EP3560627B1 - Verfahren zur verarbeitung von flüssigem aluminium oder einer flüssigen aluminiumlegierung - Google Patents

Verfahren zur verarbeitung von flüssigem aluminium oder einer flüssigen aluminiumlegierung Download PDF

Info

Publication number
EP3560627B1
EP3560627B1 EP18168986.0A EP18168986A EP3560627B1 EP 3560627 B1 EP3560627 B1 EP 3560627B1 EP 18168986 A EP18168986 A EP 18168986A EP 3560627 B1 EP3560627 B1 EP 3560627B1
Authority
EP
European Patent Office
Prior art keywords
fraction
particles
refractory coating
contained
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18168986.0A
Other languages
English (en)
French (fr)
Other versions
EP3560627A1 (de
Inventor
Stefan Faber
Manuel HERZOG
Volker Hofmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ceranovis GmbH
Original Assignee
Ceranovis GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ceranovis GmbH filed Critical Ceranovis GmbH
Priority to EP18168986.0A priority Critical patent/EP3560627B1/de
Publication of EP3560627A1 publication Critical patent/EP3560627A1/de
Application granted granted Critical
Publication of EP3560627B1 publication Critical patent/EP3560627B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C3/00Selection of compositions for coating the surfaces of moulds, cores, or patterns

Definitions

  • the present invention relates to a method for processing liquid aluminum or a liquid aluminum alloy.
  • a release agent When processing melts of inorganic materials, particularly metal and glass melts, it is customary to apply a release agent to the surfaces of tools, aids and, in particular, molds that come into direct contact with the liquid materials.
  • a release agent which is referred to as a release layer in the present application, has the task of preventing a melt from reacting with the surfaces mentioned.
  • the adhesion of the melt to these surfaces should be as low as possible, both in the liquid and in the solid (cooled) state.
  • a metal or glass casting is easier to release from a mold that has a release liner.
  • a separating layer reduces wear on the mold and has a correspondingly positive effect on its durability.
  • the separating layers should not stick to the surfaces of castings and, if they are applied as wear-resistant coatings, should not bond too firmly to the surfaces of moulds, tools or auxiliary materials.
  • a separating layer should be non-flammable and also environmentally friendly, which means in particular that no toxic substances should escape at high temperatures.
  • separating layers are produced in layer thicknesses which are as uniform as possible by spreading or spraying on a spreadable or sprayable composition. Such a composition for producing separating layers is also referred to as a size.
  • Inorganic release layers are generally preferred in foundries because they do not thermally degrade in contact with liquid metal.
  • Commercially available inorganic separating layers are mostly based on the compounds graphite (C), molybdenum disulphide (MoS2) and hexagonal boron nitride (BN), which have anti-adhesive properties in relation to molten metal. Separating layers based on these materials are characterized by their extremely low wettability by liquid metal. They exhibit particularly low wettability with regard to aluminum and magnesium melts and melts of aluminum-magnesium alloys.
  • boron nitride is stable up to about 900 °C under the same conditions. Accordingly, boron nitride is particularly suitable as a component of separating layers for high-temperature use.
  • a size which, in addition to the oxidic components aluminum titanate, zirconium dioxide and aluminum oxide, contains an organosiloxane and boron nitride.
  • Separating layers produced with the sizing are particularly suitable for light metal casting.
  • the presence of the organosiloxane is disadvantageous. Separating layers produced using an organosiloxane usually contain SiO 2 , which can be reduced to undesirable Si by aggressive light metal melts (containing Mg, Ca or Sr).
  • the role of boron nitride is increasingly viewed critically.
  • the area surrounding a mold also regularly comes into contact with the sizing. Due to its lubricating properties, the boron nitride contained in the sizing makes the floor slippery and thus increases the likelihood of accidents at work.
  • the U.S. 2011/0203760 A1 and the DE 10 2010 017 000 A1 Separating layers are known for casting particularly reactive metals such as titanium.
  • an yttrium oxide sol is used as a binder.
  • a hydraulic binder is used, while according to the DE 10 2010 017 000 A1 a thixotropic organic binder, in particular a styrene-butadiene polymer dispersion, is used.
  • JP H05-318020 A describes a composition which, in addition to yttrium oxide particles, comprises an aluminum oxide powder as a ceramic filler and a zirconium oxide sol as an inorganic binder.
  • the composition is used as a size.
  • the object of the present invention was to provide a method for processing aluminum or a liquid aluminum alloy, in which a sizing is used which ideally can be completely free of boron nitride and the organosiloxane.
  • the invention proposes the method according to claim 1. Developments of the invention are the subject of dependent claims.
  • the separating layer consists of these three components, but it is entirely conceivable that in some other particularly preferred embodiments it also comprises one or more further components. More on that later.
  • the separating layer containing yttrium oxide is not inferior to the known separating layers containing boron nitride with regard to the aspect of wettability by liquid metal.
  • the separating layer is characterized by a pronounced long-term stability (chemical as well as physical resistance), in particular to very aggressive, reductive light metal melts. Furthermore, it can also be used at temperatures > 850 °C without any problems.
  • the percentages here relate to the layer as a whole, ie to the total weight of all components of the layer.
  • the percentages of the components that make up the separating layer preferably add up to 100%.
  • the preferred particle sizes given are based on values determined according to ISO 13320:2009 using laser diffraction for the starting materials from which the release layer is formed.
  • the particle sizes of the particulate yttrium oxide used do not generally change during the formation of the separating layer.
  • a filler with the high density mentioned brings great advantages in the manufacture of the separating layer. This preferably takes place as described in more detail below by spraying a suspension onto a surface.
  • the high densities cause an increase in momentum when spraying.
  • particles with very small particle sizes which, for example, enables the production of finely structured coating surfaces for casting visible parts. This is all the more true as yttrium oxide also has a very high density.
  • material density yttria 5.01 g/ cm3 aluminum oxide 3.94 g/ cm3 aluminum titanate 3.68 g/ cm3 zirconia 5.7 - 6.1 g/ cm3 zirconium mullite 3.94 g/ cm3 barium sulfate 4.50 g/ cm3
  • the material boron nitride frequently used in separating layers of the prior art has a density of only 2.25 g/cm 3
  • mica has a density of 2.77-2.88 g/cm 3
  • vermiculite layered silicate has a density of 2 .2 - 2.6 g/cm 3
  • talcum a density of 2.58 - 2.83 g/cm 3 .
  • particularly preferred ceramic materials can of course also be used in combination with one another.
  • Al 2 O 3 particles can be used in combination with Al 2 TiO 5 particles and/or zirconium mullite particles.
  • the preferred particle sizes given for the ceramic filler are also based on the values determined according to ISO 13320:2009 by means of laser diffraction for the starting materials from which the separating layer is formed.
  • the particle sizes of the ceramic filler used also generally do not change during the formation of the separating layer.
  • the inorganic binder used is a particulate binder and, according to the invention, preferably exclusively comprises particles of Al 2 O 3 .
  • nanoscale Al 2 O 3 particles can be used in combination with nanoscale ZrO 2 particles.
  • the inorganic binder is particularly preferably a particulate binder which comprises particles which are characterized by a particle size in the range from 100-200 nm.
  • the specified particle sizes are based on values that were determined using dynamic light scattering, in particular using dynamic light scattering in accordance with ISO 22412:2017 for the starting materials from which the separating layer is formed (see also the relevant statements in connection with the explanation of the size used according to the invention).
  • the particle sizes of the binder particles used change during the formation of the separating layer. Most of the binder particles sinter during formation of the parting layer and form bridges between the coarser yttria and filler particles. After the separating layer has hardened, it is usually no longer possible to detect any nanoscale particles with the corresponding initial sizes.
  • Water glasses are often used as binders in separating layers.
  • the particulate binder system preferably used here has the advantage that it chemically or physically binds comparatively little water.
  • high pH values > 12
  • alkaline water glasses are avoided. This can be advantageous in terms of occupational health and safety or during transport, storage and application.
  • the separating layers produced without using water glass are characterized by a significantly better ductility and thermal shock resistance in comparison.
  • separating layers produced according to the invention which contain Al 2 O 3 and Al 2 TiO 5 particles as filler and nanoscale Al 2 O 3 as binder.
  • the separating layer that can be produced using the method according to the invention comprises Al 2 O 3 particles as a filler and nanoscale Al 2 O 3 as a binder.
  • the separating layer comprises zirconium mullite particles as a filler and nanoscale Al 2 O 3 as a binder.
  • the separating layer is free of carbon.
  • release layers of the prior art often contain silicon dioxide as a result of the use of organosiloxanes, in particular organopolysiloxanes, in their manufacture.
  • organosiloxanes in particular organopolysiloxanes
  • the omission of the organosiloxanes ensures that no undesirable SiO 2 is formed during the production of the separating layer and that the separating layer consequently does not contain any SiO 2 either.
  • organosiloxanes in particular organopolysiloxanes, also favors the application and deposition of compositions for producing the separating layer on very hot surfaces (400-550° C.).
  • these compositions are sprayed onto the hot surfaces, particularly in the form of an aerosol. If possible, no components of the aerosol should lead to excessive gas and vapor development as a result of decomposition reactions and evaporation (CO 2 and H 2 O formation) in the stated temperature range.
  • the separating layer can also include a fourth component, the inorganic pigment.
  • the separating layer can be permanently colored and thus easily distinguished from the underlying surface. During the production of the separating layer, this makes it easier, for example, to visually check the layer thickness and then check wear.
  • the pigment should not decompose when in contact with molten metal.
  • thermally stable pigments are the titanate pigments and spinel pigments mentioned, in particular the CoAl 2 O 4 mentioned.
  • the sizing is free of boron nitride.
  • the particle sizes given are also based on values determined using dynamic light scattering.
  • the binder is particularly preferably used in the form of a suspension, in particular an aqueous suspension, of particles with the preferred particle sizes mentioned.
  • the specified particle sizes preferably relate to values determined for the suspension using dynamic light scattering in accordance with ISO 22412:2017.
  • the specified particle sizes therefore preferably relate to the hydrodynamic radii of the binder particles, which can be determined according to ISO 22412:2017.
  • the proportion of the suspending agent in the size is preferably in the range from 1 to 99% by weight, preferably from 20 to 90% by weight, particularly preferably in the range from 40 to 80% by weight, based in each case on the total weight of the Size including all solid and liquid components.
  • the suspension medium is particularly preferably water.
  • the organic pigment if any, is the pigment described above for coloring the release layer.
  • the sizing can include commercially available additives such as thickeners, wetting agents and surfactants.
  • the size according to the invention is applied to a surface of an object or the separating layer is formed before a liquid metal comes into contact with the surface.
  • the formation of the separating layer can take place in a separate operation preceding the processing of the liquid metal.
  • the size can be sprayed onto a hot mold so that the suspending agent escapes.
  • the object is particularly preferably a tool used in foundries which comes into direct contact with liquid metal. Molds, crucibles, casting tables and risers are particularly suitable.
  • a size was formed from the components yttrium oxide, Al 2 O 3 and Al 2 TiO 5 as filler, an aqueous Al 2 O 3 suspension as binder, the suspending agent polysugar and the dye CoAl 2 O 4 by dispersing in demineralized water . This was on a hot Mold sprayed on for aluminum casting. This resulted in evaporation of the water contained in the sizing and decomposition of the suspending agent.
  • a size was formed from the components yttrium oxide, zirconium mullite as a filler, an aqueous Al 2 O 3 suspension as a binder, the adjusting agent polysugar and a preservative by dispersing in demineralized water.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mold Materials And Core Materials (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zur Verarbeitung von flüssigem Aluminium oder einer flüssigen Aluminiumlegierung.
  • Bei der Verarbeitung von Schmelzen anorganischer Werkstoffe, insbesondere von Metall- und Glasschmelzen, ist es üblich, die Oberflächen von Werkzeugen, Hilfsmitteln und insbesondere von Formen, die mit den flüssigen Werkstoffen unmittelbar in Kontakt kommen, mit einem Trennmittel zu versehen. Ein solches Trennmittel, das in der vorliegenden Anmeldung als Trennschicht bezeichnet wird, hat die Aufgabe, die Reaktion einer Schmelze mit den genannten Oberflächen zu verhindern. Die Haftung der Schmelze an diesen Oberflächen soll sowohl im flüssigen als auch im festen (abgekühlten) Zustand möglichst gering sein. So lässt sich beispielsweise ein Metall- oder Glasgussteil leichter aus einer Form herauslösen, die mit einer Trennschicht versehen ist. Eine Trennschicht reduziert den Verschleiß der Form und wirkt sich entsprechend positiv auch auf deren Haltbarkeit aus.
  • Die Trennschichten sollten an den Oberflächen von Gussteilen nicht anhaften und, sofern sie als Verschleißschlichten aufgetragen werden, sich auch mit den Oberflächen der Formen, Werkzeuge oder Hilfsmittel nicht allzu fest verbinden. Darüber hinaus sollte eine Trennschicht nicht brennbar und zudem umweltverträglich sein, was insbesondere heißt, dass unter hohen Temperaturen keine toxischen Substanzen ausgasen sollten. In der Regel stellt man Trennschichten in möglichst gleichmäßigen Schichtdicken durch Aufstreichen oder Aufsprühen einer streich- bzw. sprühbaren Zusammensetzung her. Eine solche Zusammensetzung zur Herstellung von Trennschichten bezeichnet man auch als Schlichte.
  • Aus dem Stand der Technik sind sowohl rein organische als auch anorganische Trennschichten bekannt. Anorganische Trennschichten sind in Gießereien in der Regel bevorzugt, da sie sich im Kontakt mit flüssigem Metall nicht thermisch zersetzen. Kommerziell erhältliche anorganische Trennschichten basieren meist auf den Verbindungen Graphit (C), Molybdändisulfid (MoS2) und hexagonales Bornitrid (BN), die gegenüber Metallschmelzen Antihafteigenschaften aufweisen. Auf diesen Werkstoffen basierende Trennschichten zeichnen sich durch ihre außerordentlich geringe Benetzbarkeit durch flüssiges Metall aus. Besonders geringe Benetzbarkeit weisen sie gegenüber Aluminium- und Magnesium-Schmelzen sowie gegenüber Schmelzen aus Aluminium-Magnesium-Legierungen auf. Während allerdings Graphit an der Luft bereits bei Temperaturen um 500 °C, Molybdändisulfid sogar bereits ab 400 °C oxidiert wird, ist Bornitrid unter gleichen Bedingungen bis etwa 900 °C stabil. Entsprechend eignet sich Bornitrid insbesondere als Bestandteil von Trennschichten für den Hochtemperatureinsatz.
  • Aus Beispiel 4 der WO 2007/031224 A2 ist eine Schlichte bekannt, die neben den oxidischen Komponenten Aluminiumtitanat, Zirkondioxid und Aluminiumoxid ein Organosiloxan und Bornitrid enthält. Mit der Schlichte hergestellte Trennschichten eignen sich hervorragend insbesondere für den Leichtmetallguss. Nachteilhaft ist allerdings die Präsenz des Organosiloxans. Unter Einsatz eines Organosiloxans hergestellte Trennschichten enthalten in der Regel SiO2, das von aggressiven Leichtmetallschmelzen (Mg, Ca oder Sr haltig) zu unerwünschtem Si reduziert werden kann. Darüber hinaus wird zunehmend auch die Rolle des Bornitrids kritisch gesehen. Beim Applizieren einer Schlichte kommt regelmäßig auch die Umgebung einer Gussform mit der Schlichte in Kontakt. Aufgrund seinen schmierenden Eigenschaften verursacht das in der Schlichte enthaltene Bornitrid einen glitschigen Boden und erhöht damit die Wahrscheinlichkeit von Arbeitsunfällen.
  • Ebenfalls hohe Anteile an Bornitrid enthalten die aus der CN 107 309 388 A bekannten Schlichten.
  • Aus der US 4787439 A , der US 2011/0203760 A1 und der DE 10 2010 017 000 A1 sind Trennschichten für den Guss besonders reaktiver Metalle wie Titan bekannt. In der US 4787439 A wird als Binder ein Yttriumoxid-Sol verwendet. In der US 2011/0203760 A1 kommt im Gegensatz hierzu ein hydraulischer Binder zum Einsatz, während gemäß der DE 10 2010 017 000 A1 ein thixotroper organischer Binder, insbesondere eine Styrol-Butadien-Polymerdispersion, verwendet wird.
  • Aus der JP H05-318020 A ist eine Zusammensetzung beschrieben, die neben Yttriumoxidpartikeln als keramischen Füllstoff ein Aluminiumoxidpulver und als anorganische Binder ein Zirkoniumoxid-Sol umfasst. Die Zusammensetzung findet als Schlichte Verwendung.
  • Der vorliegenden Erfindung lag die Aufgabe zugrunde, ein Verfahren zur Verarbeitung von Aluminium oder einer flüssigen Aluminiumlegierung bereitzustellen, bei dem eine Schlichte verwendet wird, die im Idealfall gänzlich frei von Bornitrid und dem Organosiloxan sein kann.
  • Zur Lösung dieser Aufgabe schlägt die Erfindung das Verfahren gemäß Anspruch 1 vor. Weiterbildungen der Erfindung sind Gegenstand von Unteransprüchen.
  • Das erfindungsgemäße Verfahren dient der Verarbeitung von flüssigem Aluminium und flüssigen Aluminiumlegierungen aus der Gruppe mit Aluminium-Silizium-, Aluminium-Calcium-, Aluminium-Strontium- und Aluminium-Magnesium-Legierung. Eine gemäß dem erfindungsgemäßen Verfahren hergestellte Trennschicht ist frei von Bornitrid und zeichnet sich durch eine Kombination der drei unmittelbar folgenden Merkmale a. bis c. aus:
    1. a. Sie enthält partikuläres Yttriumoxid, und
    2. b. neben dem Yttriumoxid einen partikulären keramischen Füllstoff, und
    3. c. Partikel aus Al2O3 als anorganischen partikulären Binder, der die Yttriumoxid- und die Füllstoffpartikel miteinander verbindet.
  • In einigen besonders bevorzugten Ausführungsformen besteht die Trennschicht aus diesen drei Komponenten, es ist allerdings durchaus denkbar, dass sie in einigen weiteren besonders bevorzugten Ausführungsformen noch eine oder mehrere weitere Komponenten umfasst. Hierzu später noch mehr.
  • Überraschenderweise wurde gefunden, dass die Yttriumoxid enthaltende Trennschicht hinsichtlich dem Aspekt Benetzbarkeit durch flüssiges Metall nicht hinter den bekannten Bornitrid enthaltenden Trennschichten zurücksteht. Darüber hinaus zeichnet sich die Trennschicht durch eine ausgeprägte Langzeitstabilität (chemische wie auch physikalische Beständigkeit) insbesondere gegenüber sehr aggressiven, reduktiven Leichtmetallschmelzen aus. Weiterhin ist sie problemlos auch bei Temperaturen > 850 °C einsetzbar.
  • In einer bevorzugten Weiterbildung zeichnet sich die Trennschicht durch mindestens eines der unmittelbar folgenden Merkmale a. bis c., besonders bevorzugt durch eine Kombination aller drei Merkmale, aus:
    1. a. Das Yttriumoxid ist in der Trennschicht in einem Anteil von 5 - 65 Gew.-%, bevorzugt von 10 - 60 Gew.-%, enthalten.
    2. b. Der keramische Füllstoff ist in der Trennschicht in einem Anteil von 30 - 85 Gew.-%, bevorzugt von 30 - 70 Gew.-%, enthalten.
    3. c. Der anorganische Binder ist in der Trennschicht in einem Anteil von 5 - 25 Gew.-%, bevorzugt von 10 - 20 Gew.-%, enthalten.
  • Die Prozentangaben beziehen sich hierbei auf die Schicht insgesamt, also auf das Gesamtgewicht aller Bestandteile der Schicht. Die Prozentangaben der Komponenten, aus denen die Trennschicht besteht, addieren sich hierbei bevorzugt auf 100 %.
  • Das verwendete partikuläre Yttriumoxid zeichnet sich bevorzugt durch mindestens eines der unmittelbarfolgenden Merkmale a. und b., bevorzugt durch eine Kombination dieser Merkmale, aus:
    1. a. Es weist eine mittlere Partikelgröße (d50) im Bereich von 1 - 10 µm, bevorzugt von 1 - 9 µm, auf.
    2. b. Es weist eine maximale Partikelgröße (d100) von 30 µm, bevorzugt von 20 µm, besonders bevorzugt von 10 µm, auf.
  • Die angegebenen bevorzugten Partikelgrößen basieren auf Werten, die gemäß ISO 13320:2009 mittels Laserbeugung für die Ausgangsmaterialien, aus denen die Trennschicht gebildet wird, bestimmt wurden. Die Partikelgrößen des verwendeten partikulären Yttriumoxids ändern sich bei der Bildung der Trennschicht in der Regel nicht.
  • Der verwendete keramische Füllstoff zeichnet sich in bevorzugten Ausführungsformen durch mindestens eines der unmittelbar folgenden Merkmale a. bis e., bevorzugt durch eine Kombination dieser Merkmale, gegebenenfalls aller dieser Merkmale, aus:
    1. a. Er umfasst, vorzugsweise ausschließlich, Partikel aus einem Material oder aus Materialien mit einer Dichte von mindestens 3,0 g/cm3, bevorzugt von mindestens 3,5 g/cm3.
    2. b. Er umfasst, vorzugsweise ausschließlich, Partikel aus einem der folgenden Materialien: Aluminiumoxid (Al2O3), Aluminiumtitanat (Al2TiO5), Zirkoniumdioxid (ZrO2), Zirkonmullit und Bariumsulfat (BaSO4).
    3. c. Das Aluminiumoxid ist in der Trennschicht als Korund enthalten.
    4. d. Die Partikel des keramischen Füllstoffs zeichnen sich durch eine mittlere Partikelgröße (d50) im Bereich von 1 - 10 µm, bevorzugt von 1 - 9 µm, aus.
    5. e. Die Partikel des keramischen Füllstoffs zeichnen sich durch eine maximale Partikelgröße (d100) von 5 - 30 µm, bevorzugt von 20 µm, besonders bevorzugt von 10 µm, aus.
  • Die Verwendung eines Füllstoffs mit der genannten hohen Dichte bringt große Vorteile bei der Herstellung der Trennschicht mit sich. Diese erfolgt, wie unten noch detaillierter beschrieben ist, bevorzugt durch Aufsprühen einer Suspension auf eine Oberfläche. Die hohen Dichten bewirken eine Impulserhöhung beim Sprühen. In der Folge ist es möglich, Partikel mit sehr geringen Partikelgrößen einzusetzen, was beispielsweise die Erzeugung fein strukturierter Schlichten-Oberflächen für den Guss von Sichtteilen ermöglicht. Dies gilt umso mehr, als auch Yttriumoxid eine sehr hohe Dichte aufweist.
  • Die Dichten von Yttriumoxid und einiger der bevorzugten als Füllstoff einsetzbaren Materialien sind im Folgenden angegeben:
    Material Dichte
    Yttriumoxid 5,01 g/cm3
    Aluminiumoxid 3,94 g/cm3
    Aluminiumtitanat 3,68 g/cm3
    Zirkoniumdioxid 5,7 - 6,1 g/cm3
    Zirkonmullit 3,94 g/cm3
    Bariumsulfat 4,50 g/cm3
  • Zum Vergleich: Das in Trennschichten des Standes der Technik häufig verwendete Material Bornitrid weist eine Dichte von lediglich 2,25 g/cm3 auf, Glimmer eine Dichte von 2,77-2,88 g/cm3, Vermiculit Schichtsilikat eine Dichte von 2,2 - 2,6 g/cm3 und Talkum eine Dichte von 2,58 - 2,83 g/cm3.
  • Die unter dem Merkmal b. gelisteten, besonders bevorzugten keramischen Materialien können natürlich auch in Kombination miteinander eingesetzt werden. So können beispielsweise Al2O3-Partikel kombiniert mit Al2TiO5- Partikeln und/oder Zirkonmullit-Partikeln eingesetzt werden.
  • Auch die für den keramischen Füllstoff angegebenen bevorzugten Partikelgrößen basieren auf den Werten, die gemäß ISO 13320:2009 mittels Laserbeugung für die Ausgangsmaterialien, aus denen die Trennschicht gebildet wird, bestimmt wurden. Auch die Partikelgrößen des verwendeten keramischen Füllstoffs ändern sich bei der Bildung der Trennschicht in der Regel nicht.
  • Der verwendete anorganische Binder ist ein partikulärer Binder und umfasst erfindungsgemäß, vorzugsweise ausschließlich, Partikel aus Al2O3 . Insbesondere können nanoskalige Al2O3-Partikel kombiniert mit nanoskaligen ZrO2-Partikeln eingesetzt werden.
  • Besonders bevorzugt ist der anorganische Binder ein partikulärer Binder, der Partikel umfasst, die sich durch eine Partikelgröße im Bereich von 100 - 200 nm auszeichnen.
  • Die angegebenen Partikelgrößen basieren auf Werten, die mittels dynamischer Lichtstreuung, insbesondere mittels dynamischer Lichtstreuung gemäß ISO 22412:2017 für die Ausgangsmaterialien, aus denen die Trennschicht gebildet wird, bestimmt wurden (siehe hierzu auch die entsprechenden Ausführungen im Zusammenhang mit der Erläuterung der im Rahmen des erfindungsgemäßen Verfahrens verwendeten Schlichte). Die Partikelgrößen der verwendeten Binderpartikel ändern sich allerdings bei der Bildung der Trennschicht. Der Großteil der Binderpartikel sintert bei der Bildung der Trennschicht und bildet Brücken zwischen den gröberen Yttriumoxid- und Füllstoffpartikeln. Nach Aushärtung der Trennschicht lassen sich in der Regel keine nanoskaligen Partikel mit den entsprechenden Ausgangsgrößen mehr nachweisen.
  • In Trennschichten werden als Binder häufig Wassergläser eingesetzt. Gegenüber diesen hat das hier bevorzugt verwendete partikuläre Bindersystem den Vorteil, dass es vergleichsweise wenig Wasser chemisch oder physikalisch bindet. Zudem werden hohe pH Werte (> 12) vermieden, die bei alkalischen Wassergläsern immer auftreten. Dies kann vorteilhaft beim Arbeitsschutz bzw. bei Transport, Lagerung und Applikation sein. Weiterhin zeichnen sich die ohne Verwendung von Wasserglas hergestellten Trennschichten durch eine im Vergleich deutlich bessere Duktilität und Temperaturschockbeständigkeit aus.
  • Besonders bevorzugt sind erfindungsgemäß hergestellte Trennschichten, die Al2O3- und Al2TiO5-Partikel als Füllstoff und nanoskaliges Al2O3 als Binder enthalten. In einem anderen bevorzugten Fall umfasst die gemäß dem erfindungsgemäßen Verfahren herstellbare Trennschicht Al2O3-Partikel als Füllstoff und nanoskaliges Al2O3 als Binder. In einem weiteren Fall umfasst die Trennschicht Zirkonmullit-Partikel als Füllstoff und nanoskaliges Al2O3 als Binder.
  • Eine erfindungsgemäß hergestellt Trennschicht zeichnet sich bevorzugt das unmittelbar folgende Merkmale a. aus:
    1. a. Die Trennschicht ist frei von Siliziumoxid.
  • In besonders bevorzugten Ausführungsformen ist die Trennschicht frei Kohlenstoff.
  • Wie eingangs erläutert wurde, enthalten Trennschichten des Standes der Technik häufig Siliziumdioxid als Folge der Verwendung von Organosiloxanen, insbesondere Organopolysiloxanen, bei ihrer Herstellung. Der Verzicht auf die Organosiloxane gewährleistet, dass sich bei der Herstellung der Trennschicht kein unerwünschtes SiO2 bildet und die Trennschicht in der Folge auch kein SiO2 enthält.
  • Der Ausschluss von Organosiloxanen, insbesondere Organopolysiloxanen, begünstigt darüber hinaus die Applikation und Abscheidung von Zusammensetzungen zur Herstellung der Trennschicht auf sehr heißen Oberflächen (400 - 550 °C). In vielen Ausführungsformen werden diese Zusammensetzungen auf die heißen Oberflächen aufgesprüht, insbesondere in Form eines Aerosols. In dem genannten Temperaturbereich sollten möglichst keine Bestandteile des Aerosols zu einer übermäßigen Gas- und Dampfentwicklung infolge von Zersetzungsreaktionen und Verdampfung (CO2- und H2O-Bildung) führen.
  • Der vollständige Verzicht auf Bornitrid verringert die Wahrscheinlichkeit von Arbeitsunfällen bei der Herstellung der Trennschicht und reduziert die Oxidationsempfindlichkeit der Trennschicht bei Temperaturen > 800 °C, die bei Bornitrid einsatzbeschränkend wirkt.
  • Der vollständige Verzicht auf kohlenstoffhaltige Materialien gewährleistet, dass aus der Trennschicht beim Kontakt mit flüssigen Metallen keine gasförmigen Zersetzungsprodukte austreten.
  • In einigen besonders bevorzugten Ausführungsformen zeichnet sich die gemäß dem erfindungsgemäßen Verfahren herstellbare Trennschicht durch mindestens eines der unmittelbar folgenden Merkmale a. bis e., bevorzugt durch eine Kombination dieser Merkmale, gegebenenfalls aller dieser Merkmale, aus:
    1. a. Die Trennschicht enthält ein anorganisches Pigment.
    2. b. Das anorganische Pigment ist stabil bei Temperaturen von bis zu 1000 °C.
    3. c. Das anorganische Pigment ist ausgewählt aus der Gruppe mit Titanat-Pigmenten und Spinell-Pigmenten.
    4. d. Das anorganische Pigment ist ausgewählt aus der Gruppe mit Cobaltaluminat (CoAl2O4), Zinkaluminat (ZnAl2O4), farbigen Spinellpigmenten und Ferriten.
    5. e. Das anorganische Pigment ist in der Trennschicht in einem Anteil von bis zu 10 Gew.-%, bevorzugt in einem Anteil im Bereich von 0,1 Gew.-% bis 10 Gew.-%, insbesondere in einem Anteil im Bereich von 0,5 Gew.-% bis 5 Gew.-%, enthalten.
  • Neben den Komponenten Yttriumoxid, keramischer Füllstoff und Binder kann die Trennschicht also eine vierte Komponente, das anorganische Pigment, umfassen. Durch den Pigmentzusatz kann die Trennschicht dauerhaft eingefärbt und somit gut von der darunter liegenden Oberfläche unterschieden werden. Dies erleichtert bei der Herstellung der Trennschicht beispielsweise die visuelle Kontrolle der Schichtdicke sowie im Anschluss eine Verschleißkontrolle.
  • Idealerweise sollte sich das Pigment bei Kontakt mit flüssigen Metallschmelzen nicht zersetzen. Beispiele für thermisch stabile Pigmente sind die genannten Titanat-Pigmente und Spinell-Pigmente, insbesondere das genannte CoAl2O4.
  • Die in einem erfindungsgemäßen Verfahren zum Einsatz kommende Schlichte zeichnet sich durch eine Kombination der vier unmittelbar folgenden Merkmale a. bis d. aus:
    1. a. Sie enthält partikuläres Yttriumoxid, und
    2. b. neben dem Yttriumoxid einen partikulären keramischen Füllstoff, und
    3. c. Partikel aus Al2O3 als anorganischen partikulären Binder, um die Yttriumoxid- und die Füllstoffpartikel miteinander zu verbinden, und
    4. d. ein Suspensionsmittel.
  • Die Schlichte ist frei von Bornitrid.
  • Betreffend bevorzugte Ausführungsformen der Schlichtekomponenten Yttriumoxid und partikulärer keramischer Füllstoff kann auf die obigen Ausführungen im Zusammenhang mit der beschriebenen Trennschicht verwiesen werden, sowohl hinsichtlich ihrer bevorzugten stofflichen Beschaffenheit als auch hinsichtlich ihrer bevorzugten Partikelgrößenverteilungen.
  • Zur stofflichen Beschaffenheit des Binders bedürfen die im Zusammenhang mit der beschriebenen Trennschicht getroffenen Aussagen keiner Ergänzung, sehr wohl jedoch hinsichtlich der Partikelgrößen der Binderpartikel. Wie oben ausgeführt wurde, ändern sich diese ja bei der Bildung der Trennschicht.
  • Besonders bevorzugt zeichnet sich der anorganische Binder in der Schlichte durch mindestens eines der unmittelbar folgenden Merkmale a. und b., insbesondere durch eine Kombination der beiden Merkmale, aus:
    1. a. Der anorganische Binder ist ein partikulärer Binder, wobei die Partikel des anorganischen Binders sich durch eine mittlere Partikelgröße (d50) im Bereich von 80 - 100 nm auszeichnen.
    2. b. Der anorganische Binder ist ein partikulärer Binder, wobei die Partikel des anorganischen Binders sich durch eine maximale Partikelgröße (d100) von 150 nm, bevorzugt von 120 nm, auszeichnen.
  • Die unter a. und b. angegebenen Partikelgrößen basieren ebenfalls auf Werten, die mittels dynamischer Lichtstreuung bestimmt wurden.
  • Besonders bevorzugt wird der Binder in Form einer Suspension, insbesondere einer wässrigen Suspension, von Partikeln mit den genannten bevorzugten Partikelgrößen eingesetzt. In diesem Fall beziehen sich die angegebenen Partikelgrößen bevorzugt auf mittels dynamischer Lichtstreuung gemäß ISO 22412:2017 für die Suspension ermittelte Werte. Die angegebenen Partikelgrößen beziehen sich somit bevorzugt auf die gemäß ISO 22412:2017 bestimmbaren hydrodynamischen Radien der Binderpartikel.
  • Der Anteil an dem Suspensionsmittel in der Schlichte liegt bevorzugt im Bereich von 1 bis 99 Gew.-%, bevorzugt von 20 - 90 Gew.-%, besonders bevorzugt im Bereich von 40 - 80 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Schlichte einschließlich aller festen und flüssigen Komponenten. Bei dem Suspensionsmittel handelt es sich besonders bevorzugt um Wasser.
  • Besonders bevorzugt zeichnet sich die Schlichte durch mindestens eines der unmittelbar folgenden Merkmale a. und b., besonders bevorzugt durch eine Kombination der Merkmale a. und b., aus:
    1. a. Die Schlichte umfasst mindestens ein Additiv, das ihre Verarbeitungseigenschaften beeinflusst.
    2. b. Die Schlichte enthält ein anorganisches Pigment.
  • Bei dem organischen Pigment handelt es sich gegebenenfalls um das oben beschriebene Pigment zur Einfärbung der Trennschicht.
  • Als Additiv kann die Schlichte handelsübliche Additive wie Verdicker, Netzmittel und Tenside umfassen.
  • In einer bevorzugten Weiterbildung zeichnet sich die Schlichte durch mindestens eines der unmittelbar folgenden Merkmale a. bis e., besonders bevorzugt durch eine Kombination der Merkmale a. bis e., aus:
    1. a. Das Yttriumoxid ist in der Schlichte, bezogen auf deren Feststoffanteil, in einem Anteil von 1 - 40 Gew.-%, bevorzugt von 2 - 20 Gew.-%, enthalten.
    2. b. Der keramische Füllstoff ist in der Schlichte, bezogen auf deren Feststoffanteil, in einem Anteil von 10 - 50 Gew.-%, bevorzugt 20 - 40 Gew.-%, enthalten.
    3. c. Der anorganische Binder ist in der Schlichte, bezogen auf deren Feststoffanteil, in einem Anteil von 0,5 - 30 Gew.-%, bevorzugt von 0,5 - 20 Gew.-%, enthalten.
    4. d. Das mindestens eine Additiv ist in der Schlichte, bezogen auf deren Feststoffanteil, in einem Anteil von 0,5 - 15 Gew.-%, bevorzugt von 1 - 10 Gew.-%, enthalten.
    5. e. Das anorganische Pigment ist in der Schlichte, bezogen auf deren Feststoffanteil, in einem Anteil von 0,5 - 10 Gew.-%, bevorzugt von 0,5 - 5 Gew.-%, enthalten.
  • Gemäß dem erfindungsgemäßen Verfahren zur Verarbeitung von flüssigem Aluminium oder einer flüssigen Aluminiumlegierung wird auf eine Oberfläche eines Gegenstands die erfindungsgemäße Schlichte aufgebracht oder die Trennschicht gebildet, bevor ein flüssiges Metall mit der Oberfläche in Kontakt tritt. Die Bildung der Trennschicht kann grundsätzlich in einem separaten, der Verarbeitung des flüssigen Metalls vorgeschalteten Arbeitsgang erfolgen. So kann die Schlichte beispielsweise auf eine heiße Form gesprüht werden, so dass das Suspensionsmittel entweicht.
  • Besonders bevorzugt ist der Gegenstand ein in Gießereien verwendetes Werkzeug, das unmittelbar mit flüssigem Metall in Kontakt tritt. In Frage kommen insbesondere Formwerkzeuge, Tiegel, Gießtische und Steigrohre.
  • Weitere Merkmale der Erfindung sowie aus der Erfindung resultierende Vorteile ergeben sich aus den nachfolgenden Ausführungsbeispielen, anhand derer die Erfindung erläutert wird. Die nachfolgend beschriebenen Ausführungsformen dienen lediglich zur Erläuterung und zum besseren Verständnis der Erfindung und sind in keiner Weise einschränkend zu verstehen.
    (1) Aus den Komponenten Yttriumoxid, Al2O3 und Al2TiO5 als Füllstoff, einer wässrigen Al2O3-Suspension als Binder, dem Stellmittel Polyzucker und dem Farbstoff CoAl2O4 wurde durch Dispergieren in demineralisiertem Wasser eine Schlichte gebildet. Diese wurde auf ein heißes Formwerkzeug für den Aluminiumguss aufgesprüht. Hierbei kam es zu einer Verdunstung des in der Schlichte enthaltenen Wassers sowie zu einer Zersetzung des Stellmittels. Die Zusammensetzung der Schlichte und der gebildeten Trennschicht lassen sich der folgenden Tabelle entnehmen:
    Komponente Schlichtezusammensetzung Trennschichtzusammensetzung
    Füllstoff Al2O3 (d50=0.40 µm) 7,20 Gew.-% 42,06 Gew.-%
    Füllstoff Al2TiO5 (d50=3µm) 1,00 Gew.-% 11,68 Gew.-%
    Als Binder wässrige Al2O3-Suspension (d50=80nm, Feststoffgehalt 40 %) 3,60 Gew.-% 16,82 Gew.-%
    Stellmittel Polyzucker 5,00 Gew.-%
    Farbstoff CoAl2O4 blau 2,10 Gew.-% 4,91 Gew.-%
    Yttriumoxid (d50=4,5µm) 2,10 Gew.-% 24,53 Gew.-%
    Demineralisiertes Wasser 79,00 Gew.-%

    (2) Aus den Komponenten Yttriumoxid, Al2O3 als Füllstoff, einer wässrigen Al2O3-Suspension als Binder und dem Stellmittel Polyzucker wurde durch Dispergieren in demineralisiertem Wasser eine Schlichte gebildet. Diese wurde auf ein heißes Formwerkzeug für den Aluminiumguss aufgesprüht. Hierbei kam es zu einer Verdunstung des in der Schlichte enthaltenen Wassers sowie zu einer Zersetzung des Stellmittels. Die Zusammensetzung der Schlichte und der gebildeten Trennschicht lassen sich der folgenden Tabelle entnehmen:
    Komponente Schlichtezusammensetzung Trennschichtzusammensetzung
    Füllstoff Al2O3 (d50=0.40 µm) 20,00 Gew.-% 35,97 Gew.-%
    Als Binder wässrige Al2O3-Suspension (d50=80nm, Feststoffgehalt 40 %) 7,00 Gew.-% 10,07 Gew.-%
    Stellmittel Polyzucker 5,00 Gew.-%
    Yttriumoxid (d50=4,5µm) 15,00 Gew.-% 53,96 Gew.-%
    Demineralisiertes Wasser 53,00 Gew.-%

    (3) Aus den Komponenten Yttriumoxid, Zirkonmullit als Füllstoff, einer wässrigen Al2O3-Suspension als Binder, dem Stellmittel Polyzucker und einem Konservierungsmittel wurde durch Dispergieren in demineralisiertem Wasser eine Schlichte gebildet. Diese wurde auf ein heißes Formwerkzeug für den Aluminiumguss aufgesprüht. Hierbei kam es zu einer Verdunstung des in der Schlichte enthaltenen Wassers sowie zu einer Zersetzung des Stellmittels. Die Zusammensetzung der Schlichte und der gebildeten Trennschicht lassen sich der folgenden Tabelle entnehmen:
    Komponente Schlichtezusammensetzung Trennschichtzusammensetzung
    Füllstoff Zirkonmullit (d50=6,5µm) 50,00 Gew.-% 69,06 Gew.-%
    Als Binder wässrige Al2O3-Suspension (d50=80nm, Feststoffgehalt 40 %) 30,00 Gew.-% 17,12 Gew.-%
    Stellmittel Polyzucker 8,50 Gew.-%
    Konservierungsmittel 0,20 Gew.-%
    Yttriumoxid (d50=4,5µm) 10,00 Gew.-% 13,82 Gew.-%
    Demineralisiertes Wasser 1,30 Gew.-%

Claims (9)

  1. Verfahren zur Metallverarbeitung, bei dem flüssiges Aluminium oder eine flüssige Aluminiumlegierung aus der Gruppe mit Aluminium-Silizium-, Aluminium-Calcium-, Aluminium-Strontiumund Aluminium-Magnesium-Legierung mit der Oberfläche eines Gegenstands in Kontakt tritt, wobei auf die Oberfläche vor dem Kontakt mit dem flüssigen Aluminium oder der flüssigen Aluminiumlegierung eine Schlichte aufgetragen wird, wobei die Schlichte frei von Bornitrid und von einem Organosiloxan ist und
    a. partikuläres Yttriumoxid, und
    b. neben dem Yttriumoxid einen partikulären keramischen Füllstoff, und
    c. Partikel aus Al2O3 als anorganischen partikulären Binder, um die Yttriumoxid- und die Füllstoffpartikel miteinander zu verbinden, und
    d. ein Suspensionsmittel
    enthält.
  2. Verfahren nach Anspruch 1 mit mindestens einem der folgenden Merkmale:
    a. DerAnteil an dem Suspensionsmittel in der Schlichte liegt im Bereich von 20 - 90 Gew.-%.
    b. Das Suspensionsmittel ist Wasser.
  3. Verfahren nach einem der Ansprüche 1 oder 2 mit mindestens einem der folgenden Merkmale:
    a. Die Schlichte umfasst mindestens ein Additiv, das ihre Verarbeitungseigenschaften beeinflusst.
    b. Die Schlichte enthält ein anorganisches Pigment.
  4. Verfahren nach einem der Ansprüche 1 bis 3 mit mindestens einem der folgenden Merkmale:
    a. Das Yttriumoxid ist in der Schlichte, bezogen auf deren Feststoffanteil, in einem Anteil von 1 - 40 Gew.-% enthalten.
    b. Der keramische Füllstoff ist in der Schlichte, bezogen auf deren Feststoffanteil, in einem Anteil von 10 - 50 Gew.-% enthalten.
    c. Der anorganische Binder ist in der Schlichte, bezogen auf deren Feststoffanteil, in einem Anteil von 0,5 - 30 Gew.-% enthalten.
  5. Verfahren nach einem der vorhergehenden Ansprüche mit mindestens einem der folgenden Merkmale:
    a. Das Yttriumoxid ist in der Schlichte, bezogen auf deren Feststoffanteil, in einem Anteil von 2 - 20 Gew.-% enthalten.
    b. Der keramische Füllstoff ist in der Schlichte, bezogen auf deren Feststoffanteil, in einem Anteil von 20 - 40 Gew.-% enthalten.
    c. Der anorganische Binder ist in der Schlichte, bezogen auf deren Feststoffanteil, in einem Anteil von 0,5 - 20 Gew.-% enthalten.
  6. Verfahren nach einem der Ansprüche 3 bis 5 mit mindestens einem der folgenden Merkmale:
    a. Das mindestens eine Additiv ist in der Schlichte, bezogen auf deren Feststoffanteil, in einem Anteil von 0,5 - 15 Gew.-% enthalten.
    b. Das anorganische Pigment ist in der Schlichte, bezogen auf deren Feststoffanteil, in einem Anteil von 0,5 - 10 Gew.-% enthalten.
  7. Verfahren nach einem der vorhergehenden Ansprüche mit dem folgenden zusätzlichen Merkmal:
    a. Der anorganische partikuläre Binder umfasst Partikel aus Al2O3 und Partikel aus ZrO2.
  8. Verfahren nach einem der Ansprüche 1 bis 6 mit dem folgenden zusätzlichen Merkmal:
    a. Der anorganische partikuläre Binder umfasst ausschließlich Partikel ausAl2O3.
  9. Verfahren nach einem der Ansprüche 1 bis 6 mit den folgenden zusätzlichen Merkmalen:
    a. Der anorganische partikuläre Binder umfasst nanoskaliges Al2O3, und
    b. Der keramische Füllstoff umfasst Aluminiumoxid-Partikel oder Zirkonmullit-Partikel oder Aluminiumtitanat- und Aluminiumoxid-Partikel.
EP18168986.0A 2018-04-24 2018-04-24 Verfahren zur verarbeitung von flüssigem aluminium oder einer flüssigen aluminiumlegierung Active EP3560627B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18168986.0A EP3560627B1 (de) 2018-04-24 2018-04-24 Verfahren zur verarbeitung von flüssigem aluminium oder einer flüssigen aluminiumlegierung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP18168986.0A EP3560627B1 (de) 2018-04-24 2018-04-24 Verfahren zur verarbeitung von flüssigem aluminium oder einer flüssigen aluminiumlegierung

Publications (2)

Publication Number Publication Date
EP3560627A1 EP3560627A1 (de) 2019-10-30
EP3560627B1 true EP3560627B1 (de) 2022-06-08

Family

ID=62067386

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18168986.0A Active EP3560627B1 (de) 2018-04-24 2018-04-24 Verfahren zur verarbeitung von flüssigem aluminium oder einer flüssigen aluminiumlegierung

Country Status (1)

Country Link
EP (1) EP3560627B1 (de)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05318020A (ja) * 1992-05-15 1993-12-03 Kawasaki Steel Corp チタンまたはチタン合金精密鋳造用鋳型材料およびそれを用いた鋳造品
EP1486473A1 (de) * 2003-06-13 2004-12-15 ESK Ceramics GmbH & Co.KG Dauerhafte Bornitrid-Formtrennschichten für das Druckgiessen von Nichteisenmetallen

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3683086D1 (de) * 1985-06-06 1992-02-06 Remet Corp Giessen von reaktionsfaehigen metallen in keramische formen.
DE102005045666A1 (de) 2005-09-14 2007-03-15 Itn Nanovation Gmbh Schicht oder Beschichtung sowie Zusammensetzung zu ihrer Herstellung
DE102008042376A1 (de) * 2008-09-25 2010-04-08 G4T Gmbh Verfahren zur Herstellung einer Gussform zum Vergießen hochreaktiver Schmelzen
US8122942B2 (en) * 2009-05-29 2012-02-28 General Electric Company Casting processes and yttria-containing facecoat material therefor
CN107309388A (zh) * 2017-08-12 2017-11-03 合肥市田源精铸有限公司 一种熔模精密铸造复合型涂料

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05318020A (ja) * 1992-05-15 1993-12-03 Kawasaki Steel Corp チタンまたはチタン合金精密鋳造用鋳型材料およびそれを用いた鋳造品
EP1486473A1 (de) * 2003-06-13 2004-12-15 ESK Ceramics GmbH & Co.KG Dauerhafte Bornitrid-Formtrennschichten für das Druckgiessen von Nichteisenmetallen

Also Published As

Publication number Publication date
EP3560627A1 (de) 2019-10-30

Similar Documents

Publication Publication Date Title
EP1924537B1 (de) Verwendung einer zusammensetzung zur herstellung einer formtrennschicht
EP2058289B1 (de) Fest haftende siliciumnitridhaltige Trennschicht
EP1924372B1 (de) Schutzschicht für eine keramische oberfläche in einem giesswerkzeug
WO2004110680A2 (de) Dauerhafte bn-formtrennschichten für das druckgiessen von nichteisenmetallen
WO2007028615A2 (de) Formtrennschicht für das giessen von nichteisenmetallen
DE102005050593A1 (de) Dauerhafte siliciumnitridhaltige Hartbeschichtung
EP3565673A1 (de) SCHLICHTEZUSAMMENSETZUNG FÜR DIE GIEßEREIINDUSTRIE, ENTHALTEND PARTIKULÄRES, AMORPHES SILIZIUMDIOXID UND SÄURE
EP2057107B1 (de) Schlichte zur herstellung einer bn-haltigen beschichtung, verfahren zu deren herstellung, beschichteter körper, dessen herstellung und dessen verwendung
WO2008052833A1 (de) Werkstoff für tribologische anwendungen
EP2133165B1 (de) Verfahren zum Vergießen von Kupfer und kupferhaltigen Legierungen
DE102014108843A1 (de) Gießpulver, Gießschlacke und Verfahren zum Gießen von Stahl
DE68905305T2 (de) Beschichtete ausdehnbare kernstücke für giessformen sowie giessformen und giesslinge daraus.
DE19752776C1 (de) Verfahren zur Herstellung eines Bauteils aus Al¶2¶0¶3¶/Titanaluminid-Verbundwerkstoff und dessen Verwendung
DE102017107655A1 (de) Verwendung einer Säure enthaltenden Schlichtezusammensetzung in der Gießereiindustrie
DE3009490C2 (de)
EP1993755B1 (de) Formtrennschicht für das giessen von nichteisenmetallen
EP1486473B1 (de) Dauerhafte Bornitrid-Formtrennschichten für das Druckgiessen von Nichteisenmetallen
EP3560627B1 (de) Verfahren zur verarbeitung von flüssigem aluminium oder einer flüssigen aluminiumlegierung
DE2139568A1 (de) Feuerfeste Gegenstände und Verfahren zu ihrer Herstellung
EP2723916B1 (de) Giesstechnisches bauteil und verfahren zum aufbringen einer korrosionsschutzschicht
WO2009007093A2 (de) Schlichtesystem zum schutz von giesswerkzeugen
EP1985594A1 (de) Formkörper mit einer dauerhaften siliciumnitridhaltigen Hartbeschichtung, Verfahren zu dessen Herstellung und dessen Verwendung
DE102009009559B4 (de) Verfahren zum Verlängern der Standzeit von technischen Oberflächen
DE10322363B4 (de) Brandschutzzusammensetzung
DE102019116702A1 (de) Geschlichtete Gießformen erhältlich aus einer Formstoffmischung enthaltend ein anorganisches Bindemittel und Phosphat- und oxidische Borverbindungen, ein Verfahren zu deren Herstellung und deren Verwendung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200331

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200630

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20211202

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1496566

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220615

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018009849

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220908

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220909

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221010

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221008

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018009849

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

26N No opposition filed

Effective date: 20230310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230420

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230413

Year of fee payment: 6

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230424

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230430

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230430

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230424

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1496566

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230424