EP3544003B1 - Vorrichtung und verfahren zum ermitteln eines schätzwerts - Google Patents

Vorrichtung und verfahren zum ermitteln eines schätzwerts Download PDF

Info

Publication number
EP3544003B1
EP3544003B1 EP19167397.9A EP19167397A EP3544003B1 EP 3544003 B1 EP3544003 B1 EP 3544003B1 EP 19167397 A EP19167397 A EP 19167397A EP 3544003 B1 EP3544003 B1 EP 3544003B1
Authority
EP
European Patent Office
Prior art keywords
energy
band
measure
signal
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19167397.9A
Other languages
English (en)
French (fr)
Other versions
EP3544003A1 (de
Inventor
Michael Schug
Johannes Hilpert
Stefan Geyersberger
Max Neuendorf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority to PL19167397T priority Critical patent/PL3544003T3/pl
Publication of EP3544003A1 publication Critical patent/EP3544003A1/de
Application granted granted Critical
Publication of EP3544003B1 publication Critical patent/EP3544003B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/022Blocking, i.e. grouping of samples in time; Choice of analysis windows; Overlap factoring
    • G10L19/025Detection of transients or attacks for time/frequency resolution switching
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/002Dynamic bit allocation
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/03Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters

Definitions

  • the present invention relates to coders for coding a signal comprising audio and / or video information, and more particularly to estimating a need for information units for coding this signal.
  • An audio signal to be coded is fed in at an input 1000. This is first fed to a scaling stage 1002, in which what is known as AAC gain control is carried out in order to determine the level of the audio signal. Page information from the scaling is fed to a bitstream formatter 1004, as shown by the arrow between block 1002 and block 1004. The scaled audio signal is then fed to an MDCT filter bank 1006. In the AAC coder, the filter bank implements a modified discrete cosine transform with 50% overlapping windows, the window length being determined by a block 1008.
  • block 1008 is provided for windowing transient signals with shorter windows and windowing more stationary signals with longer windows.
  • the purpose of this is that due to the shorter window for transient signals a higher time resolution is achieved (at the expense of the frequency resolution), while for more stationary signals a higher frequency resolution (at the expense of the time resolution) through longer windows is achieved, with longer windows tending to be preferred because they promise a greater coding gain.
  • each sub-band signal having a certain limited bandwidth that is determined by the corresponding sub-band channel in the filter bank 1006 is determined, and each sub-band signal has a certain number of sub-band samples.
  • the filter bank outputs successive blocks of MDCT spectral coefficients viewed over time, which, generally speaking, represent successive short-term spectra of the audio signal to be encoded at input 1000.
  • TNS temporal noise shaping
  • the TNS technique is used to shape the temporal shape of the quantization noise within each window of the transformation. This is achieved by applying a filtering process to parts of the spectral data of each channel.
  • the coding is done on a window basis.
  • the following steps are carried out in order to use the TNS tool on a window of spectral data, i.e. on a block of spectral values.
  • a frequency range is selected for the TNS tool.
  • a suitable choice is to cover a frequency range from 1.5 kHz up to the highest possible scale factor band with a filter. It should be noted that this frequency range depends on the sampling rate as specified in the AAC standard (ISO / IEC 14496-3: 2001 (E)).
  • LPC linear predictive coding
  • the expected prediction gain PG is obtained as the result of the LPC calculation. Furthermore, the reflection coefficients or Parcor coefficients are obtained.
  • the TNS tool is not used. In this case, control information is written into the bit stream so that a decoder knows that TNS processing has not been carried out.
  • TNS processing is applied.
  • the reflection coefficients are quantized.
  • the order of the noise shaping filter used is determined by removing all reflection coefficients with an absolute value less than a threshold from the "tail" of the reflection coefficient array. The number of remaining reflection coefficients is in the order of magnitude of the noise shaping filter.
  • a suitable threshold is 0.1.
  • the remaining reflection coefficients are typically converted to linear prediction coefficients, a technique also known as the "step-up" procedure.
  • the calculated LPC coefficients are then used as encoder noise shaping filter coefficients, that is to say as prediction filter coefficients.
  • This FIR filter is guided over the specified target frequency range.
  • An autoregressive filter is used for decoding, while a so-called moving average filter is used for coding.
  • the page information for the TNS tool is also fed to the bitstream formatter, as shown by the arrow between the block TNS processing 1010 and the bitstream formatter 1004 in FIG Fig. 3 is shown.
  • Fig. 3 Run through optional tools, not shown, such as a long-term prediction tool, an intensity / coupling tool, a prediction tool, a noise substitution tool, until finally a middle / side encoder 1012 is reached.
  • the middle / side encoder 1012 is active when the audio signal to be encoded is a multi-channel signal, that is to say a stereo signal with a left channel and a right channel. So far, i.e. in the processing direction before block 1012 in Fig. 3 were the left and right stereo channels processed separately from each other, i.e. scaled, transformed through the filter bank, subjected to TNS processing or not, etc.
  • middle / side coder it is then first checked whether middle / side coding makes sense, that is, whether there is any coding gain at all.
  • a middle / side coding will bring a coding gain if the left and right channels are more similar, because then the middle channel, i.e. the sum of the left and right channels, is almost the same as the left or right channel, apart from the scaling by the factor 1/2, while the side channel has only very small values, since it is equal to the difference between the left and right channels.
  • a psychoacoustic model 1020 supplies the quantizer 1014 with a permitted disturbance per scale factor band.
  • the quantizer works iteratively, ie an outer iteration loop is first called, which then calls an inner iteration loop.
  • an outer iteration loop is first called, which then calls an inner iteration loop.
  • a block of values is first quantized at the input of quantizer 1014.
  • the inner loop quantizes the MDCT coefficients, consuming a certain number of bits.
  • the outer loop calculates the distortion and modified energy of the coefficients using the scale factor to call an inner loop again. This process is iterated until a certain set of conditions is reached is satisfied.
  • the signal is reconstructed in order to calculate the disturbance introduced by the quantization and to compare it with the permitted disturbance supplied by the psycho-acoustic model 1020. Furthermore, the scale factors are increased by one level from iteration to iteration, specifically for each iteration of the outer iteration loop.
  • the iteration becomes the analysis-through-synthesis method is terminated, and the scale factors obtained are encoded, as is carried out in block 1014, and supplied in encoded form to the bitstream formatter 1004, as indicated by the arrow between block 1014 and the Block 1004 is drawn.
  • the quantized values are then fed to the entropy coder 1016, which typically entropy encodes using several Huffman code tables for different scale factor bands to translate the quantized values into a binary format.
  • entropy coding in the form of Huffman coding, code tables are used which are created on the basis of expected signal statistics, and in which frequently occurring values are given shorter code words than less frequently occurring values.
  • the entropy-coded values are then also fed to the bit stream formatter 1004 as the actual main information, which then outputs the coded audio signal on the output side according to a specific bit stream syntax.
  • the data reduction of audio signals has become a well-known technique that is the subject of a number of international standards (e.g. ISO / MPEG-1, MPEG-2 AAC, MPEG-4).
  • the input signal is brought into a compact, data-reduced representation by means of a so-called encoder using perception-related effects (psychoacoustics, psychooptics).
  • a spectral analysis of the signal is usually carried out and the corresponding signal components are quantized, taking into account a perception model, and then coded as a so-called bit stream in the most compact way possible.
  • So-called perceptual entropy can be used to estimate before the actual quantization how many bits a certain section of the signal to be coded will need.
  • the PE also provides a measure of how difficult it is for the encoder to encode a particular signal or parts of it.
  • the perceptual entropy or any estimated value for a need for information units for coding a signal can be used to estimate whether the signal is transient or stationary, since transient signals also require more bits for coding than stationary signals.
  • the estimation of a transient property of a signal is used, for example, to make a window length decision as indicated by block 1008 in Fig. 3 is indicated to perform.
  • Fig. 6 the perceptual entropy calculated according to ISO / IEC IS 13818-7 (MPEG-2 advanced audio coding (AAC)) is shown.
  • AAC MPEG-2 advanced audio coding
  • the in Fig. 6 is used.
  • the parameter pe stands for the perceptual entropy.
  • width (b) stands for the number of spectral coefficients in the respective band b.
  • e (b) is the energy of the signal in this band.
  • nb (b) is the matching masking threshold or, in more general terms, the permitted interference that can be introduced into the signal, for example by quantization, so that a human listener still hears no or only a negligible interference.
  • the bands can be derived from the band division of the psychoacoustic model (block 1020 in Fig. 3 ) or the so-called scale factor bands (scfb) used in the quantization.
  • the psychoacoustic masking threshold is the energy value that the quantization error should not exceed.
  • FIG. 6 The figure shown thus shows how well a perceptual entropy determined in this way works as an estimate for the number of bits required for coding.
  • the respective perceptual entropy was plotted for each individual block as a function of the bits used.
  • the test piece used contains a typical mixture of music, language and individual instruments.
  • the points would congregate along a straight line through the zero point.
  • the expansion of the point sequence with the deviations from the ideal line illustrates the imprecise estimate.
  • the disadvantage of the in Fig. 6 The concept shown is the deviation that expresses itself to the effect that, for example, the value for the perceptual entropy is too large, which in turn means that the quantizer is signaled that more bits are required than actually required. This has the result that the quantizer quantizes too finely, that is to say that it does not exhaust the degree of permitted interference, which results in a reduced coding gain.
  • the quantizer is signaled that fewer bits than actually required are required to encode the signal. This in turn has the consequence that the quantizer quantizes too roughly, which would immediately lead to an audible disturbance in the signal, unless countermeasures are taken.
  • the countermeasures can be that the quantizer still needs one or more further iteration loops, which increases the computing time of the encoder.
  • FIG. 8 Another calculation of the perceptual entropy, which is very time consuming, is in Fig. 8 shown.
  • Fig. 8 the case is shown in which the perceptual entropy is calculated line by line.
  • the disadvantage is the higher computational effort involved in the line-by-line calculation.
  • spectral coefficients X (k) are used, where kOffset (b) denotes the first index of band b.
  • the US 2002/103637 A1 discloses a concept for improving the performance of coding systems employing radio frequency reconstruction techniques. For this purpose, a coding difficulty or a measure for the workload of an encoder is calculated on the encoder side in order to control the crossover frequency as a function of this, which determines the frequency up to which a signal is encoded with a source encoder, the proportion of the signal is encoded above the crossover frequency by a high frequency reconstruction method.
  • the Perceptual Entropy is calculated, which is based on a spectral value being squared and then weighted with a number equal to the number of lines in the current band divided by the psychoacoustic threshold for this Band, and then take the logarithm of the result. Summing up all such logarithms in a band then gives the perceptual entropy in this band.
  • a distortion energy can also be calculated at the end of the source coding process by adding up the distortion energy in each band and weighting it with a loudness curve.
  • the object of the present invention is to create an efficient and yet precise concept for determining an estimated value for a requirement of information units for coding a signal.
  • the present invention is based on the knowledge that a frequency band-wise calculation of the estimated value for a requirement for information units for reasons of computing time It should be noted, however, that in order to obtain an accurate estimate of the estimate, the distribution the energy in the frequency band that is to be calculated band by band must be taken into account.
  • the entropy coder following the quantizer is thus implicitly “drawn into” the determination of the estimated value for the requirement of information units.
  • the entropy coding enables a smaller number of bits to be required for the transmission of smaller spectral values than for the transmission of larger spectral values.
  • the entropy coder is particularly efficient when spectral values quantized to zero can be transmitted. Since these will typically occur most frequently, the code word for transmitting a spectral line quantized to zero is the shortest code word, and the code word for transmitting an ever larger quantized spectral line is always longer.
  • the measure for the distribution of the energy in the frequency band can be determined on the basis of the actual amplitudes, or by estimating the frequency lines that are not quantized to zero by the quantizer.
  • This dimension which is also referred to as “nl”, where nl stands for “number of active lines”, that is to say for the number of active lines, is preferred for reasons of computing time efficiency.
  • the number of spectral lines quantized to zero or a finer subdivision can also be taken into account, this estimation becoming more and more precise the more information from the downstream entropy coder is taken into account.
  • the entropy coder is built on the basis of Huffman code tables, properties of these code tables can be integrated particularly well, since the code tables are not calculated on-line based on the signal statistics, but rather because the code tables are fixed anyway, regardless of the actual signal.
  • the measure for the distribution of the energy in the frequency band is carried out by determining the lines that still survive after the quantization, that is to say the number of active lines.
  • the present invention is advantageous in that an estimated value for a need for information content is determined which is on the one hand more precise and on the other hand more efficient than in the prior art.
  • the present invention can be scaled for various applications, since, depending on the desired accuracy of the estimated value, more and more properties of the entropy coder can be included in the estimation of the bit requirement, but at the cost of increased computing time.
  • the signal which can be an audio and / or a video signal, is fed in via an input 100.
  • the signal is preferably already available as a spectral representation with spectral values. However, this is not absolutely necessary, since some calculations can also be carried out with a time signal by means of appropriate bandpass filtering, for example.
  • the signal is fed to a device 102 for providing a measure of an allowable interference for a frequency band of the signal.
  • the permitted disturbance can, for example, by means of a psycho-acoustic model, as it is based on Fig. 3 (Block 1020) has to be determined.
  • the means 102 is also effective to provide a measure of the energy of the signal in the frequency band.
  • a prerequisite for a band-by-band calculation is that a frequency band for which a permitted interference or signal energy is specified contains at least two or more spectral lines of the spectral representation of the signal.
  • the frequency band will preferably be a scale factor band because the bit requirement estimation is required directly by the quantizer in order to determine whether a quantization that has taken place fulfills a bit criterion or not.
  • the device 102 is designed to feed both the permitted interference nb (b) and the signal energy e (b) of the signal in the band to a device 104 for calculating the estimated value for the requirement for bits.
  • the means 104 for calculating the estimated value for the requirement of bits is designed to take into account, in addition to the permitted interference and the signal energy, a measure nl (b) for a distribution of the energy in the frequency band, the distribution of the energy in the frequency band from deviates from a completely even distribution.
  • the measure for the distribution of the energy is calculated in a device 106, the device 106 requiring at least one band, namely the considered frequency band of the audio or video signal either as a bandpass signal or directly as a sequence of spectral lines, e.g. to be able to perform a spectral analysis of the band in order to obtain the measure for the distribution of the energies in the frequency band.
  • the audio or video signal can be fed to the device 106 as a time signal, the device 106 then performing band filtering and an analysis in the band.
  • the audio or video signal that is fed to device 106 can already be present in the frequency range, such as, for example, as MDCT coefficients, or as a bandpass signal in the filter bank with a smaller number of bandpasses compared to an MDCT filter bank -Filter.
  • the means 106 for calculating is designed to take into account current amounts of spectral values in the frequency band for calculating the estimated value.
  • the device for calculating the measure for the distribution of the energy can be designed to determine a number of spectral values as a measure for the distribution of the energy, the amount of which is greater than or equal to a predetermined amount threshold, or the amount of which is less than or equal to the amount threshold , the absolute value threshold preferably being an estimated quantizer stage which, in a quantizer, causes values less than or equal to the quantizer stage to be quantized to zero.
  • the measure for the energy is the number of active lines, i.e. the number of lines that survive or are not equal to zero after quantization.
  • Fig. 2a shows a preferred embodiment for the means 106 for calculating the measure for the distribution of the energy in the frequency band.
  • the measure of the distribution of energy in the frequency band is in Fig. 2a denoted by nl (b).
  • the form factor ffac (b) is already a measure of the distribution of energy in the frequency band.
  • the measure for the spectral distribution nl is obtained from the form factor ffac (b) by weighting with the 4th root of the signal energy e (b) divided by the bandwidth width (b) or number of lines determined in the scale factor band b.
  • nl (b) is an example of is a quantity that represents an estimate of the number of lines relevant for quantization.
  • the form factor ffac (b) is calculated by forming the absolute value of a spectral line and then taking the root of this spectral line and then adding up the "rooted" amounts of the spectral lines in the band.
  • Figure 2b shows a preferred embodiment of the means 104 for calculating the estimated value pe, where in Figure 2b Another case distinction is introduced, namely when the logarithm to base 2 of the ratio of the energy to the permitted disturbance is greater than a constant factor c1 or equal to the constant factor.
  • the above alternative in block 104 is used, that is to say the measure for the spectral distribution nl is multiplied by the logarithm expression.
  • Figure 4a a band in which there are four spectral lines, all of the same size. The energy in this band is thus evenly distributed over the band.
  • Figure 4b a situation where the energy in the band resides in one spectral line while the other three spectral lines are the same are zero.
  • the band shown could be before quantization or could be obtained after quantization if the in Figure 4b Spectral lines set to zero before the quantization are smaller than the first quantizer stage and are thus set to zero by the quantizer, ie they do not "survive".
  • the number of active lines in Figure 4b is therefore equal to 1, with the parameter nl in Figure 4b to the square root of 2 is calculated.
  • the value nl i.e. the measure for the spectral distribution of the energy in Figure 4a calculated to 4. This means that the spectral distribution of the energy is more uniform when the measure for the distribution of the spectral energy is larger.
  • the in Figure 4b The case shown can be coded with only one relevant line with fewer bits, since the three spectral lines set to zero can be transmitted very efficiently.
  • the simpler quantizability of the in Figure 4b The case shown is based on the fact that after the quantization and lossless coding, smaller values and, in particular, values quantized to zero require fewer bits for transmission.
  • Fig. 2a The form factor shown is also required elsewhere in the encoder, for example within the quantization block 1014 for determining the quantization step size. If the form factor is already calculated elsewhere, it does not have to be recalculated for bit estimation, so that the inventive concept for improved estimation of the measure for the required bits manages with a minimum of additional computing effort.
  • X (k) is the spectral coefficient to be quantized later, while the variable kOffset (b) designates the first index in band b.
  • the new formula for calculating an improved band-wise perceptual entropy is based on the multiplication of the measure for the spectral distribution of the energy and the logarithm expression in which the signal energy e (b) occurs in the numerator and the permitted disturbance in the denominator, depending on requirements a term inserted within the logarithm can be, as it is already in Fig. 7 is shown. This term can, for example, also be 1.5, but can also be equal to zero, as in the in Figure 2b case shown, this being e.g. B. can be determined empirically.
  • Fig. 5 indicated, from which the perceptual entropy calculated according to the invention can be seen, plotted over the required bits. A higher accuracy of the estimation compared to the comparative examples in the Fig. 6 , 7th and 8th can be clearly seen.
  • the modified band-by-band calculation according to the invention also performs at least equally as compared to the line-by-line calculation.
  • the method according to the invention can be implemented in hardware or in software.
  • the implementation can take place on a digital storage medium, in particular a floppy disk or CD with electronically readable control signals which can interact with a programmable computer system in such a way that the method is carried out.
  • the invention thus also consists in a computer program product with a program code stored on a machine-readable carrier for carrying out the method according to the invention when the computer program product runs on a computer.
  • the invention can thus be implemented as a computer program with a program code for carrying out the method when the computer program runs on a computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computational Linguistics (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Control Of Ac Motors In General (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Manufacture Or Reproduction Of Printing Formes (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)
  • Branch Pipes, Bends, And The Like (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Description

  • Die vorliegende Erfindung bezieht sich auf Codierer zum Codieren eines Signals, das Audio- und/oder Videoinformationen umfasst, und insbesondere auf die Abschätzung für einen Bedarf von Informationseinheiten zum Codieren dieses Signals.
  • Nachfolgend wird der bekannte Codierer dargestellt. An einem Eingang 1000 wird ein zu codierendes Audiosignal eingespeist. Dieses wird zunächst einer Skalierungsstufe 1002 zugeführt, in der eine sogenannte AAC-Verstärkungssteuerung durchgeführt wird, um den Pegel des Audiosignals festzulegen. Seiteninformationen aus der Skalierung werden einem Bitstromformatierer 1004 zugeführt, wie es durch den Pfeil zwischen dem Block 1002 und dem Block 1004 dargestellt ist. Das skalierte Audiosignal wird hierauf einer MDCT-Filterbank 1006 zugeführt. Beim AAC-Codierer implementiert die Filterbank eine modifizierte diskrete Cosinustransformation mit 50 % überlappenden Fenstern, wobei die Fensterlänge durch einen Block 1008 bestimmt wird.
  • Allgemein gesagt ist der Block 1008 dazu vorhanden, dass transiente Signale mit kürzeren Fenstern gefenstert werden, und dass eher stationäre Signale mit längeren Fenstern gefenstert werden. Dies dient dazu, dass aufgrund der kürzeren Fenster für transiente Signale eine höhere Zeitauflösung (auf Kosten der Frequenzauflösung) erreicht wird, während für eher stationäre Signale eine höhere Frequenzauflösung (auf Kosten der Zeitauflösung) durch längere Fenster erreicht wird, wobei tendenziell längere Fenster bevorzugt werden, da sie einen größeren Codiergewinn versprechen. Am Ausgang der Filterbank 1006 liegen zeitlich betrachtet aufeinanderfolgende Blöcke von Spektralwerten vor, die je nach Ausführungsform der Filterbank MDCT-Koeffizienten, Fourier-Koeffizienten oder auch Subbandsignale sein können, wobei jedes Subbandsignal eine bestimmte begrenzte Bandbreite hat, die durch den entsprechenden Subbandkanal in der Filterbank 1006 festgelegt wird, und wobei jedes Subbandsignal eine bestimmte Anzahl von Subband-Abtastwerten aufweist.
  • Nachfolgend wird beispielhaft der Fall dargestellt, bei dem die Filterbank zeitlich betrachtet aufeinanderfolgende Blöcke von MDCT-Spektralkoeffizienten ausgibt, die allgemein gesagt, aufeinanderfolgende Kurzzeitspektren des zu codierenden Audiosignals am Eingang 1000 darstellen. Ein Block von MDCT-Spektralwerten wird dann in einen TNS-Verarbeitungsblock 1010 eingespeist, in dem eine zeitliche Rauschformung stattfindet (TNS = temporal noise shaping). Die TNS-Technik wird dazu verwendet, um die zeitliche Form des Quantisierungsrauschens innerhalb jedes Fensters der Transformation zu formen. Dies wird dadurch erreicht, dass ein Filterprozess auf Teile der Spektraldaten jedes Kanals angewendet wird. Die Codierung wird auf einer Fensterbasis durchgeführt. Insbesondere werden die folgenden Schritte ausgeführt, um das TNS-Tool auf ein Fenster spektraler Daten, also auf einen Block von Spektralwerten anzuwenden.
  • Zunächst wird ein Frequenzbereich für das TNS-Tool ausgewählt. Eine geeignete Auswahl besteht darin, einen Frequenzbereich von 1,5 kHz bis zum höchsten möglichen Skalenfaktorband mit einem Filter abzudecken. Es sei darauf hingewiesen, dass dieser Frequenzbereich von der Abtastrate abhängt, wie es im AAC-Standard (ISO/IEC 14496-3: 2001 (E)) spezifiziert ist.
  • Anschließend wird eine LPC-Berechnung (LPC = linear predictive coding = lineare prädiktive Codierung) ausgeführt, und zwar mit den spektralen MDCT-Koeffizienten, die in dem ausgewählten Zielfrequenzbereich liegen. Für eine erhöhte Stabilität werden Koeffizienten, die Frequenzen unter 2,5 kHz entsprechen, aus diesem Prozess ausgeschlossen. Übliche LPC-Prozeduren, wie sie aus der Sprachverarbeitung bekannt sind, können für die LPC-Berechnung verwendet werden, beispielsweise der bekannte Levinson-Durbin-Algorithmus. Die Berechnung wird für die maximal zulässige Ordnung des Rauschformungsfilters ausgeführt.
  • Als Ergebnis der LPC-Berechnung wird der erwartete Prädiktionsgewinn PG erhalten. Ferner werden die Reflexionskoeffizienten oder Parcor-Koeffizienten erhalten.
  • Wenn der Prädiktionsgewinn eine bestimmte Schwelle nicht überschreitet, wird das TNS-Tool nicht angewendet. In diesem Fall wird eine Steuerinformation in den Bitstrom geschrieben, damit ein Decodierer weiß, dass keine TNS-Verarbeitung ausgeführt worden ist.
  • Wenn der Prädiktionsgewinn jedoch eine Schwelle überschreitet, wird die TNS-Verarbeitung angewendet.
  • In einem nächsten Schritt werden die Reflexionskoeffizienten quantisiert. Die Ordnung des verwendeten Rauschformungsfilters wird durch Entfernen aller Reflexionskoeffizienten mit einem Absolutwert kleiner als eine Schwelle von dem "Schwanz" des Reflexionskoeffizienten-Arrays bestimmt. Die Anzahl der verbleibenden Reflexionskoeffizienten liegt in der Größenordnung des Rauschformungsfilters. Eine geeignete Schwelle liegt bei 0,1.
  • Die verbleibenden Reflexionskoeffizienten werden typischerweise in lineare Prädiktionskoeffizienten umgewandelt, wobei diese Technik auch als "Step-Up"-Prozedur bekannt ist.
  • Die berechneten LPC-Koeffizienten werden dann als Codierer-Rauschformungsfilterkoeffizienten, also als Prädiktionsfilterkoeffizienten verwendet. Dieses FIR-Filter wird über den spezifizierten Zielfrequenzbereich geführt. Bei der Decodierung wird ein autoregressives Filter verwendet, während bei der Codierung ein sogenanntes Moving-Average-Filter verwendet wird. Schließlich werden noch die Seiteninformationen für das TNS-Tool dem Bitstromformatierer zugeführt, wie es durch den Pfeil dargestellt ist, der zwischen dem Block TNS-Verarbeitung 1010 und dem Bitstromformatierer 1004 in Fig. 3 gezeigt ist.
  • Hierauf werden mehrere in Fig. 3 nicht gezeigte optionale Tools durchlaufen, wie beispielsweise ein Langzeitprädiktions-Tool, ein Intensity/Kopplungs-Tool, ein Prädiktions-Tool, ein Rauschsubstitutions-Tool, bis schließlich zu einem Mitte/Seite-Codierer 1012 gelangt wird. Der Mitte/Seite-Codierer 1012 ist dann aktiv, wenn das zu codierende Audiosignal ein Multikanalsignal ist, also ein Stereosignal mit einem linken Kanal und einem rechten Kanal. Bisher, also in der Verarbeitungsrichtung vor dem Block 1012 in Fig. 3 wurden der linke und der rechte Stereokanal getrennt voneinander verarbeitet, also skaliert, durch die Filterbank transformiert, der TNS-Verarbeitung unterzogen oder nicht etc.
  • Im Mitte/Seite-Codierer wird dann zunächst überprüft, ob eine Mitte/Seite-Codierung sinnvoll ist, also überhaupt einen Codiergewinn bringt. Eine Mitte/Seite-Codierung wird dann einen Codiergewinn bringen, wenn der linke und der rechte Kanal eher ähnlich sind, da dann der Mitte-Kanal, also die Summe aus dem linken und dem rechten Kanal nahezu gleich dem linken oder dem rechten Kanal ist, abgesehen von der Skalierung durch den Faktor 1/2, während der Seite-Kanal nur sehr kleine Werte hat, da er gleich der Differenz zwischen dem linken und dem rechten Kanal ist. Damit ist zu sehen, dass dann, wenn der linke und der rechte Kanal annähernd gleich sind, die Differenz annähernd Null ist bzw. nur ganz kleine Werte umfasst, die - so ist die Hoffnung - in einem nachfolgenden Quantisierer 1014 zu Null quantisiert werden und somit sehr effizient übertragen werden können, da dem Quantisierer 1014 ein Entropie-Codierer 1016 nachgeschaltet ist.
  • Dem Quantisierer 1014 wird von einem psycho-akustischen Modell 1020 eine erlaubte Störung pro Skalenfaktorband zugeführt. Der Quantisierer arbeitet iterativ, d. h. es wird zunächst eine äußere Iterationsschleife aufgerufen, die dann eine innere Iterationsschleife aufruft. Allgemein gesagt wird zunächst, ausgehend von Quantisiererschrittweiten-Startwerten, eine Quantisierung eines Blocks von Werten am Eingang des Quantisierers 1014 vorgenommen. Insbesondere quantisiert die innere Schleife die MDCT-Koeffizienten, wobei eine bestimmte Anzahl von Bits verbraucht wird. Die äußere Schleife berechnet die Verzerrung und modifizierte Energie der Koeffizienten unter Verwendung des Skalenfaktors, um wieder eine innere Schleife aufzurufen. Dieser Prozess wird iteriert, bis ein bestimmter Bedingungssatz erfüllt ist. Für jede Iteration in der äußeren Iterationsschleife wird dabei das Signal rekonstruiert, um die durch die Quantisierung eingeführte Störung zu berechnen und mit der von dem psycho-akustischen Modell 1020 gelieferten erlaubten Störung zu vergleichen. Ferner werden die Skalenfaktoren von Iteration zu Iteration um eine Stufe vergrößert, und zwar für jede Iteration der äußeren Iterationsschleife.
  • Dann, wenn eine Situation erreicht ist, bei der die durch die Quantisierung eingeführte Quantisierungsstörung unterhalb der durch das psycho-akustische Modell bestimmten erlaubten Störung ist, und wenn gleichzeitig Bitanforderungen erfüllt sind, nämlich, dass eine Maximalbitrate nicht überschritten wird, wird die Iteration, also das Analyse-Durch-Synthese-Verfahren beendet, und es werden die erhaltenen Skalenfaktoren codiert, wie es in dem Block 1014 ausgeführt ist und in codierter Form dem Bitstromformatierer 1004 zugeführt, wie es durch den Pfeil gekennzeichnet ist, der zwischen dem Block 1014 und dem Block 1004 gezeichnet ist. Die quantisierten Werte werden dann dem Entropie-Codierer 1016 zugeführt, der typischerweise unter Verwendung mehrerer Huffman-Code-Tabellen für verschiedene Skalenfaktorbänder eine Entropie-Codierung durchführt, um die quantisierten Werte in ein binäres Format zu übertragen. Wie es bekannt ist, wird bei der Entropie-Codierung in Form der Huffman-Codierung auf Code-Tabellen zurückgegriffen, die aufgrund einer erwarteten Signalstatistik erstellt werden, und bei denen häufig auftretende Werte kürzere Code-Wörter bekommen als seltener auftretende Werte. Die entropiecodierten Werte werden dann ebenfalls als eigentliche Hauptinformationen dem Bitstromformatierer 1004 zugeführt, der dann gemäß einer bestimmten Bitstromsyntax ausgangsseitig das codierte Audiosignal ausgibt.
  • Die Datenreduktion von Audiosignalen ist mittlerweile eine bekannte Technik, die Gegenstand einer Reihe von Internationalen Standards ist (z.B. ISO/MPEG-1, MPEG-2 AAC, MPEG-4).
  • Gemeinsam ist den oben genannten Verfahren, dass das Eingangssignal mittels eines sogenannten Encoders unter Ausnutzung wahrnehmungsbezogener Effekte (Psychoakustik, Psychooptik) in eine kompakte, datenreduzierte Darstellung gebracht wird. Hierzu wird üblicherweise eine Spektralanalyse des Signals vorgenommen und die entsprechende Signalkomponenten werden unter Berücksichtigung eines Wahrnehmungsmodells quantisiert und anschließend in möglichst kompakter Weise als sogenannter Bitstrom codiert.
  • Um vor der eigentlichen Quantisierung abzuschätzen, wie viele Bits ein bestimmter zu codierender Abschnitt des Signals benötigen wird, kann die sogenannte Perceptual Entropy (PE) herangezogen werden. Die PE liefert auch ein Maß dafür, wie schwierig es für den Encoder ist, ein bestimmtes Signal oder Teile davon zu codieren.
  • Entscheidend für die Qualität der Abschätzung ist die Abweichung der PE von der Anzahl tatsächlich benötigter Bits.
  • Ferner kann die Perceptual Entropy bzw. jeder Schätzwert für einen Bedarf von Informationseinheiten zum Codieren eines Signals dafür herangezogen werden, abzuschätzen, ob das Signal transient oder stationär ist, da transiente Signale ebenfalls mehr Bits zum Codieren benötigen als eher stationäre Signale. Die Abschätzung einer transienten Eigenschaft eines Signal wird beispielsweise dazu verwendet, um eine Fensterlängenentscheidung, wie sie um Block 1008 in Fig. 3 angedeutet ist, durchzuführen.
  • In Fig. 6 ist die Perceptual Entropy berechnet nach ISO/IEC IS 13818-7 (MPEG-2 advanced audio coding (AAC)) dargestellt. Zu Berechnung dieser Perceptual Entropy, also einer bandweisen Perceptual Entropy wird die in Fig. 6 dargestellte Gleichung verwendet. In dieser Gleichung steht der Parameter pe für die Perceptual Entropy. Ferner steht width(b) für die Anzahl der Spektralkoeffizienten im jeweiligen Band b. Ferner ist e(b) die Energie des Signals in diesem Band. Schließlich ist nb(b) die dazu passende Maskierungsschwelle bzw. allgemeiner ausgedrückt, die erlaubte Störung, die in das Signal eingebracht werden kann, beispielsweise durch eine Quantisierung, damit ein menschlicher Hörer dennoch keine oder nur eine verschwindend geringe Störung hört.
  • Die Bänder können von der Bandeinteilung des psychoakustischen Modells (Block 1020 in Fig. 3) stammen, oder es handelt sich um die bei der Quantisierung verwendeten sogenannten Skalenfaktorbänder (scfb). Die psychoakustische Maskierungsschwelle ist der Energiewert, den der Quantisierungsfehler nicht überschreiten sollte.
  • Die in Fig. 6 gezeigte Abbildung zeigt somit, wie gut eine so bestimmte Perceptual Entropy als Abschätzung für die Anzahl der zur Codierung benötigten Bits funktioniert. Hierzu wurde am Beispiel eines AAC-Codierers bei unterschiedlichen Bitraten für jeden einzelnen Block die jeweilige Perceptual Entropy in Abhängigkeit von den verbrauchten Bits aufgetragen. Das verwendete Teststück beinhaltet eine typische Mischung aus Musik, Sprache und Einzelinstrumenten.
  • Idealerweise würden sich die Punkte entlang einer Geraden durch den Nullpunkt versammeln. Die Ausdehnung der Punktfolge mit den Abweichungen von der idealen Linie verdeutlicht die ungenaue Abschätzung.
  • Nachteilig an dem in Fig. 6 gezeigten Konzept ist also die Abweichung, die sich dahin gehend äußert, dass sich z.B. ein zu großer Wert für die Perceptual Entropy ergibt, was wiederum bedeutet, dass dem Quantisierer signalisiert wird, dass mehr Bits als eigentlich erforderlich, benötigt werden. Dies führt dazu, dass der Quantisierer zu fein quantisiert, dass er also nicht das Maß an erlaubter Störung ausschöpft, was in einem reduzierten Codiergewinn resultiert. Andererseits, wenn der Wert für die Perceptual Entropy zu klein ermittelt wird, so wird dem Quantisierer signalisiert, dass weniger Bits als eigentlich erforderlich, zur Codierung des Signals benötigt werden. Dies wiederum hat zur Folge, dass der Quantisierer zu grob quantisiert, was unmittelbar zu einer hörbaren Störung im Signal führen würde, sofern nicht Gegenmaßnahmen ergriffen werden. Die Gegenmaßnahmen können darin bestehen, dass der Quantisierer noch eine oder mehrere weitere Iterationsschleifen benötigt, was die Rechenzeit des Codierers ansteigen lässt.
  • Zur Verbesserung der Berechnung der Perceptual Entropy könnte man, wie es in Fig. 7 gezeigt ist, einen konstanten Term, wie beispielsweise 1,5, in den Logarithmus-Ausdruck einführen. Dann ergibt sich bereits ein besseres Ergebnis, also eine geringere Abweichung nach oben bzw. unten, obgleich dennoch zu sehen ist, dass bei der Berücksichtigung eines konstanten Terms im Logarithmus-Ausdruck zwar der Fall reduziert ist, dass die Perceptual Entropy einen zu optimistischen Bedarf an Bits signalisiert. Andererseits ist aus Fig. 7 jedoch deutlich zu erkennen, dass signifikant eine zu hohe Anzahl an Bits signalisiert wird, was dazu führt, dass der Quantisierer immer zu fein quantisieren wird, dass also der Bitbedarf größer angenommen wird, als er eigentlich ist, was wiederum in einem reduzierten Codiergewinn resultiert. Die Konstante in dem Logarithmus-Ausdruck ist eine grobe Abschätzung der für die Seiteninformationen benötigten Bits.
  • So liefert das Einfügen eines Terms in den Logarithmus-Ausdruck zwar eine Verbesserung der bandweisen Perceptual Entropy, wie es in Fig. 6 dargestellt ist, da die Bänder mit sehr geringem Abstand zwischen Energie und Maskierungsschwelle eher berücksichtigt werden, da auch für die Übertragung von zu Null quantisierten Spektralkoeffizienten eine gewisse Anzahl von Bits nötig ist.
  • Eine weitere, jedoch sehr Rechenzeit-aufwendige Berechnung der Perceptual Entropy ist in Fig. 8 dargestellt. In Fig. 8 ist der Fall gezeigt, bei dem die Perceptual Entropy linienweise berechnet wird. Der Nachteil liegt jedoch in dem höheren Rechenaufwand der linienweisen Berechnung. Hier werden anstelle der Energie Spektralkoeffizienten X(k) eingesetzt, wobei kOffset (b) den ersten Index von Band b bezeichnet. Wenn Fig. 8 mit Fig. 7 verglichen wird, so ist deutlich im Bereich zwischen 2000 und 3000 Bit eine Reduzierung der "Ausschläge" nach oben zu erkennen. Die PE-Schätzung wird daher genauer sein, also nicht zu pessimistisch schätzen, sondern eher am Optimum liegen, so dass der Codiergewinn im Vergleich zu den in Fig. 6 und 7 gezeigten Berechnungsverfahren ansteigen kann, bzw. die Anzahl der Iterationen im Quantisierer wird reduziert.
  • Nachteilig an der linienweise Berechnung der Perceptual Entropy ist jedoch die Rechenzeit, die benötigt wird, um die in Fig. 8 gezeigte Gleichung auszuwerten.
  • So spielen solche Rechenzeitennachteile zwar nicht unbedingt eine Rolle, wenn der Codierer auf einem leistungsstarken PC oder einer leistungsstarken Workstation läuft. Ganz anders ist sieht es dagegen aus, wenn der Codierer in einem tragbaren Gerät, wie beispielsweise einem UMTS-Handy untergebracht ist, das einerseits klein und billig sein muss, das andererseits einen niedrigen Strombedarf haben muss, und das zusätzlich schnell arbeiten muss, um die Codierung eines über die UMTS-Verbindung übertragenen Audiosignals oder Videosignals zu ermöglichen.
  • Die US 2002/103637 A1 offenbart ein Konzept zum Verbessern der Leistungsfähigkeit von Codiersystemen, die Hochfrequenzrekonstruktionsverfahren einsetzen. Hierzu wird auf Seite des Encodierers eine Codierschwierigkeit oder ein Maß für die Arbeitsbelastung eines Codierers berechnet, um davon abhängig die Crossover-Frequenz zu steuern, die bestimmt, bis zu welcher Frequenz ein Signal mit einem Quell-Codierer codiert wird, wobei der Anteil des Signals oberhalb der Crossover-Frequenz durch ein Hochfrequenzrekonstruktionsverfahren codiert wird. Als Maß für die Schwierigkeit, ein Signal zu codieren, wird die Perceptual Entropy berechnet, die darauf basiert, dass ein Spektralwert quadriert wird und dann mit einer Zahl gewichtet wird, die gleich der Anzahl der Linien im aktuellen Band geteilt durch die psychoakustische Schwelle für dieses Band ist, um dann von dem Ergebnis einen Logarithmus zu bilden. Eine Aufsummierung sämtlicher solcher Logarithmen in einem Band ergibt dann die Perceptual Entropy in diesem Band. Alternativ hierzu kann auch eine Verzerrungsenergie am Ende des Quellcodierverfahrens berechnet werden, indem die Verzerrungsenergie in jedem Band aufsummiert wird und mit einer Lautheitskurve gewichtet wird.
  • Die Aufgabe der vorliegenden Erfindung besteht darin, ein effizientes und dennoch genaues Konzept zum Ermitteln eines Schätzwerts für einen Bedarf von Informationseinheiten zum Codieren eines Signals zu schaffen.
  • Diese Aufgabe wird durch eine Vorrichtung gemäß Patentanspruch 1, ein Verfahren gemäß Patentanspruch 12 oder ein Computerprogramm nach Patentanspruch 13 gelöst.
  • Der vorliegenden Erfindung liegt die Erkenntnis zugrunde, dass an einer frequenzbandweisen Berechnung des Schätzwerts für einen Bedarf an Informationseinheiten aus Rechenzeitgründen festgehalten werden muss, dass jedoch, um eine genaue Ermittlung des Schätzwerts zu erhalten, die Verteilung der Energie in dem Frequenzband, das bandweise zu berechnen ist, berücksichtigt werden muss.
  • Damit wird gewissermaßen implizit der dem Quantisierer nachfolgende Entropie-Codierer in die Ermittlung des Schätzwerts für den Bedarf von Informationseinheiten "hineingezogen". Die Entropy-Codierung ermöglicht es nämlich, dass zur Übertragung von kleineren Spektralwerten eine geringere Anzahl an Bits benötigt wird als zur Übertragung von größeren Spektralwerten. Besonders effizient ist der Entropie-Codierer dann, wenn zu-Null-quantisierte Spektralwerte übertragen werden können. Da diese typischerweise am häufigsten auftreten werden, ist das Codewort zum Übertragen einer zu-Null-quantisierten Spektrallinie das kürzeste Codewort, und ist das Codewort zum Übertragen einer immer größeren quantisierten Spektrallinie immer länger. Darüber hinaus kann für ein besonders effizientes Konzept zum Übertragen einer Folge von zu-Null-quantisierten Spektralwerten sogar auf eine Lauflängencodierung zurückgegriffen werden, was zur Folge hat, dass im Falle eines Laufs von Nullen pro zu-Null-quantisiertem Spektralwert durchschnittlich betrachtet nicht einmal ein einziges Bit benötigt wird.
  • Es wurde herausgefunden, dass die im Stand der Technik verwendete bandweise Perceptual-Entropy-Berechnung zur Ermittlung des Schätzwerts für den Bedarf von Informationseinheiten die Wirkungsweise des nachgeschalteten Entropie-Codierers völlig ignoriert, wenn die Verteilung der Energie in dem Frequenzband von einer vollständig gleichmäßigen Verteilung abweicht.
  • Erfindungsgemäß wird somit zur Reduktion der Ungenauigkeiten der bandweisen Berechnung berücksichtigt, wie die Energie innerhalb eines Bandes verteilt ist.
  • Je nach Implementierung kann das Maß für die Verteilung der Energie in dem Frequenzband auf der Basis der tatsächlichen Amplituden ermittelt werden, oder durch eine Schätzung der Frequenzlinien, die durch den Quantisierer nicht zu null quantisiert werden. Dieses Maß, das auch als "nl" bezeichnet wird, wobei nl für "number of active lines", also für die Anzahl von aktiven Linien, steht, wird aus Rechenzeit-Effizienzgründen bevorzugt. Es kann jedoch auch die Anzahl der zu null quantisierten Spektrallinien oder eine feinere Unterteilung berücksichtigt werden, wobei diese Schätzung immer genauer wird, je mehr Informationen des nachgeschalteten Entropie-Codierers berücksichtigt werden. Ist der Entropie-Codierer auf der Basis von Huffman-Codetabellen aufgebaut, so können Eigenschaften dieser Codetabellen besonders gut integriert werden, da die Codetabellen nicht aufgrund der Signalstatistik gewissermaßen on-line berechnet werden, sondern da die Codetabellen unabhängig von dem tatsächlichen Signal ohnehin feststehen.
  • Je nach Rechenzeit-Einschränkungen wird jedoch im Falle einer besonders effizienten Berechnung das Maß für die Verteilung der Energie in dem Frequenzband durch die Ermittlung der nach der Quantisierung noch überlebenden Linien, also der Anzahl von aktiven Linien, durchgeführt.
  • Die vorliegende Erfindung ist dahingehend vorteilhaft, dass ein Schätzwert für einen Bedarf an Informationsinhalten ermittelt wird, der zum einen genauer und zum anderen effizienter als im Stand der Technik ist.
  • Darüber hinaus ist die vorliegende Erfindung für verschiedene Anwendungen skalierbar, da je nach erwünschter Genauigkeit des Schätzwerts immer mehr Eigenschaften des Entropie-Codierers, jedoch zum Preis einer erhöhten Rechenzeit, in die Schätzung des Bitbedarfs mit hereingenommen werden können.
  • Bevorzugte Ausführungsbeispiele der vorliegenden Erfindung werden nachfolgend bezugnehmend auf die beiliegenden Zeiten detailliert erläutert. Es zeigen:
  • Fig. 1
    ein Blockschaltbild der erfindungsgemäßen Vorrichtung zum Ermitteln eines Schätzwerts;
    Fig. 2a
    eine bevorzugte Ausführungsform der Einrichtung zum Berechnen eines Maßes für die Verteilung der Energie in dem Frequenzband;
    Fig. 2b
    eine bevorzugte Ausführungsform der Einrichtung zum Berechnen des Schätzwerts für den Bedarf an Bits;
    Fig. 3
    ein Blockschaltbild eines bekannten AudioCodierers;
    Fig. 4
    eine Prinzipdarstellung zur Erläuterung des Einflusses der Energieverteilung innerhalb eines Bandes auf die Ermittlung des Schätzwerts;
    Fig. 5
    ein Diagramm zur Schätzwertberechnung gemäß der vorliegenden Erfindung;
    Fig. 6
    ein Diagramm zur Schätzwertberechnung gemäß ISO/IEC IS 13818-7(AAC);
    Fig. 7
    ein Diagramm zur Schätzwertberechnung mit konstantem Term;
    Fig. 8
    ein Diagramm zur linienweisen Schätzwertberechnung mit konstantem Term.
  • Nachfolgend wird bezugnehmend auf Fig. 1 die erfindungsgemäße Vorrichtung zum Ermitteln eines Schätzwerts für einen Bedarf von Informationseinheiten zum Codieren eines Signals dargestellt. Das Signal, das ein Audio- und/oder ein Videosignal sein kann, wird über einen Eingang 100 eingespeist. Vorzugsweise liegt das Signal bereits als spektrale Darstellung mit Spektralwerten vor. Dies ist jedoch nicht unbedingt erforderlich, da durch entsprechende z.B. Bandpass-Filterung auch einige Berechnungen mit einem Zeitsignal durchgeführt werden können.
  • Das Signal wird einer Einrichtung 102 zum Liefern eines Maßes für eine erlaubte Störung für ein Frequenzband des Signals zugeführt. Die erlaubte Störung kann beispielsweise mittels eines psycho-akustischen Modells, wie es anhand von Fig. 3 (Block 1020) erläutert worden ist, ermittelt werden. Die Einrichtung 102 ist ferner wirksam, um auch ein Maß für die Energie des Signals in dem Frequenzband zu liefern. Voraussetzung für eine bandweise Berechnung ist, dass ein Frequenzband, für das eine erlaubte Störung oder eine Signalenergie angegeben wird, wenigstens zwei oder mehrere Spektrallinien der spektralen Darstellung des Signals enthält. Bei typischen standardisierten Audio-Codierern wird das Frequenzband vorzugsweise ein Skalenfaktorband sein, da die Bitbedarfsschätzung unmittelbar vom Quantisierer benötigt wird, um festzustellen, ob eine erfolgte Quantisierung ein Bitkriterium erfüllt oder nicht.
  • Die Einrichtung 102 ist ausgebildet, um sowohl die erlaubte Störung nb(b), als auch die Signalenergie e(b) des Signals in dem Band einer Einrichtung 104 zum Berechnen des Schätzwerts für den Bedarf an Bits zuzuführen.
  • Erfindungsgemäß ist die Einrichtung 104 zum Berechnen des Schätzwerts für den Bedarf von Bits ausgebildet, um neben der erlaubten Störung und der Signalenergie ein Maß nl(b) für eine Verteilung der Energie in dem Frequenzband zu berücksichtigten, wobei die Verteilung der Energie in dem Frequenzband von einer vollständig gleichmäßigen Verteilung abweicht. Das Maß für die Verteilung der Energie wird in einer Einrichtung 106 berechnet, wobei die Einrichtung 106 zumindest ein Band, nämlich das betrachtete Frequenzband des Audio- oder Videosignals entweder als Bandpass-Signal oder direkt als Folge von Spektrallinien benötigt, um z.B. eine spektrale Analyse des Bandes durchführen zu können, um das Maß für die Verteilung der Energien im Frequenzband zu erhalten.
  • Selbstverständlich kann das Audio- oder Videosignal der Einrichtung 106 als Zeitsignal zugeführt werden, wobei die Einrichtung 106 dann eine Bandfilterung sowie eine Analyse in dem Band durchführt. Alternativ kann das Audio- oder Videosignal, das der Einrichtung 106 zugeführt wird, bereits im Frequenzbereich vorliegen, wie z.B. als MDCT-Koeffizienten, oder aber auch als Bandpass-Signal in der Filterbank mit einer im Vergleich zu einer MDCT-Filterbank kleineren Anzahl an Bandpass-Filtern.
  • Bei einem bevorzugten Ausführungsbeispiel ist die Einrichtung 106 zum Berechnen ausgebildet, um zur Berechnung des Schätzwerts aktuelle Beträge von Spektralwerten in dem Frequenzband zu berücksichtigen.
  • Ferner kann die Einrichtung zum Berechnen des Maßes für die Verteilung der Energie ausgebildet sein, um als Maß für die Verteilung der Energie eine Anzahl von Spektralwerten zu ermitteln, deren Betrag größer oder gleich einer vorbestimmten Betragsschwelle sind, oder deren Betrag kleiner oder gleich der Betragsschwelle ist, wobei die Betragsschwelle vorzugsweise eine geschätzte Quantisiererstufe ist, die in einem Quantisierer bewirkt, dass Werte kleiner oder gleich der Quantisiererstufe zu null quantisiert werden. In diesem Fall ist das Maß für die Energie die Anzahl von aktiven Linien, also die Anzahl der Linien, die nach der Quantisierung überleben bzw. nicht gleich null sind.
  • Fig. 2a zeigt ein bevorzugtes Ausführungsbeispiel für die Einrichtung 106 zum Berechnen des Maßes für die Verteilung der Energie in dem Frequenzband. Das Maß für die Verteilung der Energie in dem Frequenzband ist in Fig. 2a mit nl(b) bezeichnet. Der Formfaktor ffac(b) ist bereits ein Maß für die Verteilung der Energie in dem Frequenzband. Wie es aus Block 106 ersichtlich ist, wird das Maß für die spektrale Verteilung nl aus dem Formfaktor ffac(b) durch Gewichtung mit der 4. Wurzel aus der Signalenergie e(b) geteilt durch die Bandbreite width(b) bzw. Anzahl der Linien im Skalenfaktorband b ermittelt. In diesem Zusammenhang sei darauf hingewiesen, dass man der Formfaktor auch ein Beispiel für eine Größe ist, die ein Maß für die Verteilung der Energien angibt, während nl(b) im Gegensatz hierzu ein Beispiel für ein Größe ist, die einen Schätzwert für die Anzahl der für die Quantisierung relevanten Linien darstellt.
  • Der Formfaktor ffac(b) errechnet sich durch Betragsbildung einer Spektrallinie und anschließender Wurzelbildung dieser Spektrallinie und anschließender Aufsummierung der "gewurzelten" Beträge der Spektrallinien in dem Band.
  • Fig. 2b zeigt eine bevorzugte Ausführungsform der Einrichtung 104 zum Berechnen des Schätzwerts pe, wobei in Fig. 2b noch eine Fallunterscheidung eingeführt ist, nämlich dann, wenn der Logarithmus zur Basis 2 des Verhältnisses aus der Energie zur erlaubten Störung größer als ein konstanter Faktor c1 oder gleich dem konstanten Faktor ist. In diesem Fall wird die in dem Block 104 oben stehende Alternative genommen, also das Maß für die spektrale Verteilung nl wird mit dem Logarithmusausdruck multipliziert.
  • Wird dagegen festgestellt, dass der Logarithmus zur Basis 2 aus dem Verhältnis der Signalenergie zur erlaubten Störung kleiner als der Wert c1 ist, so wird die untere Alternative im Block 104 von Fig. 2b verwendet, die zusätzlich noch eine additive Konstante c2 sowie eine multiplikative Konstante c3 aufweist, die sich aus den Konstanten c2 und c1 berechnet.
  • Nachfolgend wird anhand von Fig. 4a und Fig. 4b das erfindungsgemäße Konzept dargestellt. So zeigt Fig. 4a ein Band, in dem vier Spektrallinien vorhanden sind, die alle gleich groß sind. Die Energie in diesem Band ist somit gleichmäßig über das Band verteilt. Dagegen zeigt Fig. 4b eine Situation, bei der die Energie in dem Band in einer Spektrallinie residiert, während die anderen drei Spektrallinien gleich null sind. Das in Fig. 4b gezeigte Band könnte beispielsweise vor der Quantisierung vorliegen, oder könnte nach der Quantisierung erhalten werden, wenn die in Fig. 4b zu null gesetzten Spektrallinien vor der Quantisierung kleiner als die erste Quantisiererstufe sind und somit durch den Quantisierer zu null gesetzt werden, also nicht "überleben".
  • Die Anzahl von aktiven Linien in Fig. 4b ist somit gleich 1, wobei der Parameter nl in Fig. 4b zu der Quadratwurzel von 2 berechnet wird. Dagegen wird der Wert nl, also das Maß für die spektrale Verteilung der Energie in Fig. 4a zu 4 berechnet. Dies bedeutet, dass die spektrale Verteilung der Energie gleichmäßiger ist, wenn das Maß für die Verteilung der spektralen Energie größer ist.
  • Es sei darauf hingewiesen, dass die bandweise Berechnung der Perceptual Entropy gemäß dem Stand der Technik keinen Unterschied zwischen den beiden Fällen feststellt. Insbesondere wird kein Unterschied festgestellt, wenn in den beiden Bändern, die in Fig. 4a und 4b gezeigt sind, dieselbe Energie vorhanden ist.
  • Offensichtlich ist jedoch der in Fig. 4b gezeigte Fall mit nur einer relevanten Linie mit weniger Bits codierbar, da die drei zu null gesetzten Spektrallinien sehr effizient übertragen werden können. Allgemein gesagt beruht die einfachere Quantisierbarkeit des in Fig. 4b gezeigten Falls auf der Tatsache, dass nach der Quantisierung und verlustlosen Codierung kleinere Werte und insbesondere zu null quantisierte Werte weniger Bits zur Übertragung benötigen.
  • Erfindungsgemäß wird somit berücksichtigt, wie die Energie innerhalb des Bands verteilt ist. Dies erfolgt, wie es ausgeführt worden ist, durch Ersetzen der Anzahl der Linien pro Band in der bekannten Gleichung (Fig. 6) durch eine Abschätzung der Anzahl der Linien, die nach der Quantisierung ungleich null sind. Diese Abschätzung ist in Fig. 2a gezeigt.
  • Ferner sei darauf hingewiesen, dass der in Fig. 2a gezeigte Formfaktor auch an anderer Stelle im Codierer benötigt wird, beispielsweise innerhalb des Quantisierungsblocks 1014 zur Bestimmung der Quantisierungs-Schrittweite. Dann, wenn der Formfaktor bereits an anderer Stelle berechnet wird, muß er zur Bit-Abschätzung nicht erneut berechnet werden, so dass das erfindungsgemäße Konzept zur verbesserten Abschätzung des Maßes für die benötigten Bits mit einem Minimum an zusätzlichem Rechenaufwand auskommt.
  • Wie es bereits ausgeführt worden ist, handelt es sich bei X(k) um den später zu quantisierenden Spektralkoeffizienten, während die Variable kOffset(b) den ersten Index im Band b bezeichnet.
  • Wie es aus Fig. 4a und 4b ersichtlich ist, ergibt das Spektrum in Fig. 4a einen Wert nl=4, während das Spektrum in Fig. 4b einen Wert von 1,41 ergibt. Mit Hilfe des Formfaktors steht somit ein Maß für die Charakterisierung der spektralen Feldstruktur innerhalb des Bandes zur Verfügung.
  • Die neue Formel zur Berechnung einer verbesserten bandweisen Perceptual Entropie basiert somit auf der Multiplikation des Maßes für die spektrale Verteilung der Energie und des Logarithmus-Ausdrucks, indem die Signalenergie e(b) im Zähler und die erlaubte Störung im Nenner auftreten, wobei je nach Bedarf ein Term innerhalb des Logarithmus eingesetzt werden kann, wie es bereits in Fig. 7 dargestellt ist. Diese Term kann beispielsweise ebenfalls 1,5 sein, kann jedoch auch gleich null sein, wie in dem in Fig. 2b gezeigten Fall, wobei dies z. B. empirisch bestimmt werden kann.
  • An dieser Stelle sei nochmals auf Fig. 5 hingewiesen, aus der die erfindungsgemäß berechnete Perceptual Entropie ersichtlich ist, und zwar aufgetragen über den benötigten Bits. Eine höhere Genauigkeit der Abschätzung gegenüber den Vergleichsbeispielen in den Fig. 6, 7 und 8 ist deutlich zu erkennen. Auch gegenüber der linienweisen Berechnung schneidet die erfindungsgemäße modifizierte bandweise Berechnung zumindest gleichwertig ab.
  • Abhängig von der Gegebenheit, kann das erfindungsgemäße Verfahren in Hardware oder in Software implementiert werden. Die Implementierung kann auf einem digitalen Speichermedium, insbesondere einer Diskette oder CD mit elektronisch auslesbaren Steuersignalen erfolgen, die so mit einem programmierbaren Computersystem zusammenwirken können, dass das Verfahren ausgeführt wird. Allgemein besteht die Erfindung somit auch in einem Computer-Programm-Produkt mit einem auf einem maschinenlesbaren Träger gespeicherten Programmcode zur Durchführung des erfindungsgemäßen Verfahrens, wenn das Computer-Programm-Produkt auf einem Rechner abläuft. In anderen Worten ausgedrückt, kann die Erfindung somit als ein Computer-Programm mit einem Programmcode zur Durchführung des Verfahrens realisiert werden, wenn das Computer-Programm auf einem Computer abläuft.

Claims (13)

  1. Vorrichtung zum Ermitteln eines Schätzwerts für einen Bedarf an Informationseinheiten zum Codieren eines Signals, das Audio- oder Videoinformationen aufweist, wobei das Signal mehrere Frequenzbänder aufweist, mit folgenden Merkmalen:
    einer Einrichtung (102) zum Liefern eines Maßes für eine erlaubte Störung für ein Frequenzband des Signals, wobei das Frequenzband wenigstens zwei Spektralwerte einer spektralen Darstellung des Signals umfasst, und eines Maßes für eine Energie des Signals in dem Frequenzband;
    gekennzeichnet durch
    eine Einrichtung (106) zum Berechnen eines Maßes für eine Verteilung der Energie in dem Frequenzband, wobei die Verteilung der Energie in dem Frequenzband von einer vollständig gleichmäßigen Verteilung abweicht; und
    eine Einrichtung (104) zum Berechnen des Schätzwerts unter Verwendung des Maßes für die Störung, des Maßes für die Energie und des Maßes für die Verteilung der Energie.
  2. Vorrichtung nach Anspruch 1, bei der die Einrichtung (106) zum Berechnen ausgebildet ist, um zur Berechnung des Maßes für die Verteilung der Energie Beträge von Spektralwerten in dem Frequenzband zu berücksichtigen.
  3. Vorrichtung nach Anspruch 1 oder 2, bei der die Einrichtung (106) zum Berechnen des Maßes für die Verteilung der Energie ausgebildet ist, um als Maß für die Verteilung der Energie eine Anzahl von Spektralwerten zu ermitteln, deren Betrag größer oder gleich einer vorbestimmten Betragsschwelle sind, oder deren Betrag kleiner oder gleich der Betragsschwelle sind.
  4. Vorrichtung nach Anspruch 3, bei der die Betragsschwelle eine exakte oder geschätzte Quantisiererstufe ist, die in einem Quantisierer bewirkt, dass Werte kleiner oder gleich der Quantisiererstufe zu null quantisiert werden.
  5. Vorrichtung nach einem der vorhergehenden Ansprüche, bei der die Einrichtung (106) zum Berechnen ausgebildet ist, um einen Formfaktor gemäß folgender Gleichung zu berechnen: ffac b = k = kOffset b kOffset b + 1 1 X k ,
    Figure imgb0001
    wobei X(k) ein Spektralwert bei einem Frequenzindex k ist, wobei kOffset ein erster Spektralwert in einem Band b ist, und wobei ffac(b) der Formfaktor ist.
  6. Vorrichtung nach einem der vorhergehenden Ansprüche,
    bei der die Einrichtung (106) zum Berechnen ausgebildet ist, um eine vierte Wurzel aus einem Verhältnis zwischen der Energie in dem Frequenzband und einer Breite des Frequenzbands oder Anzahl der Spektralwerte innerhalb des Frequenzbands zu berücksichtigen.
  7. Vorrichtung nach einem der vorhergehenden Ansprüche, bei der die Einrichtung (106) zum Berechnen ausgebildet ist, um das Maß für die Verteilung der Energie gemäß folgender Gleichungen zu berechnen: nl b = ffac b e b width b 0.25
    Figure imgb0002
    ffac b = k = kOffset b kOffset b + 1 1 X k ,
    Figure imgb0003
    wobei X(k) ein Spektralwert bei einem Frequenzindex k ist, wobei kOffset ein erster Spektralwert in einem Band b ist, wobei ffac(b) ein Formfaktor ist, wobei nl(b) das Maß für die Verteilung der Energie in dem Band b darstellt, wobei e(b) eine Signalenergie in dem Band b ist, und wobei width(b) eine Breite des Bandes ist.
  8. Vorrichtung nach einem der vorhergehenden Ansprüche,
    bei der die Einrichtung (104) zum Berechnen des Schätzwerts ausgebildet ist, um einen Quotienten aus der Energie in dem Frequenzband und der Störung in dem Frequenzband zu verwenden.
  9. Vorrichtung nach einem der vorhergehenden Ansprüche,
    bei der die Einrichtung (104) zum Berechnen des Schätzwerts ausgebildet ist, um den Schätzwert unter Verwendung des folgenden Ausdrucks zu berechnen: pe = b nl b log 2 e b nb b + s
    Figure imgb0004
    wobei pe der Schätzwert ist, wobei nl(b) das Maß für die Verteilung der Energie in dem Band b darstellt, wobei e(b) eine Energie des Signals in dem Band b ist, wobei nb(b) die erlaubte Störung in dem Band b ist, und wobei s ein additiver Term ist, der vorzugsweise gleich 1,5 ist.
  10. Vorrichtung nach einem der vorhergehenden Ansprüche,
    bei der die Einrichtung (104) zum Berechnen des Schätzwerts ausgebildet ist, um den Schätzwert gemäß folgender Gleichung zu berechnen: pe = b nl b log 2 e b nb b + s
    Figure imgb0005
    wobei gilt: nl b = ffac b e b width b 0.25 ,
    Figure imgb0006
    und
    wobei gilt: ffac b = k = kOffset b kOffset b + 1 1 X k ,
    Figure imgb0007
    wobei pe der Schätzwert ist, wobei nl(b) das Maß für die Verteilung der Energie in dem Band b darstellt, wobei e(b) eine Energie des Signals in dem Band b ist, wobei nb(b) die erlaubte Störung in dem Band b ist, wobei s ein additiver Term ist, der vorzugsweise gleich 1,5 ist, wobei X(k) ein Spektralwert bei einem Frequenzindex k ist, wobei kOffset ein erster Spektralwert in einem Band b ist, wobei ffac(b) ein Formfaktor ist, und wobei width(b) eine Breite des Bandes ist
  11. Vorrichtung nach einem der vorhergehenden Ansprüche, bei der das Signal als spektrale Darstellung mit Spektralwerten gegeben ist.
  12. Verfahren zum Ermitteln eines Schätzwerts für einen Bedarf an Informationseinheiten zum Codieren eines Signals, das Audio- oder Videoinformationen aufweist, wobei das Signal mehrere Frequenzbänder aufweist, mit folgenden Schritten:
    Liefern (102) eines Maßes für eine erlaubte Störung für ein Frequenzband des Signals, wobei das Frequenzband wenigstens zwei Spektralwerte einer spektralen Darstellung des Signals umfasst, und eines Maßes für eine Energie des Signals in dem Frequenzband;
    gekennzeichnet durch
    Berechnen (106) eines Maßes für eine Verteilung der Energie in dem Frequenzband, wobei die Verteilung der Energie in dem Frequenzband von einer vollständig gleichmäßigen Verteilung abweicht; und
    Berechnen (104) des Schätzwerts unter Verwendung des Maßes für die Störung, des Maßes für die Energie und des Maßes für die Verteilung der Energie.
  13. Computerprogramm mit einem Programmcode zum Durchführen des Verfahrens zum Ermitteln eines Schätzwerts für einen Bedarf an Informationseinheiten zum Codieren eines Signals gemäß Patentanspruch 12, wenn das Programm auf einem Computer abläuft.
EP19167397.9A 2004-03-01 2005-02-17 Vorrichtung und verfahren zum ermitteln eines schätzwerts Active EP3544003B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL19167397T PL3544003T3 (pl) 2004-03-01 2005-02-17 Urządzenie i sposób ustalania szacowanej wartości

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102004009949A DE102004009949B4 (de) 2004-03-01 2004-03-01 Vorrichtung und Verfahren zum Ermitteln eines Schätzwertes
EP08021083.4A EP2034473B1 (de) 2004-03-01 2005-02-17 Vorrichtung und Verfahren zum Ermitteln eines Schaetzwerts
PCT/EP2005/001651 WO2005083680A1 (de) 2004-03-01 2005-02-17 Vorrichtung und verfahren zum ermitteln eines schätzwerts
EP05707481A EP1697931B1 (de) 2004-03-01 2005-02-17 Vorrichtung und verfahren zum ermitteln eines schätzwerts

Related Parent Applications (3)

Application Number Title Priority Date Filing Date
EP05707481A Division EP1697931B1 (de) 2004-03-01 2005-02-17 Vorrichtung und verfahren zum ermitteln eines schätzwerts
EP08021083.4A Division-Into EP2034473B1 (de) 2004-03-01 2005-02-17 Vorrichtung und Verfahren zum Ermitteln eines Schaetzwerts
EP08021083.4A Division EP2034473B1 (de) 2004-03-01 2005-02-17 Vorrichtung und Verfahren zum Ermitteln eines Schaetzwerts

Publications (2)

Publication Number Publication Date
EP3544003A1 EP3544003A1 (de) 2019-09-25
EP3544003B1 true EP3544003B1 (de) 2020-12-23

Family

ID=34894902

Family Applications (3)

Application Number Title Priority Date Filing Date
EP08021083.4A Active EP2034473B1 (de) 2004-03-01 2005-02-17 Vorrichtung und Verfahren zum Ermitteln eines Schaetzwerts
EP19167397.9A Active EP3544003B1 (de) 2004-03-01 2005-02-17 Vorrichtung und verfahren zum ermitteln eines schätzwerts
EP05707481A Active EP1697931B1 (de) 2004-03-01 2005-02-17 Vorrichtung und verfahren zum ermitteln eines schätzwerts

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP08021083.4A Active EP2034473B1 (de) 2004-03-01 2005-02-17 Vorrichtung und Verfahren zum Ermitteln eines Schaetzwerts

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP05707481A Active EP1697931B1 (de) 2004-03-01 2005-02-17 Vorrichtung und verfahren zum ermitteln eines schätzwerts

Country Status (19)

Country Link
US (1) US7318028B2 (de)
EP (3) EP2034473B1 (de)
JP (1) JP4673882B2 (de)
KR (1) KR100852482B1 (de)
CN (1) CN1938758B (de)
AT (1) ATE532173T1 (de)
AU (1) AU2005217507B2 (de)
BR (1) BRPI0507815B1 (de)
CA (1) CA2559354C (de)
DE (1) DE102004009949B4 (de)
DK (1) DK1697931T3 (de)
ES (3) ES2376887T3 (de)
HK (1) HK1093813A1 (de)
IL (1) IL176978A (de)
NO (1) NO338917B1 (de)
PL (2) PL2034473T3 (de)
PT (2) PT3544003T (de)
RU (1) RU2337414C2 (de)
WO (1) WO2005083680A1 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2707873B1 (de) 2011-05-09 2015-04-08 Dolby International AB Verfahren und codierer zur verarbeitung eines digitalen stereotonsignals
FR2977439A1 (fr) * 2011-06-28 2013-01-04 France Telecom Fenetres de ponderation en codage/decodage par transformee avec recouvrement, optimisees en retard.
US11232804B2 (en) * 2017-07-03 2022-01-25 Dolby International Ab Low complexity dense transient events detection and coding
WO2019091576A1 (en) * 2017-11-10 2019-05-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Audio encoders, audio decoders, methods and computer programs adapting an encoding and decoding of least significant bits
EP3483882A1 (de) 2017-11-10 2019-05-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Steuerung der bandbreite in codierern und/oder decodierern
EP3483880A1 (de) 2017-11-10 2019-05-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Zeitliche rauschformung
EP3483878A1 (de) 2017-11-10 2019-05-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Audiodecoder mit auswahlfunktion für unterschiedliche verlustmaskierungswerkzeuge
EP3483884A1 (de) 2017-11-10 2019-05-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Signalfiltrierung
EP3483883A1 (de) 2017-11-10 2019-05-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Audiokodierung und -dekodierung mit selektiver nachfilterung
WO2019091573A1 (en) 2017-11-10 2019-05-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for encoding and decoding an audio signal using downsampling or interpolation of scale parameters
EP3483886A1 (de) 2017-11-10 2019-05-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Auswahl einer grundfrequenz
EP3483879A1 (de) 2017-11-10 2019-05-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Analyse-/synthese-fensterfunktion für modulierte geläppte transformation
CN111405419B (zh) * 2020-03-26 2022-02-15 海信视像科技股份有限公司 音频信号处理方法、装置及可读存储介质
CN116707557B (zh) * 2022-12-20 2024-05-03 荣耀终端有限公司 信道选择方法、接收机及存储介质

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0446037B1 (de) * 1990-03-09 1997-10-08 AT&T Corp. Hybride wahrnehmungsgebundene Kodierung von Audiosignalen
EP0559348A3 (de) * 1992-03-02 1993-11-03 AT&T Corp. Rateurregelschleifenprozessor für einen wahrnehmungsgebundenen Koder/Dekoder
US5285498A (en) * 1992-03-02 1994-02-08 At&T Bell Laboratories Method and apparatus for coding audio signals based on perceptual model
CA2090052C (en) * 1992-03-02 1998-11-24 Anibal Joao De Sousa Ferreira Method and apparatus for the perceptual coding of audio signals
DE69334139T2 (de) * 1992-06-24 2008-01-10 British Telecommunications P.L.C. Testen von Nachrichtenübertragungsgerät
JP2927660B2 (ja) * 1993-01-25 1999-07-28 シャープ株式会社 樹脂封止型半導体装置の製造方法
US5632003A (en) * 1993-07-16 1997-05-20 Dolby Laboratories Licensing Corporation Computationally efficient adaptive bit allocation for coding method and apparatus
US5623577A (en) * 1993-07-16 1997-04-22 Dolby Laboratories Licensing Corporation Computationally efficient adaptive bit allocation for encoding method and apparatus with allowance for decoder spectral distortions
US5956674A (en) * 1995-12-01 1999-09-21 Digital Theater Systems, Inc. Multi-channel predictive subband audio coder using psychoacoustic adaptive bit allocation in frequency, time and over the multiple channels
DE19736669C1 (de) * 1997-08-22 1998-10-22 Fraunhofer Ges Forschung Verfahren und Vorrichtung zum Erfassen eines Anschlags in einem zeitdiskreten Audiosignal sowie Vorrichtung und Verfahren zum Codieren eines Audiosignals
DE19747132C2 (de) * 1997-10-24 2002-11-28 Fraunhofer Ges Forschung Verfahren und Vorrichtungen zum Codieren von Audiosignalen sowie Verfahren und Vorrichtungen zum Decodieren eines Bitstroms
AU3372199A (en) * 1998-03-30 1999-10-18 Voxware, Inc. Low-complexity, low-delay, scalable and embedded speech and audio coding with adaptive frame loss concealment
US6418408B1 (en) * 1999-04-05 2002-07-09 Hughes Electronics Corporation Frequency domain interpolative speech codec system
JP3762579B2 (ja) * 1999-08-05 2006-04-05 株式会社リコー デジタル音響信号符号化装置、デジタル音響信号符号化方法及びデジタル音響信号符号化プログラムを記録した媒体
JP2001166797A (ja) * 1999-12-07 2001-06-22 Nippon Hoso Kyokai <Nhk> オーディオ信号の符号化装置
US6937979B2 (en) * 2000-09-15 2005-08-30 Mindspeed Technologies, Inc. Coding based on spectral content of a speech signal
EP1199711A1 (de) * 2000-10-20 2002-04-24 Telefonaktiebolaget Lm Ericsson Kodierung von Audiosignalen unter Verwendung von Vergrösserung der Bandbreite
SE0004187D0 (sv) * 2000-11-15 2000-11-15 Coding Technologies Sweden Ab Enhancing the performance of coding systems that use high frequency reconstruction methods
US6636830B1 (en) * 2000-11-22 2003-10-21 Vialta Inc. System and method for noise reduction using bi-orthogonal modified discrete cosine transform
US6996523B1 (en) * 2001-02-13 2006-02-07 Hughes Electronics Corporation Prototype waveform magnitude quantization for a frequency domain interpolative speech codec system
US6871176B2 (en) * 2001-07-26 2005-03-22 Freescale Semiconductor, Inc. Phase excited linear prediction encoder
US6912495B2 (en) * 2001-11-20 2005-06-28 Digital Voice Systems, Inc. Speech model and analysis, synthesis, and quantization methods

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
PL3544003T3 (pl) 2021-07-12
EP2034473A3 (de) 2015-09-16
ATE532173T1 (de) 2011-11-15
RU2006134638A (ru) 2008-04-10
IL176978A0 (en) 2006-12-10
DE102004009949B4 (de) 2006-03-09
PL2034473T3 (pl) 2019-11-29
CA2559354A1 (en) 2005-09-09
CN1938758B (zh) 2010-11-10
CN1938758A (zh) 2007-03-28
EP2034473B1 (de) 2019-05-15
EP3544003A1 (de) 2019-09-25
NO20064432L (no) 2006-09-29
AU2005217507A1 (en) 2005-09-09
RU2337414C2 (ru) 2008-10-27
JP2007525715A (ja) 2007-09-06
KR20060121978A (ko) 2006-11-29
CA2559354C (en) 2011-08-02
NO338917B1 (no) 2016-10-31
DE102004009949A1 (de) 2005-09-29
DK1697931T3 (da) 2012-02-27
ES2376887T3 (es) 2012-03-20
HK1093813A1 (en) 2007-03-09
IL176978A (en) 2012-08-30
PT3544003T (pt) 2021-02-04
US7318028B2 (en) 2008-01-08
ES2739544T3 (es) 2020-01-31
US20070129940A1 (en) 2007-06-07
BRPI0507815A (pt) 2007-07-10
AU2005217507B2 (en) 2008-08-14
BRPI0507815B1 (pt) 2018-09-11
WO2005083680A1 (de) 2005-09-09
EP1697931A1 (de) 2006-09-06
EP2034473A2 (de) 2009-03-11
ES2847237T3 (es) 2021-08-02
KR100852482B1 (ko) 2008-08-18
EP1697931B1 (de) 2011-11-02
JP4673882B2 (ja) 2011-04-20
PT2034473T (pt) 2019-08-05

Similar Documents

Publication Publication Date Title
EP3544003B1 (de) Vorrichtung und verfahren zum ermitteln eines schätzwerts
EP1687810B1 (de) Vorrichtung und verfahren zum ermitteln einer quantisierer-schrittweite
EP1697930B1 (de) Vorrichtung und verfahren zum verarbeiten eines multikanalsignals
DE60014363T2 (de) Verringerung der von der quantisierung verursachten datenblock-diskontinuitäten in einem audio-kodierer
DE19811039B4 (de) Verfahren und Vorrichtungen zum Codieren und Decodieren von Audiosignalen
DE60004814T2 (de) Quantisierung in perzeptuellen audiokodierern mit kompensation des durch den synthesefilter verschmierten rauschens
EP2022043B1 (de) Informationssignalcodierung
DE60317722T2 (de) Verfahren zur Reduzierung von Aliasing-Störungen, die durch die Anpassung der spektralen Hüllkurve in Realwertfilterbanken verursacht werden
EP1502255B1 (de) Vorrichtung und verfahren zum skalierbaren codieren und vorrichtung und verfahren zum skalierbaren decodieren eines audiosignales
DE69123500T2 (de) 32 Kb/s codeangeregte prädiktive Codierung mit niedrigen Verzögerung für Breitband-Sprachsignal
EP1397799B1 (de) Verfahren und vorrichtung zum verarbeiten von zeitdiskreten audio-abtastwerten
DE10217297A1 (de) Vorrichtung und Verfahren zum Codieren eines zeitdiskreten Audiosignals und Vorrichtung und Verfahren zum Decodieren von codierten Audiodaten
DE69932861T2 (de) Verfahren zur kodierung eines audiosignals mit einem qualitätswert für bit-zuordnung
EP1525576B1 (de) Vorrichtung und verfahren zum erzeugen einer komplexen spektraldarstellung eines zeitdiskreten signals
WO2001043503A2 (de) Verfahren und vorrichtung zum verarbeiten eines stereoaudiosignals
EP0962015A1 (de) Verfahren und vorrichtungen zum codieren von diskreten signalen bzw. zum decodieren von codierten diskreten signalen
DE60305907T2 (de) Verfahren zur modellierung von beträgen der oberwellen in der sprache
DE60224100T2 (de) Erzeugung von lsf-vektoren
DE10010849C1 (de) Vorrichtung und Verfahren zum Analysieren eines Analyse-Zeitsignals
DE19742201C1 (de) Verfahren und Vorrichtung zum Codieren von Audiosignalen
DE10065363B4 (de) Vorrichtung und Verfahren zum Decodieren eines codierten Datensignals
MXPA06009934A (es) Metodo y aparato para determinar un estimado

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AC Divisional application: reference to earlier application

Ref document number: 1697931

Country of ref document: EP

Kind code of ref document: P

Ref document number: 2034473

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200312

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: G10L 19/025 20130101AFI20200624BHEP

Ipc: G10L 19/002 20130101ALI20200624BHEP

INTG Intention to grant announced

Effective date: 20200716

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AC Divisional application: reference to earlier application

Ref document number: 2034473

Country of ref document: EP

Kind code of ref document: P

Ref document number: 1697931

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502005016168

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1348495

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3544003

Country of ref document: PT

Date of ref document: 20210204

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20210128

REG Reference to a national code

Ref country code: FI

Ref legal event code: FGE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210323

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2847237

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210802

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005016168

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210217

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

26N No opposition filed

Effective date: 20210924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1348495

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20050217

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240220

Year of fee payment: 20

Ref country code: ES

Payment date: 20240319

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20240219

Year of fee payment: 20

Ref country code: DE

Payment date: 20240216

Year of fee payment: 20

Ref country code: GB

Payment date: 20240222

Year of fee payment: 20

Ref country code: PT

Payment date: 20240212

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240208

Year of fee payment: 20

Ref country code: SE

Payment date: 20240221

Year of fee payment: 20

Ref country code: PL

Payment date: 20240205

Year of fee payment: 20

Ref country code: IT

Payment date: 20240229

Year of fee payment: 20

Ref country code: FR

Payment date: 20240222

Year of fee payment: 20

Ref country code: BE

Payment date: 20240219

Year of fee payment: 20