EP3524910B1 - Heizkörper sowie verfahren zu dessen herstellung - Google Patents

Heizkörper sowie verfahren zu dessen herstellung Download PDF

Info

Publication number
EP3524910B1
EP3524910B1 EP19156417.8A EP19156417A EP3524910B1 EP 3524910 B1 EP3524910 B1 EP 3524910B1 EP 19156417 A EP19156417 A EP 19156417A EP 3524910 B1 EP3524910 B1 EP 3524910B1
Authority
EP
European Patent Office
Prior art keywords
convector
heating
plates
heating channel
radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19156417.8A
Other languages
English (en)
French (fr)
Other versions
EP3524910A1 (de
Inventor
Sylvain Berthet
Roger Grauls
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Caradon Stelrad BV
Original Assignee
Caradon Stelrad BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Caradon Stelrad BV filed Critical Caradon Stelrad BV
Publication of EP3524910A1 publication Critical patent/EP3524910A1/de
Application granted granted Critical
Publication of EP3524910B1 publication Critical patent/EP3524910B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • F28F1/128Fins with openings, e.g. louvered fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0035Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for domestic or space heating, e.g. heating radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F2009/0285Other particular headers or end plates
    • F28F2009/0297Side headers, e.g. for radiators having conduits laterally connected to common header
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2225/00Reinforcing means
    • F28F2225/06Reinforcing means for fins

Definitions

  • the present application relates to a method for producing such a heater.
  • a “collecting duct” is understood to mean a duct of the heating element which interacts in terms of flow with at least two other ducts.
  • a collecting duct can interact with a large number of heating ducts, which are each connected to the collecting duct independently of one another.
  • the heating ducts are connected to the collecting duct in a manner of speaking in a parallel circuit.
  • heating duct is understood in the sense of the present application as a duct through which the heating medium can flow, the primary function of which is to release the thermal energy stored in the heating medium to the ambient air of the radiator. Consequently, there is typically an attempt to make an effective surface of a heating channel comparatively large, so that in particular a convective heat exchange with the ambient air can take place.
  • a heating duct works together with a convector plate or some other device which is thermally connected to a wall of the heating duct and in this way drastically increases the surface area of the same.
  • the heating channels can be incorporated, for example, in a heating plate, with the heating channels extending between two horizontally arranged collecting channels.
  • the heating channels may have a different orientation, in particular a horizontal orientation.
  • Tubular heating ducts are also conceivable, with flat tubes being used in particular in the case of so-called “heating walls", the width of which significantly exceeds their height.
  • An “at least indirect connection” between a heating duct and at least one associated convector plate means both indirect and direct connections in the context of the present application.
  • a convector plate is typically connected directly to a wall of a respectively associated heating duct, so that heat transfer from the heating duct to the convector plate is possible in a particularly efficient manner. Nevertheless, it is also conceivable that the convector plate interacts only indirectly with the heating duct with the interposition of a connecting component.
  • individual convector plates are understood to mean convector plates that are separate from one another, at least in an assembled state in which they are not yet installed on the radiator. Furthermore, the convector plates can also be present separately and consequently independently of one another in a finished state of the radiator, in which they are connected in a force-transmitting manner to the heating duct. This mutually independent arrangement is then reflected in the fact that a direct transmission of forces from one convector plate to a respectively adjacent convector plate is not possible.
  • the convector plates are initially present separately before being mounted on the heating duct, are mounted on the heating duct in this state and are then coupled to one another, so that a direct exchange of forces between adjacent convector plates is made possible.
  • individual convector plates are not "in one piece” formed on a higher-level convector plate, as is known in the prior art. Instead, the convector plates continue to be “individually” within the meaning of the present application.
  • the known radiators each comprise a convector plate which is provided with a large number of convector sections.
  • a convector plate has a specific, repetitive shape, which is typically wavy or meandering, with each of the periodically repeating sections of the convector plate forming a convector section which, when mounted on the radiator, then together with the heating ducts forms a Convector channel forms.
  • Convector sheets of this type are manufactured cyclically or continuously and cut to a specific length as required, so that the convector sheet can be connected to the heating ducts of the respective radiator.
  • the convector plate is typically welded to the heating channels.
  • the disadvantage of the known radiators is that it is not possible to influence the number of convector channels formed on the heating channels, since this is determined solely by the shape of the convector plate.
  • this is of course not detrimental to the intended heat output of the respective radiator, the arrangement of a convector plate in the radiator is always accompanied by an increase in the weight of the radiator and additional costs for its manufacture.
  • the Japanese patent application JP 2002-168 470A describes an air conditioner which is provided with a plurality of convector plates consisting of a base and two legs.
  • the convector plates are arranged in a heat-transferring manner via the bases on a heating duct of the air conditioning system and are bent at the end sections facing away from the heating duct, which form the legs of the convector plates.
  • the present invention was based on the object of further developing a known radiator with regard to the stability of the same.
  • each of the convector plates has a Z-shape, with each convector plate having a single, flat base with which it is in contact with the heating duct, the at least a leg has at least one stiffener, preferably a plurality of stiffeners, which extends or extend in a vertical direction of the leg, wherein the at least one stiffener protrudes or protrudes from the leg to the base and in this way creates a kink between the base and the leg stiffen or stiffened.
  • a “free end” is understood to mean an end of the convector plate that is not connected. In particular, there is no coupling of the convector plate to another object at this free end.
  • the free end of the stiffening section is determined by that region of the stiffening section which faces away from the leg and is at the greatest distance from the leg.
  • stiffening sections at the end of the convector plate facing away from the base leads in particular to improved stability of the same.
  • the convector plates do not have a free end which extends in a direction away from the heating duct and is therefore freely accessible to a user.
  • the introduction of stiffening sections thus causes also a reduced risk of injury.
  • the stiffening sections are also particularly advantageous with regard to the optical design.
  • the at least one leg of a respective convector plate is equipped with at least one reinforcement, preferably a plurality of reinforcements.
  • These stiffeners extend in the vertical direction of the leg, preferably starting from the base.
  • Such stiffening can be present in particular in the form of embossing, which is introduced into the convector plate when the material is cold.
  • the convector plate has a kink in a transition area between the leg and the stiffening section, with an angle between the leg and the stiffening section in a range between 0° and 179°, preferably in a range between 10° and 120°.
  • the leg and the stiffening section are arranged at an angle of approximately 90° to one another, in order to achieve a scale-like arrangement of the convector plates.
  • a cross section of the stiffening section is formed in the shape of a circular arc.
  • the transition between the leg and the stiffening section is softer.
  • the distribution of the convector plates along the longitudinal axis of the heating duct can be both regular and irregular. In other words, a distribution is conceivable in which the distances between adjacent convector plates are consistently the same. Alternatively, however, it is also conceivable that a distance between at least two adjacent convector plates differs from the distance between at least two other adjacent convector plates. Furthermore, a distribution both in the longitudinal and in the transverse direction in relation to the longitudinal axis of the respective heating channel is conceivable. In other words, it can be advantageous to align the bases of the convector plates of a respective heating duct perpendicularly or parallel to the longitudinal axis of the heating duct. This depends primarily on the orientation of the heating channels themselves, it being understood that warm air performs an upward movement and the convector plates together form appropriately oriented channels through which the air can flow.
  • the radiator according to the invention has many advantages. As can already be seen from the above description, there is a significant advantage in that the radiator can be equipped with any number of convector plates individually and in particular as required.
  • the convector plates designed in the manner according to the invention each take up only a limited space on the associated heating duct, so that there is great freedom for the desired positioning of the convector plates.
  • the convector plates can be arranged unevenly along the heating duct, whereby, for example, an increased concentration of convector plates can be made in a side area of the radiator, in which a convective heat exchange between the radiator and the environment is then also concentrated. It is also conceivable with vertically oriented heating channels, as they are typical with so-called "heating walls", that the convector plates are distributed differently over the height of the radiator, corresponding to a temperature distribution to be dissipated.
  • At least one heating duct equipped with convector plates, preferably all heating ducts, and the associated convector plates are made of aluminum as such.
  • Aluminum has particularly good heat-conducting properties with a low specific mass.
  • such a heater can also be advantageous in which two different pairs of convector plates, each formed by two adjacent convector plates, have different distances between their convector plates. For example, it is conceivable that there is a distance of 3 cm between a first and a second convector plate and then a distance of 5 cm between the second and an adjoining third convector plate. It goes without saying that the distances between adjacent convector plates can be selected as desired, since the convector plates are present individually according to the invention and are connected to the heating duct independently of one another—and can therefore be positioned individually.
  • a further particular advantage can result from a heater according to the invention, in which at least two heating ducts each have a large number of convector plates which are independent of one another.
  • the advantage can be given by the fact that distances between adjacent convector plates on one heating duct differ from distances between adjacent convector plates on the other heating duct.
  • different heating ducts can each be formed with a different number of convector plates, so that to a certain extent a “convector plate density” turns out to be different at different heating ducts.
  • Such an embodiment can be useful, for example, when, due to the flow, different heating channels are flowed through with heating medium of different temperatures.
  • the heating duct that is subjected to a higher temperature can provide a higher energy output and should therefore be provided with a higher density of convector plates.
  • a heating duct through which comparatively cool heating medium flows can be provided with a smaller number of convector plates.
  • At least one convector plate preferably all the convector plates, has only a single leg which extends from an edge of the base in the direction away from the heating duct.
  • the leg extends relative to the base at an angle of between 80° and 90°, with an angle approaching 90° preferably an angle of exactly 90° being optimal.
  • An orientation of the leg that deviates from a strictly vertical arrangement of the leg relative to the base has the particular advantage that an assembly tool, by means of which the base of the convector plate is connected to the heating duct in a force-transmitting manner, has additional space on the side of the base facing away from the heating duct is available because the leg deviates sideways to a certain extent.
  • a material combination is advantageous in which a respective convector plate is made of aluminum and the heating duct is made of steel.
  • the choice of aluminum for the convector sheets has the advantage of aluminum's particularly pronounced thermal conductivity properties and its low density. It goes without saying that other material combinations are of course also conceivable, in particular a construction of both the heating ducts and the convector plates each from aluminum.
  • each individual convector plate is made particularly thin, in particular a thickness of less than 0.2 mm, preferably less than 0 ,1mm.
  • a thickness of less than 0.2 mm is readily sufficient for the heat exchange function with the environment to be heated.
  • the small thickness of the convector sheets can affect their stability.
  • the reinforcement section has at least one bend, preferably a plurality of bends, at a free end.
  • At least two convector plates of the heating duct are preferably arranged in such a way that they at least partially overlap, preferably are arranged completely next to each other.
  • the arrangement of the convector plates parallel to the longitudinal axis on the heating duct is to be preferred, particularly in the case of vertically oriented heating ducts.
  • the arrangement of several convector plates next to each other on the heating duct helps to significantly increase the convection surface created by the convector plates. Consequently, the convective heat exchange between the heating fluid and the air of the space to be heated can be increased.
  • the underlying object is achieved according to the invention in that at least two adjacent convector plates, preferably a plurality of respectively adjacent convector plates, are connected to one another in a force-transmitting manner after they have been individually connected to a respective heating duct, in particular with the formation of a form fit.
  • the convector plates are aligned relative to a mounting direction in such a way that the leg of a respective convector plate extends from an edge of the base facing the starting area of the heating duct.
  • each convector plate to be connected to the heating duct is aligned prior to its connection to the heating duct in such a way that the leg faces the preceding convector plate already connected to the heating duct.
  • the legs of the convector plates are aligned parallel to the longitudinal axis or parallel to the installation direction of the respective heating duct.
  • the convector plates can be arranged individually on the respective heating channel in a particularly simple and automated manner.
  • the leg of a respective convector plate is subject to a further movement of an assembly tool in the assembly direction itself not in the way. This applies both to the alignment of the convector plates parallel to the longitudinal axis and to the alignment perpendicular to the longitudinal axis. More can be seen particularly well from the exemplary embodiments below.
  • convector plates of two pairs of convector plates are each arranged at different distances from one another. In this way, a higher concentration of convector plates can be set at certain points in the respective heating duct as required; a consistently uniform distribution of convector plates is not absolutely necessary according to the invention.
  • a radiator 1 known in the prior art is shown, which is suitable, for example, for use with convector plates 8 .
  • a heating element 1 comprises two connection cross-sections 2 , three collecting channels 3 , 4 and a large number of horizontally oriented heating channels 5 .
  • the connection cross-sections 2 are arranged here together on a connection set 39 at a lower end of the radiator 1 and are used to connect the radiator 1 to a flow 6 and a return 7 of a heating system, not shown. It goes without saying that one of the connection cross-sections 2 can interact with the flow 6 and the other with the return 7 .
  • the connection fitting 39 interacts with a lower, horizontally extending collecting channel 4 .
  • This collecting duct 4 has a blocking element (not shown) in its middle region, which prevents the heating medium from directly overflowing from the flow 6 to the return 7 or a short circuit between the connection cross sections 2 .
  • the collecting channel 4 is fluidically connected to a vertical collecting channel 3 in its section associated with the flow 6 .
  • the heating medium provided via the flow 6 thus flows, starting from the flow 6 , into the lower collecting duct 4 and then into the vertical collecting duct 3 , in which it rises.
  • the heating medium flows into the heating ducts 5 , which are each individually fluidically connected to the collecting duct 3 .
  • the heating channels 5 are connected in parallel to a certain extent.
  • the heating medium then flows through the individual heating channels 5 in the direction of an opposite collecting channel 3 which also extends vertically. In this collecting channel 3 flows the heating medium then back to the lower collecting channel 4 or its section associated with the return 7 .
  • the heating medium is fed to the return line 7 and thus back to the heating system via the lower collecting channel 4 .
  • the temperature of the heating medium is continuously reduced as it flows through the heating element 1 since the thermal energy of the heating medium is given off to the environment in particular by means of the heating channels 5 .
  • the energy input into the environment takes place mainly by means of thermal radiation and convection.
  • a heater 1 of this type—of course, but also any other conceivable heater—in one embodiment according to the invention comprises a multiplicity of convector plates 8 .
  • a single convector sheet 8 is, for example, in figure 3 shown. It comprises a lower base 9 associated with a respective heating channel 5 , a leg 10 extending from the base 9 , and a stiffening portion 40 disposed at an upper end 17 of the leg applied to the base 9 .
  • a longitudinal axis 37 of the base 9 is oriented here perpendicularly to a longitudinal axis 22 of the associated heating channel 5 or parallel to a width direction 38 of the heating channel 5 .
  • the leg 10 extends from an edge 13 of the base, the convector plate 8 being provided with a kink 24 at the edge 13 .
  • the leg 10 extends in a direction away from the heating channel 5 .
  • the leg 10 and the base 9 together enclose an angle 14 which is approximately 80° here. The purpose of this design, which deviates from a vertical configuration of the angle 14 , becomes clear in connection with the following explanation figure 4 .
  • the leg 10 has a kink 18 at an upper end 17 thereof.
  • the stiffening section 40 of the convector plate 8 then extends from this upper end 17 , at the end of which facing away from the leg 10 the convector plate 8 has a free end 11 .
  • the leg 10 and the stiffening section 40 together enclose an angle 41 which is approximately 90° here.
  • the stiffening section 40 ensures that the leg 10 is not twisted relative to the base 9 unintentionally.
  • the convector sheet 8 is formed from an aluminum sheet that has a thickness of approximately 0.1 mm.
  • the heating channels 5 are made of steel.
  • the convector plate 8 has a plurality of reinforcements 15 , 23 , which are the legs 10 are introduced.
  • the reinforcements 15 , 23 extend parallel to a vertical direction 16 of the leg 10 .
  • the reinforcements 23 protrude from the leg 10 to the base 9 and in this way reinforce the kink 24 between the base 9 and the leg 10 . This also ensures that the leg 10 does not twist unintentionally relative to the base 9 .
  • the convector plate 8 formed in this way can be arranged on a heating duct 5 in a particularly simple manner.
  • a connection is made here by means of ultrasonic welding, which in particular consists of figure 4 results.
  • the convector plate 8 according to figure 3 positioned with its base 9 on a respective heating channel 5 and then its base 9 is welded to the heating channel 5 at a total of two welding points 26 by means of a sonotrode 25 .
  • a large number of convector plates 8 can be connected individually to the heating channel 5 without further ado.
  • a linear weld seam is also conceivable, which can be produced with a disk-shaped or plate-shaped sonotrode.
  • the technical purpose of the angle 14 of less than 90° now also arises: by means of the oblique orientation of the leg 10 relative to the base 9 , a free space facing the base 9 is created in which the sonotrode 25 finds sufficient space to connect of the convector plate 8 to be used with the heating channel 5 .
  • a state of the convector plate 8 connected to the heating duct 5 can be seen particularly well from the perspective illustration according to FIG figure 5 .
  • This representation shows that the convector plate 8 is welded to the heating duct 5 by means of two weld points 26 .
  • the heating channel 5 is designed in the form of a flat tube, through the inner cavity 27 of which the heating medium can flow.
  • the convector plate 8 Due to the direct connection of the convector plate 8 to the heating duct 5 , a particularly efficient heat transfer from the heating medium to the convector plate 8 and finally by convection to the environment to be heated can finally take place. If a sonotrode is used whose dimensions are small enough, an embodiment of the angle 14 of 90° is generally to be preferred.
  • a further convector plate 8 is welded to the heating duct 5 in a subsequent processing step.
  • another convector plate 8 is arranged on a side facing away from the leg 10 of the first convector plate 8 and then again connected to the heating channel 5 at two welding points 26 by means of the sonotrode 25 .
  • the second convector sheet 8 positioned at a distance 12 from the first convector plate 8 . This distance 12 is selected to be smaller here than a length 33 of the stiffening section 40 of the convector plates 8 measured parallel to the longitudinal axis 22 of the heating duct 5 .
  • the length 33 therefore exceeds the distance 12 , there is an overlapping area 28 in which the stiffening section 40 of the second convector plate 8 intersects with the stiffening section 40 of the first convector plate 8 .
  • the convector plates 8 which are basically present individually, can be coupled to one another in a force-transmitting manner, in order to thus produce mutual reinforcement. This is explained separately below.
  • the heating channel 5 can be provided with any number of convector plates 8 in the same way, with distances between adjacent convector plates 8 being freely selectable.
  • the arrangement of the individual convector plates 8 takes place in a mounting direction that extends from a starting area 19 of the heating duct 5 in the direction of an opposite end area 20 .
  • the assembly direction is therefore oriented parallel to the longitudinal axis 22 of the heating channel 5 .
  • the setting of a third convector plate 8 - again at a distance 12 to the preceding second convector plate 8 - is an example in figure 8 shown.
  • FIG. 9 Such a finished heating channel 5 is shown in the illustration according to FIG figure 9 .
  • adjacent convector plates 34 there is a distance 21 which clearly exceeds the distances 12 chosen between the convector plates 8 in other respects.
  • two packs of convector plates 8 are formed on the heating duct 5 , so to speak.
  • the distances between adjacent convector plates 8 can in principle be freely selected, since each convector plate 8 is set individually.
  • a dedicated form-fitting point 31 is formed in the stiffening sections 40 .
  • the cheeks 36 are moved laterally away from one another in the direction of the arrows 32 in order to give the material of the stiffening sections 40 room to deform.
  • a modified type of convector plates 8 is used as an alternative to the convector plates 8 according to the above description, the stiffening sections 40 of which are not elongated in the same way, but are brought into a U-shape by means of a further kink 18 .
  • This is particularly good based on the representation according to figure 11 recognizable.
  • the different design of the stiffening section 40 means that adjacent convector plates 8 do not form an overlapping area 28 and consequently cannot be connected directly to one another.
  • the introduction of the further kink 18 has the advantage that the respective convector plate 8 is additionally reinforced in the area of its stiffening section 40 .
  • Heating ducts 5 which are also equipped with a plurality of convector plates 8 .
  • the convector plates 8 are oriented parallel to the longitudinal axes 22 of the heating channels 5 here. Such an embodiment is particularly advantageous when the respective heating channel 5 is oriented vertically, so that a convective air flow can rise along the heating channel 5 .
  • the individual convector plates 8 are arranged one behind the other along the heating channel 5 .
  • An assembly of the convector plates 8 is comparable to the assembly of the convector plates 8 according to the above-described embodiments according to FIG Figures 1 to 13 away.
  • the convector plates 8 are each connected individually to a wall of the heating duct 5 , in particular by means of ultrasonic welding at points or in a line.
  • the sonotrode or sonotrodes move from convector plate 8 to convector plate 8 relative to the heating channel 5 parallel to its longitudinal axis 22 .
  • convector plates 8 In principle, and independently of any other design of a heating element 1 according to the invention, it is conceivable to combine differently designed convector plates 8 on one and the same heating duct 5 . Furthermore, the formation of elongated convector plates 8 is conceivable, the length of which clearly exceeds the width of a heating channel 5 . Such convector plates 8 can extend perpendicularly to the longitudinal axis 22 of the respective heating duct 5 and thus bridge a free space between adjacent heating ducts 5 . In this way, the convector plates 8 can be connected to a plurality of heating ducts 5 arranged next to one another or one above the other. The advantage according to the invention of a free choice of distance between adjacent convector plates 8 remains unchanged as a result.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)

Description

    Einleitung
  • Die vorliegende Anmeldung betrifft einen Heizkörper, umfassend
    • mindestens zwei Anschlussquerschnitte,
    • mindestens zwei Sammelkanäle sowie
    • eine Mehrzahl von Heizkanälen,
    wobei mittels der Anschlussquerschnitte der Heizkörper an einen Vorlauf und einen Rücklauf eines ein Heizmedium bereitstellenden Heizungssystems anschließbar ist, wobei sich die Heizkanäle zwischen den Sammelkanälen erstrecken und strömungstechnisch mit diesen verbunden sind, sodass das Heizmedium von einem der Sammelkanäle durch die Heizkanäle in den anderen Sammelkanal überströmen kann, wobei mindestens ein Heizkanal zumindest mittelbar in Wärme übertragender Weise mit mindestens einem Konvektorblech zusammenwirkt, wobei mindestens ein Heizkanal eine Vielzahl einzelner Konvektorbleche aufweist, die entlang einer Längsachse des Heizkanals verteilt angeordnet und mit einer Wandung des Heizkanals in Kraft übertragender Weise verbunden sind, wobei jedes der Konvektorbleche eine mit dem Heizkanal in Kontakt stehende Basis und mindestens einen Schenkel umfasst, der sich ausgehend von der Basis in eine von dem Heizkanal abgewandte Richtung erstreckt, wobei der mindestens eine Schenkel an einem der Basis abgewandten Ende einen Versteifungsabschnitt aufweist, wobei ein freies Ende des Versteifungsabschnitts auf einer der Basis abgewandten Seite des Schenkels angeordnet ist, wobei ein jeweiliges Konvektorblech von Aluminium und der Heizkanal von Stahl oder Aluminium gebildet sind.
  • Ferner betrifft die vorliegende Anmeldung ein Verfahren zur Herstellung eines solchen Heizkörpers.
  • Unter einem "Sammelkanal" wird ein Kanal des Heizkörpers verstanden, der mit mindestens zwei weiteren Kanälen strömungstechnisch zusammenwirkt. Insbesondere kann ein Sammelkanal mit einer Vielzahl von Heizkanälen zusammenwirken, die jeweils unabhängig voneinander an den Sammelkanal angeschlossen sind. Mit anderen Worten sind die Heizkanäle in einer solchen Konfiguration gewissermaßen in einer Parallelschaltung mit dem Sammelkanal verbunden.
  • Unter einem "Heizkanal" wird im Sinne der vorliegenden Anmeldung ein mit dem Heizmedium durchströmbar Kanal verstanden, dessen primäre Funktion es ist, die in dem Heizmedium gespeicherte thermische Energie an die Umgebungsluft des Heizkörpers abzugeben. Folglich besteht typischerweise das Bestreben, eine wirksame Oberfläche eines Heizkanals vergleichsweise groß zu gestalten, sodass insbesondere ein konvektiver Wärmeaustausch mit der Umgebungsluft stattfinden kann. In aller Regel wirkt ein Heizkanal mit einem Konvektorblech oder einer sonstigen Vorrichtung zusammen, die thermisch mit einer Wandung des Heizkanals verbunden ist und auf diese Weise die Oberfläche desselben drastisch vergrößert. Bei handelsüblichen Wandheizkörpern können die Heizkanäle beispielsweise in einer Heizplatte eingearbeitet sein, wobei sich die Heizkanäle zwischen zwei horizontal angeordneten Sammelkanälen erstrecken. Selbstverständlich ist es ebenso denkbar, dass die Heizkanäle eine andere Ausrichtung, insbesondere eine horizontale Ausrichtung, aufweisen. Auch sind rohrförmige Heizkanäle denkbar, wobei insbesondere bei sogenannten "Heizwänden" Flachrohre zum Einsatz kommen, deren Breite deren Höhe deutlich übersteigt.
  • Unter einer "zumindest mittelbaren Verbindung" zwischen einem Heizkanal und mindestens einen zugehörigen Konvektorbleche werden im Sinne der vorliegenden Anmeldung sowohl mittelbare als auch unmittelbare Verbindungen verstanden. Typischerweise ist ein Konvektorblech unmittelbar mit einer Wandung eines jeweils zugehörigen Heizkanals verbunden, sodass ein Wärmeübergang von dem Heizkanal auf das Konvektorblech besonders effizient möglich ist. Gleichwohl ist es ebenso denkbar, dass das Konvektorblech unter Zwischenschaltung eines Verbindungsbauteils lediglich mittelbar mit dem Heizkanal zusammenwirkt.
  • Unter "einzelnen Konvektorblechen" werden im Sinne der vorliegenden Anmeldung Konvektorbleche verstanden, die zumindest in einem Montagezustand, in dem sie noch nicht an dem Heizkörper installiert sind, separat voneinander vorliegen. Ferner können die Konvektorbleche auch in einem Fertigzustand des Heizkörpers, in dem sie in Kraft übertragender Weise mit dem Heizkanal verbunden sind, separat und folglich unabhängig voneinander vorliegen. Diese voneinander unabhängige Anordnung schlägt sich sodann darin nieder, dass eine unmittelbare Übertragung von Kräften von einem Konvektorblech auf ein jeweils benachbartes Konvektorblech nicht möglich ist.
  • Ebenso ist es denkbar, dass die Konvektorbleche vor der Montage an dem Heizkanal zunächst separat vorliegenden, in diesem Zustand an dem Heizkanal montiert werden und anschließend miteinander gekoppelt werden, sodass ein unmittelbarer Austausch von Kräften zwischen benachbarten Konvektorbleche ermöglicht ist. Grundsätzlich sind die einzelnen Konvektorbleche gleichwohl nicht "einstückig" an einem übergeordneten Konvektorblech ausgebildet, wie dies im Stand der Technik bekannt ist. Stattdessen liegen die Konvektorbleche im Sinne der vorliegenden Anmeldung weiterhin "einzeln" vor.
  • Stand der Technik
  • Heizkörper der eingangs beschriebenen Art sind im Stand der Technik bereits bekannt. Hierzu wird insbesondere auf die folgenden Dokumente verwiesen: DE 10 2009 055 177 A1 , DE 32 27 146 A1 und DE 199 21 144 B4 .
  • Die bekannten Heizkörper umfassen jeweils ein Konvektorblech, das mit einer Vielzahl von Konvektorabschnitten versehen ist. Mit anderen Worten umfasst ein solches Konvektorblech eine bestimmte, sich wiederholende Form, die typischerweise wellen- oder mäanderförmig ausgebildet ist, wobei jeder der sich periodisch wiederholenden Abschnitte des Konvektorblechs einen Konvektorabschnitt bildet, der in seinem an dem Heizkörper montierten Zustand sodann gemeinsam mit den Heizkanälen einen Konvektorkanal ausbildet. Konvektorbleche dieser Art werden zyklisch oder kontinuierlich hergestellt und je nach Bedarf auf eine bestimmte Länge geschnitten, sodass eine Verbindung des Konvektorblechs mit den Heizkanälen des jeweiligen Heizkörpers möglich ist. Das Konvektorblech wird dabei typischerweise mit den Heizkanälen verschweißt.
  • Der Nachteil der bekannten Heizkörper besteht darin, dass die Einflussnahme auf die Anzahl der an den Heizkanälen ausgebildeten Konvektorkanäle nicht möglich ist, da sich diese ausschließlich aus der Form des Konvektorblechs bestimmt. Somit ist es insbesondere denkbar, dass zur Sicherstellung einer gewissen Heizleistung eines Heizkörpers die Notwendigkeit besteht, grundsätzlich ein bestimmtes Konvektorblech zu verwenden, eine sich dadurch jedoch automatisch ergebende Vielzahl an Konvektionskanälen für den vorgesehenen Bedarf gleichwohl überflüssig ist. Wenngleich dies zwar für die vorgesehene Heizleistung des jeweiligen Heizkörpers selbstverständlich unschädlich ist, geht die Anordnung eines Konvektorblechs in dem Heizkörper doch in jedem Fall mit einer Zunahme des Gewichts des Heizkörpers sowie zusätzlichen Kosten für dessen Herstellung einher.
  • Aus der Patentschrift AT 256388 B geht ein Verfahren zur Herstellung eines Heizkörpers hervor, welches sich durch zwei Verfahrensschritte auszeichnet. In einem ersten Verfahrensschritt werden einzelne Konvektorbleche auf einem ebenen Blech angeschweißt. Dabei weisen die Konvektorbleche jeweils eine Basis, welche mit dem jeweiligen Heizkanal verschweißt wird, und einen Schenkel auf, wobei letzterer sich in eine von dem Heizkanal abgewandte Richtung erstreckt. In einem zweiten Verfahrensschritt wird das Blech mit den angeschweißten Konvektorblechen in die gewünschte Form des Heizkanals gebogen.
  • Die japanische Patentanmeldung JP 2002-168 470 A beschreibt eine Klimaanlage, welche mit einer Vielzahl von Konvektorblechen, bestehend aus einer Basis und zwei Schenkeln, versehen ist. Die Konvektorbleche sind dabei wärmeübertragend über die Basen an einem Heizkanal der Klimaanlage angeordnet und an den dem Heizkanal abgewandten Endabschnitten, welche die Schenkel der Konvektorbleche bilden, abgeknickt.
  • Ferner ist aus der FR 2 292 206 A1 ein Heizkörper mit Konvektorblechen bekannt, wobei die Konvektorbleche auf Heizkanäle des Heizkörpers aufgesteckt bzw. aufgeschoben werden
  • Aufgabe
  • Der vorliegenden Erfindung lag die Aufgabe zugrunde, einen bekannten Heizkörper im Hinblick auf die Stabilität des selbigen weiterzuentwickeln.
  • Lösung
  • Die zugrunde liegende Aufgabe wird ausgehend von dem Heizkörper der eingangs beschriebenen Art erfindungsgemäß dadurch gelöst, dass jedes der Konvektorbleche eine Z-Form aufweist, wobei jedes Konvektorblech eine einzige, ebene Basis aufweist, mit der es mit dem Heizkanal in Kontakt steht, wobei der mindestens eine Schenkel mindestens eine Versteifung, vorzugsweise eine Mehrzahl von Versteifungen, aufweist, die sich in einer Hochrichtung des Schenkels erstreckt bzw. erstrecken, wobei die mindestens eine Versteifung ausgehend von dem Schenkel bis auf die Basis ragen bzw. ragt und auf diese Weise einen Knick zwischen der Basis und dem Schenkel versteifen bzw. versteift.
  • Unter einem "freien Ende" wird im Sinne der vorliegenden Anmeldung ein Ende des Konvektorblechs verstanden, das unverbunden vorliegt. Insbesondere findet an diesem freien Ende keine Kopplung des Konvektorblechs mit einem anderen Gegenstand statt. Das freie Ende des Versteifungsabschnitts bestimmt sich durch denjenigen von dem Schenkel abgewandten Bereich des Versteifungsabschnitts, welcher den größten Abstand zu dem Schenkel aufweist.
  • Die Einbringung von Versteifungsabschnitten an dem der Basis abgewandten Ende des Konvektorblechs führt insbesondere zu einer verbesserten Stabilität des selbigen. Im Vergleich zum Stand der Technik weisen die Konvektorbleche kein freies Ende auf, welches sich in eine von dem Heizkanal abgewandte Richtung erstreckt und somit für einen Verwender frei zugänglich ist. Die Einbringung von Versteifungsabschnitten bewirkt somit auch eine verringerte Verletzungsgefahr. Weitergehend sind die Versteifungsabschnitte ebenfalls hinsichtlich der optischen Ausgestaltung besonders vorteilhaft.
  • Erfindungsgemäß ist vorgesehen, dass der mindestens eine Schenkel eines jeweiligen Konvektorblechs mit mindestens einer Versteifung, vorzugsweise einer Mehrzahl von Versteifungen, ausgestattet ist. Diese Versteifungen erstrecken sich in Hochrichtung des Schenkels, vorzugsweise ausgehend von der Basis. Derartige Versteifungen können insbesondere in Form von Prägungen vorliegen, die im kalten Zustand des Materials in das Konvektorblech eingebracht werden.
  • Eine vorteilhafte Ausgestaltung des Heizkörpers sieht vor, dass das Konvektorblech in einem Übergangsbereich zwischen dem Schenkel und dem Versteifungsabschnitt einen Knick aufweist, wobei ein Winkel zwischen dem Schenkel und dem Versteifungsabschnitt in einem Bereich zwischen 0° und 179°, vorzugsweise in einem Bereich zwischen 10° und 120°, liegt. Im Hinblick auf die Überlappung der Konvektorbleche ist es besonders vorteilhaft, wenn der Schenkel und der Versteifungsabschnitt in einem Winkel von etwa 90° zueinander angeordnet sind, um somit eine schuppenartige Anordnung der Konvektorbleche zu erzielen.
  • Alternativ ist ebenfalls denkbar, dass ein Querschnitt des Versteifungsabschnitts kreisbogenförmig ausgebildet ist. Im Gegensatz zu einem Knick ist der Übergang zwischen dem Schenkel und dem Versteifungsabschnitt weicher ausgebildet. Besonders im Hinblick auf die Krafteinwirkung, welche zur Umformung des Materials nötig ist, ist eine vorstehende Ausführung besonders vorteilhaft.
  • Die Verteilung der Konvektorbleche entlang der Längsachse des Heizkanals kann sowohl regelmäßig als auch unregelmäßig erfolgen. Mit anderen Worten ist eine Verteilung denkbar, bei der Abstände zwischen jeweils benachbarten Konvektorblechen durchweg gleich sind. Alternativ ist es jedoch ebenso vorstellbar, dass ein Abstand zwischen zumindest zwei benachbarten Konvektorblechen sich von dem Abstand mindestens zweier anderer benachbarter Konvektorbleche unterscheidet. Ferner ist grundsätzlich eine Verteilung sowohl in Längs- als auch in Querrichtung bezogen auf die Längsachse des jeweiligen Heizkanals denkbar. Mit anderen Worten kann es vorteilhaft sein, die Basen der Konvektorbleche eines jeweiligen Heizkanals senkrecht oder parallel zu der Längsachse des Heizkanals auszurichten. Dies richtet sich vor allem nach der Ausrichtung der Heizkanäle selbst, wobei es sich versteht, dass warme Luft eine aufsteigende Bewegung ausführt und die Konvektorbleche sinnvollerweise gemeinsam entsprechend orientierte Kanäle bilden, durch die Luft hindurchströmen kann.
  • Der erfindungsgemäße Heizkörper hat viele Vorteile. Wie sich aus vorstehender Beschreibung bereits erschließt, besteht ein wesentlicher Vorteil darin, dass individuell und insbesondere je nach Bedarf der Heizkörper mit einer beliebigen Anzahl von Konvektorblechen ausgestattet werden kann. Die in der erfindungsgemäßen Weise gestalteten Konvektorbleche beanspruchen jeweils lediglich einen begrenzten Raum auf dem zugehörigen Heizkanal, sodass sich eine große Freiheit zur gewünschten Positionierung der Konvektorbleche ergibt. Insbesondere können die Konvektorbleche ungleichmäßig entlang des Heizkanals angeordnet werden, wodurch beispielsweise eine erhöhte Konzentration an Konvektorblechen in einem Seitenbereich des Heizkörpers vorgenommen werden kann, in dem sodann auch ein konvektiver Wärmeaustausch zwischen dem Heizkörper und der Umgebung konzentriert wird. Ebenso ist es bei vertikal orientierten Heizkanälen, wie sie bei sogenannten "Heizwänden" typisch sind, denkbar, dass die Konvektorbleche über die Höhe des Heizkörpers hinweg unterschiedlich verteilt werden, entsprechend einer abzuführenden Temperaturverteilung.
  • Im Vergleich zum Stand der Technik besteht bei dem erfindungsgemäßen Heizkörper folglich keine unbedingte Bindung an eine vorgesetzte Anzahl gleichmäßig verteilter Konvektorkanäle, die zwingend mit der Wahl eines jeweiligen Konvektorblechs an dem Heizkörper ausgebildet werden müssen. Mittels der individuellen Ausstattung eines jeweiligen Heizkörpers mit einer gewünschten Anzahl von Konvektorblechen ist zudem auch die Masse des späteren fertigen Heizkörpers auf ein Mindestmaß begrenzbar. Dies ist für ein kräfteschonendes Handling des Heizkörpers im Zuge der Installation desselben von Vorteil.
  • Hierzu ist es besonders von Vorteil, wenn mindestens ein mit Konvektorblechen ausgestatteter Heizkanal, vorzugsweise sämtliche Heizkanäle, sowie die zugehörigen Konvektorbleche als solche von Aluminium gebildet sind. Aluminium weist besonders gute wärmeleitende Eigenschaften bei einer geringen spezifischen Masse auf.
  • Wie vorstehend bereits angedeutet kann ferner ein solcher Heizkörper von Vorteil sein, bei dem zwei verschiedene Konvektorblechpaare, die jeweils von zwei benachbarten Konvektorblechen gebildet sind, zwischen ihren Konvektorblechen verschiedene Abstände aufweisen. Beispielsweise ist es denkbar, dass zwischen einem ersten und einem zweiten Konvektorblech ein Abstand von 3 cm vorliegt und sodann zwischen den zweiten und einem sich daran anschließenden dritten Konvektorblech ein Abstand von 5 cm vorliegt. Es versteht sich, dass die Abstände zwischen benachbarten Konvektorblechen beliebig wählbar sind, da die Konvektorbleche erfindungsgemäß einzeln vorliegen sowie unabhängig voneinander - und dadurch individuell positionierbar - mit dem Heizkanal verbunden werden.
  • Ein weiterer besonderer Vorteil kann sich bei einem erfindungsgemäßen Heizkörper ergeben, bei dem mindestens zwei Heizkanäle jeweils eine Vielzahl voneinander unabhängiger Konvektorbleche aufweisen. Der Vorteil kann dadurch gegeben sein, dass Abstände zwischen benachbarten Konvektorblechen an dem einen Heizkanal sich von Abständen zwischen benachbarten Konvektorblechen an dem anderen Heizkanal unterscheiden. Mit anderen Worten können verschiedene Heizkanäle jeweils mit einer unterschiedlichen Anzahl von Konvektorblechen ausgebildet werden, sodass gewissermaßen eine "Konvektorblechdichte" an verschiedenen Heizkanälen unterschiedlich ausfällt. Eine solche Ausgestaltung kann beispielsweise dann sinnvoll sein, wenn strömungsbedingt verschiedene Heizkanäle mit unterschiedlich warmem Heizmedium durchströmt werden. Es versteht sich, dass derjenige Heizkanal, der mit einer höheren Temperatur beaufschlagt wird, einen höheren Energieoutput leisten kann und folglich mit einer höheren Dichte an Konvektorblechen versehen werden sollte. Umgekehrt analog kann ein Heizkanal, der mit vergleichsweise kühlem Heizmedium durchströmt wird mit einer geringeren Anzahl von Konvektorblechen versehen werden. Auch hier ergibt sich der Vorteil, dass lediglich so viele Konvektorbleche an dem Heizkörper ausgebildet werden, wie für einen optimalen Energieaustausch zwischen dem Heizkörper und dem zu beheizten Raum nötig sind. Hierdurch werden sowohl der Materialeinsatz als auch die Masse des fertigen Heizkörpers auf das Nötigste reduziert.
  • In einer besonders vorteilhaften Ausgestaltung des erfindungsgemäßen Heizkörpers weist mindestens ein Konvektorblech, vorzugsweise sämtliche Konvektorbleche, lediglich einen einzigen Schenkel auf, der sich ausgehend von einem Rand der Basis in die von dem Heizkanal abgewandte Richtung erstreckt. Vorzugsweise erstreckt sich der Schenkel relativ zu der Basis unter einem Winkel zwischen 80° und 90°, wobei eine Annäherung des Winkels an 90° zu bevorzugen ein Winkel von genau 90° optimal sind. Eine von einer strikt senkrechten Anordnung des Schenkels relativ zu der Basis abweichende Orientierung des Schenkels hat den besonderen Vorteil, dass einem Montagewerkzeug, mittels dessen die Basis des Konvektorblechs in Kraft übertragender Weise dem Heizkanal verbunden wird, auf der dem Heizkanal abgewandten Seite der Basis zusätzlicher Raum zur Verfügung steht, da der Schenkel gewissermaßen seitlich ausweicht.
  • Dies ist insbesondere dann erheblich, wenn das jeweilige Konvektorblech in vorteilhafter Weise mittels Ultraschallschweißen an dem Heizkanal angeordnet wird, da in diesem Fall eine Sonotrode eines Ultraschallschweißgeräts einen gewissen Raumbedarf aufweist. Die Verbindung eines jeweiligen Konvektorblechs mit dem Heizkanal mittels Ultraschallschweißen hat dabei die besonderen Vorteile, dass es vergleichsweise zügig möglich ist, automatisierbar ist und zudem kein erheblicher Temperatureintrag in den Heizkanal stattfindet, der ansonsten zu unerwünschten Eigenspannungen in dem Material des Heizkanals führen könnte.
  • Grundsätzlich, jedoch insbesondere im Hinblick auf eine mögliche Verbindung der Konvektorbleche mit einem jeweiligen Heizkanal mittels Ultraschallschweißen, ist eine Materialkombination vorteilhaft, bei der ein jeweiliges Konvektorblech von Aluminium und der Heizkanal von Stahl gebildet sind. Die Wahl von Aluminium für die Konvektorbleche hat den Vorteil der besonders ausgeprägten Wärmeleiteigenschaften von Aluminium sowie dessen geringer Dichte. Es versteht sich, dass andere Materialkombinationen selbstverständlich ebenso denkbar sind, insbesondere eine Ausbildung sowohl der Heizkanäle als auch der Konvektorbleche jeweils aus Aluminium.
  • Um die Masse der einzelnen Konvektorbleche und mithin die Masse des fertigen Heizkörpers möglichst auf ein Minimum zu reduzieren, ist es zudem von Vorteil, wenn jedes einzelne Konvektorblech besonders dünn ausgeführt ist, insbesondere eine Dicke von weniger als 0,2 mm, vorzugsweise weniger als 0,1 mm, aufweist. Für die Funktion des Wärmeaustausches mit der zu beheizten Umgebung ist eine solche Materialstärke ohne Weiteres ausreichend. Die geringe Dicke der Konvektorbleche kann jedoch deren Stabilität beeinträchtigen.
  • Zusätzlich von der Einbringung von Versteifungen kann es zwecks Erhöhung der Stabilität eines jeweiligen Konvektorblechs ferner von Vorteil sein, wenn der Versteifungsabschnitt an einem freien Ende mindestens einen Knick, vorzugsweise eine Mehrzahl von Knicken, aufweist.
  • Um die statische Widerstandsfähigkeit der einzelnen Konvektorbleche deutlich zu erhöhen ist es ferner denkbar, eine Länge des Versteifungsabschnitts, die ausgehend von dem dem Heizkanal abgewandten oberen Ende des Schenkels sowie parallel zu dem Heizkanal gemessen wird, einen Abstand des zugehörigen Konvektorblechs von dem jeweils benachbarten Konvektorblech übersteigt, sodass der Versteifungsabschnitt des Konvektorblechs mit dem benachbarten Konvektorblech überlappt. Auf diese Weise können benachbarte Konvektorbleche trotz ihrer vereinzelten Form in einen unmittelbaren Kontakt miteinander gebracht werden.
  • Für einen unmittelbaren Austausch von Kräften zwischen benachbarten Konvektorblechen ist es bei dieser Konfiguration sodann weiterhin von besonderem Vorteil, wenn die Konvektorbleche unmittelbar miteinander verbunden werden. Eine solche Verbindung ist insbesondere dann denkbar, wenn die einzelnen Konvektorbleche quer zu der Längsachse des Heizkanals ausgerichtet sind, das heißt die Basen der Konvektorbleche sich senkrecht zu der Längsachse des Heizkanals erstrecken. Insbesondere ist es denkbar, dass die sich überlappenden Bereiche der benachbarten Konvektorbleche stoffschlüssig, kraftschlüssig oder formschlüssig miteinander gekoppelt werden. Insbesondere ist die Ausbildung eines Formschlusses denkbar, indem die jeweils benachbarten Konvektorbleche in einem Überlappungsbereich miteinander verpresst werden.
  • Sofern sich die Basen der Konvektorbleche parallel zu der Längsachse des jeweiligen Heizkanals ausgerichtet sind, sind mindestens zwei Konvektorbleche des Heizkanals in Breitenrichtung (bzw. in Querrichtung) des Heizkanals betrachtet vorzugsweise derart angeordnet, dass sie sich zumindest teilweise überlappen, vorzugsweise vollständig nebeneinander angeordnet sind. Die längsachsparallele Anordnung der Konvektorbleche auf dem Heizkanal ist insbesondere bei senkrecht orientierten Heizkanälen zu bevorzugen. Die Anordnung mehrerer Konvektorbleche nebeneinander auf dem Heizkanal trägt dazu bei, die Konvektionsfläche, die mittels der Konvektorbleche geschaffen wird, deutlich zu erhöhen. Der konvektive Wärmeaustausch zwischen dem Heizfluid und der Luft des zu heizenden Raumes kann folglich erhöht werden.
  • In verfahrenstechnischer Hinsicht wird die zugrunde liegende Aufgabe erfindungsgemäß dadurch gelöst, dass zumindest zwei benachbarte Konvektorbleche, vorzugsweise eine Mehrzahl von jeweils benachbarten Konvektorblechen, nach ihrer einzelnen Verbindung mit einem jeweiligen Heizkanal miteinander in Kraft übertragender Weise miteinander verbunden werden, insbesondere unter Ausbildung eines Formschlusses.
  • Vorteilhafterweise werden die Konvektorbleche dabei derart relativ zu einer Montagerichtung ausgerichtet, dass der Schenkel eines jeweiligen Konvektorblechs sich ausgehend von einem dem Anfangsbereich des Heizkanals zugewandten Rand der Basis erstreckt. Mit anderen Worten wird jedes mit dem Heizkanal zu verbindende Konvektorblech vor seiner Verbindung mit dem Heizkanal derart ausgerichtet, dass der Schenkel dem vorausgehenden, bereits mit dem Heizkanal verbundenen Konvektorblech zugewandt ist. Alternativ ist es ebenso denkbar, dass die Konvektorbleche mit deren Schenkeln parallel zu der Längsachse bzw. parallel zu der Montagerichtung des jeweiligen Heizkanals ausgerichtet werden.
  • Unter Verwendung der erfindungsgemäßen Verfahrensweise können die Konvektorbleche besonders einfach und insbesondere automatisiert einzelnen an dem jeweiligen Heizkanal angeordnet werden. Insbesondere steht der Schenkel eines jeweiligen Konvektorblechs einer weiteren Bewegung eines Montagewerkzeugs in Montagerichtung selbst nicht im Weg. Dies gilt sowohl für die längsachsparallele als auch für die zur Längsachse senkrechte Ausrichtung der Konvektorbleche. Weiteres ergibt sich besonders gut anhand der nachstehenden Ausführungsbeispiele.
  • In einer vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens werden Konvektorbleche zweier Konvektorblechpaare jeweils in unterschiedlichen Abständen zueinander angeordnet. Auf diese Weise kann je nach Bedarf eine höhere Konzentration von Konvektorblechen an bestimmten Stellen des jeweiligen Heizkanals eingestellt werden; eine durchgehend gleichmäßige Verteilung von Konvektorblechen ist erfindungsgemäß nicht zwingend notwendig.
  • Ausführungsbeispiele
  • Der erfindungsgemäße Heizkörper sowie das erfindungsgemäße Verfahren werden nachstehend anhand von Ausführungsbeispielen, die in den Figuren dargestellt sind, näher erläutert. Es zeigt:
  • Fig. 1:
    Eine perspektivische Ansicht einer Vorderseite eines Heizkörpers,
    Fig. 2:
    Eine perspektivische Ansicht einer Rückseite des Heizkörpers gemäß Figur 1,
    Fig. 3:
    Ein Detail eines Konvektorblechs für einen erfindungsgemäßen Heizkörper,
    Fig. 4:
    Einen Querschnitt durch einen Heizkanal im Moment der Verbindung eines Konvektorblechs gemäß Figur 3 mit dem Heizkanal,
    Fig. 5:
    Eine perspektivische Ansicht des mit einem Konvektorblechs ausgestatteten Heizkanals gemäß Figur 4,
    Fig. 6:
    Einen Querschnitt durch den Heizkanal gemäß Figur 4 im Moment der Verbindung eines zweiten Konvektorblechs mit dem Heizkanal,
    Fig. 7:
    Eine perspektivische Ansicht des mit zwei Konvektorblechen ausgestatteten Heizkanals gemäß Figur 6,
    Fig. 8:
    Einen Querschnitt durch den Heizkanal gemäß Figur 7 im Moment der Verbindung eines dritten Konvektorblechs mit dem Heizkanal,
    Fig. 9:
    Eine perspektivische Ansicht eines vollständig mit einer Vielzahl von Konvektorblechen ausgestatteten Heizkanals,
    Fig. 10:
    Einen Querschnitt durch einen Heizkanal im Moment der Verbindung eines dritten, alternativ ausgebildeten Konvektorblechs mit dem Heizkanal,
    Fig. 11:
    Eine perspektivische Ansicht eines Ausschnitts des Heizkanals gemäß Figur 10,
    Fig. 12:
    Einen Querschnitt durch ein Werkzeug im Moment der Verbindung zweier Versteifungsabschnitte benachbarter Konvektorbleche mittels Verpressen,
    Fig. 13:
    Eine perspektivische Ansicht eines mit einer Mehrzahl von alternativ ausgebildeten Konvektorblechen verbundenen Heizkanals,
    Fig. 14:
    Einen Querschnitt durch einen Heizkanal, der mit längsachsparallel ausgerichteten Konvektorblechen ausgestattet ist,
    Fig. 15:
    Eine perspektivische Ansicht des Heizkanals gemäß Figur 14,
    Fig. 16:
    Einen Querschnitt durch einen weiteren Heizkanal, der mit längsachsparallel ausgerichteten Konvektorblechen ausgestattet ist und
    Fig. 17:
    Eine perspektivische Ansicht des Heizkanals gemäß Figur 16.
  • Zunächst ist in den Figuren 1 und 2 ein im Stand der Technik bekannter Heizkörper 1 dargestellt, der sich beispielsweise für die Verwendung mit Konvektorblechen 8 eignet. Ein solcher Heizkörper 1 umfasst zwei Anschlussquerschnitte 2, drei Sammelkanäle 3, 4 sowie eine Vielzahl von horizontal orientierten Heizkanälen 5. Die Anschlussquerschnitte 2 sind hier gemeinsam an einer Anschlussgarnitur 39 an einem unteren Ende des Heizkörpers 1 angeordnet und dienen dazu, den Heizkörper 1 an einen Vorlauf 6 sowie einen Rücklauf 7 eines nicht dargestellten Heizungssystems anzuschließen. Dabei versteht es sich, dass einer der Anschlussquerschnitte 2 mit dem Vorlauf 6 und der andere mit dem Rücklauf 7 zusammenwirken kann. Die Anschlussgarnitur 39 wirkt in dem gezeigten Beispiel mit einem unteren, sich horizontal erstreckenden Sammelkanal 4 zusammen. Dieser Sammelkanal 4 weist in seinem Mittelbereich ein nicht dargestelltes Blockadeelement auf, das ein unmittelbares Überströmen des Heizmediums von dem Vorlauf 6 hin zu dem Rücklauf 7 bzw. einen Kurzschluss zwischen den Anschlussquerschnitten 2 unterbindet.
  • Der Sammelkanal 4 ist in seinem mit dem Vorlauf 6 assoziierten Abschnitt mit einem vertikalen Sammelkanal 3 strömungstechnisch verbunden. Das über den Vorlauf 6 bereitgestellte Heizmedium strömt somit ausgehend von dem Vorlauf 6 in den unteren Sammelkanal 4 und sodann in den vertikalen Sammelkanal 3 über, in dem es aufsteigt. Ausgehend von dem Sammelkanal 3 strömt das Heizmedium in die Heizkanäle 5 über, die jeweils einzeln strömungstechnisch mit dem Sammelkanal 3 verbunden sind. Mit anderen Worten sind die Heizkanäle 5 gewissermaßen parallel geschaltet. Das Heizmedium durchströmt sodann die einzelnen Heizkanäle 5 in Richtung eines gegenüberliegenden Sammelkanals 3, der sich gleichermaßen vertikal erstreckt. In diesem Sammelkanal 3 strömt das Heizmedium sodann zurück zu dem unteren Sammelkanal 4 bzw. dessen mit dem Rücklauf 7 assoziierten Abschnitt. Schließlich wird das Heizmedium über den unteren Sammelkanal 4 dem Rücklauf 7 und somit wieder dem Heizungssystem zugeführt. Es versteht sich, dass eine Temperatur des Heizmediums sich im Zuge der Durchströmung des Heizkörpers 1 fortwährend reduziert, da die thermische Energie des Heizmediums insbesondere mittels der Heizkanäle 5 an die Umgebung abgegeben wird. Der Energieeintrag in die Umgebung erfolgt dabei hauptsächlich mittels Wärmestrahlung und Konvektion.
  • Ein derartiger Heizkörper 1 - selbstverständlich jedoch auch jeder andere denkbare Heizkörper - umfasst in einer erfindungsgemäßen Ausgestaltung eine Vielzahl von Konvektorblechen 8. Ein einzelnes Konvektorblechs 8 ist beispielsweise in Figur 3 dargestellt. Es umfasst eine untere, mit einem jeweiligen Heizkanal 5 assoziierte Basis 9, einen sich ausgehend von der Basis 9 erstreckenden Schenkel 10 sowie ein an einem der Basis 9 angewandten, oberen Ende 17 des Schenkels angeordneter Versteifungsabschnitt 40. Eine Längsachse 37 der Basis 9 ist hier senkrecht zu einer Längsachse 22 des zugehörigen Heizkanals 5 bzw. parallel zu einer Breitenrichtung 38 des Heizkanals 5 orientiert. In dem gezeigten Beispiel erstreckt sich der Schenkel 10 ausgehend von einem Rand 13 der Basis, wobei das Konvektorblech 8 an dem Rand 13 mit einem Knick 24 versehen ist. Der Schenkel 10 erstreckt sich ausgehend von der Basis 9 in eine von dem Heizkanal 5 abgewandte Richtung. In dem gezeigten Beispiel schließen der Schenkel 10 und die Basis 9 gemeinsam einen Winkel 14 ein, der hier ca. 80° beträgt. Der Zweck dieser von einer senkrechten Ausgestaltung des Winkels 14 abweichenden Ausbildung erschließt sich im Zusammenhang mit der nachstehenden Erläuterung zu Figur 4 .
  • An einem oberen Ende 17 des Schenkels 10 weist selbiger einen Knick 18 auf. Ausgehend von diesem oberen Ende 17 erstreckt sich sodann der Versteifungsabschnitt 40 des Konvektorblechs 8, an dessen dem Schenkel 10 abgewandten Ende das Konvektorblech 8 ein freies Ende 11 aufweist. In dem gezeigten Beispiel schließen der Schenkel 10 und die der Versteifungsabschnitt 40 gemeinsam einen Winkel 41 ein, der hier ca. 90° beträgt. Der Versteifungsabschnitt 40 stellt sicher, dass der Schenkel 10 nicht unbeabsichtigt relativ zu der Basis 9 verdreht wird.
  • Das Konvektorblech 8 ist in dem gezeigten Beispiel von einem Aluminiumblech gebildet, dass eine Dicke von ca. 0,1 mm aufweist. Die Heizkanäle 5 sind in dem gezeigten Beispiel aus Stahl. Es versteht sich, dass das Konvektorblech 8 als solches aufgrund seiner besonders dünnen Ausbildung eine vergleichsweise geringe Stabilität aufweist. Um diese zu steigern, verfügt das Konvektorblech 8 über eine Mehrzahl von Versteifungen 15, 23, die in den Schenkel 10 eingebracht sind. Die Versteifungen 15, 23 erstrecken sich in dem gezeigten Beispiel parallel zu einer Hochrichtung 16 des Schenkels 10. Die Versteifungen 23 ragen ausgehend von dem Schenkel 10 bis auf die Basis 9 und versteifen auf diese Weise den Knick 24 zwischen der Basis 9 und dem Schenkel 10. Hierdurch ist ebenfalls sichergestellt, dass keine ungewollte Verdrehung des Schenkels 10 relativ zu der Basis 9 erfolgt.
  • Das so gebildete Konvektorblech 8 kann besonders einfach an einem Heizkanal 5 angeordnet werden. Beispielhaft wird hier eine Verbindung mittels Ultraschallschweißen vorgenommen, die sich insbesondere aus Figur 4 ergibt. Hierzu wird das Konvektorblech 8 gemäß Figur 3 mit seiner Basis 9 auf einem jeweiligen Heizkanal 5 positioniert und sodann dessen Basis 9 mittels einer Sonotrode 25 an insgesamt zwei Schweißpunkten 26 mit dem Heizkanal 5 verschweißt. Auf diese Weise kann eine Vielzahl von Konvektorblechen 8 ohne weiteres einzeln mit dem Heizkanal 5 verbunden werden. Alternativ ist beispielsweise auch eine linienförmige Schweißnaht denkbar, die mit einer scheiben- bzw. plattenförmigen Sonotrode erzeugbar ist. Anhand der Darstellung gemäß Figur 4 ergibt sich nunmehr auch der technische Zweck des Winkels 14 von weniger als 90°: mittels der schrägen Orientierung des Schenkels 10 relativ zu der Basis 9 wird nämlich ein der Basis 9 zugewandter Freiraum geschaffen, in dem die Sonotrode 25 ausreichend Platz findet, um zur Verbindung des Konvektorblechs 8 mit dem Heizkanal 5 eingesetzt zu werden. Ein Zustand des mit dem Heizkanal 5 verbundenen Konvektorblechs 8 ergibt sich besonders gut anhand der perspektivischen Darstellung gemäß Figur 5 . Aus dieser Darstellung ergibt sich, dass das Konvektorblech 8 mittels zweier Schweißpunkte 26 mit dem Heizkanal 5 verschweißt ist. Der Heizkanal 5 ist in dem gezeigten Beispiel in Form eines Flachrohres ausgebildet, durch dessen inneren Hohlraum 27 das Heizmedium strömen kann. Aufgrund der unmittelbaren Verbindung des Konvektorblechs 8 mit dem Heizkanal 5 kann schließlich ein besonders effizienter Wärmeübergang von dem Heizmedium an das Konvektorblech 8 und schließlich mittels Konvektion an die zu erwärmen Umgebung stattfinden. Sofern eine Sonotrode eingesetzt wird, deren Abmessungen gering genug sind, ist eine Ausführung des Winkels 14 von 90° grundsätzlich zu bevorzugen.
  • Im Zuge der Ausstattung des Heizkanals 5 mit einer Vielzahl von Konvektorblechen 8 wird in einem sich anschließenden Bearbeitungsschritt ein weiteres Konvektorblech 8 mit dem Heizkanal 5 verschweißt. Dies ergibt sich besonders gut anhand von Figur 6 . Hierzu wird ein weiteres Konvektorblech 8 auf einer dem Schenkel 10 des ersten Konvektorblechs 8 abgewandten Seite angeordnet und sodann abermals mittels der Sonotrode 25 an zwei Schweißpunkten 26 mit dem Heizkanal 5 verbunden. Hierbei wird das zweite Konvektorblech 8 in einem Abstand 12 zu dem ersten Konvektorblech 8 positioniert. Dieser Abstand 12 ist hier geringer gewählt als eine parallel zu der Längsachse 22 des Heizkanals 5 gemessene Länge 33 des Versteifungsabschnitts40 der Konvektorbleche 8. Da die Länge 33 also den Abstand 12 übersteigt, ergibt sich ein Überlappungsbereich 28, in dem sich der Versteifungsabschnitt 40 des zweiten Konvektorblechs 8 mit dem Versteifungsabschnitt 40 des ersten Konvektorblechs 8 überschneidet. In diesem Überlappungsbereich 28 können bei Bedarf die Konvektorbleche 8, die grundsätzlich einzeln vorliegen, in Kraft übertragender Weise miteinander gekoppelt werden, um somit eine gegenseitige Aussteifung herzustellen. Dies wird nachfolgend gesondert erläutert.
  • Nach der erfolgten Verschweißung des zweiten Konvektorblechs 8 mit dem Heizkanal 5 umfasst letzterer schließlich zwei Konvektorbleche 8. Dies ergibt sich besonders gut anhand der Darstellung gemäß Figur 7 . Fortan kann der Heizkanal 5 in der immer gleichen Weise mit einer beliebigen Anzahl von Konvektorblechen 8 versehen werden, wobei Abstände zwischen benachbarten Konvektorblechen 8 frei wählbar sind. Die Anordnung der einzelnen Konvektorbleche 8 erfolgt dabei in eine Montagerichtung, die sich ausgehend von einem Anfangsbereich 19 des Heizkanals 5 in Richtung eines gegenüberliegenden Endbereichs 20 erstreckt. Die Montagerichtung ist mithin parallel zu der Längsachse 22 des Heizkanals 5 orientiert. Die Setzung eines dritten Konvektorblechs 8 - abermals in einem Abstand 12 zu dem vorhergehenden zweiten Konvektorblech 8 - ist beispielhaft in Figur 8 dargestellt. Als Ergebnis einer vollständigen Bearbeitung eines Heizkanals 5 ist selbiger mit einer Vielzahl von Konvektorblechen 8 ausgestattet. Ein solcher fertiger Heizkanal 5 ergibt sich beispielhaft aus der Darstellung gemäß Figur 9 . Dort ist gleichermaßen beispielhaft veranschaulicht, dass zwischen zwei mittig angeordneten, benachbarten Konvektorblechen 34 ein Abstand 21 vorliegt, der die im Übrigen gewählten Abstände 12 zwischen den Konvektorblechen 8 deutlich übersteigt. In dem gezeigten Beispiel sind somit gewissermaßen zwei Pakete von Konvektorblechen 8 auf dem Heizkanal 5 gebildet. In diesem Zusammenhang sei nochmals darauf hingewiesen, dass die Abstände zwischen benachbarten Konvektorblechen 8 grundsätzlich völlig frei wählbar sind, da jedes Konvektorblech 8 einzeln gesetzt wird.
  • Wie vorstehend bereits angedeutet, besteht in dem Überlappungsbereich 28 der Versteifungsabschnitte 40 benachbarter Konvektorbleche 8 die Möglichkeit der Herstellung einer Verbindung, sodass eine unmittelbare Übertragung von Kräften zwischen den benachbarten Konvektorblechen 8 möglich ist. Hierzu ist es beispielsweise denkbar, die Versteifungsabschnitte 40 mittels eines Werkzeugs 29 miteinander zu verpressen, sodass sich eine formschlüssige Verbindung einstellt. Dies ist beispielhaft in Figur 10 dargestellt. Zur Herstellung der formschlüssigen Verbindung wird ein Stempel 35 in Richtung des in Figur 10 dargestellten Pfeils 30 in dem Überlappungsbereich 28 gegen die Versteifungsabschnitte 40 der benachbarten Konvektorbleche 8 gedrückt. Da das Material der Konvektorbleche 8 im Bereich des Stempeldrucks seitlich mittels Wangen 36 daran gehindert ist, unkontrolliert auszuweichen, bildet sich in den Versteifungsabschnitten 40 eine dezidierte Formschlussstelle 31 aus. Im Zuge der Pressung des Stempels 35 auf die Versteifungsabschnitte 40 werden die Wangen 36 in Richtung der Pfeile 32 seitlich voneinander weg bewegt, um dem Material der Versteifungsabschnitte 40 Raum zur Verformung zu geben.
  • In einem zweiten Ausführungsbeispiel, das in den Figuren 11 bis 13 dargestellt ist, wird alternativ zu den Konvektorblechen 8 gemäß der vorstehenden Beschreibung ein abgewandelter Typ von Konvektorblechen 8 verwendet, dessen Versteifungsabschnitte 40 nicht in derselben Weise lang gestreckt ausgebildet ist, sondern mittels eines weiteren Knicks 18 in eine U-Form gebracht wird. Dies ist besonders gut anhand der Darstellung gemäß Figur 11 erkennbar. Die abweichende Ausbildung des Versteifungsabschnitts 40 hat zur Folge, dass benachbarte Konvektorbleche 8 keinen Überlappungsbereich 28 ausbilden und folglich nicht unmittelbar miteinander verbunden werden können. Die Einbringung des weiteren Knicks 18 hat den Vorteil, dass das jeweilige Konvektorblech 8 im Bereich seines Versteifungsabschnitts 40 zusätzlich versteift wird.
  • Als alternative Ausführungsformen zeigen die Figuren 14 bis 17 Heizkanäle 5, die ebenfalls mit einer Mehrzahl von Konvektorblechen 8 ausgestattet sind. Im Unterschied zu den vorstehenden Ausführungsformen sind die Konvektorbleche 8 jedoch hier parallel zu den Längsachsen 22 der Heizkanäle 5 orientiert. Eine solche Ausführung ist insbesondere dann von Vorteil, wenn der jeweilige Heizkanal 5 vertikal orientiert ist, sodass ein konvektiver Luftstrom an dem Heizkanal 5 entlang aufsteigen kann.
  • In dem einen Ausführungsbeispiel, das in den Figuren 14 und 15 dargestellt ist, sind die einzelnen Konvektorbleche 8 hintereinander entlang des Heizkanals 5 angeordnet. Eine Montage der Konvektorbleche 8 läuft vergleichbar zu der Montage der Konvektorbleche 8 gemäß den oben beschriebenen Ausführungsbeispielen gemäß den Figuren 1 bis 13 ab. Somit werden die Konvektorbleche 8 jeweils einzeln mit einer Wandung des Heizkanals 5 verbunden, insbesondere mittels Ultraschallschweißen punktförmig oder linienförmig verschweißt. Die Sonotrode bzw. Sonotroden bewegen sich von Konvektorblech 8 zu Konvektorblech 8 relativ zu dem Heizkanal 5 parallel zu dessen Längsachse 22.
  • In dem in den Figuren 16 und 17 dargestellten Ausführungsbeispiel sind auf einem Heizkanal 5 zwei zueinander parallele Reihen von Konvektorblechen 8 in eine sich senkrecht zu der Längsachse 22 des Heizkanals 5 erstreckende Breitenrichtung 38 des Heizkanals 5 nebeneinander angeordnet. Mittels einer solchen Anordnung kann ein Wärmeübergang von dem Heizfluid auf die Raumluft des zu beheizenden Raums effektiver stattfinden, da eine von Konvektorblechen 8 gebildete konvektiv wirksame Wärmeübertragungsfläche gegenüber beispielsweise der Ausführung gemäß den Figuren 14 und 15 deutlich vergrößert ist.
  • Grundsätzlich ist es und unabhängig von jeglicher sonstiger Ausbildung eines erfindungsgemäßen Heizkörpers 1 denkbar, verschiedenartig ausgebildete Konvektorbleche 8 an ein und demselben Heizkanal 5 miteinander zu kombinieren. Ferner ist die Ausbildung langgestreckter Konvektorbleche 8 denkbar, deren Länge eine Breite eines Heizkanals 5 deutlich übersteigt. Derartige Konvektorbleche 8 können sich senkrecht zu der Längsachse 22 des jeweiligen Heizkanals 5 erstrecken und somit einen Freiraum zwischen benachbarten Heizkanälen 5 überbrücken. Auf diese Weise können die Konvektorbleche 8 können mit mehreren nebeneinander bzw. übereinander angeordneten Heizkanälen 5 verbunden sein. Der erfindungsgemäße Vorteil einer freien Abstandswahl zwischen benachbarten Konvektorblechen 8 bleibt hierdurch unverändert erhalten.
  • Bezugszeichenliste
  • 1
    Heizkörper
    2
    Anschlussquerschnitt
    3
    Sammelkanal
    4
    Sammelkanal
    5
    Heizkanal
    6
    Vorlauf
    7
    Rücklauf
    8
    Konvektorblech
    9
    Basis
    10
    Schenkel
    11
    freies Ende
    12
    Abstand
    13
    Rand
    14
    Winkel
    15
    Versteifung
    16
    Hochrichtung
    17
    Ende
    18
    Knick
    19
    Anfangsbereich
    20
    Endbereich
    21
    Abstand
    22
    Längsachse
    23
    Versteifung
    24
    Knick
    25
    Sonotrode
    26
    Schweißpunkt
    27
    Hohlraum
    28
    Überlappungsbereich
    29
    Werkzeug
    30
    Pfeil
    31
    Formschlussstelle
    32
    Pfeil
    33
    Länge
    34
    Konvektorblech
    35
    Stempel
    36
    Wange
    37
    Längsachse
    38
    Breitenrichtung
    39
    Anschlussgarnitur
    40
    Versteifungsabschnitt
    41
    Winkel

Claims (14)

  1. Heizkörper (1), umfassend
    - mindestens zwei Anschlussquerschnitte (2),
    - mindestens zwei Sammelkanäle (3, 4) sowie
    - eine Mehrzahl von Heizkanälen (5),
    wobei mittels der Anschlussquerschnitte (2) der Heizkörper (1) an einen Vorlauf (6) und einen Rücklauf (7) eines ein Heizmedium bereitstellenden Heizungssystems anschließbar ist,
    wobei die Heizkanäle (5) strömungstechnisch mit den Sammelkanälen (3) verbunden sind, sodass das Heizmedium von einem der Sammelkanäle (3) durch die Heizkanäle (5) in den anderen Sammelkanal (3) überströmen kann,
    wobei mindestens ein Heizkanal (5) zumindest mittelbar in Wärme übertragender Weise mit mindestens einem Konvektorblech (8) zusammenwirkt,
    wobei mindestens ein Heizkanal (5) eine Vielzahl einzelner Konvektorbleche (8) aufweist, die entlang einer Längsachse (22) des Heizkanals (5) verteilt angeordnet und mit einer Wandung des Heizkanals (5) in Kraft übertragender Weise verbunden sind,
    wobei jedes der Konvektorbleche (8) eine mit dem Heizkanal (5) in Kontakt stehende Basis (9) und mindestens einen Schenkel (10) umfasst, der sich ausgehend von der Basis (9) in eine von dem Heizkanal (5) abgewandte Richtung erstreckt, wobei
    der mindestens eine Schenkel (10) an einem der Basis (9) abgewandten Ende einen Versteifungsabschnitt (40) aufweist, wobei ein freies Ende (11) des Versteifungsabschnitts (40) auf einer der Basis (9) abgewandten Seite des Schenkels (10) angeordnet ist, wobei ein jeweiliges Konvektorblech von Aluminium und der Heizkanal von Stahl oder Aluminium gebildet sind,
    dadurch gekennzeichnet, dass jedes der Konvektorbleche (8) eine Z-Form aufweist, wobei jedes Konvektorblech (8) eine einzige, ebene Basis (9) aufweist, mit der es mit dem Heizkanal (5) in Kontakt steht, wobei der mindestens eine Schenkel (10) mindestens eine Versteifung (15, 23), vorzugsweise eine Mehrzahl von Versteifungen (15,23), aufweist, die sich in einer Hochrichtung (16) des Schenkels (10) erstreckt bzw. erstrecken, wobei die mindestens eine Versteifung (23) ausgehend von dem Schenkel (10) bis auf die Basis (9) ragen bzw. ragt und auf diese Weise einen Knick (24) zwischen der Basis (9) und dem Schenkel (10) versteifen bzw. versteift.
  2. Heizkörper (1) nach Anspruch 1, wobei
    das Konvektorblech (8) in einem Übergangsbereich zwischen dem Schenkel (10) und dem Versteifungsabschnitt (40) einen Knick aufweist, wobei ein Winkel (41) zwischen dem Schenkel (10) und dem Versteifungsabschnitt (40) in einem Bereich zwischen 0° und 179°, vorzugsweise in einem Bereich zwischen 10° und 120°, liegt.
  3. Heizkörper (1) nach Anspruch 1 oder 2, wobei die
    Längsachsen (37) der Basen (9) der Konvektorbleche (8) eines jeweiligen Heizkanals (5) senkrecht oder parallel zu der Längsachse (22) des zugehörigen Heizkanals (5) ausgerichtet sind.
  4. Heizkörper (1) nach einem der Ansprüche 1 bis 3, wobei
    parallel zu der Längsachse (22) des jeweiligen Heizkanals (5) gemessene Abstände (12) zwischen Rändern (13) benachbarter Konvektorbleche (8) mindestens zweier, jeweils von zwei benachbarten Konvektorblechen (8) gebildeter Konvektorblechpaare unterschiedlich sind.
  5. Heizkörper (1) nach einem der Ansprüche 1 bis 4, wobei mindestens zwei Heizkanäle (5) jeweils eine Vielzahl der voneinander unabhängigen Konvektorbleche (8) aufweisen, wobei
    parallel zu der Längsachse (22) des jeweiligen Heizkanals (5) gemessene Abstände (12) zwischen Rändern (13) benachbarter Konvektorbleche (8) des einen Heizkanals (5) sich von Abständen (12) zwischen Rändern (13) benachbarter Konvektorbleche (8) des anderen Heizkanals (5) unterscheiden.
  6. Heizkörper (1) nach einem der Ansprüche 1 bis 5, wobei
    der Versteifungsabschnitt (40) an einem freien Ende (11) mindestens einen Knick (18), vorzugsweise mehrere Knicke (18), aufweist.
  7. Heizkörper (1) nach einem der Ansprüche 1 bis 6, wobei Längsachsen (37) der Basen (9) der Konvektorbleche (8) jeweils senkrecht zu der Längsachse (22) des jeweiligen Heizkanals (5) ausgerichtet sind, wobei
    eine Länge (33) des Versteifungsabschnitts (40), die ausgehend von dem dem Heizkanal (5) abgewandten oberen Ende (17) des Schenkels (10) sowie parallel zu dem Heizkanal (5) gemessen wird, einen Abstand (12) des zugehörigen Konvektorblechs (8) von dem jeweils benachbarten Konvektorblech (8) übersteigt, sodass der Versteifungsabschnitt (40) des Konvektorblechs (8) mit dem benachbarten Konvektorblech (8) überlappt.
  8. Heizkörper (1) nach einem der Ansprüche 1 bis 7, wobei
    die mit einem jeweiligen Heizkanal (5) zusammenwirkenden Konvektorbleche (8) unmittelbar miteinander verbunden sind.
  9. Heizkörper (1) nach einem der Ansprüche 1 bis 8, wobei die Basen (9) der Konvektorbleche (8) parallel zu der Längsachse (22) des jeweiligen Heizkanals (5) ausgerichtet sind, wobei
    sich mindestens zwei Konvektorbleche (8) des Heizkanals (5) in eine senkrecht zu der Längsachse (22) erstreckende Breitenrichtung (38) des Heizkanals (5) betrachtet zumindest teilweise überlappen, vorzugsweise vollständig nebeneinander angeordnet sind.
  10. Verfahren zur Herstellung eines Heizkörpers (1) nach einem der Ansprüche 1 bis 9, wobei eine Vielzahl einzelner Konvektorbleche (8) eines Heizkanals (5) nacheinander in eine Montagerichtung ausgehend von einem Anfangsbereich (19) des Heizkanals (5) in Richtung eines dem Anfangsbereich (19) gegenüberliegenden Endbereichs (20) mit einer Wandung des Heizkanal (5) verbunden werden
    dadurch gekennzeichnet, dass
    zumindest zwei benachbarte Konvektorbleche (8), vorzugsweise eine Mehrzahl von jeweils benachbarten Konvektorblechen (8), nach ihrer einzelnen Verbindung mit einem jeweiligen Heizkanal (5) miteinander in Kraft übertragender Weise miteinander verbunden werden, insbesondere unter Ausbildung eines Formschlusses.
  11. Verfahren nach Anspruch 10, wobei
    die Verbindung mittels einer Umformung hergestellt wird, wobei vorzugsweise zumindest ein Versteifungsabschnitt (40) eines Konvektorblechs (8) mit einem Versteifungsabschnitt (40) eines benachbarten Konvektorblechs (8) verpresst wird.
  12. Verfahren nach Anspruch 10 oder 11, wobei die
    Längsachsen (37) der Basen (9) der Konvektorbleche (8) senkrecht oder parallel zu der Längsachse (22) des jeweiligen Heizkanals (5) ausgerichtet werden.
  13. Verfahren nach einem der Ansprüche 10 bis 12, wobei
    benachbarte Konvektorbleche (8) mindestens zweier, jeweils zwei benachbarte Konvektorbleche (8) umfassender Konvektorblechpaare in voneinander unterschiedlichen Abständen (12, 21) mit dem Heizkanal (5) verbunden werden.
  14. Verfahren nach einem der Ansprüche 10 bis 13, wobei
    die Konvektorbleche (8) mittels Ultraschallschweißen mit dem jeweiligen Heizkanal (5) verbunden werden.
EP19156417.8A 2018-02-09 2019-02-11 Heizkörper sowie verfahren zu dessen herstellung Active EP3524910B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102018102950.0A DE102018102950A1 (de) 2018-02-09 2018-02-09 Heizkörper sowie Verfahren zu dessen Herstellung

Publications (2)

Publication Number Publication Date
EP3524910A1 EP3524910A1 (de) 2019-08-14
EP3524910B1 true EP3524910B1 (de) 2022-10-19

Family

ID=65408949

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19156417.8A Active EP3524910B1 (de) 2018-02-09 2019-02-11 Heizkörper sowie verfahren zu dessen herstellung

Country Status (3)

Country Link
EP (1) EP3524910B1 (de)
DE (1) DE102018102950A1 (de)
PL (1) PL3524910T3 (de)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB417573A (en) * 1934-05-24 1934-10-08 Aubrey Francis Snelling Improvements in or relating to panel type radiators for heating buildings
CH409297A (de) * 1963-09-19 1966-03-15 Schlatter Ag Radiator und Verfahren zur Herstellung desselben
BE793085A (fr) * 1971-12-20 1973-04-16 Rasmussen Gunnar O V Convecteur pour le chauffage de batiments, compose de modules et outilset procede pour le fabriquer
FR2292206A1 (fr) * 1974-11-20 1976-06-18 Chausson Usines Sa Echangeur de chaleur pour le chauffage par convection
DE3227146A1 (de) 1982-07-21 1984-01-26 Schäfer Werke GmbH, 5908 Neunkirchen Waermetauscher, insbesondere plattenheizkoerper
JPH0221198A (ja) * 1988-07-07 1990-01-24 Nippon Denso Co Ltd 熱交換器
DE19921144B4 (de) 1999-05-07 2010-06-02 Caradon Heating Europe B.V. Heizkörper
JP2002168470A (ja) * 2000-11-30 2002-06-14 Matsushita Electric Ind Co Ltd 空気調和装置
DE102009055177A1 (de) 2009-12-22 2011-06-30 Caradon Stelrad B.V. Verfahren zur Herstellung eines Heizkörpers unter Verwendung eines Ultraschallschweißens sowie danach hergestellter Heizkörper
DE102012205916B4 (de) * 2012-04-11 2018-09-06 Mahle International Gmbh Wellrippe

Also Published As

Publication number Publication date
EP3524910A1 (de) 2019-08-14
PL3524910T3 (pl) 2023-01-30
DE102018102950A1 (de) 2019-08-14

Similar Documents

Publication Publication Date Title
DE102006057314B4 (de) Wärmeaustauscher
EP3062054B1 (de) Wärmetauscher, insbesondere für ein kraftfahrzeug
DE19958595A1 (de) Verbindung für Wärmeaustauscherkern
DE102012023800A1 (de) Wärmetauscherrohr, Wärmetauscherrohranordnung und Verfahren zum Herstellen desselben
DE102013008717A1 (de) Flächenwärmetauscherelement, Verfahren zur Herstellung eines Flächenwärmetauscherelementes und Werkzeug
DE3131736A1 (de) Verfahren zur herstellung von waermetauschern mit rundgebogenen teilen, sowie gemaess dem verfahren hergestellter waermetauscher
EP3499145B1 (de) Anordnung einer vorrichtung zur temperierung eines raumes an einer decke des raumes
DE102006002932A1 (de) Wärmetauscher und Herstellungsverfahren für Wärmetauscher
DE69910902T2 (de) Unabhängig arbeitender und mobiler Heizkörper sowie Verfahren zu dessen Herstellung
EP0092033B1 (de) Verfahren zur Herstellung eines Flachheizkörper
EP3524910B1 (de) Heizkörper sowie verfahren zu dessen herstellung
DE202017102436U1 (de) Wärmetauscher mit Mikrokanal-Struktur oder Flügelrohr-Struktur
EP2167895B1 (de) Wärmetauscher
DE102012023801A1 (de) Wärmetauscherrohr, Wärmetauscherrohranordnung und Verfahren zum Herstellen desselben
DE102005002005B4 (de) Kühlvorrichtung insbesondere für einen elektrischen Transformator
DE102019123117A1 (de) Flächenwärmetauscher, System und Verfahren
DE112016002244B4 (de) Wärmetauscher und Herstellungsverfahren hierfür
WO1998028584A1 (de) Heizvorrichtung, bevorzugt aus kunststoff
DE102020000274A1 (de) Verfahren zur Herstellung eines Rippen-Platten-Wärmetauschers
EP2098812A2 (de) Flachheiz- oder -kühlkörper und Verfahren zur Herstellung eines Flachheiz- oder -kühlkörpers
EP0972998B1 (de) Heiz- bzw. Kühlkörper-Verteileranordnung
DE102018109517A1 (de) Wärmetauschereinheit
DE2720127A1 (de) Waermeaustauscher sowie verfahren und werkzeug zu seiner herstellung
DE2703632A1 (de) Waermetauschrohr eines radiators fuer raumtemperierung
DE3229757C2 (de) Profilrohr für Wärmetauscher, insbesondere für Raumheizkörper

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17P Request for examination filed

Effective date: 20200210

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20200305

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220622

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019005942

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1525788

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221115

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230220

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230119

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230219

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230120

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230521

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019005942

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

26N No opposition filed

Effective date: 20230720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230211

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230211

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240226

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240229

Year of fee payment: 6

Ref country code: GB

Payment date: 20240220

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240123

Year of fee payment: 6

Ref country code: PL

Payment date: 20240117

Year of fee payment: 6

Ref country code: FR

Payment date: 20240226

Year of fee payment: 6

Ref country code: BE

Payment date: 20240226

Year of fee payment: 6