EP3561236B1 - Guide vane for a turbine of a turbomachine, turbine module and use method of the turbine module - Google Patents

Guide vane for a turbine of a turbomachine, turbine module and use method of the turbine module Download PDF

Info

Publication number
EP3561236B1
EP3561236B1 EP19169137.7A EP19169137A EP3561236B1 EP 3561236 B1 EP3561236 B1 EP 3561236B1 EP 19169137 A EP19169137 A EP 19169137A EP 3561236 B1 EP3561236 B1 EP 3561236B1
Authority
EP
European Patent Office
Prior art keywords
guide vane
gas
annular space
rotor blade
turbine module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19169137.7A
Other languages
German (de)
French (fr)
Other versions
EP3561236A1 (en
Inventor
Hermann Klingels
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Aero Engines AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Aero Engines AG filed Critical MTU Aero Engines AG
Publication of EP3561236A1 publication Critical patent/EP3561236A1/en
Application granted granted Critical
Publication of EP3561236B1 publication Critical patent/EP3561236B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/001Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between stator blade and rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/02Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
    • F01D11/04Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type using sealing fluid, e.g. steam
    • F01D11/06Control thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/041Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector using blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/06Fluid supply conduits to nozzles or the like
    • F01D9/065Fluid supply or removal conduits traversing the working fluid flow, e.g. for lubrication-, cooling-, or sealing fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/10Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using sealing fluid, e.g. steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • F05D2240/125Fluid guiding means, e.g. vanes related to the tip of a stator vane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/201Heat transfer, e.g. cooling by impingement of a fluid

Definitions

  • the present invention relates to a guide vane for a turbine of an axial flow machine.
  • the turbomachine can, for example, be a jet engine, e.g. B. a turbofan engine. Functionally, the turbomachine is divided into compressor, combustion chamber and turbine. In the case of the jet engine, for example, the air drawn in is compressed by the compressor and burned in the downstream combustion chamber with added kerosene. The resulting hot gas, a mixture of combustion gas and air, flows through the downstream turbine and is expanded in the process.
  • the hot gas which is also referred to as working gas, flows through a volume on a path from the combustion chamber via the turbine to the nozzle Annulus is referred to.
  • the subject vane has a vane airfoil extending between an inner shroud and an outer shroud.
  • the shrouds delimit the annular space in the radial direction, in which the working gas flowing around the guide vane blade is guided.
  • a guide vane which is then part of a guide vane ring, which has a plurality of guide vanes, which are generally identical in construction, all around.
  • the turbomachine can also be a stationary gas turbine, for example.
  • the document GB 744 548 A discloses a ducted vane.
  • the present invention is based on the technical problem of specifying a particularly advantageous guide vane and an advantageous turbine module with such a guide vane.
  • the guide vane is designed as a hollow vane, namely its interior is traversed by a guide vane blade channel, which extends radially on the inside between an inlet and an outlet radially on the outside. Hollow blades are known per se, namely as components through which a cooling fluid flows for cooling purposes.
  • a special feature here is the positioning of the inlet in such a way that the gas that flows through the guide blade channel during operation is at least partially formed by the working gas conducted in the annular space. This is thus redistributed through the airfoil channel from radially inside to radially outside.
  • This redistribution can initially be advantageous in terms of the temperature balance.
  • the temperatures in the housing area (radially outside) are usually significantly higher than in the hub area (radially inside).
  • running gaps can increase radially on the outside with increasing service life, which means that the work turnover there continues to decrease, the running gaps also cause flow losses (gap flow).
  • cooler working gas is brought from radially inside to radially outside through the guide vane channel.
  • hot working gas flows around the outer shroud of the moving blade arranged downstream of the guide blade, causing it to heat up considerably, which can lead to mechanical problems.
  • the high centrifugal stress in combination with high temperatures lead to high creep stress.
  • An advantage can result from the reduction in temperature on the outer shroud of the moving blade; in general, a reduction in the temperature level in the housing area is advantageous.
  • the redistributed gas may also proportionately contain a barrier fluid that is injected radially inward of the inner shroud to shield the rotor disks from the high temperatures in the annulus.
  • a barrier fluid that is injected radially inward of the inner shroud to shield the rotor disks from the high temperatures in the annulus.
  • This can be advantageous insofar as Barrier fluid is usually significantly cooler than the working gas, e.g. compressor air, so not only is the working gas redistributed, but an overall cooler gas is conveyed radially outward.
  • the suction of the barrier fluid where it flows radially inwards into the annular space can also be advantageous in terms of flow technology and thus in terms of efficiency.
  • the inflowing barrier fluid has a significantly different speed and direction than the working gas in the annular space, which would significantly disrupt the main flow without suction.
  • a boundary layer that is problematic in terms of flow is sucked off radially inside the annular space (usually together with a barrier fluid, see below), which can reduce the disruption to the main flow. Accordingly, with the arrangement according to the invention, a drop in efficiency in the hub area can be prevented.
  • axial refers to the longitudinal axis of the turbine module, ie the longitudinal axis of the turbomachine, which, for example, coincides with an axis of rotation of the rotors.
  • Rotary refers to the radial directions perpendicular thereto and pointing away therefrom, and “orbit” or “circumferentially” or the “direction of orbit” refers to the rotation about the longitudinal axis.
  • a and “an” are to be read as indefinite articles and thus always also as “at least one” or “at least one” unless expressly stated otherwise.
  • the guide vane ring with the guide vane blade according to the invention has a plurality of such blades, which are arranged rotationally symmetrically to one another, for example, about the longitudinal axis.
  • several guide vanes can also be provided integrally with one another, that is to say combined to form a guide vane segment which can then have, for example, 2, 3, 4, 5 or 6 vanes.
  • the guide vane blade has a leading and a trailing edge as well as two connecting the leading and trailing edges to each other Side surfaces, one of which forms the suction side and the other the pressure side.
  • the airfoil duct is located inside the airfoil.
  • the guide vane blade channel is preferably free of loops in its extension between the inlet and outlet, so there is exactly one channel from the inside to the outside that directly connects the inlet and outlet to one another.
  • the outlet of the airfoil passage is located radially outward of the outer shroud.
  • the gas guided from radially inside to outside is thus at least not blown directly into the annular space, which is advantageous in terms of flow technology. Nevertheless, cooling of the housing area can be achieved.
  • the outlet is offset downstream toward the trailing edge of the vane airfoil.
  • downstream and upstream generally relate to the flow of the working gas in the annular space, unless expressly stated otherwise. With the outlet offset to the rear, it is possible, in particular, for the gas that is guided radially outward to flow over the outer shroud of the downstream moving blade(s), see below in detail.
  • the inlet of the airfoil passage is located at an upstream leading edge of the vane.
  • An inflow of working gas from the annular space could generally also be achieved with an inlet arranged in the shroud itself, but the arrangement at the leading edge can be advantageous, for example with regard to the proportionate inflow of the barrier fluid.
  • the invention also relates to a turbine module with a guide vane disclosed here, which is preferably a low-pressure turbine module.
  • a moving blade is arranged upstream of the guide vane (which, like the guide vane, is usually part of a ring with a plurality of structurally identical and rotationally symmetrical blades).
  • An inner shroud of the upstream rotor blade then forms a labyrinth seal together with the inner shroud of the guide vane, to which a barrier fluid is supplied from radially inward (the labyrinth seal is referred to as a "seal" because it serves to shield the rotor disks in the hub area, see above).
  • the labyrinth seal formed by a downstream trailing edge of the inner shroud of the blade having an axial overlap with an upstream leading edge of the inner shroud of the vane, the trailing edge of the inner shroud of the blade preferably being radially inward of the leading edge of the inner shroud of the vane.
  • a sealing web is provided as part of the labyrinth seal radially inside the inner shroud of the guide vane. This typically extends axially forward away from a seal carrier wall and preferably has an axial overlap with the trailing edge of the inner shroud of the rotor blade. Said trailing edge is thus bordered radially between the leading edge of the inner shroud of the vane and the sealing web, which is why this arrangement is also referred to as a "fish-mouth seal". Viewed in an axial section, the barrier fluid then flows through the labyrinth seal from radially inside to radially outside with an S-shaped course.
  • an advantage of the subject matter of the invention can then be that this sealing fluid introduced to shield the rotor hub is at least partially sucked off through the inlet, so that the main flow in the annular space is not significantly disturbed. Despite this suction, the barrier fluid flows through the overlapping areas described, so the hub area is blocked against the working gas. If one looks at the blade ring or vane ring as a whole, the overlaps mentioned ideally exist independently of the axial position of the rotor relative to the stator.
  • the gas flowing through the guide vane blade channel during operation is, in a preferred embodiment, a proportion of the sealing fluid that is also sucked off at the inlet. Nevertheless, the greater part of the gas guided radially outwards in the annular space is preferably sucked off working gas.
  • a preferred embodiment relates to a turbine module with a rotor blade or a corresponding rotor blade ring arranged downstream of the guide vane.
  • the downstream blade has an airfoil extending between an inner (radially inward) shroud and an outer (radially outward) shroud.
  • the outlet of the guide vane blade channel is then advantageously arranged in such a way that the gas that is routed to the outside is routed downstream of the outlet radially outside the outer shroud of the rotor blade or flows around the outer shroud (of course, it does not have to be that all of the gas that is led to the outside flows outside the outer shroud).
  • the gas is thus at least not predominantly blown out into the annular space, but outside the main flow channel into the area outside the shrouds. In this way, on the one hand, cooling of this area can already be achieved.
  • the quantity of gas is dimensioned in such a way that the moving blade outer shroud only flows over the gas guided radially outward.
  • a local improvement in efficiency can also be achieved.
  • the outlet of the guide blade channel is provided in such a way that the exiting gas fans out in the direction of circulation, that is to say is divergent. Accordingly, the effects just described can then be achieved, for example, not only axially aligned with the vane blade or blades, but ideally over essentially the entire circumference.
  • the outlet of the guide vane channel is provided in such a way that the exiting gas differs in its speed and/or direction from the working gas guided in the annular space, i.e. the speed and/or direction of the working gas in this radially outer area of the annular space.
  • the flow properties of the gas that is guided radially outward can be set independently of the working gas; for example, a circulation component can be smaller than the circulation speed of the downstream rotor shroud.
  • the flow through the guide vane channel i.e. suction radially on the inside and blowing out radially on the outside, results from a pressure difference across the guide vane.
  • the speed can be adjusted via the size (the cross-section of the outlet), the orientation determines the direction of the exiting fluid flow. This opens up the design options described to the effect that flow losses in the annular space and thus efficiency losses can be reduced. Friction losses and thus local heating, e.g. B. the outer shroud can be minimized.
  • the turbine module preferably has a plurality of stages, each with guide and downstream blade rings.
  • the guide vanes are then preferably provided in all stages of the turbine with corresponding guide vane blade channels, so that a lower overall temperature is set in the housing area. The need for cooling air in the housing is reduced, and gap maintenance can also be improved.
  • a moving blade made of a forged material for example made of Udimet720, Nimonic90 or Nimonic 115, is provided downstream of the guide blade with guide blade channel.
  • the entire moving blade is preferably made of a forged material.
  • a forged material can be of interest, e.g. due to better strength properties compared to a cast material, e.g. in terms of tensile strength, yield point, HCF, LCF, notched impact strength, elongation at break, etc
  • Forged material can be interesting, but in the case of state-of-the-art turbines, the temperatures for this are usually still too high, which is why temperature-resistant cast materials are used. With the approach according to the invention, the temperatures can be reduced, in particular in the radially outer area, which can be an advantage in itself with regard to an increased service life, but also enables the use of other materials. Forged materials are preferably used.
  • Another preferred embodiment also relates to the use of a forged material, from which the entire turbine blisk is then provided.
  • the rotor disk, together with the blade blades provided integrally thereon, is therefore made of the forged material.
  • the invention also relates to the use of a turbine module described here, in particular for an axial flow machine, preferably a jet engine.
  • the working gas flows through the annular space and, on the other hand, gas becomes gas through the guide blade channel from radially inside to radially outside redistributed, which is at least partially formed by working gas, preferably also partially by barrier fluid.
  • FIG. 2 shows a detail of a turbine module 1 according to the invention in an axial section.
  • working gas flows through an annular space 2 formed by the turbine module 1, which spreads from the combustion chamber (to the left of the turbine module 1) to the nozzle (to the right of it), see also figure 5 for illustration.
  • a guide vane 3 is arranged, which has an inner shroud 3a, an outer shroud 3b and between them a guide vane blade 3c.
  • a rotor blade 4 is arranged upstream of the guide vane 3, and a rotor blade 5 downstream thereof.
  • the guide vane 3 is shown in section;
  • the inlet 6 into the guide blade channel 3d is located on the inner shroud 3a of the guide blade 3, specifically on its upstream leading edge.
  • the outlet 7 of the airfoil passage 3d is located radially outward of the outer shroud 3b and offset axially downstream relative to the trailing edge 3ca of the airfoil 3c.
  • suction takes place radially on the inside, at the inlet 6 , and blows out radially on the outside, at the outlet 7 .
  • the inlet 6 is arranged in such a way that the gas 8 which flows through the guide vane blade channel 3d is formed proportionately by the working gas conducted in the annular space 2 .
  • a sidewall boundary layer 10 sucked off the main flow.
  • a blocking fluid 11 is also sucked in proportionately through the inlet 6 , which is introduced radially on the inside to shield the hub area and flows through a labyrinth seal 12 .
  • the latter is formed by the axial overlap of a sealing web 13, the inner shroud 4a of the moving blade 4, specifically the trailing edge thereof, and the inner shroud 3a of the guide vane 3, specifically the leading edge thereof.
  • This barrier fluid 11 is significantly cooler compressor air, the redistribution of which radially outward through the guide vane blade channel 3d is advantageous in terms of avoiding disproportionate temperature gradients.
  • 1 shows for comparison a turbine module 1 from the prior art with a similarly constructed labyrinth seal 12, wherein the vane blade 3 in contrast to 2 is not provided with a vane duct 3d. Accordingly, the barrier fluid 11 flows into the annular space 2, which disturbs the main flow there.
  • the side wall boundary layers 10 are usually subjected to aerodynamic loads anyway, so overall flow losses and losses in efficiency are to be expected (compared to the variant according to 2).
  • 1 further illustrates that there is also a leakage flow 20 radially on the outside, which flows over the outer shrouds 4b, 5b of the rotor blades 4, 5. This also causes a disturbance in the main flow.
  • outlet 7 of the guide vane blade channel 3d is arranged in such a way that the gas 8 guided radially outward flows over the outer shroud 5b of the rotor blade 5 .
  • the amount is measured in such a way that no working gas from the annular space 2 flows over the outer shroud 5b. This counts as out 1 can be seen, analogously also for the upstream turbine stage, but for the sake of clarity the description refers to the interaction of the guide vane 3 with the moving vane 5.
  • FIG. 3 illustrates a radial temperature curve, as in a turbine module 1 according to 1 sets, so without redistribution through the guide vane channel 3d.
  • the temperature T is plotted, and the radius R taken away from the inner shroud is plotted on the y-axis.
  • the solid line represents the temperature of the working gas, which is primarily determined by the temperature profile at the combustion chamber outlet. The temperature increases radially outwards, see also the introduction to the description.
  • the cooler barrier fluid 11 and also the cooler working gas are redistributed from radially inside to radially outside, so that the temperature gradients can be reduced. Due to the reduced disturbance of the main flow radially on the inside and radially on the outside, an improved efficiency profile can also be achieved.
  • FIG 5 shows a turbomachine 50 in an axial section, specifically a jet engine.
  • the turbomachine 50 is divided into compressor 50a, combustion chamber 50b and turbine 50c.
  • Both the compressor 50a and the turbine 50c are each constructed from a plurality of components or stages, each stage is composed of a guide blade ring and a moving blade ring.
  • the rotor blade rings rotate about the longitudinal axis 52 of the turbomachine 50.
  • the turbine module 1 described above is part of the turbine 50c, specifically forms the low-pressure turbine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

Technisches Gebiettechnical field

Die vorliegende Erfindung betrifft eine Leitschaufel für eine Turbine einer axialen Strömungsmaschine.The present invention relates to a guide vane for a turbine of an axial flow machine.

Stand der TechnikState of the art

Bei der Strömungsmaschine kann es sich bspw. um ein Strahltriebwerk handeln, z. B. um ein Mantelstromtriebwerk. Funktional gliedert sich die Strömungsmaschine in Verdichter, Brennkammer und Turbine. Etwa im Falle des Strahltriebwerks wird angesaugte Luft vom Verdichter komprimiert und in der nachgelagerten Brennkammer mit hinzugemischtem Kerosin verbrannt. Das entstehende Heißgas, eine Mischung aus Verbrennungsgas und Luft, durchströmt die nachgelagerte Turbine und wird dabei expandiert. Das Heißgas, das auch als Arbeitsgas bezeichnet wird, durchströmt auf einem Pfad von der Brennkammer über die Turbine bis zur Düse ein Volumen, wobei vorliegend zunächst eine Leitschaufel bzw. ein Turbinenmodul und damit ein Abschnitt dieses Pfads bzw. Volumens betrachtet wird, der nachstehend als Ringraum in Bezug genommen wird.The turbomachine can, for example, be a jet engine, e.g. B. a turbofan engine. Functionally, the turbomachine is divided into compressor, combustion chamber and turbine. In the case of the jet engine, for example, the air drawn in is compressed by the compressor and burned in the downstream combustion chamber with added kerosene. The resulting hot gas, a mixture of combustion gas and air, flows through the downstream turbine and is expanded in the process. The hot gas, which is also referred to as working gas, flows through a volume on a path from the combustion chamber via the turbine to the nozzle Annulus is referred to.

Die in Rede stehende Leitschaufel weist ein Leitschaufelblatt auf, das sich zwischen einem Innendeckband und einem Außendeckband erstreckt. Die Deckbänder begrenzen den Ringraum, in dem das das Leitschaufelblatt umströmende Arbeitsgas geführt ist, in radialer Richtung. Vorliegend wird zunächst auf eine Leitschaufel Bezug genommen, diese ist dann Teil eines Leitschaufelkranzes, der umlaufend eine Mehrzahl in der Regel baugleicher Leitschaufeln aufweist. Dies soll, wie auch die Bezugnahme auf ein Strahltriebwerk, den vorliegenden Gegenstand zunächst illustrieren, den Erfindungsgedanken aber nicht in seiner Allgemeinheit beschränken. Bei der Strömungsmaschine kann es sich bspw. auch um eine stationäre Gasturbine handeln. Das Dokument GB 744 548 A offenbart eine mit einem Kanal durchzogene Leitschaufel.The subject vane has a vane airfoil extending between an inner shroud and an outer shroud. The shrouds delimit the annular space in the radial direction, in which the working gas flowing around the guide vane blade is guided. In the present case, reference is initially made to a guide vane, which is then part of a guide vane ring, which has a plurality of guide vanes, which are generally identical in construction, all around. Like the reference to a jet engine, this is intended to initially illustrate the subject matter at hand, but not to limit the generality of the idea of the invention. The turbomachine can also be a stationary gas turbine, for example. The document GB 744 548 A discloses a ducted vane.

Darstellung der ErfindungPresentation of the invention

Der vorliegenden Erfindung liegt das technische Problem zugrunde, eine besonders vorteilhafte Leitschaufel sowie ein vorteilhaftes Turbinenmodul mit einer solchen Leitschaufel anzugeben.The present invention is based on the technical problem of specifying a particularly advantageous guide vane and an advantageous turbine module with such a guide vane.

Dies wird erfindungsgemäß mit der Leitschaufel gemäß Anspruch 1 sowie dem Turbinenmodul nach Anspruch 5 gelöst. Die Leitschaufel ist als Hohlschaufel ausgeführt, ist nämlich in ihrem Inneren von einem Leitschaufelblattkanal durchzogen, der sich zwischen einem Einlass radial innen und einem Auslass radial außen erstreckt. Hohlschaufeln an sich sind bekannt, nämlich als zu Kühlzwecken von einem Kühlfluid durchströmte Bauteile. Eine Besonderheit liegt vorliegend in der Positionierung des Einlasses derart, dass das Gas, das den Leitschaufelblattkanal im Betrieb durchströmt, zumindest anteilig von dem in dem Ringraum geführten Arbeitsgas gebildet wird. Dieses wird also durch den Schaufelblattkanal von radial innen nach radial außen umverteilt.According to the invention, this is achieved with the guide vane according to claim 1 and the turbine module according to claim 5 . The guide vane is designed as a hollow vane, namely its interior is traversed by a guide vane blade channel, which extends radially on the inside between an inlet and an outlet radially on the outside. Hollow blades are known per se, namely as components through which a cooling fluid flows for cooling purposes. A special feature here is the positioning of the inlet in such a way that the gas that flows through the guide blade channel during operation is at least partially formed by the working gas conducted in the annular space. This is thus redistributed through the airfoil channel from radially inside to radially outside.

Diese Umverteilung kann zunächst den Temperaturhaushalt betreffend von Vorteil sein. Die Temperaturen im Gehäusebereich (radial außen) sind nämlich in der Regel deutlich höher als im Nabenbereich (radial innen). In der Folge können sich mit zunehmender Nutzungsdauer Laufspalte radial außen stärker vergrößern, wodurch der Arbeitsumsatz dort weiter abnimmt, die Laufspalte verursachen auch Strömungsverluste (Spaltströmung). Mit dem Erfindungsgegenstand wird durch den Leitschaufelblattkanal kühleres Arbeitsgas von radial innen nach radial außen gebracht. Das Außendeckband der stromabwärts der Leitschaufel angeordneten Laufschaufel wird bei einem Design nach dem Stand der Technik von heißem Arbeitsgas umströmt, wobei es sich stark aufheizt, was zu mechanischen Problemen führen kann. Die hohe Fliehkraftbeanspruchung in Kombination mit hohen Temperaturen führen zu hohen Kriechbeanspruchungen. Ein Vorteil vorliegend kann sich aus der Verringerung der Temperatur am Außendeckband der Laufschaufel ergeben, generell ist eine Absenkung des Temperaturniveaus im Gehäusebereich vorteilhaft.This redistribution can initially be advantageous in terms of the temperature balance. The temperatures in the housing area (radially outside) are usually significantly higher than in the hub area (radially inside). As a result, running gaps can increase radially on the outside with increasing service life, which means that the work turnover there continues to decrease, the running gaps also cause flow losses (gap flow). With the subject of the invention, cooler working gas is brought from radially inside to radially outside through the guide vane channel. In a design according to the prior art, hot working gas flows around the outer shroud of the moving blade arranged downstream of the guide blade, causing it to heat up considerably, which can lead to mechanical problems. The high centrifugal stress in combination with high temperatures lead to high creep stress. An advantage can result from the reduction in temperature on the outer shroud of the moving blade; in general, a reduction in the temperature level in the housing area is advantageous.

Wie nachstehend im Einzelnen diskutiert, kann das umverteilte Gas anteilig auch ein Sperrfluid enthalten, das radial innerhalb des Innendeckbands eingeblasen wird, um die Rotorscheiben gegenüber den hohen Temperaturen im Ringraum abzuschirmen. Hinsichtlich der Kompensierung des radialen Temperaturgradienten kann dies insoweit von Vorteil sein, als das Sperrfluid in der Regel deutlich kühler als das Arbeitsgas ist, bspw. Verdichterluft, also nicht nur Arbeitsgas umverteilt, sondern ein in der Gesamtschau kühleres Gas nach radial außen gefördert wird. Das Absaugen des Sperrfluids dort, wo dieses radial innen in den Ringraum strömt, kann auch strömungstechnisch und damit den Wirkungsgrad betreffend von Vorteil sein. Das einströmende Sperrfluid hat nämlich eine deutlich andere Geschwindigkeit und Richtung als das im Ringraum geführte Arbeitsgas, was ohne die Absaugung die Hauptströmung erheblich stören würde. Bildlich gesprochen wird eine strömungstechnisch problematische Grenzschicht radial innen im Ringraum abgesaugt (in der Regel zusammen mit einem Sperrfluid, s. u.), was die Störung der Hauptströmung verringern kann. Dementsprechend kann mit der erfindungsgemäßen Anordnung einem Wirkungsgradeinbruch im Nabenbereich vorgebeugt werden.As discussed in more detail below, the redistributed gas may also proportionately contain a barrier fluid that is injected radially inward of the inner shroud to shield the rotor disks from the high temperatures in the annulus. With regard to the compensation of the radial temperature gradient, this can be advantageous insofar as Barrier fluid is usually significantly cooler than the working gas, e.g. compressor air, so not only is the working gas redistributed, but an overall cooler gas is conveyed radially outward. The suction of the barrier fluid where it flows radially inwards into the annular space can also be advantageous in terms of flow technology and thus in terms of efficiency. The inflowing barrier fluid has a significantly different speed and direction than the working gas in the annular space, which would significantly disrupt the main flow without suction. Figuratively speaking, a boundary layer that is problematic in terms of flow is sucked off radially inside the annular space (usually together with a barrier fluid, see below), which can reduce the disruption to the main flow. Accordingly, with the arrangement according to the invention, a drop in efficiency in the hub area can be prevented.

Bevorzugte Ausgestaltungen finden sich in den abhängigen Ansprüchen und der gesamten Beschreibung, wobei in der Darstellung der Merkmale nicht immer im Einzelnen zwischen Vorrichtungs- und Verfahrens- bzw. Verwendungsaspekten unterschieden wird; jedenfalls implizit ist die Offenbarung hinsichtlich sämtlicher Anspruchskategorien zu lesen. Die Offenbarung bezieht sich insbesondere stets sowohl auf die Leitschaufel als auch auf ein Turbinenmodul mit einer solchen Leitschaufel bzw. entsprechende Verwendungen.Preferred refinements can be found in the dependent claims and the entire description, with the description of the features not always making a detailed distinction between aspects of the device and aspects of the method or use; at least implicitly, the disclosure is to be read with regard to all categories of claims. In particular, the disclosure always relates both to the guide vane and to a turbine module with such a guide vane or corresponding uses.

Generell bezieht sich im Rahmen dieser Offenbarung "axial" auf die Längsachse des Turbinenmoduls, mithin also die Längsachse der Strömungsmaschine, die bspw. mit einer Drehachse der Rotoren zusammenfällt. "Radial" betrifft die dazu senkrechten, davon weg weisenden Radialrichtungen, und ein "Umlauf" bzw. "umlaufend" oder die "Umlaufrichtung" betreffen die Drehung um die Längsachse. "Ein" und "eine" sind im Rahmen dieser Offenbarung ohne ausdrücklich gegenteilige Angabe als unbestimmte Artikel und damit immer auch als "mindestens ein" bzw. "mindestens eine" zu lesen. Es hat also bspw. der Leitschaufelkranz mit dem erfindungsgemäßen Leitschaufelblatt eine Mehrzahl solcher Blätter, die bspw. um die Längsachse zueinander drehsymmetrisch angeordnet sind. Dabei können auch mehrere Leitschaufeln integral miteinander vorgesehen, also zu einem Leitschaufelsegment zusammengefasst sein, das dann bspw. 2, 3, 4, 5 oder 6 Schaufeln aufweisen kann.In general, within the scope of this disclosure, “axial” refers to the longitudinal axis of the turbine module, ie the longitudinal axis of the turbomachine, which, for example, coincides with an axis of rotation of the rotors. "Radial" refers to the radial directions perpendicular thereto and pointing away therefrom, and "orbit" or "circumferentially" or the "direction of orbit" refers to the rotation about the longitudinal axis. In the context of this disclosure, "a" and "an" are to be read as indefinite articles and thus always also as "at least one" or "at least one" unless expressly stated otherwise. Thus, for example, the guide vane ring with the guide vane blade according to the invention has a plurality of such blades, which are arranged rotationally symmetrically to one another, for example, about the longitudinal axis. In this case, several guide vanes can also be provided integrally with one another, that is to say combined to form a guide vane segment which can then have, for example, 2, 3, 4, 5 or 6 vanes.

Bezogen auf die Umströmung mit dem Arbeitsgas hat das Leitschaufelblatt eine Vorder- und eine Hinterkante sowie zwei jeweils die Vorder- und Hinterkante miteinander verbindende Seitenflächen, wovon eine die Saug- und die andere die Druckseite bildet. Der Leitschaufelblattkanal ist im Inneren des Leitschaufelblatts angeordnet. Bevorzugt ist der Leitschaufelblattkanal in seiner Erstreckung zwischen Ein- und Auslass frei von Schleifen, gibt es also genau einen Kanal von innen nach außen, der Ein- und Auslass direkt miteinander verbindet.With regard to the flow of the working gas, the guide vane blade has a leading and a trailing edge as well as two connecting the leading and trailing edges to each other Side surfaces, one of which forms the suction side and the other the pressure side. The airfoil duct is located inside the airfoil. The guide vane blade channel is preferably free of loops in its extension between the inlet and outlet, so there is exactly one channel from the inside to the outside that directly connects the inlet and outlet to one another.

Bei einer bevorzugten Ausführungsform ist der Auslass des Leitschaufelblattkanals radial außerhalb des Außendeckbands angeordnet. Das von radial innen nach außen geführte Gas wird also zumindest nicht direkt in den Ringraum eingeblasen, was strömungstechnisch von Vorteil ist. Gleichwohl kann eine Kühlung des Gehäusebereichs erreicht werden.In a preferred embodiment, the outlet of the airfoil passage is located radially outward of the outer shroud. The gas guided from radially inside to outside is thus at least not blown directly into the annular space, which is advantageous in terms of flow technology. Nevertheless, cooling of the housing area can be achieved.

In bevorzugter Ausgestaltung ist der Auslass zur Hinterkante des Leitschaufelblatts nach stromabwärts versetzt. Die Angaben "stromabwärts" und "stromaufwärts" beziehen sich generell ohne ausdrücklich gegenteilige Angabe auf die Strömung des Arbeitsgases im Ringraum. Mit dem nach hinten versetzten Auslass kann insbesondere ein Überströmen des Außendeckbands der nachgelagerten Laufschaufel(n) mit dem nach radial außen geführten Gas erreicht werden, siehe unten im Detail.In a preferred embodiment, the outlet is offset downstream toward the trailing edge of the vane airfoil. The terms "downstream" and "upstream" generally relate to the flow of the working gas in the annular space, unless expressly stated otherwise. With the outlet offset to the rear, it is possible, in particular, for the gas that is guided radially outward to flow over the outer shroud of the downstream moving blade(s), see below in detail.

Bei einer bevorzugten Ausführungsform ist der Einlass des Leitschaufelblattkanals an einer nach stromaufwärts weisenden Vorderkante der Leitschaufel angeordnet. Ein Einströmen von Arbeitsgas aus dem Ringraum könnte zwar im Allgemeinen auch mit einem im Deckband selbst angeordneten Einlass erreicht werden, die Anordnung an der Vorderkante kann jedoch bspw. hinsichtlich des anteiligen Einströmens des Sperrfluids vorteilhaft sein.In a preferred embodiment, the inlet of the airfoil passage is located at an upstream leading edge of the vane. An inflow of working gas from the annular space could generally also be achieved with an inlet arranged in the shroud itself, but the arrangement at the leading edge can be advantageous, for example with regard to the proportionate inflow of the barrier fluid.

Die Erfindung betrifft auch ein Turbinenmodul mit einer vorliegend offenbarten Leitschaufel, bevorzugt handelt es sich dabei um ein Niederdruck-Turbinenmodul.The invention also relates to a turbine module with a guide vane disclosed here, which is preferably a low-pressure turbine module.

In bevorzugter Ausgestaltung des Turbinenmoduls ist stromaufwärts der Leitschaufel eine Laufschaufel angeordnet (die in der Regel analog der Leitschaufel Teil eines Kranzes mit mehreren zueinander baugleichen und drehsymmetrischen Blättern ist). Ein Innendeckband der stromaufwärtigen Laufschaufel bildet dann gemeinsam mit dem Innendeckband der Leitschaufel eine Labyrinthdichtung, der von radial innen ein Sperrfluid zugeführt wird (die Labyrinthdichtung wird als "Dichtung" bezeichnet, weil sie der Abschirmung der Rotorscheiben im Nabenbereich dient, siehe vorne). Konkret wird die Labyrinthdichtung gebildet, indem eine stromabwärtige Hinterkante des Innendeckbands der Laufschaufel mit einer stromaufwärtigen Vorderkante des Innendeckbands der Leitschaufel einen axialen Überlapp hat, wobei die Hinterkante des Innendeckbands der Laufschaufel bevorzugt radial innerhalb der Vorderkante des Innendeckbands der Leitschaufel liegt.In a preferred embodiment of the turbine module, a moving blade is arranged upstream of the guide vane (which, like the guide vane, is usually part of a ring with a plurality of structurally identical and rotationally symmetrical blades). An inner shroud of the upstream rotor blade then forms a labyrinth seal together with the inner shroud of the guide vane, to which a barrier fluid is supplied from radially inward (the labyrinth seal is referred to as a "seal" because it serves to shield the rotor disks in the hub area, see above). Specifically, the labyrinth seal formed by a downstream trailing edge of the inner shroud of the blade having an axial overlap with an upstream leading edge of the inner shroud of the vane, the trailing edge of the inner shroud of the blade preferably being radially inward of the leading edge of the inner shroud of the vane.

In bevorzugter Ausgestaltung ist als Teil der Labyrinthdichtung radial innerhalb des Innendeckbands der Leitschaufel ein Dichtsteg vorgesehen. Dieser erstreckt sich typischerweise von einer Dichtungsträgerwand weg nach axial vorne, mit der Hinterkante des Innendeckbands der Laufschaufel hat er bevorzugt einen axialen Überlapp. Besagte Hinterkante ist somit radial zwischen der Vorderkante des Innendeckbands der Leitschaufel und dem Dichtsteg eingefasst, weswegen diese Anordnung auch als "Fischmauldichtung" bezeichnet wird. In einem Axialschnitt betrachtet durchströmt das Sperrfluid die Labyrinthdichtung dann von radial innen nach radial außen mit einem S-förmigen Verlauf.In a preferred embodiment, a sealing web is provided as part of the labyrinth seal radially inside the inner shroud of the guide vane. This typically extends axially forward away from a seal carrier wall and preferably has an axial overlap with the trailing edge of the inner shroud of the rotor blade. Said trailing edge is thus bordered radially between the leading edge of the inner shroud of the vane and the sealing web, which is why this arrangement is also referred to as a "fish-mouth seal". Viewed in an axial section, the barrier fluid then flows through the labyrinth seal from radially inside to radially outside with an S-shaped course.

Wie bereits erwähnt, kann ein Vorteil des Erfindungsgegenstands dann darin liegen, dass dieses zur Abschirmung der Rotornabe eingebrachte Sperrfluid zumindest anteilig durch den Einlass abgesaugt wird, sodass die Hauptströmung im Ringraum nicht maßgeblich gestört wird. Trotz dieser Absaugung durchströmt das Sperrfluid die beschriebenen Überlappungsbereiche, ist also der Nabenbereich gegen das Arbeitsgas gesperrt. Betrachtet man den Lauf- bzw. Leitschaufelkranz insgesamt, bestehen die genannten Überlappungen idealerweise unabhängig von der axialen Position des Rotors relativ zum Stator.As already mentioned, an advantage of the subject matter of the invention can then be that this sealing fluid introduced to shield the rotor hub is at least partially sucked off through the inlet, so that the main flow in the annular space is not significantly disturbed. Despite this suction, the barrier fluid flows through the overlapping areas described, so the hub area is blocked against the working gas. If one looks at the blade ring or vane ring as a whole, the overlaps mentioned ideally exist independently of the axial position of the rotor relative to the stator.

Das den Leitschaufelblattkanal im Betrieb durchströmende Gas ist, wie erwähnt, in bevorzugter Ausgestaltung anteilig auch am Einlass abgesaugtes Sperrfluid. Bevorzugt ist gleichwohl der größere Teil des nach radial außen geführten Gases im Ringraum abgesaugtes Arbeitsgas.As mentioned, the gas flowing through the guide vane blade channel during operation is, in a preferred embodiment, a proportion of the sealing fluid that is also sucked off at the inlet. Nevertheless, the greater part of the gas guided radially outwards in the annular space is preferably sucked off working gas.

Eine bevorzugte Ausführungsform betrifft ein Turbinenmodul mit einer stromabwärts der Leitschaufel angeordneten Laufschaufel bzw. einem entsprechenden Laufschaufelkranz. Die stromabwärtige Laufschaufel hat ein Laufschaufelblatt, das sich zwischen einem Innendeckband (radial innen) und einem Außendeckband (radial außen) erstreckt. Der Auslass des Leitschaufelblattkanals ist dann vorteilhafterweise derart angeordnet, dass das nach außen geführte Gas dem Auslass nachgelagert radial außerhalb des Außendeckbands der Laufschaufel vorbeigeführt wird bzw. das Außendeckband umströmt (es muss selbstverständlich nicht das gesamte nach außen geführte Gas außerhalb des Außendeckbandes strömen). Das Gas wird also zumindest nicht überwiegend in den Ringraum ausgeblasen, sondern außerhalb des Hauptströmungskanals in den Bereich außerhalb der Deckbänder. Damit kann einerseits bereits eine Kühlung dieses Bereichs erreicht werden.A preferred embodiment relates to a turbine module with a rotor blade or a corresponding rotor blade ring arranged downstream of the guide vane. The downstream blade has an airfoil extending between an inner (radially inward) shroud and an outer (radially outward) shroud. The outlet of the guide vane blade channel is then advantageously arranged in such a way that the gas that is routed to the outside is routed downstream of the outlet radially outside the outer shroud of the rotor blade or flows around the outer shroud (of course, it does not have to be that all of the gas that is led to the outside flows outside the outer shroud). The gas is thus at least not predominantly blown out into the annular space, but outside the main flow channel into the area outside the shrouds. In this way, on the one hand, cooling of this area can already be achieved.

Andererseits ist die Gasmenge in bevorzugter Ausgestaltung derart bemessen, dass das Laufschaufelaußendeckband ausschließlich mit dem nach radial außen geführten Gas überströmt wird. Dies bedeutet umgekehrt, dass kein Arbeitsgas aus den Grenzschichten des Ringraums die Außendeckbänder überströmt, was thermisch von Vorteil sein kann (das Außendeckband heizt sich weniger stark auf), insbesondere aber auch eine geringere Störung der Hauptströmung bedeuten kann. Dementsprechend kann idealerweise auch eine lokale Wirkungsgradverbesserung erreicht werden.On the other hand, in a preferred configuration, the quantity of gas is dimensioned in such a way that the moving blade outer shroud only flows over the gas guided radially outward. Conversely, this means that no working gas from the boundary layers of the annular space flows over the outer shrouds, which can be thermally advantageous (the outer shroud heats up less), but in particular can also mean less disruption to the main flow. Correspondingly, ideally, a local improvement in efficiency can also be achieved.

Bei einer bevorzugten Ausführungsform ist der Auslass des Leitschaufelblattkanals derart vorgesehen, dass das austretende Gas in Umlaufrichtung aufgefächert, also divergent ist. Dementsprechend können die eben geschilderten Effekte dann bspw. nicht nur axial mit dem bzw. den Leitschaufelblatt bzw. -blättern fluchtend erreicht werden, sondern idealerweise über im Wesentlichen den gesamten Umlauf.In a preferred embodiment, the outlet of the guide blade channel is provided in such a way that the exiting gas fans out in the direction of circulation, that is to say is divergent. Accordingly, the effects just described can then be achieved, for example, not only axially aligned with the vane blade or blades, but ideally over essentially the entire circumference.

Bei einer bevorzugten Ausführungsform ist der Auslass des Leitschaufelblattkanals derart vorgesehen, dass sich das austretende Gas in seiner Geschwindigkeit und/oder Richtung von dem im Ringraum geführten Arbeitsgas unterscheidet, also der Geschwindigkeit und/oder Richtung des Arbeitsgases in diesem radial äußeren Bereich des Ringraums. Das nach radial außen geführte Gas kann in seinen Strömungseigenschaften von dem Arbeitsgas unabhängig eingestellt werden, es kann bspw. eine Umlaufkomponente kleiner als die Umlaufgeschwindigkeit des stromabwärtigen Rotordeckbands sein.In a preferred embodiment, the outlet of the guide vane channel is provided in such a way that the exiting gas differs in its speed and/or direction from the working gas guided in the annular space, i.e. the speed and/or direction of the working gas in this radially outer area of the annular space. The flow properties of the gas that is guided radially outward can be set independently of the working gas; for example, a circulation component can be smaller than the circulation speed of the downstream rotor shroud.

Generell ergibt sich die Durchströmung des Leitschaufelblattkanals, also das Ansaugen radial innen und das Ausblasen radial außen, aus einem Druckunterschied über die Leitschaufel. Über die Größe (den Querschnitt des Auslasses) lässt sich die Geschwindigkeit einstellen, die Orientierung bestimmt die Richtung des austretenden Fluidstroms. Dies eröffnet die geschilderten Gestaltungsmöglichkeiten dahingehend, dass Strömungsverluste im Ringraum und damit Wirkungsgradeinbußen verringert werden können. Auch Reibverluste und damit eine lokale Aufheizung, z. B. des Außendeckbandes, können minimiert werden.In general, the flow through the guide vane channel, i.e. suction radially on the inside and blowing out radially on the outside, results from a pressure difference across the guide vane. The speed can be adjusted via the size (the cross-section of the outlet), the orientation determines the direction of the exiting fluid flow. This opens up the design options described to the effect that flow losses in the annular space and thus efficiency losses can be reduced. Friction losses and thus local heating, e.g. B. the outer shroud can be minimized.

Bevorzugt weist das Turbinenmodul eine Mehrzahl Stufen auf, jeweils mit Leit- und stromabwärtigem Laufschaufelkranz. Vorzugsweise sind dann die Leitschaufeln in allen Stufen der Turbine mit entsprechenden Leitschaufelblattkanälen vorgesehen, sodass sich insgesamt eine niedrigere Temperatur im Gehäusebereich einstellt. Der Kühlluftbedarf im Gehäuse sinkt, zudem kann die Spalthaltung verbessert sein.The turbine module preferably has a plurality of stages, each with guide and downstream blade rings. The guide vanes are then preferably provided in all stages of the turbine with corresponding guide vane blade channels, so that a lower overall temperature is set in the housing area. The need for cooling air in the housing is reduced, and gap maintenance can also be improved.

Bei einer bevorzugten Ausführungsform ist ein stromabwärts der Leitschaufel mit Leitschaufelblattkanal angeordnetes Laufschaufelblatt aus einem Schmiedewerkstoff vorgesehen, bspw. aus Udimet720, Nimonic90 oder Nimonic 115. Bevorzugt ist die gesamte Laufschaufel aus einem Schmiedewerkstoff vorgesehen.In a preferred embodiment, a moving blade made of a forged material, for example made of Udimet720, Nimonic90 or Nimonic 115, is provided downstream of the guide blade with guide blade channel. The entire moving blade is preferably made of a forged material.

Generell kann ein Schmiedewerkstoff bspw. aufgrund besserer Festigkeitseigenschaften im Vergleich zu einem Gusswerkstoff von Interesse sein, also bspw. hinsichtlich Zugfestigkeit, Streckgrenze, HCF, LCF, Kerbschlagzähigkeit, Bruchdehnung etc. Speziell in den hinteren Stufen der Turbine bzw. Niederdruckturbine kann deshalb die Verwendung eines Schmiedewerkstoffs interessant sein, bei Turbinen nach dem Stand der Technik sind jedoch die Temperaturen hierfür in der Regel noch immer zu hoch, weswegen auf temperaturbeständige Gusswerkstoffe zurückgegriffen wird. Mit dem erfindungsgemäßen Ansatz lassen sich insbesondere im radial äußeren Bereich die Temperaturen reduzieren, was hinsichtlich einer erhöhten Lebensdauer schon an sich von Vorteil sein kann, aber eben auch den Einsatz anderer Werkstoffe ermöglicht. Bevorzugt werden Schmiedewerkstoffe eingesetzt.In general, a forged material can be of interest, e.g. due to better strength properties compared to a cast material, e.g. in terms of tensile strength, yield point, HCF, LCF, notched impact strength, elongation at break, etc Forged material can be interesting, but in the case of state-of-the-art turbines, the temperatures for this are usually still too high, which is why temperature-resistant cast materials are used. With the approach according to the invention, the temperatures can be reduced, in particular in the radially outer area, which can be an advantage in itself with regard to an increased service life, but also enables the use of other materials. Forged materials are preferably used.

Auch eine weitere bevorzugte Ausgestaltung betrifft den Einsatz eines Schmiedewerkstoffs, aus dem dann der gesamte Turbinenblisk vorgesehen ist. Es wird also die Rotorscheibe samt den integral daran vorgesehenen Schaufelblättern aus dem Schmiedewerkstoff gefasst.Another preferred embodiment also relates to the use of a forged material, from which the entire turbine blisk is then provided. The rotor disk, together with the blade blades provided integrally thereon, is therefore made of the forged material.

Die Erfindung betrifft auch die Verwendung eines vorliegend beschriebenen Turbinenmoduls, insbesondere für eine axiale Strömungsmaschine, bevorzugt ein Strahltriebwerk. Im Zuge der Verwendung wird einerseits der Ringraum von dem Arbeitsgas durchströmt und wird andererseits durch den Leitschaufelblattkanal von radial innen nach radial außen Gas umverteilt, das zumindest anteilig von Arbeitsgas gebildet wird, bevorzugt anteilig auch von Sperrfluid.The invention also relates to the use of a turbine module described here, in particular for an axial flow machine, preferably a jet engine. In the course of use, on the one hand, the working gas flows through the annular space and, on the other hand, gas becomes gas through the guide blade channel from radially inside to radially outside redistributed, which is at least partially formed by working gas, preferably also partially by barrier fluid.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Im Folgenden wird die Erfindung anhand eines Ausführungsbeispiels näher erläutert, wobei die einzelnen Merkmale im Rahmen der nebengeordneten Ansprüche auch in anderer Kombination erfindungswesentlich sein können und auch weiterhin nicht im Einzelnen zwischen den unterschiedlichen Anspruchskategorien unterschieden wird.The invention is explained in more detail below using an exemplary embodiment, with the individual features within the framework of the independent claims also being able to be essential to the invention in a different combination and no distinction being made in detail between the different claim categories.

Im Einzelnen zeigt

  • Fig. 2 ein erfindungsgemäßes Turbinenmodul mit einer Leitschaufel mit Leitschaufelblattkanal in einem Axialschnitt;
  • Fig. 1 im Vergleich zu Fig. 2 eine Variante aus dem Stand der Technik ohne Leitschaufelblattkanal zur Illustration der erfindungsgemäß erreichten Vorteile;
  • Fig. 3 ein Diagramm zur Illustration des radialen Temperaturverlaufs;
  • Fig. 4 ein Diagramm zur Illustration des radialen Wirkungsgradverlaufs;
  • Fig. 5 eine Strömungsmaschine mit einem Turbinenmodul gemäß Fig. 1 in einem Axialschnitt.
In detail shows
  • 2 a turbine module according to the invention with a guide vane with guide vane blade channel in an axial section;
  • 1 compared to 2 a variant from the prior art without guide vane channel to illustrate the advantages achieved according to the invention;
  • 3 a diagram to illustrate the radial temperature profile;
  • 4 a diagram to illustrate the radial efficiency curve;
  • figure 5 according to a turbomachine with a turbine module 1 in an axial section.

Bevorzugte Ausführung der ErfindungPreferred embodiment of the invention

Fig. 2 zeigt einen Ausschnitt eines erfindungsgemäßen Turbinenmoduls 1 in einem Axialschnitt. Ein von dem Turbinenmodul 1 gebildeter Ringraum 2 wird im Betrieb von Arbeitsgas durchströmt, das sich von der Brennkammer (links des Turbinenmoduls 1) zur Düse (rechts davon) ausbreitet, vgl. auch Fig. 5 zur Illustration. In diesem Ringraum 2 ist eine Leitschaufel 3 angeordnet, die ein Innendeckband 3a, ein Außendeckband 3b und dazwischen ein Leitschaufelblatt 3c aufweist. Stromaufwärts der Leitschaufel 3 ist eine Laufschaufel 4 angeordnet, stromabwärts davon eine Laufschaufel 5. Die Leitschaufel 3 ist geschnitten dargestellt, das Leitschaufelblatt 3c wird von radial innen nach radial außen von einem Leitschaufelblattkanal 3d durchzogen. Der Einlass 6 in den Leitschaufelblattkanal 3d liegt am Innendeckband 3a der Leitschaufel 3, konkret an dessen stromaufwärtiger Vorderkante. Der Auslass 7 des Leitschaufelblattkanals 3d ist radial außerhalb des Außendeckbands 3b angeordnet und bezogen auf die Hinterkante 3ca des Leitschaufelblatts 3c nach axial stromabwärts versetzt. 2 shows a detail of a turbine module 1 according to the invention in an axial section. During operation, working gas flows through an annular space 2 formed by the turbine module 1, which spreads from the combustion chamber (to the left of the turbine module 1) to the nozzle (to the right of it), see also figure 5 for illustration. In this annular space 2, a guide vane 3 is arranged, which has an inner shroud 3a, an outer shroud 3b and between them a guide vane blade 3c. A rotor blade 4 is arranged upstream of the guide vane 3, and a rotor blade 5 downstream thereof. The guide vane 3 is shown in section; The inlet 6 into the guide blade channel 3d is located on the inner shroud 3a of the guide blade 3, specifically on its upstream leading edge. The outlet 7 of the airfoil passage 3d is located radially outward of the outer shroud 3b and offset axially downstream relative to the trailing edge 3ca of the airfoil 3c.

Aufgrund des Druckunterschieds über die Leitschaufel 3 wird radial innen, am Einlass 6 angesaugt und radial außen, am Auslass 7 ausgeblasen. Der Einlass 6 ist dabei derart angeordnet, dass das Gas 8, das den Leitschaufelblattkanal 3d durchströmt, anteilig von dem im Ringraum 2 geführten Arbeitsgas gebildet wird. Konkret wird eine Seitenwandgrenzschicht 10 der Hauptströmung abgesaugt. Dies ist schon strömungstechnisch von Vorteil, zudem sind die Temperaturen im Ringraum radial innen kleiner als radial außen, kann also durch die Umverteilung einem übermäßigen Temperaturgradienten vorgebeugt werden.Due to the pressure difference across the guide vane 3 , suction takes place radially on the inside, at the inlet 6 , and blows out radially on the outside, at the outlet 7 . The inlet 6 is arranged in such a way that the gas 8 which flows through the guide vane blade channel 3d is formed proportionately by the working gas conducted in the annular space 2 . Specifically, a sidewall boundary layer 10 sucked off the main flow. This is already an advantage in terms of flow technology, and the temperatures in the annular space are lower radially on the inside than radially on the outside, so an excessive temperature gradient can be prevented by the redistribution.

Ferner wird durch den Einlass 6 anteilig auch ein Sperrfluid 11 eingesaugt, das zur Abschirmung des Nabenbereichs radial innen eingebracht wird und eine Labyrinthdichtung 12 durchströmt. Letztere wird durch den axialen Überlapp eines Dichtstegs 13, des Innendeckbands 4a der Laufschaufel 4, konkret der Hinterkante davon, und des Innendeckbands 3a der Leitschaufel 3, konkret der Vorderkante davon, gebildet. Bei diesem Sperrfluid 11 handelt es sich um deutlich kühlere Verdichterluft, deren Umverteilung nach radial außen durch den Leitschaufelblattkanal 3d hinsichtlich der Vermeidung überproportionaler Temperaturgradienten von Vorteil ist.Furthermore, a blocking fluid 11 is also sucked in proportionately through the inlet 6 , which is introduced radially on the inside to shield the hub area and flows through a labyrinth seal 12 . The latter is formed by the axial overlap of a sealing web 13, the inner shroud 4a of the moving blade 4, specifically the trailing edge thereof, and the inner shroud 3a of the guide vane 3, specifically the leading edge thereof. This barrier fluid 11 is significantly cooler compressor air, the redistribution of which radially outward through the guide vane blade channel 3d is advantageous in terms of avoiding disproportionate temperature gradients.

Fig. 1 zeigt zum Vergleich ein Turbinenmodul 1 aus dem Stand der Technik mit einer analog aufgebauten Labyrinthdichtung 12, wobei das Leitschaufelblatt 3 im Unterschied zur Fig. 2 nicht mit einem Leitschaufelblattkanal 3d versehen ist. Dementsprechend strömt das Sperrfluid 11 in den Ringraum 2, was die Hauptströmung dort stört. Zudem sind die Seitenwandgrenzschichten 10 in der Regel ohnehin strömungstechnisch belastet, ist also insgesamt mit Strömungsverlusten und Wirkungsgradeinbußen zu rechnen (im Vergleich zu der Variante gemäß Fig. 2). Fig. 1 illustriert ferner, dass es auch radial außen eine Leckageströmung 20 gibt, welche die Außendeckbänder 4b, 5b der Laufschaufeln 4, 5 überströmt. Auch dies bedingt eine Störung der Hauptströmung. 1 shows for comparison a turbine module 1 from the prior art with a similarly constructed labyrinth seal 12, wherein the vane blade 3 in contrast to 2 is not provided with a vane duct 3d. Accordingly, the barrier fluid 11 flows into the annular space 2, which disturbs the main flow there. In addition, the side wall boundary layers 10 are usually subjected to aerodynamic loads anyway, so overall flow losses and losses in efficiency are to be expected (compared to the variant according to 2). 1 further illustrates that there is also a leakage flow 20 radially on the outside, which flows over the outer shrouds 4b, 5b of the rotor blades 4, 5. This also causes a disturbance in the main flow.

Mit dem erfindungsgemäßen Aufbau wird diese vermieden, indem der Auslass 7 des Leitschaufelblattkanals 3d derart angeordnet ist, dass das nach radial außen geführte Gas 8 das Außendeckband 5b der Laufschaufel 5 überströmt. Die Menge ist dabei derart bemessen, dass kein Arbeitsgas aus dem Ringraum 2 das Außendeckband 5b überströmt. Dies gilt, wie aus Fig. 1 ersichtlich, analog auch für die vorgelagerte Turbinenstufe, der Übersichtlichkeit halber bezieht sich die Beschreibung jedoch auf die Wechselwirkung der Leitschaufel 3 mit der Laufschaufel 5.This is avoided with the structure according to the invention in that the outlet 7 of the guide vane blade channel 3d is arranged in such a way that the gas 8 guided radially outward flows over the outer shroud 5b of the rotor blade 5 . The amount is measured in such a way that no working gas from the annular space 2 flows over the outer shroud 5b. This counts as out 1 can be seen, analogously also for the upstream turbine stage, but for the sake of clarity the description refers to the interaction of the guide vane 3 with the moving vane 5.

Fig. 3 illustriert einen radialen Temperaturverlauf, wie er sich in einem Turbinenmodul 1 gemäß Fig. 1 einstellt, also ohne Umverteilung durch den Leitschaufelblattkanal 3d. Auf der x-Achse ist die Temperatur T aufgetragen, auf der y-Achse der vom Innendeckband weg genommene Radius R. Die durchgezogene Linie gibt die Temperatur des Arbeitsgases wieder, die primär durch das Temperaturprofil am Brennkammeraustritt bestimmt wird. Die Temperatur nimmt nach radial außen zu, vgl. auch die Beschreibungseinleitung. 3 illustrates a radial temperature curve, as in a turbine module 1 according to 1 sets, so without redistribution through the guide vane channel 3d. On the x-axis the temperature T is plotted, and the radius R taken away from the inner shroud is plotted on the y-axis. The solid line represents the temperature of the working gas, which is primarily determined by the temperature profile at the combustion chamber outlet. The temperature increases radially outwards, see also the introduction to the description.

Fig. 4 illustriert den Wirkungsgrad η (x-Achse) relativ zum Radius R (y-Achse). Unter anderem aufgrund der Grenzschichtströmung 10 und der Leckageströmung 20 ein Wirkungsgradabfall radial innen und radial außen. Hinzu kommt eine Störung durch das radial innen in den Ringraum strömende Sperrfluid 11. Letzteres hat, wie aus Fig. 3 ersichtlich, auch eine deutlich geringere Temperatur als das Arbeitsgas dort, vgl. den Punkt T11 auf der x-Achse. Strömt das Sperrfluid 11 in den Ringraum 2, stellt sich dort also eine Mischtemperatur TMix ein, sodass der Temperaturgradient (ΔT(a-Mix)) noch größer als bei Betrachtung des Arbeitsgases allein ist (ΔT(a-i)). 4 illustrates the efficiency η (x-axis) relative to the radius R (y-axis). Among other things, due to the boundary layer flow 10 and the leakage flow 20, a drop in efficiency radially on the inside and radially on the outside. In addition, there is a disturbance caused by the sealing fluid 11 flowing radially inside into the annular space 3 evident, also a significantly lower temperature than the working gas there, cf. the point T 11 on the x-axis. If the barrier fluid 11 flows into the annular space 2, a mixed temperature T Mix is established there, so that the temperature gradient (ΔT (a-Mix) ) is even greater than when considering the working gas alone (ΔT (ai) ).

Wie oben dargelegt, wird mit dem erfindungsgemäßen Ansatz das kühlere Sperrfluid 11 und zudem kühleres Arbeitsgas von radial innen nach radial außen umverteilt, sodass sich die Temperaturgradienten verringern lassen. Aufgrund der verringerten Störung der Hauptströmung radial innen und radial außen lässt sich auch ein verbesserter Wirkungsgradverlauf erreichen.As explained above, with the approach according to the invention, the cooler barrier fluid 11 and also the cooler working gas are redistributed from radially inside to radially outside, so that the temperature gradients can be reduced. Due to the reduced disturbance of the main flow radially on the inside and radially on the outside, an improved efficiency profile can also be achieved.

Fig. 5 zeigt eine Strömungsmaschine 50 in einem Axialschnitt, konkret ein Strahltriebwerk. Funktional gliedert sich die Strömungsmaschine 50 in Verdichter 50a, Brennkammer 50b und Turbine 50c. Sowohl der Verdichter 50a als auch die Turbine 50c sind jeweils aus mehreren Komponenten bzw. Stufen aufgebaut, jede Stufe setzt sich aus einem Leit- und einem Laufschaufelkranz zusammen. Die Laufschaufelkränze rotieren vom Arbeitsgas 51 angetrieben um die Längsachse 52 der Strömungsmaschine 50. Das vorstehend beschriebene Turbinenmodul 1 ist Teil der Turbine 50c, bildet konkret die Niederdruck-Turbine. BEZUGSZEICHENLISTE Turbinenmodul 1 Ringraum 2 Leitschaufel 3 Innendeckband 3a Außendeckband 3b Leitschaufelblatt 3c Hinterkante 3ca Leitschaufelblattkanal 3d Laufschaufel (stromaufwärts) 4 Innendeckband 4a Außendeckband 4b Laufschaufelblatt 4c Laufschaufel (stromabwärts) 5 Innendeckband 5a Außendeckband 5b Laufschaufelblatt 5c Einlass 6 Auslass 7 Gas 8 Seitenwandgrenzschicht / Grenzschichtströmung 10 Sperrfluid 11 Labyrinthdichtung 12 Dichtsteg 13 Leckageströmung 20 Strömungsmaschine 50 Verdichter 50a Brennkammer 50b Turbine 50c Arbeitsgas 51 Längsachse 52 Temperatur T Radius R Wirkungsgrad η figure 5 shows a turbomachine 50 in an axial section, specifically a jet engine. Functionally, the turbomachine 50 is divided into compressor 50a, combustion chamber 50b and turbine 50c. Both the compressor 50a and the turbine 50c are each constructed from a plurality of components or stages, each stage is composed of a guide blade ring and a moving blade ring. Driven by the working gas 51, the rotor blade rings rotate about the longitudinal axis 52 of the turbomachine 50. The turbine module 1 described above is part of the turbine 50c, specifically forms the low-pressure turbine. <b>REFERENCE LIST</b> turbine module 1 annulus 2 vane 3 inner shroud 3a outer shroud 3b vane blade 3c trailing edge 3approx vane channel 3d moving blade (upstream) 4 inner shroud 4a outer shroud 4b moving airfoil 4c moving blade (downstream) 5 inner shroud 5a outer shroud 5b moving airfoil 5c inlet 6 outlet 7 gas 8th Sidewall Boundary Layer / Boundary Layer Flow 10 barrier fluid 11 labyrinth seal 12 sealing bar 13 leakage flow 20 flow machine 50 compressor 50a combustion chamber 50b turbine 50c working gas 51 longitudinal axis 52 temperature T radius R efficiency n

Claims (15)

  1. Guide vane (3) for a turbine (50c) of a turbomachine (50), comprising
    a guide vane airfoil (3c), an inner shroud (3a) and an outer shroud (3b),
    the inner shroud (3a) and the outer shroud (3b) delimiting an annular space (2) in the radial direction with respect to a longitudinal axis (52) of the turbomachine (50), in which annular space working gas (51) is conducted during operation,
    and the inside of the guide vane airfoil (3c) being traversed by a guide vane airfoil channel (3d), which extends between an inlet (6) on the radial inside and an outlet (7) on the radial outside,
    characterized in that
    the inlet (6) is arranged such that a gas (8) flowing through the guide vane airfoil channel (3d) during operation is at least partially formed by the working gas (51) conducted in the annular space (2), i.e. this gas is redistributed from radially inside to radially outside into a housing region.
  2. Guide vane (3) according to claim 1, in which the outlet (7) of the guide vane airfoil channel (3d) is arranged radially outside the outer shroud (3b) of the guide vane (3).
  3. Guide vane (3) according to claim 2, in which the outlet (7) of the guide vane airfoil channel (3d) is offset downstream from a trailing edge (3ca) of the guide vane airfoil (3c) with respect to the flow of the working gas (51) through the annular space (2).
  4. Guide vane (3) according to any of the preceding claims, in which the inlet (6) of the guide vane airfoil channel (3d) is arranged at a leading edge of the inner shroud (3a) of the guide vane (3), which leading edge points upstream with respect to the flow of the working gas (51) through the annular space (2).
  5. Turbine module (1) having a guide vane (3) according to any of the preceding claims.
  6. Turbine module (1) according to claim 5, having a rotor blade (4) which is arranged upstream of the guide vane (3) with respect to the flow of the working gas (51) through the annular space (2) and which has an inner shroud (4a) and a rotor blade airfoil (4c), wherein a trailing edge, pointing downstream, of the inner shroud (4a) of the rotor blade (4) has an axial overlap with a leading edge, pointing upstream, of the inner shroud (3a) of the guide vane (3) in order to form a labyrinth seal (12).
  7. Turbine module (1) according to claim 6, in which a sealing projection (13) is arranged radially inside the inner shroud (3a) of the guide vane (3), which sealing web, as part of the labyrinth seal (12), is provided radially inside the trailing edge of the inner shroud (4a) of the rotor blade (4) and has an axial overlap therewith.
  8. Turbine module (1) according to either claim 6 or claim 7, which is designed such that a barrier fluid (11), which flows through the labyrinth seal (12) from radially inside to radially outside during operation, is drawn out at least in part through the inlet (6) of the guide vane airfoil channel (3d) and flows through the guide vane airfoil channel as part of the gas (8).
  9. Turbine module (1) according to any of claims 5 to 8, having a rotor blade (5) which is arranged downstream of the guide vane (3) with respect to the flow of the working gas (51) through the annular space (2) and which has a rotor blade airfoil (5c) and an inner shroud (5a) and an outer shroud (5b), wherein the outlet (7) of the guide vane airfoil channel (3d) is arranged such that the gas (8) flowing through the guide vane airfoil channel (3d) is conducted past at least partially radially outside the outer shroud (5b) of the rotor blade (5).
  10. Turbine module (1) according to claim 9, in which the gas that is conducted past radially outside the outer shroud (5b) of the rotor blade (5) is of such a quantity that an overflow of the outer shroud (5b) of the rotor blade (5) with working gas (51) exiting directly from the annular space (2) is blocked.
  11. Turbine module (1) according to either claim 9 or claim 10, in which the outlet (7) of the guide vane airfoil channel (3d) is provided such that the gas (8) flowing through the guide vane airfoil channel (3d) exits divergently in the circulation direction.
  12. Turbine module (1) according to any of claims 9 to 11, in which the outlet (7) of the guide vane airfoil channel (3d) is provided such that the gas (8) flowing through the guide vane airfoil channel (3d) exits at a rate and/or direction different from that which the working gas (51) conducted in the annular space (2) has in this region.
  13. Turbine module (1) according to any of claims 5 to 12, in which a or the rotor blade (5) arranged downstream of the guide vane (3) has a rotor blade airfoil (5c) made from a forged material.
  14. Turbine module (1) according to any of claims 5 to 12, in which a or the rotor blade (5) arranged downstream of the guide vane (3) is part of a disc having integral airfoils, which disc is made from a forged material.
  15. Use of a turbine module (1) according to any of claims 5 to 14, in which use working gas (51) is conducted in the annular space (2) and the gas (8) flows through the guide vane airfoil channel (3d) from radially inside to radially outside, which gas is formed at least partially by the working gas (51) conducted in the annular space (2), so that it is redistributed from radially inside to radially outside.
EP19169137.7A 2018-04-24 2019-04-15 Guide vane for a turbine of a turbomachine, turbine module and use method of the turbine module Active EP3561236B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102018206259.5A DE102018206259A1 (en) 2018-04-24 2018-04-24 GUIDE SHOVEL FOR A TURBINE OF A FLOW MACHINE

Publications (2)

Publication Number Publication Date
EP3561236A1 EP3561236A1 (en) 2019-10-30
EP3561236B1 true EP3561236B1 (en) 2022-11-23

Family

ID=66182355

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19169137.7A Active EP3561236B1 (en) 2018-04-24 2019-04-15 Guide vane for a turbine of a turbomachine, turbine module and use method of the turbine module

Country Status (4)

Country Link
US (1) US11215073B2 (en)
EP (1) EP3561236B1 (en)
DE (1) DE102018206259A1 (en)
ES (1) ES2934210T3 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3097271B1 (en) * 2019-06-12 2021-05-28 Safran Aircraft Engines Device for cooling a casing of a turbomachine
FR3121167B1 (en) * 2021-03-25 2024-05-31 Safran Helicopter Engines TURBOMACHINE TURBINE
EP4123124A1 (en) * 2021-07-21 2023-01-25 MTU Aero Engines AG A turbine module for a turbomachine and use of this module

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB744548A (en) * 1953-07-29 1956-02-08 Havilland Engine Co Ltd Improvements in or relating to gas turbines
JPS501646B1 (en) * 1970-07-11 1975-01-20
US5316437A (en) 1993-02-19 1994-05-31 General Electric Company Gas turbine engine structural frame assembly having a thermally actuated valve for modulating a flow of hot gases through the frame hub
WO1995004225A1 (en) 1993-08-02 1995-02-09 Siemens Aktiengesellschaft Process and device for tapping a partial stream from a stream of compressed gas
US6722138B2 (en) * 2000-12-13 2004-04-20 United Technologies Corporation Vane platform trailing edge cooling
GB0813839D0 (en) 2008-07-30 2008-09-03 Rolls Royce Plc An aerofoil and method for making an aerofoil
US8092153B2 (en) 2008-12-16 2012-01-10 Pratt & Whitney Canada Corp. Bypass air scoop for gas turbine engine
EP2518278A1 (en) 2011-04-28 2012-10-31 Siemens Aktiengesellschaft Turbine casing cooling channel with cooling fluid flowing upstream
EP2573325A1 (en) * 2011-09-23 2013-03-27 Siemens Aktiengesellschaft Impingement cooling of turbine blades or vanes
US9797312B2 (en) 2012-05-02 2017-10-24 Gkn Aerospace Sweden Ab Supporting structure for a gas turbine engine
US9670797B2 (en) 2012-09-28 2017-06-06 United Technologies Corporation Modulated turbine vane cooling
EP2971674B1 (en) 2013-03-14 2022-10-19 Raytheon Technologies Corporation Gas turbine engine stator vane platform cooling
EP2990607A1 (en) 2014-08-28 2016-03-02 Siemens Aktiengesellschaft Cooling concept for turbine blades or vanes
US10400627B2 (en) 2015-03-31 2019-09-03 General Electric Company System for cooling a turbine engine
US20170002662A1 (en) 2015-07-01 2017-01-05 United Technologies Corporation Gas turbine engine airfoil with bi-axial skin core
DE102015111843A1 (en) 2015-07-21 2017-01-26 Rolls-Royce Deutschland Ltd & Co Kg Turbine with cooled turbine vanes
US10012092B2 (en) * 2015-08-12 2018-07-03 United Technologies Corporation Low turn loss baffle flow diverter
US11230935B2 (en) 2015-09-18 2022-01-25 General Electric Company Stator component cooling
US10781715B2 (en) 2015-12-21 2020-09-22 Raytheon Technologies Corporation Impingement cooling baffle
US10619499B2 (en) * 2017-01-23 2020-04-14 General Electric Company Component and method for forming a component

Also Published As

Publication number Publication date
EP3561236A1 (en) 2019-10-30
DE102018206259A1 (en) 2019-10-24
ES2934210T3 (en) 2023-02-20
US20190331000A1 (en) 2019-10-31
US11215073B2 (en) 2022-01-04

Similar Documents

Publication Publication Date Title
EP3561236B1 (en) Guide vane for a turbine of a turbomachine, turbine module and use method of the turbine module
EP0170938B1 (en) Blade and seal clearance optimization device for compressors of gas turbine power plants, particularly of gas turbine jet engines
EP2044293B1 (en) Gas turbine with a peripheral ring segment comprising a recirculation channel
DE112011104298B4 (en) Gas turbine engine with secondary air circuit
DE102015120127A1 (en) AXIAL COMPRESSOR DEVICE FOR CONTROLLING THE LEAKAGE IN THIS
DE102011052591B4 (en) Rotor blade for use in a rotary machine and turbine drive with such a rotor blade
EP2881541A1 (en) Tip cooling of a turbine rotor blade of a gas turbine
EP2639411B1 (en) Casing of a turbomachine with a by-passing system
DE102015122928A1 (en) Gas turbine seal
EP3699398A1 (en) Blade with no cover strip for a high-speed turbine stage
DE112015003934T5 (en) gas turbine
EP3093447A1 (en) Rotor of a turbine of a gas turbine with improved cooling air conduction
CH709266A2 (en) Turbine blade and method for balancing a tip shroud of a turbine blade and the gas turbine.
EP3290644A1 (en) Gas turbine
WO2016087214A1 (en) Turbine blade, associated rotor, and turbomachine
CH701151B1 (en) Turbo engine with a Verdichterradelement.
EP2808492B1 (en) Turbine stage with an discharge assembly and method for discharging a stream of sealing gas
EP3495639B1 (en) Compressor module for a turbomachine reducing the boundary layer in an intermediate compressor case
EP2725203B1 (en) Cool air guide in a housing structure of a fluid flow engine
DE102016124147A1 (en) Internal cooling configurations in turbine rotor blades
DE19735172A1 (en) Improved turbine disc entry prevention method and device
EP3159487A1 (en) Stator of a turbine of a gas turbine with improved cooling air conduction
EP3498972A1 (en) Turbine module for a turbomachine
DE102006010863B4 (en) Turbomachine, in particular compressor
CH712811A2 (en) Axial turbine of a turbocharger and turbocharger.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200427

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200908

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RIC1 Information provided on ipc code assigned before grant

Ipc: F01D 11/10 20060101ALN20220105BHEP

Ipc: F01D 11/06 20060101ALI20220105BHEP

Ipc: F01D 11/00 20060101ALI20220105BHEP

Ipc: F01D 9/06 20060101AFI20220105BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220215

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F01D 11/10 20060101ALN20220527BHEP

Ipc: F01D 11/06 20060101ALI20220527BHEP

Ipc: F01D 11/00 20060101ALI20220527BHEP

Ipc: F01D 9/06 20060101AFI20220527BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220707

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019006329

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1533251

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2934210

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20230220

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20221123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230323

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230223

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230323

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230417

Year of fee payment: 5

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019006329

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20230824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230415

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230430

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240423

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240418

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240517

Year of fee payment: 6