EP3516178A1 - Plant and method having a thermal power plant and a process compressor - Google Patents

Plant and method having a thermal power plant and a process compressor

Info

Publication number
EP3516178A1
EP3516178A1 EP17761043.3A EP17761043A EP3516178A1 EP 3516178 A1 EP3516178 A1 EP 3516178A1 EP 17761043 A EP17761043 A EP 17761043A EP 3516178 A1 EP3516178 A1 EP 3516178A1
Authority
EP
European Patent Office
Prior art keywords
cooling
fluid
compressor
process fluid
msc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP17761043.3A
Other languages
German (de)
French (fr)
Other versions
EP3516178B1 (en
Inventor
Marcel HUSMANN
Arne Herbert LIENAU
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Global GmbH and Co KG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP3516178A1 publication Critical patent/EP3516178A1/en
Application granted granted Critical
Publication of EP3516178B1 publication Critical patent/EP3516178B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/34Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating
    • F01K7/40Use of two or more feed-water heaters in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/5826Cooling at least part of the working fluid in a heat exchanger

Definitions

  • the invention relates to a system with a thermal power plant and a single-stage or multi-stage process compressor, the thermal power plant comprising:
  • a first process fluid circulates in the fluid-conductively connected elements pump, boiler, turbine, condenser, wherein the process compressor has a plurality of stages ⁇ in which a second process fluid is compressed, where provided ⁇ at least one cooling downstream of a process stage or between two process stages is, by means of which the second process fluid at least a first heat flow is withdrawn, wherein the process compressor has a drive shaft, wherein the output shaft is mechanically coupled to the on ⁇ drive shaft, so that the turbine drives the process ⁇ compressor.
  • the invention relates to a method for operating a system of the type defined above.
  • WO 2010/142574 arrangements are already known in which turbomachinery, including steam turbines, are used as a drive for compressors or compressor units or multi-stage compressor. In all of these arrangement designs, the efficiency of the entire arrangement is always of great importance.
  • the compression of a process fluid, such as the compression of air, natural gas or carbon dioxide is always lossy in the real process, with the minimization of these losses are the focus of efforts to increase the efficiency.
  • the invention has set itself the task of improving an arrangement of the type defined in the efficiency.
  • the decisive advantage of the invention over the conventional arrangements or methods for operating arrangements that provide the drive of a multi-stage process compressor by means of a thermal power plant is that the waste heat from the compression process of the thermal power plant is supplied as useful heat and accordingly for Be ⁇ the heat energy plant required energy can be reduced.
  • the direct mechanical coupling of the thermal power ⁇ system for transferring technical work on the compressor with the additional thermodynamic connection between the invention, intercoolers or the aftercooler of the compressor on the one hand and the preheaters before the boiler of the thermal power plant on the other hand the additional advantage that the compressor Increasing cruanforde ⁇ tion also generates increased waste heat in cooling, which there ⁇ also leads to an increased potential useful heat for the operation of the driving thermal power plant.
  • the process compressor according to the invention is generally an arbitrary single-stage or multi-stage compressor with corresponding cooling between the individual compression stages or an aftercooler.
  • the compacting stages can be understood to mean individual impellers or else several impellers arranged directly one behind the other.
  • the compressor may in principle be a radial compressor or an axial compressor or a mixed arrangement. act of radial compressor stages and axial compressor stages.
  • Particularly preferred is the embodiment of the multistage compressor ⁇ -stage transmission as compressor in which a central gear drives a plurality of compressor drive pinion shafts carrying the impellers of the compressor stages.
  • At a gearbox here is usually a plurality of Verêtrstu ⁇ fen, preferably provided radial compressor stages, preferably there also mechanically fastened or supported.
  • the thermal power plant is a cycle process known as the Clausius-Rankine cycle. Usually this is a so-called steam turbine as a turbine and the process fluid is usually water or water vapor. Alternatively, another, in particular an organic flues ⁇ stechnik can be used instead of water, so that the operating temperature ⁇ turfeld the process changes due to the changed process fluid.
  • Cooling of the process compressor and at least one preheater of the thermal power plant is preferably accompanied by a combination of this cooling with the preheater.
  • the combination has the particular advantage that no further process fluid must be used to transfer the heat energy between the preheater and the cooling.
  • To be compressed second process fluid may be transmitted directly as the waste heat ⁇ useful heat to the first process fluid in the cooling system, which is combined with the heater of the thermal power plant.
  • the first process fluid is particularly well suited for absorbing the waste heat from the second process fluid in the cooling or the preheater.
  • the invention also finds advantageous application in a thermal power plant which already has several preheaters operated with taps of the turbine for the first process fluid or, in the case of the steam-driven turbine, the feedstock. Provides water for the boiler.
  • the Anzapfmenge of the first process fluid from the turbine can be reduced expedient ⁇ SSIG, because part of the preheating already been made with the waste heat from the cooling of the process compressor. Demenfeldend the turbine generates a higher technical
  • the system has a cooling line with a guided from the cooling line cooling fluid, wherein the cooling line is connected to at least one cooling of the process compressor. In this way can mitels the cooling part of the
  • This cooling fluid supply can be combined with the cooling fluid supply of the thermal power plant, which has a not inconsiderable cooling fluid consumption in the condenser, so that the corresponding supply of cooling fluid for cooling the process compressor can be connected there.
  • a control unit vorgese ⁇ hen which is associated with regulatory issues in the cooling fluid lines and in particular in the exchange lines between the heat engine and the process compressor.
  • ⁇ SSIG if the individual system components are not necessarily in terms of the cooling or preheating dependent on each other, but also function largely independently of one another.
  • Figures 1, 2 each show a schematic flow diagram of an inventive arrangement or a method according to the invention.
  • Figures 1, 2 each show schematically illustrated
  • a plant according to the invention A comprises a dressedkraftanla ⁇ ge WKA and a multi-stage process compressor MSC.
  • the thermal power plant WKA in turn comprises a pump PMP, a boiler BOI, a turbine TRB with an output shaft SD1 and a capacitor CND.
  • the turbine can advantageously also have two output ends - that is, a double output - have.
  • the boiler BOI is operated either with the waste heat from a process or walls ⁇ ren fired by a fossil fuels gers. This energy supply is designated FUL.
  • the boiler BOI vaporizes and overheats the first process fluid PF1, which circulates in the elements of the thermal power plant WKA connected to one another in a fluid-conducting manner.
  • the turbine ⁇ TRB is preferably a steam turbine and the first process fluid PF1 is preferably water or water vapor.
  • the superheated steam exiting boiler BOI is expanded in turbine TRB and then enters condenser CND, where the expanded steam is condensed to liquid and subsequently transported to the boiler pressure by pump PMP.
  • the capacitor CND is supplied by means of egg ⁇ ner cooling line COL with cooling fluid CLF.
  • han ⁇ delt it is preferably water that either taken from a natural heat sink and heated go there is returned or water which is taken from an at least partially artificial heat sink or supplied.
  • the process compressor MSC has one or more stages ST1, STn, in which a second process fluid PF2 compresses becomes.
  • a second process fluid PF2 compresses becomes.
  • three Stu ⁇ fen ST1, ST2, ST3 are provided.
  • the process compressor also has a plurality of cooling IC1, ICn or intermediate cooling or an aftercooler, wherein in the specific example, a first cooling IC1, a second cooling IC2 and a third cooling IC3 are provided.
  • the third cooling IC3 is also a "cooling", even if no further condensing stage ST1, In this case, waste heat from the compression process is removed by means of the cooling
  • the coolings IC1, ICn have connections to the cooling line COL in order to be supplied with cooling fluid CLF by the same COL for supplying the cooling IC1, ICn provided with cooling fluid CLF, as for the capacitor CND.
  • the process compressor MSC has a drive shaft SD2, which is coupled by means of a clutch CPL to an output shaft SD1 of the turbine TRB of the heat power plant WKA.
  • a clutch CPL can also be provided a transmission which causes a translation or reduction of the turbine speed to the process compressor MSC.
  • the thermal power plant WKA has in the flow of the first process fluid PF1 between the pump PMP and the boiler BOI a preheater PH1, PHn (see in particular FIG. 2) by means of which a preheating flow PRF is respectively supplied to the process fluid.
  • the turbine TRB has a first tap TB1 and a second tap TB2.
  • the two taps TB1, TB2 supply a third preheater PH3 or a second preheater PH2 corresponding amounts of heat, which have a higher inlet temperature in the boiler BOI of the first process fluid PF1 result.
  • the disadvantage here is that not all of the turbine TRB supplied first process fluid PF1 provides until the exit from the turbine TRB for the generation of ⁇ technical work.
  • the exchange line FCC already described is provided behind the pump PMP in the circuit of the first process fluid PF1, by means of which waste heat from the process compressor is supplied as useful heat to the thermal power plant WKA.
  • the systems A of Figures 1, 2, a control unit CON.
  • At least the triedlei ⁇ tung FCC or the cooling line COL are further equipped with control devices CV1, CV4, which are in communication with the integrated loop control settings CON.
  • the control elements CV1, CV4 adjusted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

The invention relates to a plant (A) having a thermal power plant (WKA) and a multi-stage process compressor (MSC), wherein the thermal power plant (WKA) comprises: – pump (PMP), – boiler (BOI), – turbine (TRB) having one output shaft (SD1) or double output – condenser (CND), wherein a first process fluid (PF1) circulates in the thermal power plant (WKA), wherein the process compressor (MSC) has at least one stage (ST1,…, STn) in which a second process fluid (PF2) is compressed, and at least one cooler (IC1,…, ICn) downstream of a process stage (ST1,…, STn), by means of which at least one first waste heat flow (QF1,…, QFn) is withdrawn from the second process fluid, wherein an output shaft (SD1) of the process compressor (MSC) is mechanically coupled to the drive shaft (SD2) so that the turbine (TRB) drives the process compressor (MSC). It is proposed that the thermal power plant (WKA) has, in the flow of the first process fluid (PF1) between the pump (PMP) and the boiler (BOI), at least one preheater (PH1,…, PHn) by means of which a pre-heat flow (PRF) is supplied to the first process flow (PF1), wherein at least one cooler (IC1,…, ICn) is connected, by means of at least one exchange line (FCC), to the thermal power plant (WKA) such that at least one part of the waste heat flow (QF1) is supplied as a preheat flow (PRF) to the first process fluid (PF1) between the pump (PMP) and the boiler (BOI).

Description

Beschreibung description
Anlage und Verfahren mit einer Wärmekraftanlage und einem Prozess erdichter Plant and process with a thermal power plant and a process more compact
Die Erfindung betrifft eine Anlage mit einer Wärmekraftanlage und einem ein- oder mehrstufigen Prozessverdichter, wobei die Wärmekraftanlage umfasst: The invention relates to a system with a thermal power plant and a single-stage or multi-stage process compressor, the thermal power plant comprising:
- Pumpe,  - pump,
- Kessel, - kettle,
- Turbine mit mindestens einer Abtriebswelle,  - Turbine with at least one output shaft,
- Kondensator,  - capacitor,
wobei ein erstes Prozessfluid in den miteinander fluidleitend verbundenen Elementen Pumpe, Kessel, Turbine, Kondensator zirkuliert, wobei der Prozessverdichter mehrere Stufen auf¬ weist, in denen ein zweites Prozessfluid verdichtet wird, wo¬ bei mindestens eine Kühlung stromabwärts einer Prozessstufe oder zwischen zwei Prozessstufen vorgesehen ist, mittels derer dem zweiten Prozessfluid mindestens ein erster Wärmestrom entzogen wird, wobei der Prozessverdichter eine Antriebswelle aufweist, wobei die Abtriebswelle mechanisch mit der An¬ triebswelle gekoppelt ist, so dass die Turbine den Prozess¬ verdichter antreibt. wherein a first process fluid circulates in the fluid-conductively connected elements pump, boiler, turbine, condenser, wherein the process compressor has a plurality of stages ¬ in which a second process fluid is compressed, where provided ¬ at least one cooling downstream of a process stage or between two process stages is, by means of which the second process fluid at least a first heat flow is withdrawn, wherein the process compressor has a drive shaft, wherein the output shaft is mechanically coupled to the on ¬ drive shaft, so that the turbine drives the process ¬ compressor.
Daneben betrifft die Erfindung ein Verfahren zum Betrieb ei- ner Anlage der eingangs definierten Art.  In addition, the invention relates to a method for operating a system of the type defined above.
Aus der WO 2008/031810 oder der WO 2010/069759 oder der From WO 2008/031810 or WO 2010/069759 or the
WO 2010/142574 sind bereits Anordnungen bekannt, bei denen Turbomaschinen, unter anderem Dampfturbinen, als Antrieb für Verdichter bzw. Verdichteranlagen bzw. mehrstufige Verdichter verwendet werden. Bei all diesen Anordnungsentwürfen ist der Wirkungsgrad der gesamten Anordnung stets von großer Bedeutung. Die Verdichtung eines Prozessfluids , beispielsweise die Verdichtung von Luft, Erdgas oder Kohlendioxid ist im realen Prozess stets verlustbehaftet, wobei die Minimierung dieser Verluste im Fokus der Bemühungen der Wirkungsgraderhöhung stehen . Die Erfindung hat es sich zur Aufgabe gemacht, eine Anordnung der eingangs definierten Art im Wirkungsgrad zu verbessern. WO 2010/142574 arrangements are already known in which turbomachinery, including steam turbines, are used as a drive for compressors or compressor units or multi-stage compressor. In all of these arrangement designs, the efficiency of the entire arrangement is always of great importance. The compression of a process fluid, such as the compression of air, natural gas or carbon dioxide is always lossy in the real process, with the minimization of these losses are the focus of efforts to increase the efficiency. The invention has set itself the task of improving an arrangement of the type defined in the efficiency.
Zur Lösung der erfindungsgemäßen Aufgabe wird vorgeschlagen, eine Anordnung der eingangs definierten Art mit den zusätzlichen Merkmalen des Kennzeichens des unabhängigen Vorrichtungsanspruchs weiterzubilden. Daneben wird zur Lösung ein Verfahren zum Betrieb einer solchen Anordnung gemäß dem unabhängigen Verfahrensanspruch vorgeschlagen. Die jeweils rück- bezogenen Unteransprüche beinhalten vorteilhafte Weiterbil¬ dungen der Erfindung. To achieve the object of the invention is proposed to develop an arrangement of the type defined above with the additional features of the plate of the independent device claim. In addition, a method for operating such an arrangement according to the independent method claim is proposed for the solution. The respective rear-related subclaims contain advantageous developments of the invention ¬ Wide Erbil.
Der entscheidende Vorteil der Erfindung gegenüber den herkömmlichen Anordnungen bzw. Verfahren zum Betrieb von Anord- nungen, die den Antrieb eines mehrstufigen Prozessverdichters mittels einer Wärmekraftanlage vorsehen liegt darin, dass die Abwärme aus dem Verdichtungsprozess der Wärmekraftanlage als Nutzwärme zugeführt wird und dementsprechend die für den Be¬ trieb der Wärmekraftanlage erforderliche Energie verringert werden kann. Die direkte mechanische Kopplung der Wärmekraft¬ anlage zur Übertragung technischer Arbeit auf den Verdichter hat mit der zusätzlichen erfindungsgemäßen thermodynamischen Verbindung zwischen den Kühlungen, Zwischenkühlern oder dem Nachkühler des Verdichters einerseits und den Vorwärmern vor dem Kessel der Wärmekraftanlage andererseits den zusätzlichen Vorteil, dass der Verdichter mit steigender Leistungsanforde¬ rung auch eine erhöhte Abwärme in Kühlungen erzeugt, die da¬ mit auch zu einer vergrößerten möglichen Nutzwärme für den Betrieb der antreibenden Wärmekraftanlage führt. The decisive advantage of the invention over the conventional arrangements or methods for operating arrangements that provide the drive of a multi-stage process compressor by means of a thermal power plant is that the waste heat from the compression process of the thermal power plant is supplied as useful heat and accordingly for Be ¬ the heat energy plant required energy can be reduced. The direct mechanical coupling of the thermal power ¬ system for transferring technical work on the compressor with the additional thermodynamic connection between the invention, intercoolers or the aftercooler of the compressor on the one hand and the preheaters before the boiler of the thermal power plant on the other hand, the additional advantage that the compressor Increasing Leistungsanforde ¬ tion also generates increased waste heat in cooling, which there ¬ also leads to an increased potential useful heat for the operation of the driving thermal power plant.
Bei dem erfindungsgemäßen Prozessverdichter handelt es sich in der Regel um einen beliebigen ein- oder mehrstufigen Verdichter mit entsprechenden Kühlungen zwischen den einzelnen Verdichtungsstufen oder einem Nachkühler. Unter den Verdich- tungsstufen können einzelne Laufräder verstanden werden oder auch mehrere direkt hintereinander angeordnete Laufräder. Bei dem Verdichter kann es sich grundsätzlich um einen Radialverdichter oder einen Axialverdichter oder eine gemischte Anord- nung von Radialverdichterstufen und Axialverdichterstufen handeln. Besonders bevorzugt ist die Ausführung des mehrstu¬ figen Verdichters als Getriebeverdichter, bei dem ein zentrales Getriebe mehrere Verdichterantriebsritzelwellen antreibt, die Laufräder von Verdichterstufen tragen. An einem Getriebekasten ist hier in der Regel eine Mehrzahl von Verdichterstu¬ fen, bevorzugt Radialverdichterstufen vorgesehen, bevorzugt dort auch mechanisch befestigt bzw. abgestützt. Bei der Wärmekraftanlage handelt es sich um einen Kreislauf- prozess, wie er auch unter der Bezeichnung Clausius-Rankine- Kreislauf bekannt ist. Meist handelt es sich hierbei um eine sogenannte Dampfturbine als Turbine und das Prozessfluid ist in der Regel Wasser bzw. Wasserdampf. Alternativ kann statt Wasser auch eine andere, insbesondere eine organische Flüs¬ sigkeit eingesetzt werden, so dass sich das Betriebstempera¬ turfeld des Prozesses in Folge des geänderten Prozessfluids ändert . Die thermodynamische Verbindung zwischen mindestens einerThe process compressor according to the invention is generally an arbitrary single-stage or multi-stage compressor with corresponding cooling between the individual compression stages or an aftercooler. The compacting stages can be understood to mean individual impellers or else several impellers arranged directly one behind the other. The compressor may in principle be a radial compressor or an axial compressor or a mixed arrangement. act of radial compressor stages and axial compressor stages. Particularly preferred is the embodiment of the multistage compressor ¬-stage transmission as compressor in which a central gear drives a plurality of compressor drive pinion shafts carrying the impellers of the compressor stages. At a gearbox here is usually a plurality of Verdichterstu ¬ fen, preferably provided radial compressor stages, preferably there also mechanically fastened or supported. The thermal power plant is a cycle process known as the Clausius-Rankine cycle. Usually this is a so-called steam turbine as a turbine and the process fluid is usually water or water vapor. Alternatively, another, in particular an organic flues ¬ sigkeit can be used instead of water, so that the operating temperature ¬ turfeld the process changes due to the changed process fluid. The thermodynamic connection between at least one
Kühlung des Prozessverdichters und mindestens einem Vorwärmer der Wärmekraftanlage geht bevorzugt mit einer Kombination dieser Kühlung mit dem Vorwärmer einher. Die Kombination hat den besonderen Vorteil, dass kein weiteres Prozessfluid zur Übertragung der Wärmeenergie zwischen dem Vorwärmer und der Kühlung verwendet werden muss. Das zu verdichtende zweite Prozessfluid kann in der Kühlung, der mit dem Vorwärmer der Wärmekraftanlage kombiniert ist, direkt die Abwärme als Nutz¬ wärme an das erste Prozessfluid übertragen. Im Falle einer mit Wasser bzw. mit Wasserdampf betriebenen Dampfturbine eignet sich das erste Prozessfluid besonders gut zur Aufnahme der Abwärme aus dem zweiten Prozessfluid in der Kühlung bzw. dem Vorwärmer. Die Erfindung findet auch vorteilhaft Anwendung bei einer Wärmekraftanlage, die bereits mehrere mit Anzapfungen der Turbine betriebene Vorwärmer für das erste Prozessfluid bzw. im Falle der mit Wasserdampf betriebenen Turbine das Speise- wasser für den Kessel vorsieht. In diesem Fall kann zweckmä¬ ßig die Anzapfmenge des ersten Prozessfluids aus der Turbine reduziert werden, weil ein Teil der Vorwärmung bereits mit der Abwärme aus der Kühlung des Prozessverdichters erfolgt. Demensprechend erzeugt die Turbine eine höhere technischeCooling of the process compressor and at least one preheater of the thermal power plant is preferably accompanied by a combination of this cooling with the preheater. The combination has the particular advantage that no further process fluid must be used to transfer the heat energy between the preheater and the cooling. To be compressed second process fluid may be transmitted directly as the waste heat ¬ useful heat to the first process fluid in the cooling system, which is combined with the heater of the thermal power plant. In the case of a steam turbine operated with water or steam, the first process fluid is particularly well suited for absorbing the waste heat from the second process fluid in the cooling or the preheater. The invention also finds advantageous application in a thermal power plant which already has several preheaters operated with taps of the turbine for the first process fluid or, in the case of the steam-driven turbine, the feedstock. Provides water for the boiler. In this case, the Anzapfmenge of the first process fluid from the turbine can be reduced expedient ¬ SSIG, because part of the preheating already been made with the waste heat from the cooling of the process compressor. Demensprechend the turbine generates a higher technical
Leistung, so dass der Kessel mit einer geringeren Energiezufuhr bzw. Befeuerung auskommt. Performance, so that the boiler with a lower power supply or lighting is needed.
Eine andere vorteilhafte Weiterbildung sieht vor, dass die Anlage eine Kühlleitung mit einem von der Kühlleitung geführtem Kühlfluid aufweist, wobei die Kühlleitung an mindestens eine Kühlung des Prozessverdichters angeschlossen ist. Auf diese Weise kann mitels der Kühlung ein Teil des Another advantageous embodiment provides that the system has a cooling line with a guided from the cooling line cooling fluid, wherein the cooling line is connected to at least one cooling of the process compressor. In this way can mitels the cooling part of the
Abwärmestroms auf das Kühlfluid übertragen werden. So ist un- ter allen Betriebsbedingungen sichergestellt, dass die nachfolgende Stufeneintrittstemperatur hinreichend niedrig ist, um so einen sicheren und energiesparenden Betrieb zu gewährleisten. Diese Kühlfluidversorgung kann kombiniert werden mit der Kühlfluidversorgung der Wärmekraftanlage, die in dem Kon- densator einen nicht unerheblichen Kühlfluidverbrauch aufweist, so dass die entsprechende Versorgung mit Kühlfluid für die Kühlung des Prozessverdichters dort angeschlossen werden kann. Besonders zweckmäßig ist eine Regelungseinheit vorgese¬ hen, die mit Reglungsorgangen in den Kühlfluidleitungen und insbesondere in den Austauschleitungen zwischen der Wärme- kraftanlage und dem Prozessverdichter in Verbindung steht. Insbesondere während instationärer Prozesse, beispielsweise während des Anfahrens der gesamten Anordnung, ist es zweckmä¬ ßig, wenn die einzelnen Anlagenkomponenten nicht zwingend hinsichtlich der Kühlung oder Vorwärmung aufeinander angewiesen sind, sondern auch weitestgehend autark voneinander funktionieren . Abwärmestroms be transferred to the cooling fluid. Thus, under all operating conditions, it is ensured that the subsequent stage inlet temperature is sufficiently low in order to ensure safe and energy-saving operation. This cooling fluid supply can be combined with the cooling fluid supply of the thermal power plant, which has a not inconsiderable cooling fluid consumption in the condenser, so that the corresponding supply of cooling fluid for cooling the process compressor can be connected there. Particularly useful is a control unit vorgese ¬ hen, which is associated with regulatory issues in the cooling fluid lines and in particular in the exchange lines between the heat engine and the process compressor. In particular, during transient processes, such as during start-up of the entire arrangement, it is expedient ¬ SSIG if the individual system components are not necessarily in terms of the cooling or preheating dependent on each other, but also function largely independently of one another.
Im Folgenden ist die Erfindung anhand eines speziellen Aus- führungsbeispiels unter Bezugnahme auf Figuren näher be¬ schrieben. Es zeigen: Figuren 1, 2 jeweils ein schematisches Flussdiagramm einer erfindungsgemäßen Anordnung bzw. eines erfindungsgemäßen Verfahrens . Die Figuren 1, 2 zeigen jeweils schematisch dargestellteIn the following the invention in a special training is embodiment and with reference to figures, in which ¬ be written. Show it: Figures 1, 2 each show a schematic flow diagram of an inventive arrangement or a method according to the invention. Figures 1, 2 each show schematically illustrated
Flussdiagramme von der erfindungsgemäßen Anlage A bzw. Verfahren, die die thermodynamischen Zusammenhänge illustrieren. Die in den Figuren benutzten Bezugszeichen sind für Bauteile gleicher Funktion identisch und die Figurenbeschreibung be- zieht sich, soweit nicht anders angegeben, auf beide Figuren. Flow diagrams of the system A according to the invention or methods which illustrate the thermodynamic relationships. The reference numerals used in the figures are identical for components having the same function, and the description of the figures, unless stated otherwise, refers to both figures.
Eine erfindungsgemäße Anlage A umfasst eine Wärmekraftanla¬ ge WKA und einen mehrstufigen Prozessverdichter MSC. Die Wärmekraftanlage WKA ihrerseits umfasst eine Pumpe PMP, einen Kessel BOI, eine Turbine TRB mit einer Abtriebswelle SD1 und einen Kondensator CND. Die Turbine kann vorteilhaft auch zwei Abtriebsenden - also einen Doppelabtrieb - aufweisen. A plant according to the invention A comprises a Wärmekraftanla ¬ ge WKA and a multi-stage process compressor MSC. The thermal power plant WKA in turn comprises a pump PMP, a boiler BOI, a turbine TRB with an output shaft SD1 and a capacitor CND. The turbine can advantageously also have two output ends - that is, a double output - have.
Der Kessel BOI wird entweder mit der Abhitze aus einem ande¬ ren Prozess betrieben oder mittels eines fossilen Energieträ- gers befeuert. Diese Energiezuführ ist mit FUL bezeichnet. Der Kessel BOI verdampft und überhitzt das erste Prozess- fluid PF1, das in den miteinander fluidleitend verbundenen Elementen der Wärmekraftanlage WKA zirkuliert. Bei der Turbi¬ ne TRB handelt es sich bevorzugt um eine Dampfturbine und das erste Prozessfluid PF1 ist bevorzugt Wasser bzw. Wasserdampf. Der im Kessel BOI ausströmende, überhitzte Wasserdampf wird in der Turbine TRB entspannt und gelangt anschließend in den Kondensator CND, wo der entspannte Dampf zu Flüssigkeit kondensiert und anschließend mittels der Pumpe PMP auf den Kes- seidruck befördert wird. Der Kondensator CND ist mittels ei¬ ner Kühlleitung COL mit Kühlfluid CLF versorgt. Hierbei han¬ delt es sich bevorzugt um Wasser, dass entweder aus einer natürlichen Wärmesenke entnommen und dort hin erwärmt wieder zurückgeführt wird oder um Wasser, das einer zumindest teil- weise künstlichen Wärmesenke entnommen oder zugeführt wird. The boiler BOI is operated either with the waste heat from a process or walls ¬ ren fired by a fossil fuels gers. This energy supply is designated FUL. The boiler BOI vaporizes and overheats the first process fluid PF1, which circulates in the elements of the thermal power plant WKA connected to one another in a fluid-conducting manner. The turbine ¬ TRB is preferably a steam turbine and the first process fluid PF1 is preferably water or water vapor. The superheated steam exiting boiler BOI is expanded in turbine TRB and then enters condenser CND, where the expanded steam is condensed to liquid and subsequently transported to the boiler pressure by pump PMP. The capacitor CND is supplied by means of egg ¬ ner cooling line COL with cooling fluid CLF. Here han ¬ delt it is preferably water that either taken from a natural heat sink and heated go there is returned or water which is taken from an at least partially artificial heat sink or supplied.
Der Prozessverdichter MSC weist ein oder mehrere Stufen ST1, STn auf, in denen ein zweites Prozessfluid PF2 verdichtet wird. In dem konkreten Beispiel sind drei Stu¬ fen ST1, ST2, ST3 vorgesehen. Der Prozessverdichter weist darüber hinaus mehrere Kühlungen IC1, ICn bzw. Zwischenkühlungen bzw. einen Nachkühler auf, wobei in dem konkreten Beispiel eine erste Kühlung IC1, eine zweite Kühlung IC2 und eine dritte Kühlung IC3 vorgesehen sind. In der Betriffswelt der Erfindung handelt es sich bei der dritten Kühlung IC3 auch um eine „Kühlung", auch, wenn im Anschluss an diese dritte Kühlung IC3 keine weitere verdichtende Stufe ST1,..., STn zur Verdichtung des zweiten Prozessfluids PF2 folgt. Ent¬ scheidend hierbei ist, dass Abwärme aus dem Verdichtungspro- zess mittels der Kühlung entfernt wird. Die Kühlungen IC1, ICn weisen Anschlüsse zu der Kühlleitung COL auf, um von dieser mit Kühlfluid CLF versorgt zu werden. Besonders vorteil- haft ist hierbei die gleiche Kühlleitung COL zur Versorgung der Kühlungen IC1, ICn mit Kühlfluid CLF vorgesehen, wie für den Kondensator CND. The process compressor MSC has one or more stages ST1, STn, in which a second process fluid PF2 compresses becomes. In the specific example, three Stu ¬ fen ST1, ST2, ST3 are provided. The process compressor also has a plurality of cooling IC1, ICn or intermediate cooling or an aftercooler, wherein in the specific example, a first cooling IC1, a second cooling IC2 and a third cooling IC3 are provided. In the operating world of the invention, the third cooling IC3 is also a "cooling", even if no further condensing stage ST1, In this case, waste heat from the compression process is removed by means of the cooling The coolings IC1, ICn have connections to the cooling line COL in order to be supplied with cooling fluid CLF by the same COL for supplying the cooling IC1, ICn provided with cooling fluid CLF, as for the capacitor CND.
Der Prozessverdichter MSC weist eine Antriebswelle SD2 auf, die mittels einer Kupplung CPL mit einer Abtriebswelle SD1 der Turbine TRB der Wärmekraftanlage WKA gekoppelt ist. Auf diese Weise wird mechanische Leistung auf den Prozessverdich¬ ter MSC übertragen, so dass die Drehzahl der Turbine TRB einen Einfluss auf die Drehzahl des Prozessverdichters MSC hat. Statt der Kupplung CPL kann auch ein Getriebe vorgesehen sein, das eine Übersetzung oder Untersetzung der Turbinendrehzahl auf den Prozessverdichter MSC bewirkt. Die Wärmekraftanlage WKA hat im Strom des ersten Prozessfluids PF1 zwischen der Pumpe PMP und dem Kessel BOI einen Vorwär- mer PH1, PHn (siehe insbesondere Figur 2) mittels dessen dem Prozessfluid ein Vorwärmestrom PRF jeweils zugeführt wird. In der Figur 1 besteht zwischen dem Kreislauf der Wär- mekraftanlage WKA des ersten Prozessfluids PF1 und der zwei¬ ten Kühlung IC2 eine Verbindung mittels einer Austauschlei- tung FCC, die eine Zufuhr des ersten Prozessfluids PF1 zu der Kühlung IC2 vorsieht und eine Abfuhr zurück in den Kreislauf der Wärmekraftanlage WKA. Hierbei nimmt das erste Prozess¬ fluid PF1 Abwärme aus der zweiten Kühlung IC2 auf und führt sie dem Kreislauf der Wärmekraftanlage WKA als Nutzwärme zu. Entsprechend weniger Energie FUL muss dem Kessel BOI zuge¬ führt werden. Zusätzlich verbraucht die Kühlung des Prozess¬ verdichters MSC in der Summe weniger Kühlfluid CLF. The process compressor MSC has a drive shaft SD2, which is coupled by means of a clutch CPL to an output shaft SD1 of the turbine TRB of the heat power plant WKA. In this way, mechanical power is transmitted to the process compressor MSC, so that the rotational speed of the turbine TRB has an influence on the rotational speed of the process compressor MSC. Instead of the clutch CPL can also be provided a transmission which causes a translation or reduction of the turbine speed to the process compressor MSC. The thermal power plant WKA has in the flow of the first process fluid PF1 between the pump PMP and the boiler BOI a preheater PH1, PHn (see in particular FIG. 2) by means of which a preheating flow PRF is respectively supplied to the process fluid. In the figure 1 exists between the circulation of the heat mekraftanlage WKA of the first process fluid PF1 and the two ¬ th cooling IC2 a connection by means of a Austauschlei- tung FCC, which provides a supply of the first process fluid PF1 to the cooling IC2 and a discharge back into the cycle of the thermal power plant WKA. Here, the first process fluid ¬ takes PF1 waste heat from the second cooling IC2 and performs they add to the cycle of the thermal power plant WKA as useful heat. Correspondingly less energy FUL must be fed to the boiler BOI ¬ leads. In addition, the cooling of the process ¬ compressor MSC consumes less cooling fluid CLF in total.
In der Figur 2 weist die Turbine TRB eine erste Anzapfung TB1 und eine zweite Anzapfung TB2 auf. Die beiden Anzapfungen TB1, TB2 führen einen dritten Vorwärmer PH3 bzw. einem zweiten Vorwärmer PH2 entsprechende Wärmemengen zu, die eine höhere Eintrittstemperatur in den Kessel BOI des ersten Pro- zessfluids PF1 zur Folge haben. Nachteilig hierbei ist, dass nicht das gesamte der Turbine TRB zugeführte erste Prozess- fluid PF1 bis zum Austritt aus der Turbine TRB für die Erzeu¬ gung technischer Arbeit sorgt. Vorteilhaft vor dieser Vorwär- mung mittels der beiden Anzapfungen TB1, TB2 ist hinter der Pumpe PMP in dem Kreislauf des ersten Prozessfluids PF1 die bereits beschriebene Austauschleitung FCC vorgesehen, mittels derer Abwärme aus dem Prozessverdichter als Nutzwärme der Wärmekraftanlage WKA zugeführt wird. In FIG. 2, the turbine TRB has a first tap TB1 and a second tap TB2. The two taps TB1, TB2 supply a third preheater PH3 or a second preheater PH2 corresponding amounts of heat, which have a higher inlet temperature in the boiler BOI of the first process fluid PF1 result. The disadvantage here is that not all of the turbine TRB supplied first process fluid PF1 provides until the exit from the turbine TRB for the generation of ¬ technical work. Advantageously, before this preheating by means of the two taps TB1, TB2, the exchange line FCC already described is provided behind the pump PMP in the circuit of the first process fluid PF1, by means of which waste heat from the process compressor is supplied as useful heat to the thermal power plant WKA.
Besonders vorteilhaft weisen die Anlagen A der Figuren 1, 2, eine Regelungseinheit CON auf. Mindestens die Austauschlei¬ tung FCC oder die Kühlleitung COL sind weiterhin mit Regelorganen CV1, CV4 ausgestattet, die mit der Regelungsein- heit CON in Verbindung stehen. In Abhängigkeit von der Temperatur T des zweiten Prozessfluids PF2 zwischen einem Austritt aus der zweiten Kühlung IC2, die an die Austauschleitung FCC angeschlossen ist, und einem Eintritt in eine stromabwärtige Stufe ST1, STn des Prozessverdichters MSC werden von der Regelungseinheit CON die Regelorgane CV1, CV4 verstellt. Particularly advantageous, the systems A of Figures 1, 2, a control unit CON. At least the Austauschlei ¬ tung FCC or the cooling line COL are further equipped with control devices CV1, CV4, which are in communication with the integrated loop control settings CON. Depending on the temperature T of the second process fluid PF2 between an outlet from the second cooling IC2, which is connected to the exchange line FCC, and an entry into a downstream stage ST1, STn of the process compressor MSC are from the control unit CON, the control elements CV1, CV4 adjusted.

Claims

Patentansprüche claims
1. Anlage (A) mit einer Wärmekraftanlage (WKA) und einem mehrstufigen Prozessverdichter (MSC) , wobei die Wärmekraft- anläge (WKA) umfasst: 1. Annex (A) with a thermal power plant (WTG) and a multi-stage process compressor (MSC), the thermal power plant (WTG) comprising:
- Pumpe (PMP) ,  - pump (PMP),
- Kessel (BOI) ,  - Boiler (BOI),
- Turbine (TRB) mit einer Abtriebswelle (SD1), oder Doppel¬ abtrieb - Turbine (TRB) with an output shaft (SD1), or double ¬ output
- Kondensator (CND) ,  Capacitor (CND),
wobei ein erstes Prozessfluid (PF1) in den miteinander fluidleitend verbundenen Elementen Pumpe (PMP) , Kessel (BOI), Turbine (TRB), Kondensator (CND) zirkuliert, wobei der Prozessverdichter (MSC) mindestens eine Stu- fe (ST1, STn) aufweist, in denen ein zweites Prozess¬ fluid (PF2) verdichtet wird, wherein a first process fluid (PF1) circulates in the fluid-conductively connected elements pump (PMP), boiler (BOI), turbine (TRB), condenser (CND), wherein the process compressor (MSC) at least one stage (ST1, STn) in which a second process ¬ fluid (PF2) is compressed,
wobei der Prozessverdichter (MSC) mindestens eine Küh¬ lung (IC1, ICn) stromabwärts einer Prozessstufe (ST1, STn) aufweist, mittels derer dem zweiten Prozessfluid min- destens ein erster Abwärmestrom (QF1, QFn) entzogen wird, wherein the process compressor (MSC) has at least one Küh ¬ lung (IC1, ICn) downstream of a processing stage (ST1, STn), by means of which at least a first waste heat stream (QF1, QFn) is withdrawn from the second process fluid,
wobei der Prozessverdichter (MSC) eine Antriebswelle (SD2) aufweist,  wherein the process compressor (MSC) has a drive shaft (SD2),
wobei die Abtriebswelle (SD1) mechanisch mit der Antriebs- welle (SD2) gekoppelt ist, so dass die Turbine (TRB) den wherein the output shaft (SD1) is mechanically coupled to the drive shaft (SD2), so that the turbine (TRB) the
Prozessverdichter (MSC) antreibt, Process Compressor (MSC) drives,
dadurch gekennzeichnet, dass  characterized in that
die Wärmekraftanlage (WKA) im Strom des ersten Pro- zessfluids (PF1) zwischen der Pumpe (PMP) und dem Kes- sei (BOI) mindestens einen Vorwärmer (PH1, PHn) auf¬ weist, mittels dessen dem ersten Prozessfluid (PF1) ein Vorwärmestrom (PRF) zugeführt wird, wobei mindestens eine Kühlung (IC1, ICn) mittels mindestens einer Austauschleitung (FCC) mit der Wärmekraftanlage (WKA) derart verbun- den sind, dass mindestens ein Teil des Abwärmestroms (QF1) dem ersten Prozessfluids (PF1) zwischen der Pumpe (PMP) und dem Kessel (BOI) als Vorwärmestrom (PRF) zugeführt wird. the thermal power plant (WKA) in the flow of the first process zessfluids (PF1) of the pump (PMP) and the boiler is (BOI) has at least one preheater (PH1, PHn) on ¬, by means of which the first process fluid (PF1) a Vorwärmestrom (PRF) is supplied, wherein at least one cooling (IC1, ICn) by means of at least one exchange line (FCC) with the thermal power plant (WKA) are connected such that at least a portion of the waste heat stream (QF1) the first process fluid (PF1) between the pump (PMP) and the boiler (BOI) as preheating (PRF) is supplied.
2. Anlage (A) nach Anspruch 1, wobei der mindestens eine Vorwärmer (PH1, PHn) ein kombiniertes Bauteil mit der mindestens einen Kühlung (IC1, ICn) ausbildet, so dass mindestens ein Teil des Abwärmestroms (QF1) dem ersten Pro- zessfluids (PF1) zwischen der Pumpe (PMP) und dem Kes¬ sel (BOI) als Vorwärmestrom (PRF) zugeführt wird. 2. Plant (A) according to claim 1, wherein the at least one preheater (PH1, PHn) forms a combined component with the at least one cooling (IC1, ICn), so that at least a portion of the waste heat stream (QF1) the first process fluid (PF1) between the pump (PMP) and the Kes ¬ sel (BOI) as preheating (PRF) is supplied.
3. Anlage (A) nach Anspruch 1, wobei die Turbine (TRB) mindestens eine Anzapfung (TB1, TB2) zur Entnahme von erstem Prozessfluid (PF1) aufweist, 3. Plant (A) according to claim 1, wherein the turbine (TRB) has at least one tap (TB1, TB2) for removing first process fluid (PF1),
wobei mindestens ein Vorwärmer (PH1, PHn) mit der Anzap¬ fung (TB1, TB2) in fluidleitender Verbindung steht, so dass das entnommene erste Prozessfluid (PF1) das übrige erste Prozessfluid (PF1) vor Eintritt in den Kessel (BOI) vor- wärmt. wherein at least one preheater (PH1, PHn) is connected to the Anzap ¬ Fung (TB1, TB2) in fluid communication so that the extracted first process fluid (PF1) the rest of the first process fluid (PF1) before entry into the boiler (BOI) upstream warms.
4. Anlage (A) nach Anspruch 1, wobei die Anlage eine Kühl¬ leitung (COL) mit einem von der Kühlleitung (COL) geführtem Kühlfluid (CLF) aufweist, wobei die Kühlleitung (COL) an mindestens eine Kühlung (IC1, ICn) angeschlossen ist und die Kühlung (IC1, ICn) einen Teil des 4. facility (A) according to claim 1, wherein the plant comprises a cooling ¬ line (COL) guided by one of the cooling line (COL) cooling fluid (CLF), the cooling line (COL) to at least one cooling (IC1, ICn) is connected and the cooling (IC1, ICn) part of the
Abwärmestroms (QF1, QFn) auf das Kühlfluid (CLF) über¬ trägt . Waste heat flow (QF1, QFn) on the cooling fluid (CLF) over ¬ contributes.
5. Anlage (A) nach Anspruch 1, wobei die Anlage eine Rege¬ lungseinheit (CON) aufweist, wobei mindestens die Aus¬ tauschleitung (FCC) oder die Kühlleitung (COL) Regelorgane (CV1 - CV4) aufweist, wobei die Regelungseinheit (CON) mit den Regelorganen (CV1 - CV4) in Verbindung steht und die Regelorganen (CV1 - CV4) verstellt in Abhängigkeit von der Temperatur des zweiten Prozessfluids zwischen einen Austritt aus der Kühlung (IC1, ICn) und einem Eintritt in eine stromabwärtige Stufe des Prozessverdichters (MSC) . 5. Plant (A) according to claim 1, wherein the system comprises a control unit ¬ (CON), wherein at least the Aus ¬ exchange line (FCC) or the cooling line (COL) control elements (CV1 - CV4), wherein the control unit (CON ) is connected to the control elements (CV1 - CV4) and the control elements (CV1 - CV4) adjusted depending on the temperature of the second process fluid between an exit from the cooling (IC1, ICn) and an entry into a downstream stage of the process compressor ( MSC).
6. Verfahren zum Betrieb einer Anlage (A) mit einer Wärme¬ kraftanlage (WKA) und einem mehrstufigen Prozessverdichter (MSC) , wobei die Wärmekraftanlage (WKA) umfasst: 6. A method for operating a system (A) with a heat ¬ power plant (WKA) and a multi-stage process compressor (MSC), wherein the thermal power plant (WKA) comprises:
- Pumpe (PMP) , - Kessel (BOI) , - pump (PMP), - Boiler (BOI),
- Turbine (TRB) mit einer Abtriebswelle (SD1), oder Doppel¬ abtrieb - Turbine (TRB) with an output shaft (SD1), or double ¬ output
- Kondensator (CND) ,  Capacitor (CND),
gekennzeichnet durch die Schritte:  characterized by the steps:
- Zirkulieren eines ersten Prozessfluids (PF1) in den mit¬ einander fluidleitend verbundenen Elementen Pumpe (PMP) , Kessel (BOI), Turbine (TRB), Kondensator (CND), - circulating a first process fluid (PF1) in the ¬ with each other in fluid-conducting elements connected to the pump (PMP), boiler (BOI), turbine (TRB), capacitor (CND),
- Verdichten eines zweiten Prozessfluids (PF2) mittels eine oder mehrerer Stufen (ST1, STn) des Prozessverdichters (MSC) ,  Compacting a second process fluid (PF2) by means of one or more stages (ST1, STn) of the process compressor (MSC),
- Entziehen mindestens eines ersten Wärmestroms (QF1, Withdrawing at least one first heat flow (QF1,
QFn) aus dem zweiten Prozessfluid (PF2) mittels mindestens einer Kühlung (IC1, ICn) zwischen zwei Prozessstu- fen (ST1, STn), QFn) from the second process fluid (PF2) by means of at least one cooling (IC1, ICn) between two process stages (ST1, STn),
- Übertragung von Antriebsleistung von der Turbine (TRB) auf den Prozessverdichter (MSC) ,  Transmission of drive power from the turbine (TRB) to the process compressor (MSC),
- Zuführung mindestens eines Teils des Abwärmestroms (QF1) als Vorwärmestrom (PRF) im Strom des ersten Pro- zessfluids (PF1) zwischen der Pumpe (PMP) und dem Kes¬ sel (BOI) . - Supplying at least a portion of the waste heat stream (QF1) as a preheating stream (PRF) in the stream of the first process fluid (PF1) between the pump (PMP) and the Kes ¬ sel (BOI).
7. Verfahren nach Anspruch 6, mit den weiteren Schritten:7. The method according to claim 6, with the further steps:
- Entnahme von erstem Prozessfluid (PF1) von der Turbi- ne (TRB) mittels mindestens einer Anzapfung (TB1, TB2),Removal of first process fluid (PF1) from the turbine (TRB) by means of at least one tap (TB1, TB2),
- Vorwärmung des übrigen ersten Prozessfluids (PF1) vor Eintritt in den Kessel (BOI) mittels des entnommenen ersten Prozessfluids (PF1). - Preheating of the remaining first process fluid (PF1) before entering the boiler (BOI) by means of the first process fluid removed (PF1).
8. Verfahren nach Anspruch 6, wobei die Anlage eine Kühlleitung (COL) mit einem von der Kühlleitung (COL) geführtem Kühlfluid (CLF) aufweist, wobei die Kühlleitung (COL) an mindestens eine Kühlung (IC1, ICn) angeschlossen ist, wobei das Verfahren die weiteren Schritte aufweist: 8. The method according to claim 6, wherein the system comprises a cooling line (COL) with a cooling line (COL) guided cooling fluid (CLF), wherein the cooling line (COL) is connected to at least one cooling (IC1, ICn), said Method comprising the further steps:
- Übertragung eines Teils des Abwärmestroms (QF1, QFn) auf das Kühlfluid (CLF) . - Transmission of a portion of the waste heat stream (QF1, QFn) to the cooling fluid (CLF).
9. Verfahren nach Anspruch 8, wobei die Anlage eine Rege¬ lungseinheit (CON) aufweist, wobei mindestens die Aus¬ tauschleitung (FCC) oder die Kühlleitung (COL) Regelorgane (CV1 - CV4) aufweist, wobei die Regelungseinheit (CON) mit den Regelorganen (CV1 - CV4) in Verbindung steht, wobei das Verfahren die weiteren Schritte aufweist: 9. The method of claim 8, wherein the plant comprises a Rege ¬ averaging unit (CON), wherein at least the off ¬ exchange pipe (FCC) or the cooling line (COL) control means (CV1 - CV4), wherein the control unit (CON) using the Regulatory organs (CV1 - CV4), the process comprising the further steps of:
- Messen der Temperatur des zweiten Prozessfluids zwischen einen Austritt aus der Kühlung (IC1, ICn) und einem Eintritt in eine stromabwärtige Stufe des Prozessverdich- ters (MSC)  Measuring the temperature of the second process fluid between an exit from the cooling (IC1, ICn) and an entry into a downstream stage of the process compressor (MSC)
- Verstellen der Regelorgane (CV1 - CV4) in Abhängigkeit von der Temperatur des zweiten Prozessfluids zwischen einen Austritt aus der Kühlung (IC1, ICn) und einem Eintritt in eine stromabwärtige Stufe des Prozessverdichters (MSC) .  - Adjustment of the control elements (CV1 - CV4) as a function of the temperature of the second process fluid between an exit from the cooling (IC1, ICn) and an entry into a downstream stage of the process compressor (MSC).
EP17761043.3A 2016-09-19 2017-08-22 Plant and method having a thermal power plant and a process compressor Active EP3516178B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016217886.5A DE102016217886A1 (en) 2016-09-19 2016-09-19 Plant and process with a thermal power plant and a process compressor
PCT/EP2017/071097 WO2018050402A1 (en) 2016-09-19 2017-08-22 Plant and method having a thermal power plant and a process compressor

Publications (2)

Publication Number Publication Date
EP3516178A1 true EP3516178A1 (en) 2019-07-31
EP3516178B1 EP3516178B1 (en) 2020-06-17

Family

ID=59745892

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17761043.3A Active EP3516178B1 (en) 2016-09-19 2017-08-22 Plant and method having a thermal power plant and a process compressor

Country Status (5)

Country Link
EP (1) EP3516178B1 (en)
CN (1) CN109790760B (en)
DE (1) DE102016217886A1 (en)
RU (1) RU2700115C1 (en)
WO (1) WO2018050402A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ307962B6 (en) * 2017-03-31 2019-09-18 Vysoká Škola Báňská-Technická Univerzita Ostrava Equipment for using compression heat

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH495498A (en) 1968-08-28 1970-08-31 Sulzer Ag Steam power plant with charged steam generator
SU1740707A1 (en) * 1990-06-18 1992-06-15 Ленинградское высшее военное инженерное строительное училище им.генерала армии А.Н.Комаровского Combination thermal power plant
DE19745272C2 (en) * 1997-10-15 1999-08-12 Siemens Ag Gas and steam turbine plant and method for operating such a plant
DE19943782C5 (en) * 1999-09-13 2015-12-17 Siemens Aktiengesellschaft Gas and steam turbine plant
BR0306492A (en) 2002-09-30 2004-10-13 Bp Corp North America Inc Methods to provide refrigerant compression power, refrigerant compression power and shared electrical power for a low carbon, low carbon gas liquefaction gas process, and system to provide refrigerant compression power and shared electric power for a hydrocarbon gas liquefaction process with low carbon dioxide emissions
DE102004020753A1 (en) * 2004-04-27 2005-12-29 Man Turbo Ag Device for utilizing the waste heat from compressors
EP1903189A1 (en) 2006-09-15 2008-03-26 Siemens Aktiengesellschaft LNG-System in combination with gas- and steam-turbines
WO2009059985A2 (en) 2007-11-07 2009-05-14 Shell Internationale Research Maatschappij B.V. Method and apparatus for cooling and liquefying a hydrocarbon stream
JP2011506895A (en) 2007-12-07 2011-03-03 ドレッサー ランド カンパニー Compressor apparatus and method for gas liquefaction system
DE102008062355A1 (en) 2008-12-18 2010-07-08 Siemens Aktiengesellschaft Turbo compressor train and method of operating the same and natural gas liquefaction plant with the turbo compressor train
CN102498267B (en) 2009-06-09 2015-11-25 西门子公司 For making the device of natural gas liquefaction and the method for starting described device
JP2013092144A (en) * 2011-10-03 2013-05-16 Kobe Steel Ltd Auxiliary power generation apparatus
RU128901U1 (en) * 2012-12-24 2013-06-10 Владимир Викторович Михайлов COMBINED HEAT POWER PLANT (OPTIONS)

Also Published As

Publication number Publication date
DE102016217886A1 (en) 2018-03-22
WO2018050402A1 (en) 2018-03-22
EP3516178B1 (en) 2020-06-17
CN109790760A (en) 2019-05-21
RU2700115C1 (en) 2019-09-12
CN109790760B (en) 2021-11-09

Similar Documents

Publication Publication Date Title
DE112015001443B4 (en) Waste heat recovery system, equipped with this gas turbine system, waste heat recovery process and installation process for the waste heat recovery system
EP0523467B1 (en) Method of operating a gas and steam turbines plant and plant for carrying out the method
EP2368021B1 (en) Waste heat steam generator and method for improved operation of a waste heat steam generator
EP0674099A1 (en) Cooling method for the thermically charged components of a gasturbine powerplant
EP2187051A1 (en) Method and device for intermediate heating in a solar thermal power plant with indirect steam
WO1995009300A1 (en) Device for cooling the gas-turbine coolant in a combined gas and steam turbine installation
DE102010042792A1 (en) System for generating mechanical and / or electrical energy
DE102011051415A1 (en) System with a feed water heater for removing heat from a low pressure steam turbine
EP0405235B1 (en) Combined gas and steam turbine plant with coal gasification
EP0523466B1 (en) Method for operating a gas and steam turbine plant and plant for carrying out the method
EP0515911A1 (en) Method of operating a gas and steam turbine plant and corresponding plant
EP1904731B1 (en) Combined gas and steam turbine installation and method of operating same
EP0981681B1 (en) Gas and steam turbine system, and refrigeration of the coolant intended for the gas turbine in such a system
EP3516178A1 (en) Plant and method having a thermal power plant and a process compressor
EP1286030A1 (en) Gas and air turbine combination powerplant and method for operation thereof
EP0158629B1 (en) Steam cycle for a steam power plant
EP0586425B1 (en) Energy generating process in a combined gas/steam generating power station
WO2003024558A1 (en) Method and device for thermal de-gassing of the active substance of a two-phase process
DE102010016614A1 (en) Steam turbine power plant system and method of assembling same
WO2012085262A1 (en) Waste heat recovery installation
EP2559867A1 (en) Method for generating electrical energy with a combination power plant and combination power plant and device for carrying out the method
EP3759330B1 (en) Extended gas turbine process having an expander
WO2016062532A1 (en) Method for shortening the start-up process of a steam turbine
DE102013219166A1 (en) Air intake
DE102013202111B4 (en) Waste heat utilization and performance increase of gas turbine plants

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190322

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200203

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017005788

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1281551

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200715

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200918

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200917

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200917

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502017005788

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201017

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017005788

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200822

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

26N No opposition filed

Effective date: 20210318

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200822

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1281551

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220822

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230822

Year of fee payment: 7

Ref country code: CH

Payment date: 20230902

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230824

Year of fee payment: 7

Ref country code: DE

Payment date: 20230828

Year of fee payment: 7