EP3516436A1 - Optical guide comprising a bend with a pseudo-index gradient - Google Patents

Optical guide comprising a bend with a pseudo-index gradient

Info

Publication number
EP3516436A1
EP3516436A1 EP17780484.6A EP17780484A EP3516436A1 EP 3516436 A1 EP3516436 A1 EP 3516436A1 EP 17780484 A EP17780484 A EP 17780484A EP 3516436 A1 EP3516436 A1 EP 3516436A1
Authority
EP
European Patent Office
Prior art keywords
optical guide
trenches
section
guide according
pseudo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP17780484.6A
Other languages
German (de)
French (fr)
Inventor
Karim HASSAN
Salim Boutami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP3516436A1 publication Critical patent/EP3516436A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12119Bend
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/14Mode converters

Definitions

  • FIG. 2 is a diagram in plan view illustrating an optical guide having a curved path

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

The invention relates to an optical guide (1) comprising a core that has a entrance segment (10) that is rectilinear in an entrance direction (E), an exit segment (20) that is rectilinear in an exit direction (S), and a transition segment (30) between the rectilinear entrance segment (10) and the rectilinear exit segment (20). The exit direction is different from the entrance direction so that light propagates between the entrance segment and the exit segment in a propagation direction that has a bend (V) having an interior side (CI) and an exterior side (CE). The transition segment (30) comprises a region (40) with a pseudo-index gradient, this region having an interior edge (BI) on the interior side (CI) of the bend (V) and an exterior edge (BE) on the exterior side (CE) of the bend (V). The region (40) with the pseudo-index gradient comprises trenches formed in the core in order to make a refractive index decrease from the interior edge to the exterior edge.

Description

GUIDE OPTIQUE PRÉSENTANT UN VIRAGE À PSEUDO-GRADIENT D'INDICE  OPTICAL GUIDE HAVING A PSEUDO-GRADIENT INDEX RISE
DESCRIPTIONDESCRIPTION
DOMAINE TECHNIQUE TECHNICAL AREA
Le domaine de l'invention est celui des structures de guidage de la lumière utilisées dans les circuits photoniques et optoélectroniques. L'invention porte plus particulièrement sur des structures de guidage où la lumière est soumise à un changement de direction par introduction d'une cassure ou d'un trajet courbe entre deux chemins rectilignes. The field of the invention is that of light guiding structures used in photonic and optoelectronic circuits. The invention relates more particularly to guide structures where the light is subjected to a change of direction by introducing a break or a curved path between two straight paths.
ÉTAT DE LA TECHNIQUE ANTÉRIEURE La propagation de signaux optique sur puce nécessite un bon compromis entre pertes et compacité. En fonction de l'application visée, le chemin optique total peut varier entre quelques millimètres pour une fonction unique (émission, modulation, filtrage, photo-détection) et plusieurs centimètres pour les circuits les plus complexes. STATE OF THE PRIOR ART The propagation of optical signals on a chip requires a good compromise between losses and compactness. Depending on the intended application, the total optical path can vary between a few millimeters for a single function (transmission, modulation, filtering, photo-detection) and several centimeters for the most complex circuits.
Dans ce contexte, la photonique sur silicium apporte, en plus de la compatibilité avec l'électronique, une plateforme extrêmement efficace par le fort contraste d'indice des guides d'onde entre le cœur (généralement en silicium) et la gaine (généralement en silice) dont il découle des pertes linéaires de propagation très basses. Néanmoins, pour les circuits les plus longs, il s'avère souvent nécessaire d'utiliser des guides larges (au-dessus de la limite de mono-modicité) afin de gagner un ordre de grandeur sur les pertes optiques.  In this context, the photonics on silicon brings, in addition to the compatibility with the electronics, a platform extremely effective by the strong index contrast of the waveguides between the heart (generally in silicon) and the sheath (generally in silica) resulting in very low linear propagation losses. Nevertheless, for the longest circuits, it is often necessary to use wide guides (above the limit of mono-modesty) to gain an order of magnitude on optical losses.
Ce gain en termes de pertes pose toutefois un problème pour le guidage. En effet, seuls les guides étroits permettent une gestion à pertes raisonnable des courbures. Ainsi, pour permettre la réalisation de virages et diverses courbures avec des guides larges, il est nécessaire de réaliser de multiples transitions entre guides larges et guides étroits, avec des formes parfois très élaborées dans les courbures et transitions comme par exemple décrit dans le brevet EP 0 668 517 Bl. Alternativement, il est possible de réaliser directement des virages avec des guides larges, mais les dimensions sont alors imposantes puisqu'il faut prévoir des rayons de courbure élevés. This gain in terms of losses, however, poses a problem for guiding. Indeed, only the narrow guides allow a management with reasonable losses of curvatures. Thus, to allow the realization of turns and various curvatures with wide guides, it is necessary to achieve multiple transitions between wide guides and narrow guides, with forms sometimes very elaborate in curvatures and transitions as for example described in the EP patent 0 668 517 Bl. Alternatively, it is possible to make straight turns with wide guides, but the dimensions are then imposing since it is necessary to provide high radii of curvature.
EXPOSÉ DE L'INVENTION L'invention vise à permettre le guidage de la lumière sur circuit photonique au moyen de guides larges pour limiter les pertes et avec des petits rayons de courbure de manière à limiter l'empreinte du circuit. DISCLOSURE OF THE INVENTION The invention aims to allow the guiding of light on photonic circuit by means of wide guides to limit losses and with small radii of curvature so as to limit the footprint of the circuit.
Afin de répondre à cette recherche de compromis optimal entre pertes et compacité, l'invention propose un guide optique comprenant un cœur réalisé en un matériau cœur d'indice de réfraction ne, le cœur comportant une section rectiligne d'entrée orientée selon une direction d'entrée, une section rectiligne de sortie orientée selon une direction de sortie, et une section de transition entre la section rectiligne d'entrée et la section rectiligne de sortie. La direction de sortie est différente de la direction d'entrée de sorte que la lumière se propage dans le guide optique entre la section d'entrée et la section de sortie selon une direction de propagation en étant soumise à un virage présentant un côté intérieur et un côté extérieur.  In order to respond to this search for an optimal compromise between losses and compactness, the invention proposes an optical guide comprising a core made of a refractive index core material ne, the core having a rectilinear input section oriented in a direction d input, a straight output section oriented in an output direction, and a transition section between the input rectilinear section and the output straight section. The exit direction is different from the entry direction so that the light propagates in the optical guide between the entrance section and the exit section in a direction of propagation when subjected to a turn having an inner side and an outside side.
La section de transition comprend une région à pseudo-gradient d'indice présentant un bord intérieur du côté intérieur du virage et un bord extérieur du côté extérieur du virage. Cette région comprend des tranchées d'indice de réfraction nr inférieur à l'indice de réfraction ne du matériau cœur. Les tranchées sont de même profondeur et sont formées dans le cœur de manière à ce que la région à pseudogradient d'indice présente un indice de réfraction décroissant du bord intérieur vers le bord extérieur.  The transition section includes a pseudo-index gradient region having an inner edge on the inside of the turn and an outer edge on the outer side of the turn. This region comprises trenches of refractive index nr less than the refractive index ne of the core material. The trenches are of the same depth and are formed in the core so that the index pseudograded region has a decreasing refractive index from the inner edge to the outer edge.
Certains aspects préférés mais non limitatifs de ce guide optique sont les suivants :  Some preferred but non-limiting aspects of this optical guide are the following:
l'indice de réfraction décroit linéairement du bord intérieur vers le bord extérieur ; les tranchées sont agencées périodiquement entre le bord intérieur et le bord extérieur, et la largeur des tranchées augmente d'une période à l'autre du bord intérieur vers le bord extérieur ; the refractive index decreases linearly from the inner edge to the outer edge; the trenches are periodically arranged between the inner edge and the outer edge, and the width of the trenches increases from one period to another from the inner edge to the outer edge;
les tranchées sont formées de manière à présenter une densité croissante de tranchées du bord intérieur vers le bord extérieur ;  the trenches are formed to have an increasing density of trenches from the inner edge to the outer edge;
la section de transition est une section rectiligne orientée selon la direction d'entrée, ou une section courbe en arc de cercle ;  the transition section is a rectilinear section oriented in the direction of entry, or a curved section in an arc;
les tranchées peuvent être courbées conformément à la courbure de la section de transition, et s'étendre tout le long de la section de transition.  the trenches may be curved in accordance with the curvature of the transition section, and extend all along the transition section.
BRÈVE DESCRIPTION DES DESSINS BRIEF DESCRIPTION OF THE DRAWINGS
D'autres caractéristiques et avantages apparaîtront dans la description qui va suivre du guide optique selon l'invention selon l'invention, donnés à titre d'exemples non limitatifs, en référence aux dessins annexés dans lesquels : Other characteristics and advantages will appear in the following description of the optical guide according to the invention according to the invention, given by way of non-limiting examples, with reference to the appended drawings in which:
la figure 1 est un schéma en vue de dessus illustrant un guide optique intégrant une cassure entre deux chemins optiques rectilignes ;  FIG. 1 is a diagram in plan view illustrating an optical guide incorporating a break between two rectilinear optical paths;
la figure 2 est un schéma en vue de dessus illustrant un guide optique présentant un trajet courbe ;  FIG. 2 is a diagram in plan view illustrating an optical guide having a curved path;
la figure 3 est un schéma en vue de dessus d'un guide optique conforme à l'invention intégrant une région de pseudo-gradient d'indice dans une section de transition rectiligne entre deux chemins rectilignes non alignés ;  FIG. 3 is a diagram in plan view of an optical guide according to the invention integrating a pseudo-index gradient region in a rectilinear transition section between two non-aligned rectilinear paths;
la figure 4 est une vue en coupe d'une région de pseudo-gradient d'indice d'un guide optique selon l'invention ;  FIG. 4 is a sectional view of a pseudo-index gradient region of an optical guide according to the invention;
les figures 5 et 6 représentent la distribution de champ électromagnétique dans un guide présentant un virage abrupt de 20°, respectivement non doté et doté d'une section de pseudo-gradient d'indice ;  FIGS. 5 and 6 show the electromagnetic field distribution in a guide having a steep turn of 20 °, respectively unfilled and provided with a pseudo-index gradient section;
les figures 7a et 7b illustrent respectivement un guide de largeur 3 μιη qui présente un virage à 90° de rayon de courbure 10 μιη non doté d'une section de pseudo-gradient d'indice et la distribution de champ électromagnétique au sein de celui-ci ; les figures 8a et 8b illustrent respectivement un guide de largeur 3 μιη qui présente un virage à 90° de rayon de courbure 10 μιη doté d'une pluralité de régions rectilignes de pseudo-gradient d'indice distribués le long du virage et la distribution de champ électromagnétique au sein de celui-ci ; FIGS. 7a and 7b respectively illustrate a guide of width 3 μιη which exhibits a 90 ° turn of radius of curvature 10 μιη not endowed with a section of pseudo-index gradient and the distribution of electromagnetic field within it. this ; FIGS. 8a and 8b respectively illustrate a guide of width 3 μιη that presents a 90 ° turn of radius of curvature 10 μιη having a plurality of rectilinear pseudo-index gradient regions distributed along the bend and the distribution of electromagnetic field within it;
les figures 9a et 9b illustrent respectivement un guide de largeur 3 μιη qui présente un virage à 90° de rayon de courbure 5,5 μιη non doté d'une section de pseudo-gradient d'indice et la distribution de champ électromagnétique au sein de celui-ci ;  FIGS. 9a and 9b respectively illustrate a guide of width 3 μιη that presents a 90 ° turn of radius of curvature 5.5 μιη that does not have a pseudo-gradient index section and the electromagnetic field distribution within this one ;
les figures 10a et 10b illustrent respectivement un guide de largeur 3 μιη qui présente un virage à 90° de rayon de courbure 5,5 μιη doté d'une région courbe de pseudo-gradient d'indice tout au long du virage et la distribution de champ électromagnétique au sein de celui-ci.  FIGS. 10a and 10b respectively illustrate a guide of width 3 μιη which exhibits a 90 ° turn with a radius of curvature of 5.5 μιη having a pseudo-index gradient curve region throughout the turn and the distribution of electromagnetic field within it.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS On a représenté sur la figure 1 une vue schématique d'un guide optique intégrant une cassure entre deux chemins optiques rectilignes, sous la forme d'un virage abrupt à 90°. Avec une telle cassure à angle droit, la lumière se retrouve confrontée à de fortes pertes radiatives, que le guide soit étroit ou large. Pour éviter une telle cassure, on peut alors recours à une courbe à grand rayon comme cela est représenté sur la figure 2. Le déplacement du champ électromagnétique hors du guide est alors minimisé, mais au détriment de la compacité. DETAILED DESCRIPTION OF PARTICULAR EMBODIMENTS FIG. 1 shows a schematic view of an optical guide incorporating a break between two rectilinear optical paths, in the form of a steep turn at 90 °. With such a right-angle break, the light is confronted with high radiative losses, whether the guide is narrow or wide. To avoid such a break, we can then use a large radius curve as shown in Figure 2. The displacement of the electromagnetic field out of the guide is then minimized, but at the expense of compactness.
On a représenté sur la figure 3 une vue schématique d'un guide optique 1 selon l'invention dans lequel la lumière se retrouve déviée tout en conservant un front d'onde uniforme.  FIG. 3 shows a schematic view of an optical guide 1 according to the invention in which the light is deflected while maintaining a uniform wavefront.
Selon l'invention, le guide optique 1 peut être un guide d'onde planaire According to the invention, the optical guide 1 can be a planar waveguide
(« Planar waveguide » ou « Slab waveguide » selon la terminologie Anglo-Saxonne), un guide d'onde canal (« Ridge waveguide » selon la terminologie Anglo-Saxonne), ou un guide d'onde en arête (« Rib waveguide » selon la terminologie Anglo-saxonne). Le guide optique 1 comprend un cœur réalisé en un matériau cœur, par exemple du silicium. Le cœur est entouré d'une gaine réalisée en un matériau présentant un indice de réfraction inférieur à celui du matériau cœur, par exemple en silice. ("Anglo-Saxon Planar waveguide" or "Slab waveguide"), a wave waveguide (Anglo-Saxon terminology), or a rib waveguide according to Anglo-Saxon terminology). The optical guide 1 comprises a core made of a core material, for example silicon. The core is surrounded by a sheath made of a material having a refractive index lower than that of the core material, for example silica.
Le cœur présente différente portions dont une section rectiligne d'entrée 10 orientée selon une direction d'entrée E, une section rectiligne de sortie 20 orientée selon une direction de sortie S, et une section de transition 30 entre la section rectiligne d'entrée et la section rectiligne de sortie. La direction de sortie S est différente de la direction d'entrée E de sorte que la lumière se propage dans le guide optique entre la section d'entrée 10 et la section de sortie 20 selon une direction de propagation en étant soumise à un virage V présentant un côté intérieur Cl et un côté extérieur CE.  The core has different portions including a rectilinear input section 10 oriented in an input direction E, a straight output section 20 oriented in an output direction S, and a transition section 30 between the rectilinear input section and the straight section of exit. The direction of exit S is different from the direction of entry E so that the light propagates in the optical guide between the inlet section 10 and the outlet section 20 in a direction of propagation while being subjected to a turn V having an inner side C1 and an outer side CE.
Dans l'exemple de la figure 3, la section de transition est une section rectiligne orientée selon la direction d'entrée E, et le virage est alors abrupt avec un changement de direction instantané (ou ponctuel). L'invention s'étend toutefois également, comme cela sera décrit par la suite, à une section de transition courbe, en arc de cercle à centre de courbure du côté intérieur au virage. L'arc de cercle commence selon la direction d'entrée et se termine selon la direction de sortie. Le virage est alors moins abrupt, le changement de direction étant graduel.  In the example of Figure 3, the transition section is a rectilinear section oriented in the direction of entry E, and the turn is then abrupt with an instantaneous direction change (or punctual). The invention also extends, however, as will be described later, to a curved transition section in a circular arc with a center of curvature on the inside of the turn. The arc begins in the direction of entry and ends in the exit direction. The turn is then less abrupt, the change of direction being gradual.
La section de transition 30 comprend une région à pseudo-gradient d'indice 40 qui présente un bord intérieur Bl du côté intérieur Cl du virage V et un bord extérieur BE du côté extérieur CE du virage V.  The transition section 30 comprises a pseudo-index gradient region 40 which has an inner edge B1 of the inner side C1 of the turn V and an outer edge BE of the outer side CE of the bend V.
Par pseudo-gradient d'indice, on entend dans le cadre de l'invention que la région 40 ne comporte pas un véritable profil de variation d'indice de réfraction du matériau cœur comme c'est le cas des structures dite « graded-index » (ou GRIN), mais qu'elle en présente les mêmes propriétés. Ainsi lors de son passage dans la région 40, la lumière rencontre l'équivalent d'un gradient d'indice de réfraction.  By pseudo-index gradient is meant in the context of the invention that the region 40 does not comprise a true refractive index variation profile of the core material as is the case of the so-called "graded-index" structures. "(Or GRIN), but it has the same properties. Thus, when it passes through the region 40, the light encounters the equivalent of a refractive index gradient.
Avec une telle région à pseudo-gradient d'indice, la lumière se retrouve déviée tout en conservant un front d'onde uniforme, ce qui garantit la conservation du mode d'entrée (ici le mode fondamental avec un maximum d'intensité centré au milieu du guide). Il s'avère dès lors possible de courber la lumière guidée avec de très petits rayons de courbure, sans modification modale et sans modes radiés, entre des guides d'entrée et de sortie larges et faibles pertes. With such a region with a pseudo-index gradient, the light is deflected while maintaining a uniform wavefront, which guarantees the preservation of the input mode (here the fundamental mode with a maximum of intensity centered at middle of the guide). It is therefore possible to bend the light guided with very small radii of curvature, without modal modification and without radiated modes, between wide entry and exit guides and low losses.
La région à pseudo-gradient d'indice 40 est plus précisément issue d'une structuration du cœur. En référence à la figure 4 qui représente une vue en coupe, orthogonalement à la direction de propagation de la lumière, cette région 40 comprend des tranchées T1-T4 formées dans une couche du matériau cœur 2. Le chiffre de quatre tranchées est ici donné à titre purement illustratif, l'invention s'étendant à un nombre quelconque de tranchées, de préférence un nombre supérieur ou égal à sept dans les applications visées par l'invention, étant entendu que plus il y a de tranchées, plus le (pseudo-)gradient d'indice est lisse.  The pseudo-index gradient region 40 is more precisely the result of a structuring of the heart. With reference to FIG. 4, which shows a sectional view, orthogonal to the direction of propagation of the light, this region 40 comprises trenches T1-T4 formed in a layer of core material 2. The figure of four trenches is here given in FIG. purely illustrative, the invention extending to any number of trenches, preferably a number greater than or equal to seven in the applications covered by the invention, it being understood that the more trenches, the more (pseudo) ) index gradient is smooth.
Les tranchées T1-T4 sont agencées entre le bord intérieur Bl et le bord extérieur BE de la section 40 de manière à créer le pseudo-gradient d'indice avec une décroissance d'indice du bord intérieur vers le bord extérieur.  The trenches T1-T4 are arranged between the inner edge B1 and the outer edge BE of the section 40 so as to create the pseudo-index gradient with a decrease in index from the inner edge to the outer edge.
Dans un exemple de réalisation, la largeur des tranchées augmente du bord intérieur Bl vers le bord extérieur BE. Dans cet exemple de réalisation, les tranchées T1-T4 sont de préférence agencées périodiquement, selon une période P, entre le bord intérieur Bl et le bord extérieur BE. La largeur des tranchées augmente alors d'une période à l'autre du bord intérieur Bl vers le bord extérieur BE. Le guide optique étant destiné à guider un rayonnement lumineux quasi monochromatique d'une longueur d'onde λ selon un mode optique associé à un indice de réfraction effectif neff, la largeur d'une période P est inférieure au rapport de la longueur d'onde λ sur l'indice de réfraction effectif neff, et est de préférence proche du rapport de la longueur d'onde λ sur deux fois l'indice de réfraction effectif neff.  In an exemplary embodiment, the width of the trenches increases from the inner edge B1 to the outer edge BE. In this embodiment, the trenches T1-T4 are preferably arranged periodically, in a period P, between the inner edge B1 and the outer edge BE. The width of the trenches then increases from one period to another of the inner edge B1 to the outer edge BE. Since the optical guide is intended to guide an almost monochromatic light radiation of a wavelength λ according to an optical mode associated with an effective refractive index neff, the width of a period P is smaller than the ratio of the wavelength λ on the effective refractive index neff, and is preferably close to the ratio of the wavelength λ over twice the effective refractive index neff.
Dans un autre exemple de réalisation, on peut prévoir une densité plus importante de tranchées à l'extérieur du virage qu'à l'intérieur, par exemple une densité croissante de tranchées de l'intérieur vers l'extérieur du virage. Cette croissance de la densité peut être linéaire. Les tranchées peuvent être de même largeur.  In another embodiment, a greater density of trenches can be provided outside the bend than in the interior, for example an increasing density of trenches from the inside to the outside of the bend. This growth in density can be linear. The trenches can be of the same width.
Dans un mode de réalisation possible, la largeur des tranchées peut augmenter progressivement, par exemple linéairement ou exponentiellement, dans la direction de propagation de la lumière jusqu'à atteindre une largeur seuil, laquelle est maintenue jusqu'à atteindre la fin de la région de pseudo-gradient d'indice. On réalise de la sorte une apodisation de la région de pseudo-gradient d'indice, cette dernière apparaissant progressivement dans la direction de propagation de la lumière. Cette largeur seuil correspond à la largeur mentionnée précédemment. In one possible embodiment, the width of the trenches may increase progressively, for example linearly or exponentially, in the direction of propagation of the light until a threshold width is reached, which is maintained until reaching the end of the pseudo-index gradient region. In this way, the pseudo-index gradient region is apodized, the latter gradually appearing in the propagation direction of the light. This threshold width corresponds to the width mentioned above.
Les tranchées T1-T4 ont toutes la même profondeur, inférieure voire égale à l'épaisseur de la couche de matériau cœur 2. La section transversale des tranchées de la pluralité de tranchées 41 est de forme rectangulaire. Par section transversale d'une tranchée, nous entendons l'intersection de la tranchée avec un plan perpendiculaire à la direction de propagation de la lumière.  The trenches T1-T4 all have the same depth, less than or equal to the thickness of the core material layer 2. The cross section of the trenches of the plurality of trenches 41 is of rectangular shape. By cross section of a trench, we mean the intersection of the trench with a plane perpendicular to the direction of propagation of the light.
La plus grande dimension des tranchées s'étend dans la direction de propagation de la lumière. Cette plus grande dimension s'entend comme une longueur, par référence à la largeur et à la profondeur mentionnées précédemment.  The largest dimension of trenches extends in the direction of propagation of light. This larger dimension is understood as a length, with reference to the width and depth mentioned above.
La couche de matériau cœur 2 est réalisée en un matériau cœur d'indice de réfraction ne, et les tranchées T1-T4 présentent un indice de réfraction nr différent de l'indice de réfraction ne de la couche cœur, par exemple parce qu'elles sont remplies d'un matériau de remplissage présentant un tel indice nr. Le matériau de remplissage est par exemple de la silice Si02. Alternativement, les tranchées ne sont pas remplies d'un matériau de remplissage et sont laissées à l'air. The layer of core material 2 is made of a refractive index core material ne, and trenches T1-T4 have a refractive index nr different from the refractive index ne of the core layer, for example because they are filled with a filling material having such an index nr. The filling material is, for example, SiO 2 silica. Alternatively, the trenches are not filled with filler material and are left in the air.
La différence entre les indices de réfraction du matériau cœur et du matériau de remplissage est de préférence au moins égal à 0,2. L'indice de réfraction du matériau cœur est supérieur à l'indice de réfraction des tranchées, de manière à assurer un (pseudo-)gradient d'indice décroissant du bord intérieur vers le bord extérieur. Ainsi, la région à pseudo-gradient d'indice présente du côté du bord intérieur un indice proche de celui du matériau cœur et du côté du bord extérieur un indice proche de celui du matériau de remplissage, avec une décroissance de cet indice du bord intérieur vers le bord extérieur.  The difference between the refractive indices of the core material and the filler material is preferably at least 0.2. The refractive index of the core material is greater than the refractive index of the trenches, so as to provide a (pseudo-) index gradient descending from the inner edge to the outer edge. Thus, the index pseudo-gradient region has on the inner edge side an index close to that of the core material and on the outer edge side an index close to that of the filling material, with a decrease in this index of the inner edge. towards the outer edge.
Lorsque l'on prévoit une augmentation périodique de la largeur des tranchées, cette augmentation est de préférence réalisée selon une loi parabolique de manière à réaliser un (pseudo-)gradient d'indice 40 décroissant linéairement du bord intérieur vers le bord extérieur, celui-ci pouvant s'exprimer au niveau d'une période d'indice i selon : When provision is made for a periodic increase in the width of the trenches, this increase is preferably carried out according to a parabolic law so as to produce a (pseudo-) index gradient 40 decreasing linearly from the edge inside towards the outer edge, the latter being able to express itself at a level of index i according to:
Avec fi le facteur de remplissage de la période d'indice i (soit f, =e,/P, avec e, la largeur de la tra nchée de la période d'indice i), er la permittivité de la tranchée (air ou matériau de remplissage) et ec la permittivité du matériau cœur. With fi the filling factor of the index period i (ie f, = e, / P, with e, the width of the tracing of the index period i), e r the permittivity of the trench (air or filler) and e c the permittivity of the core material.
Cette linéarité du (pseudo-)gradient d'indice peut également être obtenue par un contrôle appropriée de la densité des tranchées.  This linearity of the (pseudo-) index gradient can also be obtained by appropriate control of trench density.
De préférence, la section d'entrée, la section de sortie et la section de transition présentent une même largeur, telle que mesurée localement dans un plan orthogonal à la direction de propagation de la lumière. On évite ainsi des transitions entre guides de largeurs différentes. Ces sections présentent par exemple une largeur supérieure ou égale à la pulsation de coupure du mode TEmn tel que m et n soit supérieur à 1. Une telle largeur correspond à toute structure de guidage supportant des modes supérieurs aux modes fondamentaux appelés par l'homme du métier TEoo ou TMoo. Preferably, the inlet section, the exit section and the transition section have the same width, as measured locally in a plane orthogonal to the direction of propagation of the light. This avoids transitions between guides of different widths. These sections have for example a width greater than or equal to the cutoff pulse of the TE mn mode such that m and n is greater than 1. Such a width corresponds to any guide structure supporting modes higher than the basic modes called by the man of the TEoo or TMoo business.
On a représenté sur la figure 5 la distribution de champ électromagnétique dans un guide présentant un virage abrupt de 20°, non doté d'une région de pseudo-gradient d'indice. La figure 6 représente quant à elle la distribution de champ électromagnétique dans un guide présentant un virage abrupt de 20°, mais où une section de transition rectiligne telle que représentée sur la figure 3 comporte une région à pseudo-gradient d'indice conformément à l'invention.  FIG. 5 shows the electromagnetic field distribution in a guide having a sharp turn of 20 °, without a pseudo-index gradient region. FIG. 6 represents the electromagnetic field distribution in a guide having a steep turn of 20 °, but in which a straight transition section as shown in FIG. 3 comprises a pseudo-gradient index region in accordance with FIG. 'invention.
Ces figures sont issues de calculs 2D de différences finies dans le domaine temporel (FDTD-2D) pour évaluer l'efficacité de la région à pseudo-gradient d'indice pour dévier de 20° le mode optique fondamental d'un guide large, et donc susceptible d'exciter des modes supérieurs indésirables, dont les différentes sections présentent ici une largeur de 5 μιη. Sur la figure 6, la région de pseudo-gradient d'indice présente une longueur, dans le sens de propagation de la lumière, de 2 μιη. Cette région 40 comporte 19 tranchées agencées périodiquement, dont la largeur varie linéairement de 17nm à 242nm, et remplies de silice. Pour le guide de la figure 5, la puissance totale transférée (n'importe quel mode) est inférieure à 10% de la puissance incidente. En revanche, pour le guide de la figure 6 conforme à l'invention, la puissance totale transférée est supérieure à 95% de la puissance incidente. L'efficacité du (pseudo-)gradient d'indice sur la déviation du faisceau incident est donc particulièrement marquée. On constate néanmoins des perturbations à gauche du guide, du côté intérieur au virage. Elles sont générées par une efficacité trop importante de la déviation, et il peut alors être préférable de placer le (pseudo-)gradient d'indice linéaire dans une courbe plutôt que dans une section rectiligne. These figures come from 2D calculations of finite differences in the time domain (FDTD-2D) to evaluate the efficiency of the pseudo-gradient index region to deviate from 20 ° the fundamental optical mode of a wide guide, and therefore likely to excite undesirable higher modes, the different sections here have a width of 5 μιη. In FIG. 6, the pseudo-index gradient region has a length, in the direction of propagation of light, of 2 μιη. This region 40 comprises 19 trenches arranged periodically, whose width varies linearly from 17 nm to 242 nm, and filled with silica. For the guide of FIG. 5, the total power transferred (any mode) is less than 10% of the incident power. In contrast, for the guide of Figure 6 according to the invention, the total power transferred is greater than 95% of the incident power. The efficiency of the (pseudo-) index gradient on the deviation of the incident beam is therefore particularly marked. Disturbances are found on the left of the guide, on the inside of the turn. They are generated by too much efficiency of the deviation, and it may be preferable to place the (pseudo-) linear index gradient in a curve rather than in a straight section.
Ainsi dans un autre mode de réalisation de l'invention, la section de transition est une section courbe en arc de cercle dont le centre de courbure est du côté intérieur du virage.  Thus in another embodiment of the invention, the transition section is a curved arcuate section whose center of curvature is on the inside of the turn.
Les figures 7a, 7b et les figures 8a, 8b visent à illustrer l'efficacité de ce mode de réalisation. Les figures 7a et 7b illustrent respectivement un guide en silicium confiné dans une gaine en silice, de largeur W égale à 3 μιη et qui présente un virage à 90° de rayon de courbure intérieur R de 10 μιη non doté d'une section de pseudogradient d'indice et la distribution de champ électromagnétique au sein de celui-ci . Les figures 8a et 8b illustrent quant à elles le même guide dont la section de transition courbe 30 comporte, par souci de simplification des calculs FDTD-2D, une pluralité de régions à pseudo-gradient d'indice 40. Comme représenté sur la figure 8a, ces régions 40 sont distribuées le long de la section de transition 30 avec un pas angulaire, ici de 15° ([0, 15, 30, 45, 60, 75, 90]°).  Figures 7a, 7b and 8a, 8b are intended to illustrate the effectiveness of this embodiment. FIGS. 7a and 7b respectively illustrate a silicon guide confined in a silica sheath, of width W equal to 3 μιη and which has a 90 ° bend of internal radius of curvature R of 10 μιη not having a pseudogradient section of index and electromagnetic field distribution within it. FIGS. 8a and 8b illustrate, for their part, the same guide whose curved transition section 30 comprises, for the sake of simplification of the FDTD-2D calculations, a plurality of index pseudo-gradient regions 40. As represented in FIG. 8a these regions 40 are distributed along the transition section 30 with an angular pitch, here 15 ° ([0, 15, 30, 45, 60, 75, 90] °).
Pour une telle largeur de guide (3 μιη), en l'absence de la mise en œuvre de l'invention, le rayon de courbure minimal pour lequel les pertes radiatives sont minimales est bien plus grand que 10 μιη. Il n'est donc pas surprenant de constater une efficacité de transmission (efficacité de couplage au mode fondamental, i.e. identique au mode d'entrée) inférieure à 2,5% pour la courbure de la figure 7a. Dans le cadre de l'invention (figures 8a et 8b), on constate une efficacité de couplage de 56%.  For such a guide width (3 μιη), in the absence of the implementation of the invention, the minimum radius of curvature for which the radiative losses are minimal is much greater than 10 μιη. It is therefore not surprising to find a transmission efficiency (coupling efficiency at the fundamental mode, i.e. identical to the input mode) of less than 2.5% for the curvature of FIG. 7a. In the context of the invention (FIGS. 8a and 8b), a coupling efficiency of 56% is observed.
Cette efficacité de couplage remarquable est obtenue, alors même qu'une grande partie de la section courbe 30 n'est pas couverte par une région de pseudo-gradient d'indice et que ces régions sont identiques à celle utilisée dans la section de transition rectiligne de la figure 3 et qu'elles présentent donc des tranchées s'étendant de manière droite et non courbée selon la direction de propagation de la lumière. This remarkable coupling efficiency is obtained, even though a large part of the curved section 30 is not covered by a region of pseudo-index gradient and that these regions are identical to that used in the rectilinear transition section of Figure 3 and that they therefore have trenches extending in a straight manner and not curved in the direction of propagation of light .
Ainsi dans une variante de réalisation, on adopte des tranchées courbées conformément à la courbure de la section de transition. Le (pseudo-)gradient d'indice s'étend ainsi parfaitement entre l'intérieur et l'extérieur de la courbure. Ces tranchées courbées s'étendent en outre de préférence tout le long de la section de transition.  Thus, in an alternative embodiment, curved trenches are adopted in accordance with the curvature of the transition section. The (pseudo-) index gradient thus extends perfectly between the inside and the outside of the curvature. These curved trenches preferably extend further along the transition section.
Les figures 9a, 9b et les figures 10a, 10b visent à illustrer l'efficacité de ce mode de réalisation. Les figures 9a et 9b illustrent respectivement un guide en silicium confiné dans une gaine en silice, de largeur 3 μιη qui présente un virage à 90° de rayon de courbure intérieur 5,5 μιη, non doté d'une région de pseudo-gradient d'indice et la distribution de champ électromagnétique au sein de celui-ci. Les figures 10a et 10b illustrent respectivement le même guide doté d'une région de pseudo-gradient d'indice tout au long du virage et la distribution de champ électromagnétique au sein de celui-ci.  Figures 9a, 9b and 10a, 10b are intended to illustrate the effectiveness of this embodiment. FIGS. 9a and 9b respectively illustrate a silicon guide confined in a silica sheath, of width 3 μιη which has a 90 ° bend of internal radius of curvature 5.5 μιη, without a pseudo-gradient region d index and electromagnetic field distribution within it. Figures 10a and 10b respectively illustrate the same guide with a pseudo-index gradient region throughout the turn and the electromagnetic field distribution therein.
On constate une efficacité de couplage modale en l'absence de la mise en œuvre de l'invention de l'ordre de 20%. Ces 20% sont essentiellement dûs à un effet miroir (cf. figure 9b), la courbure étant tellement faible (proche de la largeur du guide) que le virage se rapproche d'un angle droit. Cette efficacité de couplage modale monte pour le guide à pseudo-gradient d'indice de l'invention à 92%. Ainsi, le (pseudo-)gradient d'indice entre l'intérieur et l'extérieur de la courbe maintient un confinement quasi- parfait du monde fondamental le long de la courbe jusqu'à un découplage parfaitement équivalent au mode d'entrée. Il est important de noter ici que les dimensions critiques sont conformes aux standards actuels de la photonique sur silicium avec par exemple la tranchée la petite faisant 50nm de large et l'espace non structurée le plus petit 65nm, c'est-à-dire des valeurs parfaitement accessible par lithographie à faisceau d'électron.  There is a modal coupling efficiency in the absence of the implementation of the invention of the order of 20%. This 20% is mainly due to a mirror effect (see Figure 9b), the curvature being so small (close to the width of the guide) that the turn is approaching a right angle. This modal coupling efficiency rises for the index pseudo-gradient guide of the invention to 92%. Thus, the (pseudo-) index gradient between the inside and the outside of the curve maintains a quasi-perfect confinement of the fundamental world along the curve until a decoupling perfectly equivalent to the mode of entry. It is important to note here that the critical dimensions are in accordance with the current standards of silicon photonics with, for example, the small trench 50nm wide and the smallest unstructured space 65nm, i.e. values perfectly accessible by electron beam lithography.
L'invention s'avère particulièrement avantageuse pour des guides larges et ce sur plusieurs gammes de longueurs d'ondes, permettant ainsi des applications datacom/telecom (en infrarouge) et des applications capteurs (en infrarouge de longueur d'onde moyenne ou grande) où l'empreinte sur puce est encore plus importante aux grandes longueurs d'ondes. L'invention s'étend ainsi également à un circuit photonique comportant un guide optique tel que décrit précédemment pour réaliser une communication intrapuce. The invention proves particularly advantageous for wide guides in several wavelength ranges, thus enabling datacom / telecom applications (in infrared) and sensor applications (in medium or large wavelength infrared). where the on-chip footprint is even more important to long wavelengths. The invention thus also extends to a photonic circuit comprising an optical guide as described above for performing an intrapuce communication.

Claims

REVENDICATIONS
1. Guide optique (1) comprenant un cœur réalisé en un matériau cœur d'indice de réfraction ne, le cœur comportant une section rectiligne d'entrée (10) orientée selon une direction d'entrée (E), une section rectiligne de sortie (20) orientée selon une direction de sortie (S), et une section de transition (30) entre la section rectiligne d'entrée (10) et la section rectiligne de sortie (20), la direction de sortie étant différente de la direction d'entrée de sorte que la lumière se propage dans le guide optique entre la section d'entrée et la section de sortie selon une direction de propagation en étant soumise à un virage (V) présentant un côté intérieur (Cl) et un côté extérieur (CE), An optical guide (1) comprising a core made of a refractive index core material ne, the core having a rectilinear input section (10) oriented in an input direction (E), a straight output section (20) oriented in an exit direction (S), and a transition section (30) between the rectilinear inlet section (10) and the straight exit section (20), the exit direction being different from the direction of entry so that light propagates in the optical guide between the input section and the output section in a direction of propagation undergoing a turn (V) having an inner side (C1) and an outer side (THIS),
la section de transition (30) comprenant une région à pseudo-gradient d'indice (40) présentant un bord intérieur (Bl) du côté intérieur (Cl) du virage (V) et un bord extérieur (BE) du côté extérieur (CE) du virage (V), caractérisé en ce que ladite région à pseudo-gradient d'indice (40) comprend des tranchées (T1-T4) d'indice de réfraction nr inférieur à l'indice de réfraction du cœur, lesdites tranchées étant de même profondeur et formées dans le cœur de manière à ce que ladite région à pseudo-gradient d'indice (40) présente un indice de réfraction décroissant du bord intérieur vers le bord extérieur. the transition section (30) comprising a pseudo-index gradient region (40) having an inner edge (B1) on the inner side (C1) of the turn (V) and an outer edge (BE) on the outer side (CE) ) of the turn (V), characterized in that said index pseudo-gradient region (40) comprises trenches (T1-T4) of refractive index nr less than the refractive index of the core, said trenches being of the same depth and formed in the core so that said index pseudo-gradient region (40) has a decreasing refractive index from the inner edge to the outer edge.
2. Guide optique selon la revendication 1, dans lequel les tranchées sont agencées de façon telle que l'indice de réfraction décroit linéairement du bord intérieur vers le bord extérieur. An optical guide according to claim 1, wherein the trenches are arranged in such a way that the refractive index decreases linearly from the inner edge to the outer edge.
3. Guide optique selon l'une des revendications 1 et 2, dans lequel la lumière se propage le long de la longueur des tranchées. 3. An optical guide according to one of claims 1 and 2, wherein the light propagates along the length of the trenches.
4. Guide optique selon l'une des revendications 1 à 3, dans lequel les tranchées sont agencées périodiquement entre le bord intérieur (Bl) et le bord extérieur (BE), et la largeur des tranchées augmente d'une période à l'autre du bord intérieur (Bl) vers le bord extérieur (BE). 4. An optical guide according to one of claims 1 to 3, wherein the trenches are arranged periodically between the inner edge (B1) and the outer edge (BE), and the width of the trenches increases from one period to another from the inside edge (B1) to the outer edge (BE).
5. Guide optique selon la revendication 4, configuré pour guider un mode optique associé à une longueur d'onde λ et un indice de réfraction effectif neff, dans lequel la largeur d'une période est inférieur au rapport de la longueur d'onde λ sur l'indice de réfraction effectif neff. 5. An optical guide according to claim 4, configured to guide an optical mode associated with a wavelength λ and an effective refractive index neff, in which the width of a period is less than the ratio of the wavelength λ. on the effective refractive index neff.
6. Guide optique selon l'une des revendications 1 à 3, dans lequel les tranchées sont formées de manière à présenter une densité croissante de tranchées du bord intérieur vers le bord extérieur. An optical guide according to one of claims 1 to 3, wherein the trenches are formed to have an increasing trench density from the inner edge to the outer edge.
7. Guide optique selon l'une des revendications 1 à 6, dans lequel la différence entre les indices de réfraction du cœur et des tranchées est au moins égal à 0,2. 7. optical guide according to one of claims 1 to 6, wherein the difference between the refractive indices of the core and trenches is at least equal to 0.2.
8. Guide optique selon l'une des revendications 1 à 7, dans lequel la largeur des tranchées augmente progressivement dans la direction de propagation de la lumière jusqu'à atteindre une largeur seuil. 8. optical guide according to one of claims 1 to 7, wherein the width of the trenches increases gradually in the direction of propagation of light until a threshold width.
9. Guide optique selon l'une des revendications 1 à 8, dans lequel la section d'entrée (10), la section de sortie (20) et la section de transition (30) présentent une même largeur. 9. An optical guide according to one of claims 1 to 8, wherein the inlet section (10), the outlet section (20) and the transition section (30) have the same width.
10. Guide optique selon l'une des revendications 1 à 9, dans lequel la section de transition (30) est une section rectiligne orientée selon la direction d'entrée (E). 10. An optical guide according to one of claims 1 to 9, wherein the transition section (30) is a rectilinear section oriented in the direction of entry (E).
11. Guide optique selon l'une des revendications 1 à 9, dans lequel la section de transition (30) est une section courbe en arc de cercle dont le centre de courbure est du côté intérieur au virage. 11. An optical guide according to one of claims 1 to 9, wherein the transition section (30) is a curved arcuate section whose center of curvature is on the inside of the turn.
12. Guide optique selon la revendication 11, dans lequel la section de transition comprend une pluralité de régions à pseudo-gradient d'indice. The optical guide of claim 11, wherein the transition section comprises a plurality of index pseudo-gradient regions.
13. Guide optique selon la revendication 11, dans lequel les tranchées sont courbées conformément à la courbure de la section de transition. An optical guide according to claim 11, wherein the trenches are bent in accordance with the curvature of the transition section.
14. Guide optique selon la revendication 13, dans lequel les tranchées s'étendent tout le long de la section de transition. An optical guide according to claim 13, wherein the trenches extend all along the transition section.
15. Circuit photonique comportant un guide optique selon l'une des revendications 1 à 14. 15. Photonic circuit comprising an optical guide according to one of claims 1 to 14.
EP17780484.6A 2016-09-20 2017-09-18 Optical guide comprising a bend with a pseudo-index gradient Withdrawn EP3516436A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1658809A FR3056306B1 (en) 2016-09-20 2016-09-20 OPTICAL GUIDE HAVING A PSEUDO-GRADIENT INDEX RISE
PCT/FR2017/052479 WO2018055267A1 (en) 2016-09-20 2017-09-18 Optical guide comprising a bend with a pseudo-index gradient

Publications (1)

Publication Number Publication Date
EP3516436A1 true EP3516436A1 (en) 2019-07-31

Family

ID=57396657

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17780484.6A Withdrawn EP3516436A1 (en) 2016-09-20 2017-09-18 Optical guide comprising a bend with a pseudo-index gradient

Country Status (4)

Country Link
US (1) US10551563B2 (en)
EP (1) EP3516436A1 (en)
FR (1) FR3056306B1 (en)
WO (1) WO2018055267A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3069707B1 (en) 2017-07-27 2019-08-30 Commissariat A L'energie Atomique Et Aux Energies Alternatives INFRARED DEVICE
FR3084481B1 (en) 2018-07-25 2021-07-23 Commissariat Energie Atomique ATHERMAL MODULATOR-SWITCH WITH TWO SUPERIMPOSED RINGS
FR3107351B1 (en) 2020-02-19 2022-02-04 Commissariat Energie Atomique Structured optical fiber sensor incorporating a tunable Vernier effect laser emission device
FR3112402B1 (en) 2020-07-07 2022-10-28 Commissariat Energie Atomique WAVELENGTH DEMULTIPLEXING DEVICE PARTICULARLY FOR OUT-OF-PLAN DEMULTIPLEXING.

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02301701A (en) * 1989-05-17 1990-12-13 Hitachi Cable Ltd Curved optical waveguide
JPH05288943A (en) * 1992-04-06 1993-11-05 Nippon Telegr & Teleph Corp <Ntt> Curved optical waveguide and its production
FR2715232B1 (en) 1994-01-19 1996-02-16 Commissariat Energie Atomique Method for optimizing a path of an optical guide and optical guide obtained by this method.
US6334014B1 (en) * 1998-11-02 2001-12-25 Canon Kabushiki Kaisha Optical fiber apparatus provided with demultiplexing/multiplexing unit on fiber's end portion, optical detecting apparatus provided with demultiplexing/multiplexing unit on its light receiving surface, and optical transmission system using the same
EP1129375A1 (en) * 1998-11-12 2001-09-05 The University Of Sydney Optical waveguide structure
EP1058136A1 (en) * 1999-05-21 2000-12-06 BRITISH TELECOMMUNICATIONS public limited company Planar silica optical waveguide with grooves
FI20045308A (en) * 2004-08-26 2006-02-27 Corelase Oy Optical fiber amplifier with modal discrimination of amplification
US7876495B1 (en) * 2007-07-31 2011-01-25 Lockheed Martin Corporation Apparatus and method for compensating for and using mode-profile distortions caused by bending optical fibers
JP5921564B2 (en) * 2010-12-03 2016-05-24 オーエフエス ファイテル,エルエルシー Large mode area optical fiber with bending compensation
US8870533B2 (en) 2011-07-13 2014-10-28 General Electric Company Assembly for aligning an inner shell of a turbine casing
US8737777B2 (en) * 2012-01-03 2014-05-27 Xyratex Technology Limited Optical waveguide and a method for making an optical waveguide
FR3019653B1 (en) 2014-04-08 2016-05-13 Commissariat Energie Atomique HELMHOLTZ-TYPE DIFFERENTIAL ACOUSTIC RESONATOR DETECTION DEVICE
FR3026497B1 (en) 2014-09-25 2016-10-28 Commissariat Energie Atomique OPTICAL COUPLER INTEGRATED ON A SUBSTRATE AND COMPRISING THREE ELEMENTS
FR3028050B1 (en) 2014-10-29 2016-12-30 Commissariat Energie Atomique PRE-STRUCTURED SUBSTRATE FOR THE PRODUCTION OF PHOTONIC COMPONENTS, PHOTONIC CIRCUIT, AND METHOD OF MANUFACTURING THE SAME
FR3034875B1 (en) 2015-04-08 2018-03-02 Commissariat A L'energie Atomique Et Aux Energies Alternatives METHOD OF ADJUSTING THE PROPERTIES OF A PHOTONIC CIRCUIT BY POST-MANUFACTURING ION IMPLANTATION, WAVEGUIDE AND PHOTONIC CIRCUIT THUS ADJUSTED
FR3042038B1 (en) 2015-10-01 2017-12-08 Commissariat Energie Atomique METHOD FOR OPTIMIZING DETECTION WAVE LENGTHS FOR A MULTI-GAS DETECTION
FR3042272B1 (en) 2015-10-09 2017-12-15 Commissariat Energie Atomique BOLOMETER WITH HIGH SPECTRAL SENSITIVITY.
FR3052562B1 (en) 2016-06-10 2019-06-14 Commissariat A L'energie Atomique Et Aux Energies Alternatives OPTICAL DEVICE
FR3054664B1 (en) 2016-07-27 2018-09-07 Commissariat A L'energie Atomique Et Aux Energies Alternatives SEGMENTED RING MICRO RESONATOR OPTICAL DEVICE FOR BIOLOGICAL OR CHEMICAL SENSOR
FR3054882B1 (en) 2016-08-04 2020-10-09 Commissariat Energie Atomique ABSORPTION CAVITY WITH INPUT AND OUTPUT WAVE GUIDES FOR A BIOLOGICAL OR CHEMICAL SENSOR
FR3066616B1 (en) 2017-05-18 2019-06-14 Commissariat A L'energie Atomique Et Aux Energies Alternatives GUIDED LIGHT SOURCE, MANUFACTURING METHOD AND USE THEREOF FOR SINGLE PHOTON TRANSMISSION
FR3068778B1 (en) 2017-07-04 2019-08-30 Commissariat A L'energie Atomique Et Aux Energies Alternatives DISPLACEMENT SENSOR WITH SEGMENTED RING MICRO RESONATOR.
FR3069070A1 (en) 2017-07-17 2019-01-18 Commissariat A L'energie Atomique Et Aux Energies Alternatives OPTICAL FOCUSING DEVICE WITH INDEX PSEUDO GRADIENT
FR3070507B1 (en) 2017-08-31 2019-09-13 Commissariat A L'energie Atomique Et Aux Energies Alternatives OPTICAL PHASE MATRIX WITH SIMPLIFIED ADDRESSING
FR3071626B1 (en) 2017-09-26 2019-11-01 Commissariat A L'energie Atomique Et Aux Energies Alternatives OPTICAL COUPLING DEVICE FOR A PHOTONIC CIRCUIT.
FR3072458B1 (en) 2017-10-12 2022-04-01 Commissariat Energie Atomique INFRARED RADIATION SOURCE
FR3072788B1 (en) 2017-10-24 2020-05-29 Commissariat A L'energie Atomique Et Aux Energies Alternatives MODULAR INFRARED RADIATION SOURCE

Also Published As

Publication number Publication date
FR3056306A1 (en) 2018-03-23
US20190212493A1 (en) 2019-07-11
WO2018055267A1 (en) 2018-03-29
FR3056306B1 (en) 2019-11-22
US10551563B2 (en) 2020-02-04

Similar Documents

Publication Publication Date Title
FR3071626B1 (en) OPTICAL COUPLING DEVICE FOR A PHOTONIC CIRCUIT.
FR3056306B1 (en) OPTICAL GUIDE HAVING A PSEUDO-GRADIENT INDEX RISE
EP1482606B1 (en) Optical fibre for amplification or laser emission
EP1461650B1 (en) Photonic crystal structure for mode conversion
EP3008021B1 (en) Hollow core waveguide with optimized contour
EP3001230B1 (en) Optical coupler integrated on a substrate and comprising three elements
FR3069070A1 (en) OPTICAL FOCUSING DEVICE WITH INDEX PSEUDO GRADIENT
EP0668517B1 (en) Procedure of realising an optical guide, and an optical guide obtained by this procedure
EP3513230B1 (en) Optical coupling device
EP2898568B1 (en) Electromagnetic absorber
FR3070505A1 (en) SUSPENDED MEMBRANE SEMICONDUCTOR STRUCTURE HAVING AN OPTICAL CAVITY
EP3469408B1 (en) Optical device
EP2354822A1 (en) Integrated optical coupler
EP2260549A2 (en) High-power laser fibre system
Daneshmandi et al. Characteristics of new hybrid plasmonic Bragg reflectors based on sinusoidal and triangular gratings
FR3125137A1 (en) Coupling device for hollow-core optical fibers comprising a coupling element
FR3046853A1 (en) OPTICAL CAVITY COUPLED OPTICALLY TO A WAVEGUIDE.
EP3220193B1 (en) Slow-light waveguide
WO2018055139A1 (en) Device for coupling a first waveguide to a second waveguide
WO2004042439A2 (en) 2 to n optical divider in integrated optics
FR3130406A1 (en) Optoelectronic transmitter with phased array antenna where each optical antenna has a large emitting surface
WO2023099434A1 (en) Optoelectronic emitter having a phase-controlled antenna array comprising optical antennas suitable for emitting light radiation according to a predefined emission profile and in a predefined direction
WO2018019955A1 (en) Distributed feedback laser diode
EP1031051A1 (en) Optical device with waveguide for transferring electromagnetic energy in the form of a radiation beam
WO2014206975A1 (en) Fibre-optic component

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190322

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210301

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220607

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20221018