOR ON A MOBILE PART OF A ROBOT
JP4589513B2 (en) * 2000-10-05 2010-12-01 関西ペイント株式会社 Coating method
JP2002355582A (en) * 2001-05-31 2002-12-10 Nissan Motor Co Ltd Electrostatic coating apparatus
DE10202711A1 (en) * 2002-01-24 2003-07-31 Duerr Systems Gmbh Sprayer unit for electrostatic serial coating of workpieces comprises an electrode array integrated into the ring section of insulating material on the outer housing of the unit
JP2003236416A (en) * 2002-02-20 2003-08-26 Abb Kk Rotary atomizing head type coating apparatus
DE10232863A1 (en) * 2002-07-16 2004-02-05 Hüttlin, Herbert, Dr.h.c. Atomizing nozzle with a rotating annular gap
DE10233198A1 (en) * 2002-07-22 2004-02-05 Dürr Systems GmbH rotary atomizers
DE10239517A1 (en) 2002-08-28 2004-03-11 Dürr Systems GmbH Coating device with a rotary atomizer and method for controlling its operation
US6889921B2 (en) * 2002-09-30 2005-05-10 Illinois Tool Works Inc. Bell cup skirt
US6929696B2 (en) * 2003-02-26 2005-08-16 Dubois Equipment Company, Inc. Apparatus and system for spray coating an article
DE10332863A1 (en) * 2003-07-18 2004-02-26 Linde Ag Krypton and xenon recovery by low-temperature fractionation of air yields higher purity products and higher argon productivity, using low nitrogen content scrubbing liquid stream
JP4409910B2 (en) * 2003-10-31 2010-02-03 日本ペイント株式会社 Spray coating apparatus and coating method
JP2005278742A (en) * 2004-03-29 2005-10-13 A & D Co Ltd Mist ejector
SE528093C2 (en) * 2004-05-18 2006-09-05 Lind Finance & Dev Ab Electrical connections to painting spindle
JP4568631B2 (en) * 2005-03-30 2010-10-27 日産自動車株式会社 Electrostatic coating machine
DE102006019890B4 (en) * 2006-04-28 2008-10-16 Dürr Systems GmbH Atomizer and associated operating method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP1849527B1 (en) 2019-06-12
DE102006019890A1 (en) 2007-11-15
US20070262170A1 (en) 2007-11-15
US7971805B2 (en) 2011-07-05
DE102006019890B4 (en) 2008-10-16
EP3566779A1 (en) 2019-11-13
JP5548330B2 (en) 2014-07-16
ES2857835T3 (en) 2021-09-29
EP1849527A2 (en) 2007-10-31
EP1849527A3 (en) 2010-05-05
JP2007296520A (en) 2007-11-15
ES2744815T3 (en) 2020-02-26

Similar Documents

Publication Publication Date Title
EP3566779B1 (en) Atomiser and corresponding operating method
DE102006054786A1 (en) Operating method for a nebulizer and corresponding coating device
EP2099570B1 (en) Guiding air ring comprising a ring cavity and corresponding bell plate
DE102008027997A1 (en) Universalzerstäuber
EP2671647B1 (en) Atomised paint separation device
EP0808663A2 (en) Electrostatic spraying apparatus
DE102012010610A1 (en) Method for operating a rotary atomizer, nozzle head and rotary atomizer with such
WO2005042170A1 (en) Device and method for spray coating
EP3704418A1 (en) Device for humidifying an air stream
EP2162227B1 (en) Coating device and coating method having a constant directing air temperature
EP2460591B1 (en) Nozzle head and rotary atomiser with same
CH641062A5 (en) SPRAYER HEAD ON A PAINT SPRAY GUN.
DE3716776A1 (en) NON-CONDUCTIVE ROTATING SPRAYER
EP1384514B1 (en) Rotary sprayer and bearing for this sprayer
DE4335507A1 (en) Powder spraying member
DE744685C (en) Method and device for atomization drying
EP3256791B1 (en) Long-range nozzle
EP0192028B1 (en) Method for applying a sprayable matter by means of an atomizer, and atomizer therefor
DD266513A5 (en) ELECTROSTATIC COLOR SPRAY GUNS
DE69833252T2 (en) ROTATING DEVICE FOR DISPENSING PARTICLE MATERIAL
DE516833C (en) Method and device for spraying
WO2022207311A1 (en) Cooling arrangement for a fuel cell system
EP4377016A1 (en) Bell cup, rotary atomizer having the bell cup, painting installation and corresponding painting method
DE102017116715A1 (en) Nozzle head for a rotary atomizer for applying a coating material to an object
DE2630767A1 (en) Water distributor for spraying surfaces - has feed pipe which passes through cylindrical body casing and sprays stream against inner wall

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AC Divisional application: reference to earlier application

Ref document number: 1849527

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200228

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR TR

RIC1 Information provided on ipc code assigned before grant

Ipc: B05B 5/04 20060101AFI20200610BHEP

Ipc: B05B 12/18 20180101ALI20200610BHEP

Ipc: B05B 5/00 20060101ALI20200610BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200731

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AC Divisional application: reference to earlier application

Ref document number: 1849527

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007016936

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007016936

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2857835

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210929

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210903

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230512

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230424

Year of fee payment: 17

Ref country code: ES

Payment date: 20230627

Year of fee payment: 17

Ref country code: DE

Payment date: 20230420

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230404

Year of fee payment: 17