EP3510805B1 - Dispositif et procédé de configuration de gestion des ressources radio - Google Patents

Dispositif et procédé de configuration de gestion des ressources radio Download PDF

Info

Publication number
EP3510805B1
EP3510805B1 EP16777644.2A EP16777644A EP3510805B1 EP 3510805 B1 EP3510805 B1 EP 3510805B1 EP 16777644 A EP16777644 A EP 16777644A EP 3510805 B1 EP3510805 B1 EP 3510805B1
Authority
EP
European Patent Office
Prior art keywords
rrm
cluster
controller
access nodes
split
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16777644.2A
Other languages
German (de)
English (en)
Other versions
EP3510805A1 (fr
Inventor
Emmanouil Pateromichelakis
Alexandros KALOXYLOS
Chenghui Peng
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Duesseldorf GmbH
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Publication of EP3510805A1 publication Critical patent/EP3510805A1/fr
Application granted granted Critical
Publication of EP3510805B1 publication Critical patent/EP3510805B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/04Network management architectures or arrangements
    • H04L41/044Network management architectures or arrangements comprising hierarchical management structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0893Assignment of logical groups to network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • the present invention relates to a Radio Resource Management (RRM) configuration device and a RRM configuration method.
  • RRM configuration device and method are for selecting and activating at least one access node to act as an RRM controller for a plurality of other access nodes.
  • the RRM configuration device and method are for determining, in which of the access nodes the RRM, i.e. specific RRM functions, are placed and performed, particularly when operating in a slice-aware network.
  • the RRM configuration device and method are particularly applicable to heterogeneous networks (HetNets), in which multiple 5G services and verticals share the same physical Radio Access Network (RAN) deployment.
  • HetNets heterogeneous networks
  • RAN Radio Access Network
  • An exemplary use case is a dense urban scenario, for which macro-cells (or macro Transmit and Receive Points (TRPs), as defined in 3GPP), and a mixture of planned and un-planned micro-cells (or micro TRPs, as defined in 3GPP) are assumed under the macro-cell umbrella.
  • TRPs macro Transmit and Receive Points
  • micro TRPs micro TRPs
  • 5G networks should be able to adapt to the needs of such vertical industries, for instance, in terms of latency, reliability, security or QoS.
  • network slices which are logical end-to-end sub-networks corresponding to, for instance, different verticals, is envisioned as important 5G feature.
  • network slices will significantly impact on the RAN design.
  • the RRM is one of the main aspects to be affected by network slices. This is due to the fact that different network slices aim at different goals e.g. throughput, or latency or reliability, which goals affect how RRM functions work, and where these RRM functions are best placed.
  • RRM functions are also affected by RAN limitations. For example, in a dense heterogeneous RAN, multiple limitations for backhaul / access may require certain handling of the RRM. In particular, a non-ideal wireless backhaul between RAN nodes as a limiting factor may require extra RRM for the backhaul part. Therefore, joint backhaul / access optimization should preferably be used, in order to meet high throughput requirements for throughput demanding services.
  • Another limiting factor is excessive signaling, which is usually required in a dense urban heterogeneous scenario for wireless backhaul and access measurements. This limiting factor becomes even more pronounced when new RRM functional interactions are added, for instance by performing fast scheduling decisions in micro-cells (as e.g. in Ultra Reliable and Low Latency Communications (URLLC)). In this case, information exchange between RRM functions will need to be done among RAN nodes in the X2 interface, so as to ensure that target Key Performance Indicators (KPIs) are met.
  • KPIs Key Performance Indicators
  • the RRM may be grouped into three main groups, with respect to output, in-between interactions, and operating time scale, namely:
  • a fourth group may be introduced for D-RAN cases, the fourth group being concerned with wireless backhaul RRM and wireless topology handling.
  • Network slices allow for flexible functional placements and tailored network functions to meet per slice SLAs.
  • slice specific RRM and isolation among slices, utilizing the same RAN is an open topic.
  • inter-slice RRM may be defined as another functional block, which dictates the RAN sharing and level of isolation / prioritization among network slices.
  • the impact of slicing on RRM functions, which can trigger their adaptive placement in RAN nodes in a semi-distributed manner is not yet discussed.
  • RRM controllers need to be close to the access nodes, because factors like C-Plane latency are critical for dynamic resource allocation or the RRM efficiency will be low.
  • WO 2014/018864 A1 proposes a solution that requires a centralized controller for clusters of HetNets in C-RAN deployment.
  • US 8798021 B2 provides a hierarchical network and interference management framework.
  • C-SON is proposed as a network management server, which gives coordination instructions to clusters of heterogeneous APs. These instructions can be pre-determined parameters for load balancing or interference management between clusters.
  • a cluster includes a macro and also picos and RRHs, and the controllers mainly decide CoMP / eICIC policies.
  • US 2016/0262038 A1 discloses a topology discovery method involving an aggregated self-organising network management approach wherein a plurality of small cells are grouped into clusters using topology information, those clusters are assigned a subset with a type having minimal connectivity, and RF parameters are updated such that clusters within groups of the same type have overlapping updates.
  • the present invention aims to improve the state of the art.
  • the object of the present invention is to provide a RRM configuration device and RRM configuration method for selecting and activating access nodes to act as RRM controllers for a number of other access nodes.
  • the RRM configuration device and RRM configuration method should also select the placement of specific RRM functions in access nodes, particularly when these are operating in a slice-aware network.
  • the present invention describes the creation of clusters from a pool of access nodes, e.g. from base stations (BSs) or access points (APs), which are also denoted in the present invention as Transmit-Receive-Points (TRPs). It also describes the selection and configuration of one or more access nodes as controller(s), which are denoted in the present invention as RRM controllers. Further, it describes the controlling of the rest of the access nodes of a cluster as controlled entities, which are denoted in the present invention as slave nodes or slave-TRPs. The present invention also describes how to decide, which RRM functions are to be decided / performed at a RRM controller, and which functions are distributed among the other access nodes of a cluster. Subsequently, it also describes dynamic adaptation of a RRM controller from a cluster of access nodes.
  • BSs base stations
  • APs access points
  • TRPs Transmit-Receive-Points
  • the present invention comprises an initial configuration including the RRM controller selection and cluster formation, along with an RRM split decision (which denotes a level of centralization of the RRM functions).
  • RRM split decision which denotes a level of centralization of the RRM functions.
  • this is followed by intra-cluster inter-node communication, and inter-node communication after configuring the controlling units and their responsibilities.
  • the present invention may comprise a dynamic update of the RRM controller and the RRM split, in order to cope, for instance, with fast traffic load and backhaul changes.
  • a first aspect of the present invention provides a RRM configuration device, for a network comprising a plurality of access nodes, which is configured to divide the plurality of access nodes of the network into clusters, select at least one access node of each cluster as RRM controller, and determine the non-selected access nodes of each cluster as slave nodes, select, for each cluster, a RRM split between each slave node and the at least one RRM controller of the respective cluster, and transmit, to each access node, information about its cluster, the at least one RRM controller of the cluster, and the selected RRM split.
  • a RRM controller is defined as a logical entity, which abstracts a set of access network functionalities and coordinates a group of access nodes as the slave nodes, in order to facilitate RRM and radio resource control.
  • the benefit of this selection of the RRM controller by the RRM configuration device is that the RRM can, for instance, be optimized per KPI of a network slice, e.g. for throughput (using sophisticated interference management), mobility and/or reliability.
  • the RRM configuration device is able to place RRM controller(s) in different access nodes taking into account, for example, their processing capabilities, the easy reach to the other access nodes, load conditions and network slice requirements.
  • RRM controller(s) taking into account, for example, their processing capabilities, the easy reach to the other access nodes, load conditions and network slice requirements.
  • the actions of the RRM configuration device may be triggered and executed during network slice creation, and could be further adapted during dynamic network management functions, like switching on and off of BSs.
  • the RRM configuration device is configured to select the RRM split based on a type of at least one network slice associated with the cluster, preferably based on Quality of Service, QoS, requirements and/or Key Performance Indicators, KPIs, of the at least one network slice.
  • the RRM split is preferably chosen as centralized as possible, except if a user mobility is very low and there is no overlapping between (small) micro cells.
  • the RRM configuration device is configured to select, for each cluster, the RRM split between a slave node and the at least one RRM controller of the respective cluster based on a backhaul quality of the slave node to the at least one RRM controller and based on an average load of the access nodes of the respective cluster.
  • the RRM configuration device is further configured to select the RRM split: as centralized RRM to be performed completely at the at least one RRM controller, if the backhaul quality is ideal and if the average load is below a threshold value; as distributed RRM to be performed distributed among the access nodes of the cluster, if the backhaul quality is ideal and if the average load is above the threshold value; as semi-centralized RRM, wherein a first type RRM is performed distributed among the access nodes of the cluster and a second type RRM is performed at the at least one RRM controller, if the backhaul quality is not ideal.
  • the RRM split can be selected depending on the backhaul conditions and the load, which significantly increases flexibility and performance.
  • the RRM configuration device is configured to select the at least one access node of each cluster as RRM controller based on at least one of: processing capabilities of the access nodes of the cluster; an average load of the access nodes of the cluster; numbers of neighboring access nodes with ideal backhaul quality for each access node of the cluster; Service Level Agreement, SLA, requirements or KPIs of at least one network slice associated with the cluster.
  • RRM controller placing the RRM controller in different access nodes taking into account important network characteristics is possible. For instance, the use of centralized RRM is thus enabled, even if there is no physical central node acting as controller. Efficiency and performance are significantly increased.
  • the RRM configuration device is configured to determine a priority among the selected RRM controllers based on types of network slices associates with the clusters, wherein the transmitted information includes the determined RRM controller priorities.
  • Including such priority allows focusing the resource allocation where it is needed most.
  • Higher priority RRM controllers may request lower priority RRM controllers to sacrifice resources in their favor.
  • the RRM configuration device is configured to divide the plurality of access nodes of the network into the clusters and select the RRM controllers by using a graph-based algorithm, wherein the graph includes the access nodes, and wherein edges between access nodes denote a suitability of coordination between these access nodes.
  • the RRM configuration device is configured to start dividing the plurality of access nodes of the network into the clusters, upon receiving a trigger event, preferably a slice instantiation request.
  • the RRM configuration device is configured to select a cluster size based on at least one of: a number of network slices associated with the clusters; KPIs of the network slices; a number of users per network slice; and load conditions and backhaul conditions per network slice.
  • the transmitted information includes at least a cluster ID, at least one RRM controller ID, and an indication about the RRM split.
  • a second aspect of the present invention provides a system comprising a RRM configuration device according to the first aspect as such or according to any of the implementation forms of the first aspect, and the plurality of access nodes, wherein an access node selected by the RRM configuration device as RRM controller of a cluster is configured to dynamically adapt the RRM split between a slave node and the at least one RRM controller in the cluster.
  • the dynamic adaption of the RRM split may be initiated from the RRM controller, without needing the RRM configuration device. Therefore, the RRM split can be most efficiently adapted, for instance, to current network requirements.
  • a slave node of a cluster is configured to send to the at least one RRM controller of the cluster a RRM split adaption request message, in order to initiate the dynamic adaption of the RRM split, when triggered by at least one of: a change of backhaul conditions between the slave node and the at least one RRM controller; a user density that is higher than a threshold value; an average user mobility information that is higher than a threshold value; a change of a prioritization of network slices associated with the cluster.
  • an access node selected by the RRM configuration device as a RRM controller of a cluster is further configured to determine a slave node of the cluster to become a new RRM controller, transmit a notification about the new RRM controller to the RRM configuration device.
  • the determination of a new RRM controller may be initiated from the slave nodes (or the RRM controllers), without requiring the RRM configuration device. Therefore, the controller selection can be most efficiently adapted, for instance, to current network requirements.
  • an access node selected by the RRM configuration device as a RRM controller of a cluster is further configured to transmit to another access node selected by the RRM configuration device as RRM controller a radio resource change request to re-negotiate the utilization of radio resources.
  • radio resource allocation may be optimized and efficiently adapted, for instance, to current network requirements.
  • a third aspect of the present invention provides a RRM configuration method comprising the steps of dividing a plurality of access nodes of a network into clusters, selecting at least one access node of each cluster as RRM controller, and determining the non-selected access nodes of each cluster as slave nodes, selecting, for each cluster, a RRM split between each slave node and the at least one RRM controller of the respective cluster, and transmitting, to each access node, information about its cluster, the at least one RRM controller of the cluster, and the selected RRM split.
  • the RRM configuration method further comprises dynamically adapting the RRM split between a slave node and the at least one RRM controller of a cluster, and/or determining a slave node of a cluster to become a new RRM controller.
  • the RRM configuration method further comprises selecting the RRM split based on a type of at least one network slice associated with the cluster, preferably based on Quality of Service, QoS, requirements and/or Key Performance Indicators, KPIs, of the at least one network slice.
  • the RRM configuration method further comprises selecting, for each cluster, the RRM split between a slave node and the at least one RRM controller of the respective cluster based on a backhaul quality of the slave node to the at least one RRM controller and based on an average load of the access nodes of the respective cluster.
  • the RRM configuration method further comprises selecting the RRM split: as centralized RRM to be performed completely at the at least one RRM controller, if the backhaul quality is ideal and if the average load is below a threshold value; as distributed RRM to be performed distributed among the access nodes of the cluster, if the backhaul quality is ideal and if the average load is above the threshold value; as semi-centralized RRM, wherein a first type RRM is performed distributed among the access nodes of the cluster and a second type RRM is performed at the at least one RRM controller, if the backhaul quality is not ideal.
  • the RRM configuration method comprises selecting the at least one access node of each cluster as RRM controller based on at least one of: processing capabilities of the access nodes of the cluster; an average load of the access nodes of the cluster; numbers of neighboring access nodes with ideal backhaul quality for each access node of the cluster; Service Level Agreement, SLA, requirements or KPIs of at least one network slice associated with the cluster.
  • the RRM configuration method comprises determining a priority among the selected RRM controllers based on types of network slices associates with the clusters, wherein the transmitted information includes the determined RRM controller priorities.
  • the RRM configuration method comprises dividing the plurality of access nodes of the network into the clusters and selecting the RRM controllers by using a graph-based algorithm, wherein the graph includes the access nodes, and wherein edges between access nodes denote a suitability of coordination between these access nodes.
  • the RRM configuration method comprises starting dividing the plurality of access nodes of the network into the clusters, upon receiving a trigger event, preferably a slice instantiation request.
  • the RRM configuration method comprises selecting a cluster size based on at least one of: a number of network slices associated with the clusters; KPIs of the network slices; a number of users per network slice; and load conditions and backhaul conditions per network slice.
  • the transmitted information includes at least a cluster ID, at least one RRM controller ID, and an indication about the RRM split.
  • the third aspect and its implementation forms achieve the benefits and advantages described for the first and second aspects and their respective implementation forms.
  • the present invention describes a device and method that decide on how to form clusters of access node (e.g. based on physical deployment, long term statistics of the load of eNBs, and slice characteristics or KPIs), on what is the role of the different access nodes in each cluster (e.g. RRM controller or slave node), and on who is forming the clusters.
  • the formation of appropriate clusters may be selected, for example, at the network side in an Operations Support Systems (OSS) or in a Network Management System (NMS), generally in a RRM configuration device.
  • OSS Operations Support Systems
  • NMS Network Management System
  • a level of centralization of the actual RRM is decided for each access node, preferably taking into account RAN limitations and the level of slice awareness of the network.
  • the level of centralization is translated as a flexible split of RRM functions (RRM split), which may be slice-tailored and cell-specific.
  • RRM split flexible split of RRM functions
  • the heterogeneous split of RRM functions provides new requirements for signaling between access nodes. For example, by centralizing only slower RRM functions like IM and LB, signaling may be exchanged for the resource restrictions. and cell re-selections between the centralized and distributed nodes for the dynamic resource allocation.
  • new messages regarding the dynamic resource restrictions may be exchanged, in order to allow for centralized LB (taking into account and the other RRM splits).
  • the proposed device and method may specifically operate in three phases.
  • a first phase includes an initial configuration, which includes the RRM controller(s) selection, the cluster selection, and the RRM functional placement at the RRM controller and other access nodes.
  • an appropriate RRM Controller is selected, as well as an initial RRM split for the different access nodes.
  • a communication between the RRM controller and the slave nodes may take place, in order to indicate measurements required, and conflicts to be resolved between nodes.
  • a second phase includes inter-node communication between RRM controllers and other access nodes in normal mode.
  • the level of orthogonalization of resources among different RRM controllers may vary (shared, or partially orthogonal or completely orthogonal).
  • multiple RRM controllers may exchange signaling and data to optimize RAN performance, for example, by requesting additional resources or by jointly manage shared resources.
  • a third phase includes mechanisms and signaling required for the dynamic adaptation of the RRM controller selection, the cluster formation, and the RRM split selection.
  • the adaption may be implemented at the RRM controller side, and may be subject to dynamic traffic load, backhaul changes and network slice initiations.
  • Communication between RRM controllers is important in all phases, in order to ensure smooth resolution of potential resource conflicts in case that the same resources are shared by other network slices or clusters.
  • Two cases of inter-controller communication are envisaged. Firstly, in case of having multiple RRM controllers per cluster, intra-cluster communication is proposed to indicate new resource requests (in the second phase), and update the priorities between RRM controllers belonging to the same cluster (for example, for a case of dynamic changes on backhaul conditions and topology, slice prioritization, and resource situation). Moreover, inter-cluster communication is proposed, for example, for exchanging signaling between different clusters (e.g. when sharing the same resources), since real-time coordination may be required at the cluster edges for the potential resource conflict resolution and negotiation of additional resource if required.
  • the present invention optimizes RRM particularly for different KPI-driven network slices, wherein the RRM functionalities and their placement have different impact on their performance.
  • Fig. 1 shows a RRM configuration device 100 according to an embodiment of the present invention.
  • the RRM configuration device 100 is applicable for a network having a plurality of access nodes.
  • the RRM configuration device is configured to carry out at least the initial configuration phase described above. In particular, it is configured to divide the plurality of access nodes of the network into clusters.
  • An access node or RTP may be a BS, AP or the like.
  • a cluster includes at least two access nodes.
  • the RRM configuration device 100 is further configured to select at least one access node of each cluster as RRM controller, and determine the non-selected access nodes of each cluster as slave nodes. Further, it is configured to select, for each cluster, a RRM split between each slave node and the at least one RRM controller of the respective cluster. That is, the RRM configuration device 100 selects how RRM functions are distributed between the RRM controller and the slave nodes.
  • the RRM configuration device 100 is configured to transmit, to each access node, information about its cluster (for instance a cluster ID), the at least one RRM controller (for instance an ID of the respective access node) of the cluster, and the selected RRM split (e.. distributed or centralized RRM).
  • the information may be transmitted via at least one signaling message.
  • the RRM configuration device 100 which may be a network management entity like an OSS or NMS, may select at least one RRM controller 202 and the size of a cluster 201, preferably based on the characteristics of the physical access nodes (e.g. BSs), (non)-ideal backhaul links, and the available spectrum).
  • the KPIs of every network slice are taken into account, and preferably also long-term statistics for load and backhaul conditions per deployed network slice.
  • the RRM configuration device 100 decides on an initial RRM split between slave node 203 of a cluster 201 and the at least one RRM controller 202.
  • the RRM configuration device 100 configures each access node (in the following referred to as TRP) as on its cluster membership, its operation mode as an RRM controller 202 or slave node 203, and according to which initial RRM split will be used between a slave node 203 and the RRM controller 202.
  • TRP access node
  • the following actions are specifically illustrated in an exemplary cluster 201 deployment in Fig. 2 .
  • the selection method for action (1) specifically divides the total set of TRPs into orthogonal clusters 201. Thereafter, one or more TRPs may be selected as RRM controller candidates, for example, based on the following parameters: TRP General Processing capabilities, average load information, number of neighboring TRPs with good or ideal backhaul, network slice KPIs. Then, for instance, based on network slice requirements, different RRM controller candidates can be mapped to different network slices.
  • the clustering and RRM controller 202 selection of action (1) may be performed as a modified "Maximum Clique" problem, and can be solved using optimal / heuristic graph-based algorithms.
  • the Maximal Clique problem is to find complete sub-graphs within a graph of nodes.
  • the graph consists of TRPs and the edges between the TRPs denote the suitability of coordination between two TRPs (e.g. due to ideal backhaul, short distance).
  • a set of feasible solutions is found (e.g. multiple maximal cliques). From the set of maximal cliques, the aim is to find TRPs with the highest occurrences to become candidates for RRM controllers 202.
  • signaling is sent from each TRP to the RRM configuration device 100, e.g. NMS. This may include long-term statistics for load and energy consumption per TRP.
  • new signaling messages may be sent from the RRM configuration device 100 (here NMS) to each TRP, either slave node 203 or RRM controller 202.
  • NMS Controller Assignment
  • new message is denoted as Controller Assignment (NMS to RRM controller), and may include:
  • the IDs of adjacent RRM controllers 202 is needed for both intra and inter-cluster, and the priority among RRM controllers 202 is required for inter-controller communication.
  • the RRM controller 202 Upon the reception of this message, the RRM controller 202 stores the information to communicate with the other RRM controllers 202 in case of signaling exchange required. This will be the case for resource conflicts (high interfered users), which may occur when utilizing the same resources. Another case would be the signaling and date required to be transferred for interference and mobility management in case of inter-cluster communication (e.g. users at the edges of the cluster, high mobile user approaching the edges).
  • the priorities among RRM controllers 202 will be used in case of negotiating the same resources or applying resource restrictions, in order to identify which slice has higher priority to access the requested resource.
  • the message Node-to-Cluster Assignment may include:
  • the slave-TRP 203 uses the associated RRM controller ID to establish a connection with this RRM controller 202. Therefore, an ACK may be sent from the slave-TRP 203 to the RRM controller 202, in order to acknowledge the establishment of the connection to the other TRP as its RRM controller 202 (so as to ensure that it is aware of the RRM split indication), and is followed by an ACK from the RRM controller 202 to the RRM configuration device 100 (NMS). Alternatively, the ACK can be sent directly to the NMS 100 upon the Node to Cluster Assignment message or from the RRM controller 202 to the NMS 100 after the Controller Assignment Message.
  • inter-controller signaling exchange For inter-node communication, two types of inter-controller signaling exchange can be defined, as can be seen in Fig. 4 :
  • TRPs assigned the role of RRM controllers 202 may need to communicate inside their cluster 201 and outside their cluster 201. Intra-cluster communication may be used to notify other RRM controllers 202 about potential resource conflicts, mobility management and topology changes (e.g. TRP switch on/off).
  • a higher priority-RRM controller 202a may send to a lower priority RRM controller 202b a resource change request with parameters related to the users of the slave-TRPs 203 and the TRP resource situation / RAN characteristics, so as to proactively adapt resource management and avoid resource conflicts in overlapping resources.
  • the message defined is the Resource Change Request (higher priority RRM controller 202a to lower priority RRM controller 202b), and may consist of the following elements:
  • the User_ID identifies users, which suffer from high interference, so as to request additional resources from the spectrum, which is used by other network slices. Furthermore, high mobility indication and density indication are measurements stored at both RRM controllers 202a, 202b, in order to trigger a RRM split update as discussed further below.
  • the RRM controller 202b Upon the reception of this message the RRM controller 202b will select, whether to share additional resources with the response message (IDs of additional subbands) or to mute specific resources (muted sub-band IDs), which are shared between slices. Since the higher priority RRM controller 202a preferably enforces this to the lower priority RRM controller 202b, the latter will decide only on the resource sacrifice that it will do to satisfy the high priority RRM controller 202a.
  • the new message to be exchanged is the Resource Change Response (lower priority RRM Controller 202b to higher priority RRM Controller 202a) and may consist of the following elements:
  • a RRM controller 2021 may first send a notification message for the situation at the edges of its cluster 201, since the RRM controller 2022 of the other cluster 201 may not be aware of the other TRPs of the adjacent clusters 201.
  • the RRM configuration device 100 informs all other clusters 201 about this activation.
  • cluster_edge_notification (RRM controller 2021 to RRM controller 2022) message may comprise:
  • RRM Controller 2021 to RRM Controller 2022 may consist of:
  • the first element is used to identify the user (and its serving-TRP), which requires additional resources (due to high interference), or notifies the other cluster 201 for high interference in certain resources, in order to perform interference management based on this information.
  • the RRM controller 2022 may send a message with his re-action. This can be either the muting of some resources, or the sharing of resources with the other cluster, or to reject this request.
  • the Resource Response (RRM controller 2022 to RRM controller 2021) message may consist of:
  • the slave-TRP pairing info will allow the slave-TRPs 203 of different clusters 201 at the edges to jointly cooperate (e.g. Coordinated Multipoint Transmission), in order to enhance performance.
  • the slave TRPs 203 Upon the reception of this notification, the slave TRPs 203 will exchange measurements for the backhaul and access conditions in a distributed manner, and will decide on a CoMP scheme that is followed.
  • the RRM split and the RRM controller 202 is preferably initially decided by the RRM configuration device 100 (e.g. NMS) in a per TRP and per slice manner.
  • the RRM configuration device 100 e.g. NMS
  • the adaptation of the RRM split and possibly the RRM controller 202 may be required.
  • RRM split adaptation is shown exemplarily in Fig.
  • the RRM controller 202 can be decided locally by the RRM controller 202, overriding the initial RRM configuration device 100 (here NMS) decision, since it may be more preferable to perform these changes locally, due to tight per slice timing constraints.
  • NMS initial RRM configuration device 100
  • the RRM controller 202 should take the decision by also informing the other RRM controllers 202 to adapt the RRM split for the certain TRP and slice.
  • the trigger of an RRM split adaptation may be based on the following factors:
  • Fig. 7 illustrates the message sequence chart and the new messages, which are needed for the dynamic adaptation in case of an event, e.g. dynamic change of density, mobility, or slice prioritization.
  • Each TRP-S may send the message Dynamic_Adaptation Trigger (slave-TRP 203 to RRM controller 202) with the following elements:
  • the first two parameters indicate, whether user density and mobility is higher than a pre-defined threshold, and this may trigger an update of the RRM split, given the slice-aware RAN thresholds.
  • Slice prioritization change is another parameter to notify the RRM controller 202 that a slice has higher priority to fulfill its target KPIs (e.g. due to interference, mobility). This may trigger a dynamic change of RRM split and possibly RRM controller 202 change.
  • the RRM controller 202 may send to the slave-TRP 203 a message, namely RRM_policy_update (RRM Controller 202 to slave-TRP 203) with the indication:
  • the RRM controller 202 may send to the network (here NMS 100) the updates regarding the RRM split and RRM controller 202 re-selection, with the message Update Notification (RRM Controller 202 to NMS 100):
  • a new message with Update Notification may be sent to NMS 100. This may include the change of the old RRM controller 202o.
  • the NMS 100 may then inform all RRM controllers 202 about this change, by sending new messages with the old and new RRM controller 202o, 202n, the RRM split and the slave-TRPs 203. Since the relation to the other RRM controllers 202 is not known by the new RRM controller 202n, the old RRM controller 202o sends locally to the new RRM controller 202n a message with the adjacent RRM controllers 202 and the priorities, to avoid getting all this information by the NMS 100.
  • the NMS 100 will also update the other RRM controllers 202 about this decision with the message Update Notification (Old RRM Controller 202o to NMS 100), for example with the following parameters:
  • the NMS 100 may send an acknowledgement and broadcasts to all RRM controllers 202 in the area the Controller Update (NMS 100 to RRM Controller 202) message with the following elements:
  • the old RRM controller 202o may send a message to the new RRM controller 202n, namely Controller Info (Old-to-New RRM Controller), to provide information about the other RRM controllers 202 in the area and the priorities among them.
  • Controller Info Old-to-New RRM Controller
  • the RRM controllers 202 Upon the reception of this message the RRM controllers 202 communicate each other as discussed previously.
  • the invention enables the use of centralized RRM solutions, even if there is no physical central node.
  • Some indicative results are shown in Fig. 9 , where Centralized Interference Management is performed for a cluster 201 of 9 TRPs using 3GPP LTE as a baseline for simulations (regular TRP deployment, 40 users uniformly distributed, 3GPP UMi channel, ideal BH).
  • the User Spectral Efficiency is lower for this particular simulation setup, as observed in Fig. 9 .
  • the signaling overhead and the data feedback that needs to be forwarded per backhaul ink would be high for centralized solutions up to 3 TRPs in a cluster, but for large number of clusters centralized RRM need less backhaul for the data exchange overhead.
  • the load increases linearly (2 x number of TRPs), which can be much lower for large clusters than distributed.
  • a solution for adaptively placing the RRM controller 202 in different TRPs taking into account the processing capabilities, the easy reach to the other TRPs, the load conditions and the slice requirements.
  • the solution takes into account also the signaling needed for the configuration, where the target is to minimize the signaling for fast reaction time in case of changes.
  • the present invention provides also a solution for adaptively placing RRM functions in different TRPs taking into account the backhaul conditions, RAN characteristics and slice awareness. This will provide 1) Most sophisticated RRM when required (e.g. for eMBB) given the RAN backhaul / access resource situation, 2) Slice-awareness in RAN with the minimum impact on RAN design, 3) Local handling of RRM among slices, when different slices require additional resources in fast changing environments (e.g. for Critical Communications).

Claims (13)

  1. Dispositif de configuration de gestion de ressources radio, RRM, (100), destiné à un réseau (200) comprenant une pluralité de nœuds d'accès, qui est configuré pour :
    diviser la pluralité de nœuds d'accès du réseau (200) en grappes (201), sélectionner au moins un nœud d'accès de chaque grappe (201) en tant que contrôleur RRM (202), et déterminer les nœuds d'accès non sélectionnés de chaque grappe (201) en tant que nœuds esclaves (203),
    sélectionner, pour chaque grappe (201), une scission RRM, moyennant quoi des fonctions RRM sont séparées entre chaque nœud esclave (203) et le ou les contrôleurs RRM (202) de la grappe respective (201), et
    transmettre, à chaque nœud d'accès, des informations concernant sa grappe (201), le ou les contrôleurs RRM (202) de la grappe (201), et la scission RRM sélectionnée, le dispositif étant configuré pour :
    sélectionner la scission RRM sur la base d'un type d'au moins une tranche de réseau associée à la grappe (201), et configuré pour :
    sélectionner, pour chaque grappe (201), la scission RRM entre un nœud esclave (203) et le ou les contrôleurs RRM (202) de la grappe respective (201) sur la base d'une qualité de liaison terrestre du nœud esclave (203) au ou aux contrôleurs RRM (202) et/ou sur la base d'une charge moyenne des nœuds d'accès de la grappe respective (201), et est configuré en outre pour :
    sélectionner la scission RRM
    en tant que RRM centralisée à exécuter complètement au niveau du ou des contrôleurs RRM (202), si la qualité de la liaison terrestre est idéale et si la charge moyenne se situe sous une valeur de seuil ; ou
    en tant que RRM distribuée à exécuter distribuée parmi les nœuds d'accès de la grappe (201), si la qualité de la liaison terrestre est idéale et si la charge moyenne se situe au-dessus de la valeur de seuil ; ou
    en tant que RRM semi-centralisée, un premier type de RRM étant exécuté distribué parmi les nœuds d'accès de la grappe (201) et un second type de RRM étant exécuté au niveau du ou des contrôleurs RRM (202), si la qualité de la liaison terrestre n'est pas idéale.
  2. Dispositif de configuration RRM (100) selon la revendication 1, qui est configuré pour :
    sélectionner le ou les nœuds d'accès de chaque grappe en tant que contrôleur RRM (202) sur la base d'au moins un élément parmi :
    les capacités de traitement des nœuds d'accès de la grappe (201) ;
    une charge moyenne des nœuds d'accès de la grappe (201) ;
    des nombres de nœuds d'accès voisins ayant une qualité de liaison terrestre idéale pour chaque nœud d'accès de la grappe (201) ;
    des exigences d'accord de niveau de service, SLA, ou KPI d'au moins une tranche de réseau associée à la grappe (201).
  3. Dispositif de configuration RRM (100) selon l'une des revendications 1 et 2, qui est configuré pour :
    déterminer une priorité parmi les contrôleurs RRM (202) sélectionnés sur la base de types de tranches de réseau associées aux grappes (201),
    dans lequel les informations transmises comprennent les priorités de contrôleur RRM déterminées.
  4. Dispositif de configuration RRM (100) selon l'une des revendications 1 à 3, qui est configuré pour :
    diviser la pluralité de nœuds d'accès du réseau (200) en les grappes (201) et sélectionner les contrôleurs RRM (202) en utilisant un algorithme basé sur un graphique,
    dans lequel le graphique comprend les nœuds d'accès, et des bords entre des nœuds d'accès indiquant une pertinence de coordination entre ces nœuds d'accès.
  5. Dispositif de configuration RRM (100) selon l'une des revendications 1 à 4, qui est configuré pour :
    commencer à diviser la pluralité de nœuds d'accès du réseau (200) en les grappes (201), lors de la réception d'un événement de déclenchement, de préférence une requête d'instanciation de tranches.
  6. Dispositif de configuration RRM (100) selon l'une des revendications 1 à 5, qui est configuré pour :
    sélectionner une taille de grappe sur la base d'au moins un élément parmi :
    un nombre de tranches de réseau associées aux grappes (201) ;
    des KPI des tranches de réseau ;
    un nombre d'utilisateurs par tranche de réseau ; et
    des conditions de charge et des conditions de liaison terrestre par tranche de réseau.
  7. Dispositif de configuration RRM (100) selon l'une des revendications 1 à 6, dans lequel
    les informations transmises comprennent au moins un ID de grappe, au moins un ID de contrôleur RRM et une indication concernant la scission RRM
  8. Système comprenant un dispositif de configuration RRM (100) selon l'une des revendications 1 à 7 et une pluralité de nœuds d'accès, dans lequel un nœud d'accès de la pluralité de nœuds d'accès sélectionné par le dispositif de configuration RRM (100) en tant que contrôleur RRM d'une grappe de nœuds d'accès (201) est configuré pour :
    adapter de manière dynamique une scission RRM entre des nœuds d'accès de la pluralité de nœuds d'accès déterminés par le dispositif de configuration RRM (100) en tant que nœuds esclaves (203) dans la grappe (201) et le ou les contrôleurs RRM (202) dans la grappe (201), sur la base de la scission RRM sélectionnée par le dispositif de configuration RRM (100).
  9. Système selon la revendication 8, dans lequel un nœud esclave (203) de la grappe (201) est configuré pour :
    envoyer au ou aux contrôleurs RRM (202) de la grappe (201) un message de requête d'adaptation de scission RRM, afin d'initier l'adaptation dynamique de la scission RRM, lorsqu'elle est déclenchée par au moins un élément parmi :
    un changement de conditions de liaison terrestre entre le nœud esclave (203) et le ou les contrôleurs RRM (202) ;
    une densité d'utilisateur qui est supérieure à une valeur de seuil ;
    des informations de mobilité d'utilisateur moyennes qui sont supérieures à une valeur de seuil ;
    un changement d'un établissement de priorités de tranches de réseau associées à la grappe (201).
  10. Système selon la revendication 8 ou 9, dans lequel un nœud d'accès sélectionné par le dispositif de configuration RRM (100) en tant que contrôleur RRM (202) de la grappe (201) est configuré en outre pour :
    déterminer un nœud esclave (203) de la grappe (201) pour qu'il devienne un nouveau contrôleur RRM,
    transmettre une notification concernant le nouveau contrôleur RRM au dispositif de configuration RRM (100).
  11. Système selon l'une des revendications 8 à 10, dans lequel le nœud d'accès sélectionné par le dispositif de configuration RRM (100) en tant que contrôleur RRM (202) de la grappe (201) est configuré en outre pour :
    transmettre à un autre nœud d'accès sélectionné par le dispositif de configuration RRM (100) en tant que contrôleur RRM (202) une requête de changement de ressources radio pour négocier de nouveau l'utilisation de ressources radio.
  12. Procédé de configuration de gestion de ressources radio, RRM, comprenant les étapes consistant à :
    diviser une pluralité de nœuds d'accès d'un réseau en grappes (201),
    sélectionner au moins un nœud d'accès de chaque grappe (201) en tant que contrôleur RRM (202), et déterminer les nœuds d'accès non sélectionnés de chaque grappe (201) en tant que nœuds esclaves (203),
    sélectionner, pour chaque grappe (201), une scission RRM, moyennant quoi des fonctions RRM sont séparées entre chaque nœud esclave (203) et le ou les contrôleurs RRM (202) de la grappe respective (201), et
    transmettre, à chaque nœud d'accès, des informations concernant sa grappe (201), le ou les contrôleurs RRM (202) de la grappe (201), et la scission RRM sélectionnée, le procédé comprenant en outre :
    la sélection de la scission RRM sur la base d'un type d'au moins une tranche de réseau associée à la grappe,
    la sélection, pour chaque grappe, de la scission RRM entre un nœud esclave et le ou les contrôleurs RRM de la grappe respective sur la base d'une qualité de liaison terrestre du nœud esclave au ou aux contrôleurs RRM et/ou sur la base d'une charge moyenne des nœuds d'accès de la grappe respective, et
    la sélection de la scission RRM
    en tant que RRM centralisée à exécuter complètement au niveau du ou des contrôleurs RRM (202), si la qualité de la liaison terrestre est idéale et si la charge moyenne se situe sous une valeur de seuil ; ou
    en tant que RRM distribuée à exécuter distribuée parmi les nœuds d'accès de la grappe (201), si la qualité de la liaison terrestre est idéale et si la charge moyenne se situe au-dessus de la valeur de seuil ; ou
    en tant que RRM semi-centralisée, un premier type de RRM étant exécuté distribué parmi les nœuds d'accès de la grappe (201) et un second type de RRM étant exécuté au niveau du ou des contrôleurs RRM (202), si la qualité de la liaison terrestre n'est pas idéale.
  13. Procédé de configuration RRM selon la revendication 12, comprenant en outre :
    l'adaptation de manière dynamique de la scission RRM entre un nœud esclave (203) et le ou les contrôleurs RRM (202) d'une grappe (201), et/ou la détermination d'un nœud esclave (203) d'une grappe (201) pour qu'il devienne un nouveau contrôleur RRM
EP16777644.2A 2016-09-28 2016-09-28 Dispositif et procédé de configuration de gestion des ressources radio Active EP3510805B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2016/073147 WO2018059680A1 (fr) 2016-09-28 2016-09-28 Dispositif et procédé de configuration de gestion des ressources radio

Publications (2)

Publication Number Publication Date
EP3510805A1 EP3510805A1 (fr) 2019-07-17
EP3510805B1 true EP3510805B1 (fr) 2020-07-29

Family

ID=57083288

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16777644.2A Active EP3510805B1 (fr) 2016-09-28 2016-09-28 Dispositif et procédé de configuration de gestion des ressources radio

Country Status (4)

Country Link
US (1) US10999783B2 (fr)
EP (1) EP3510805B1 (fr)
CN (1) CN109792613B (fr)
WO (1) WO2018059680A1 (fr)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109792613B (zh) * 2016-09-28 2020-10-09 华为技术有限公司 无线电资源管理配置设备和方法
US11284316B2 (en) * 2018-02-07 2022-03-22 Qualcomm Incorporated Mobile device centric clustering in wireless systems
US10813054B2 (en) * 2018-02-21 2020-10-20 Qualcomm Incorporated Feedback transmission techniques in coordinated clusters of transmission reception points
CN109286425A (zh) * 2018-05-23 2019-01-29 中国科学院上海微***与信息技术研究所 联合优化能量效率和负载均衡的多点协作动态分簇方法及***
EP3811684A1 (fr) * 2018-06-22 2021-04-28 IDAC Holdings, Inc. Manipulation de tranches de réseau mutuellement exclusives
US10638356B2 (en) * 2018-07-23 2020-04-28 Nokia Technologies Oy Transmission of network slicing constraints in 5G wireless networks
US11251994B2 (en) 2018-12-22 2022-02-15 Parallel Wireless, Inc. Distributed cloud HNG fabric
WO2020163407A1 (fr) 2019-02-04 2020-08-13 Parallel Wireless, Inc. Station de base hybride et rrh
CN110177011B (zh) * 2019-05-08 2021-10-22 武汉理工大学 一种适应动态网络结构的网络控制器部署方法
CN110213800B (zh) * 2019-05-17 2022-09-02 中国联合网络通信集团有限公司 网络切片业务的处理方法及装置
US11533613B2 (en) * 2019-08-16 2022-12-20 Qualcomm Incorporated Providing secure communications between computing devices
US11438768B2 (en) * 2019-09-24 2022-09-06 Charter Communications Operating, Llc Dynamic split of communication layer processing
US11425601B2 (en) * 2020-05-28 2022-08-23 At&T Intellectual Property I, L.P. Pooling of baseband units for 5G or other next generation networks
WO2022197119A1 (fr) * 2021-03-18 2022-09-22 Samsung Electronics Co., Ltd. Système à multiples points de réception/émission (trp) et son procédé
US11720425B1 (en) 2021-05-20 2023-08-08 Amazon Technologies, Inc. Multi-tenant radio-based application pipeline processing system
US11800404B1 (en) 2021-05-20 2023-10-24 Amazon Technologies, Inc. Multi-tenant radio-based application pipeline processing server
US11916999B1 (en) 2021-06-30 2024-02-27 Amazon Technologies, Inc. Network traffic management at radio-based application pipeline processing servers
US11539582B1 (en) 2021-08-30 2022-12-27 Amazon Technologies, Inc. Streamlined onboarding of offloading devices for provider network-managed servers
US11824943B1 (en) 2022-06-29 2023-11-21 Amazon Technologies, Inc. Managed connectivity between cloud service edge locations used for latency-sensitive distributed applications
US11937103B1 (en) 2022-08-17 2024-03-19 Amazon Technologies, Inc. Enhancing availability of radio-based applications using multiple compute instances and virtualized network function accelerators at cloud edge locations

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100933155B1 (ko) * 2002-09-30 2009-12-21 삼성전자주식회사 주파수분할다중접속 이동통신시스템에서 가상 셀의 자원할당장치 및 방법
EP1592275B1 (fr) 2004-04-29 2006-06-21 Matsushita Electric Industrial Co., Ltd. Déplacement aussi partiellement d'une fonctionnalité de gestion de ressources radio d'un premier station de base à un autre dans un réseau d'accès radio distribué
US20080020801A1 (en) * 2006-07-20 2008-01-24 Nestor Alexis Fesas Managing Wireless Base Stations Using A Distributed Virtual Base Station Manager
US9241276B2 (en) * 2008-06-17 2016-01-19 Alcatel Lucent Method for adaptive formation of cell clusters for cellular wireless networks with coordinated transmission and reception
CN102244567A (zh) * 2010-05-13 2011-11-16 清华大学 通信控制服务器、基站、终端、联合服务***及方法
US9288690B2 (en) * 2010-05-26 2016-03-15 Qualcomm Incorporated Apparatus for clustering cells using neighbor relations
EP2456255B1 (fr) * 2010-11-19 2019-07-24 Huawei Technologies Co., Ltd. Dispositif et procédé pour communications dans un réseau de communication
US8521172B2 (en) * 2011-01-11 2013-08-27 Scott R. Rosenau Method and system for switching cellular base station capacity
EP2732568A4 (fr) 2011-07-13 2015-04-01 Ericsson Telefon Ab L M Appareil et procédé de coordination d'interférence intercellulaire proactive
US9276810B2 (en) * 2011-12-16 2016-03-01 Futurewei Technologies, Inc. System and method of radio bearer management for multiple point transmission
US8725153B2 (en) 2012-02-15 2014-05-13 Telefonaktiebolaget L M Ericsson (Publ) Methods and devices for adjusting resource management procedures in heterogeneous communication networks
CN105359574B (zh) 2012-02-24 2019-10-18 英特尔公司 具有集中式基站基带单元(bbu)处理池的协作式无线接入网络
US8798021B2 (en) 2012-03-16 2014-08-05 Nokia Siemens Networks Oy Hierarchical network and interference management
WO2013137792A1 (fr) * 2012-03-16 2013-09-19 Telefonaktiebolaget L M Ericsson (Publ) Procédé et nœud de commande de cellule destiné à assister la gestion de réseau
US9706450B2 (en) * 2012-05-08 2017-07-11 Kyocera Corporation Wireless communication system with adjacent base stations transmitting a common group cell identifier
US9125047B2 (en) 2012-07-26 2015-09-01 Nec Laboratories America, Inc. Cloud-based radio access network for small cells
WO2014040642A1 (fr) * 2012-09-14 2014-03-20 Huawei Technologies Co., Ltd. Procédé pour réaliser des économies d'énergie dans un système de communication cellulaire sans fil
WO2014089833A1 (fr) * 2012-12-14 2014-06-19 华为技术有限公司 Groupe de stations de base enfant-parent, unité centrale, unité distante et procédé de traitement d'informations
US20140213275A1 (en) 2013-01-30 2014-07-31 Acer Incorporated Methods of Performing Radio Resource Management, Network Node, Mobile Device, Base Station, and Wireless Communication System Using the Same Methods
WO2014196714A1 (fr) * 2013-06-03 2014-12-11 엘지전자 주식회사 Procédé de gestion de ressources sans fil et appareil associé
KR102051831B1 (ko) * 2013-09-13 2019-12-04 삼성전자주식회사 이동통신 시스템에서 부하 평형 방법 및 장치
US9271179B2 (en) 2013-09-30 2016-02-23 Apple Inc. Customized coexistence management based on user behavior
WO2015069983A1 (fr) * 2013-11-08 2015-05-14 Spidercloud Wireless, Inc. Schémas de réutilisation des fréquences des canaux à demi-débit attribués à des nœuds radio dans un réseau lte
CN104661266A (zh) * 2013-11-25 2015-05-27 上海益尚信息科技有限公司 新型针对mbms多媒体广播业务的无线资源接入网关动态分配***
US9948429B2 (en) * 2014-01-22 2018-04-17 Nec Corporation HARQ implementation for distributed base stations
JP6503616B2 (ja) * 2014-03-06 2019-04-24 シャープ株式会社 端末装置、基地局装置、および制御方法
WO2016133112A1 (fr) * 2015-02-20 2016-08-25 株式会社Nttドコモ Équipement d'utilisateur et procédé de commande de cellule
US10148510B2 (en) * 2015-03-02 2018-12-04 Spidercloud Wireless, Inc. Topology discovery and management and SON orchestration
US10397050B2 (en) * 2015-05-11 2019-08-27 Nec Corporation Providing and configuring a virtual base station
GB2539269A (en) * 2015-06-12 2016-12-14 Nec Corp Communication system
CN109792613B (zh) * 2016-09-28 2020-10-09 华为技术有限公司 无线电资源管理配置设备和方法
CN107889117B (zh) * 2016-09-30 2022-05-10 英国电讯有限公司 小小区簇的资源分配装置、资源分配方法以及通信***
CN107889127B (zh) * 2016-09-30 2022-08-16 英国电讯有限公司 小区簇的资源管理方法、装置及通信***
EP3327990B1 (fr) * 2016-11-28 2019-08-14 Deutsche Telekom AG Réseau de communication radio avec surveillance basée sur seuils multiples pour la gestion de ressources radio
US10644942B2 (en) * 2018-02-07 2020-05-05 Mavenir Networks, Inc. Management of radio units in cloud radio access networks
EP3732933A1 (fr) * 2018-02-14 2020-11-04 Google LLC Configuration complète et delta dans une architecture unité centrale/unités distribuées
US10917801B2 (en) * 2018-04-27 2021-02-09 At&T Intellectual Property I, L.P. Predictive impact analysis for designing a resilient cellular backhaul network
US10743211B2 (en) * 2018-09-25 2020-08-11 Verizon Patent And Licensing, Inc. Diversified ran architecture with congestion control based on spectrum re-allocation

Also Published As

Publication number Publication date
CN109792613A (zh) 2019-05-21
WO2018059680A1 (fr) 2018-04-05
US20190223088A1 (en) 2019-07-18
US10999783B2 (en) 2021-05-04
CN109792613B (zh) 2020-10-09
EP3510805A1 (fr) 2019-07-17

Similar Documents

Publication Publication Date Title
US10999783B2 (en) Radio resource management configuration device and method
TWI710277B (zh) 基於使用者設備輔助回饋來控制可配置的承載的基站、使用者設備及方法
CN108370530B (zh) 用于在无线接入网中执行网络切片的方法和***
US10057034B2 (en) Method and system for dynamic allocation of resources in a cellular network
EP2826277B1 (fr) Réseau hiérarchique et gestion de brouillage
US10028279B2 (en) Communications in a wireless network for carrier selection and switching
EP2785092B1 (fr) Système de communication sans fil
US20130295946A1 (en) Method And Apparatus Of Dynamic Spectrum Sharing In Cellular Networks
US20170223625A1 (en) Wireless network access control method, device and system
WO2013045981A1 (fr) Procédés et appareil de gestion de brouillage
EP2735190A1 (fr) Coordination du brouillage intercellulaire dans les réseaux sans fil
US11304130B2 (en) Control device and access node for licensed assisted access
WO2014040617A1 (fr) Équilibrage de charge dans des systèmes de communication
CN105406978A (zh) 数据转发设备工作模式的配置方法及装置
WO2015096845A1 (fr) Procédé de gestion des communications entre un premier terminal mobile et un deuxième terminal mobile
CN112514460A (zh) 确保无线回程的方法、子级基站、父级基站以及子级基站和父级基站中的方法
US20160337878A1 (en) Improving network efficiency
KR20110069977A (ko) 다중 셀 공통 동작을 수행하는 통신 시스템 및 상기 통신 시스템을 위한 방법
WO2017012091A1 (fr) Procédé et nœud de communication pour programmer des ressources radioélectriques
Pateromichelakis et al. Selection and dimensioning of slice-based RAN controller for adaptive radio resource management
TW202123734A (zh) 使用成本參數在無線多躍點網路中選擇鄰點節點
WO2014167066A1 (fr) Réseau de communication mobile et procédé d'exploitation d'un réseau de communication mobile
CN113853830A (zh) 与辅小区-用户设备的双连接性
EP2306763A1 (fr) Procédé d'adaptation de ressources dans un système de communication radio, nýud de réseau et système de communication radio correspondant
EP3721652B1 (fr) Noeud et procédés associés, programme d'ordinateur et support permettant de sélectionner des identités de zone d'informations système dans un reseau de communications sans fil

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190409

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200420

RIC1 Information provided on ipc code assigned before grant

Ipc: H04L 12/24 20060101ALI20200403BHEP

Ipc: H04W 24/02 20090101AFI20200403BHEP

Ipc: H04L 12/26 20060101ALI20200403BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1297274

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016040906

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200729

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1297274

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201029

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201130

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201030

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201029

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602016040906

Country of ref document: DE

Owner name: HUAWEI TECHNOLOGIES DUESSELDORF GMBH, DE

Free format text: FORMER OWNER: HUAWEI TECHNOLOGIES CO., LTD., SHEN ZHEN, GUANGDONG, CN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201129

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20210218 AND 20210224

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: HUAWEI TECHNOLOGIES DUESSELDORF GMBH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016040906

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200928

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

26N No opposition filed

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200928

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230810

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230802

Year of fee payment: 8