EP3507496B1 - Trockenverdichtende vakuumpumpe - Google Patents

Trockenverdichtende vakuumpumpe Download PDF

Info

Publication number
EP3507496B1
EP3507496B1 EP17751770.3A EP17751770A EP3507496B1 EP 3507496 B1 EP3507496 B1 EP 3507496B1 EP 17751770 A EP17751770 A EP 17751770A EP 3507496 B1 EP3507496 B1 EP 3507496B1
Authority
EP
European Patent Office
Prior art keywords
vacuum pump
dry
toothed belt
rotor
compressing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17751770.3A
Other languages
English (en)
French (fr)
Other versions
EP3507496A1 (de
Inventor
Thomas Dreifert
Dirk Schiller
Wolfgang Giebmanns
Roland Müller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leybold GmbH
Original Assignee
Leybold GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leybold GmbH filed Critical Leybold GmbH
Publication of EP3507496A1 publication Critical patent/EP3507496A1/de
Application granted granted Critical
Publication of EP3507496B1 publication Critical patent/EP3507496B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/005Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • F04C29/0071Couplings between rotors and input or output shafts acting by interengaging or mating parts, i.e. positive coupling of rotor and shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C25/00Adaptations of pumps for special use of pumps for elastic fluids
    • F04C25/02Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/082Details specially related to intermeshing engagement type pumps
    • F04C18/084Toothed wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/126Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with radially from the rotor body extending elements, not necessarily co-operating with corresponding recesses in the other rotor, e.g. lobes, Roots type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/10Fluid working
    • F04C2210/1005Air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/22Fluid gaseous, i.e. compressible
    • F04C2210/221Air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/10Vacuum
    • F04C2220/12Dry running
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/60Assembly methods
    • F04C2230/602Gap; Clearance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/20Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/50Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/005Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/12Kind or type gaseous, i.e. compressible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/16Air or water being indistinctly used as working fluid, i.e. the machine can work equally with air or water without any modification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/50Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/40Transmission of power
    • F05B2260/402Transmission of power through friction drives
    • F05B2260/4021Transmission of power through friction drives through belt drives

Definitions

  • the invention relates to a dry-running vacuum pump, in particular a screw pump.
  • Dry-compressing vacuum pumps such as screw pumps have two rotor elements arranged in a pumping chamber.
  • the rotor elements are designed as helical displacement elements. Each rotor element is carried by a rotor shaft.
  • the two rotor elements are arranged in the scooping space formed by the pump housing.
  • the two rotor shafts protrude through a housing wall that limits the scooping space.
  • Gears are connected to the two shaft ends.
  • the two gears mesh with one another. As a result, the two shafts rotating in opposite directions are synchronized on the one hand, and the two shafts are driven on the other hand. By providing the meshing gears, only one of the two shafts has to be driven.
  • an enlarged effective diameter of typically 0.2 to 0.4 mm would have to be provided for toothed belt wheels. This leads to a forced division error, which worsens the synchronization. Providing However, an enlarged effective diameter significantly shortens the service life of the timing belts used. This is not accepted in the market for dry compressing vacuum pumps.
  • a dry compressing vacuum pump with the features of the preamble of claim 1 is out DE 103 34 481 known.
  • the object of the invention is to provide a dry-compressing vacuum pump which is driven and synchronized with a toothed belt and does not have the above disadvantages.
  • the dry-compressing vacuum pump has a scooping space formed by a pump housing.
  • Two rotor elements are arranged in the scoop chamber, the vacuum pump in particular being a screw pump.
  • Each rotor element is carried by a rotor shaft.
  • the two rotor shafts protrude through a housing wall delimiting the scooping space, so that one shaft end protrudes from the scooping space per rotor shaft.
  • a toothed belt wheel is arranged on each of the two shaft ends. Since the two rotor shafts are driven by a toothed belt, the two toothed belt wheels do not mesh with one another.
  • a drive device such as an electric motor is provided.
  • a pulley is arranged in particular on a drive shaft of the electric motor.
  • the toothed belt is connected to the two toothed belt wheels and the drive device, in particular the pulley of the drive device.
  • a backlash between the two rotor elements of more than ⁇ 0.75 °, in particular more than ⁇ 1 °, is provided according to the invention. Just because The provision of such a large backlash enables the use of toothed belts.
  • the displacement elements arranged on the rotor shaft are preferred, the displacement elements naturally also being able to be formed in one piece with the rotor shaft.
  • the profile engagement gap in the inlet area is decisive for the maximum permissible synchronization error due to the large gradient of the winding of the displacement elements that is present here.
  • Already comparatively small angular deviations lead to undesirable flank contacts in the suction-side displacement elements.
  • a large backlash must be selected.
  • two to three turns are preferably provided in this area.
  • the number of turns in the outlet area i.e. be increased on the pressure side. This results in a lower pressure gradient in the inlet area and thus also a reduced backflow.
  • the turns have a smaller slope. Six to 10 turns are preferably provided here.
  • the two screw rotors it is possible for the two screw rotors to have a plurality of rotor elements or displacement elements or displacement stages. At least two displacement elements or displacement stages are preferably provided.
  • Such a vacuum pump screw rotor preferably has at least two helical displacement elements arranged on a rotor shaft.
  • the at least two displacement elements preferably have different gradients, the gradient being constant for each displacement element.
  • the vacuum pump screw rotor has two displacement elements, a first suction-side displacement element having a larger constant slope and a second pressure-side displacement element having a smaller constant slope.
  • the preferred provision of a plurality of displacement elements, each of which has a constant slope makes the manufacture considerably easier.
  • Each displacement element preferably has at least one helical recess which has the same contour over its entire length.
  • the contours are preferably different for each displacement element.
  • the individual displacement element thus preferably has a constant slope and a constant contour. This considerably simplifies the production, so that the production costs can be greatly reduced.
  • the contour of the suction-side displacement element is designed asymmetrically. Due to the asymmetrical design of the contour or profile, the flanks can be designed in such a way that the leakage areas, the so-called blow holes, in particular completely disappear or at least have a small cross section.
  • a particularly suitable asymmetrical profile is the so-called "Quimby profile". Although such a profile is relatively difficult to manufacture, it has the advantage that there is no continuous blow hole. A short circuit only exists between two neighboring chambers. Since it is an asymmetrical profile with different profile flanks, At least two work steps are required for the production, since the two flanks have to be produced in different work steps due to their asymmetry.
  • the pressure-side displacement element in particular the last displacement element in the pumping direction, is preferably provided with a symmetrical contour.
  • the symmetrical contour has the particular advantage that production is easier.
  • both flanks with a symmetrical contour can be produced in one work step by a rotating end mill or by a rotating side milling cutter.
  • Such symmetrical profiles have only small blowholes, but these are continuous, i.e. not only provided between two adjacent chambers. The size of the blow hole decreases as the slope decreases.
  • such symmetrical profiles can be provided in particular in the case of the pressure-side displacement element, since in a preferred embodiment this has a smaller slope than the suction-side displacement element and preferably also as the displacement element arranged between the suction-side and the pressure-side displacement element.
  • the tightness of such symmetrical profiles is somewhat lower, they have the advantage that the manufacture is significantly easier.
  • a particularly suitable symmetrical profile is the so-called "cycloid profile".
  • the provision of at least two such displacement elements means that the corresponding screw vacuum pump can generate low inlet pressures with low power consumption.
  • the thermal load is also low.
  • the arrangement of at least two such displacement elements, preferably configured in this way, with a constant pitch and constant contour in a vacuum pump essentially leads to same results as for a vacuum pump with a displacement element with changing pitch. With high built-in volume ratios, three or four displacement elements can be provided for each rotor.
  • a pressure-side, that is to say in particular the last, displacement element has a large number of turns. Due to the large number of turns, a larger gap between the screw rotor and the housing can be accepted while maintaining the same performance.
  • the gap can have a cold gap width of 0.05-0.3 mm.
  • a large number of outlet windings or number of windings in the pressure-side displacement element can be produced inexpensively, since this displacement element has a constant slope and in particular also a symmetrical contour. This enables simple and inexpensive production, so that the provision of a large number of turns is acceptable.
  • This pressure-side or last displacement element preferably has more than 6, in particular more than 8 and particularly preferably more than 10 turns.
  • the use of symmetrical profiles has the advantage that both flanks of the profile can be cut simultaneously with one milling cutter.
  • the milling cutter is additionally supported by the opposite flank, so that deformation or bending of the milling cutter during the milling process and inaccuracies caused thereby are avoided.
  • the displacement elements and the rotor shaft are formed in one piece.
  • the change in slope between adjacent displacement elements is discontinuous or erratic educated.
  • the two displacement elements are arranged at a distance from one another in the longitudinal direction, so that a circumferential cylindrical ring-shaped chamber is formed between two displacement elements and serves as a tool outlet. This is particularly advantageous in the case of rotors formed in one piece, since the tool producing the helical line can be brought out in a simple manner in this area. If the displacement elements are manufactured independently of one another and then mounted on a shaft, the provision of a tool outlet, in particular of such a ring-cylindrical region, is not necessary.
  • no tool outlet is provided between two adjacent displacement elements on the change of pitch.
  • both flanks have a defect or recess in order to be able to lead the tool out.
  • Such a flaw has no significant influence on the compression performance of the pump, since it is a flaw or recess that is very local.
  • the vacuum pump screw rotor preferably has a plurality of displacement elements. These can each have the same or different diameters. It is preferred here that the pressure-side displacement element has a smaller diameter than the suction-side displacement element.
  • displacement elements produced independently of the rotor shaft, these are mounted on the shaft by press fits, for example. It is preferred here to provide elements such as dowel pins for fixing the angular position of the displacement elements to one another.
  • the screw rotor In particular in the one-piece configuration of the screw rotor, but also in the case of a multi-piece configuration, it is preferred to remove it To produce aluminum or from an aluminum alloy. It is particularly preferred to manufacture the rotor from aluminum or an aluminum alloy, in particular AISi9Mg or AlSi17Cu4Mg.
  • the alloy preferably has a high silicon content of preferably more than 9%, in particular more than 15%, in order to reduce the coefficient of expansion.
  • the aluminum used for the rotors has a low expansion coefficient. It is preferred if the material has an expansion coefficient of less than 22 ⁇ 10 -6 / K , in particular of less than 20 ⁇ 10 -6 / K.
  • the surface of the displacement elements is coated, in particular a coating against wear and / or corrosion being provided. It is preferred to provide an anodic or other suitable coating depending on the area of application.
  • the vacuum pump has at least two compression stages.
  • the vacuum pump has a maximum delivery rate of at least 75%, in particular at least 85%.
  • the degree of delivery is the quotient of the maximum real volume flow and the theoretically possible volume flow for a loss-free pump in relation to the pump chamber geometry and the operating speed.
  • the maximum delivery rate is usually reached in the range of 1 to 10 mbar.
  • the toothed belt used is not only used to drive but also to synchronize the rotor shafts. In screw pumps, the rotor shafts rotate in opposite directions.
  • the toothed belt is therefore designed as a double-sided toothed belt. In plan view, the toothed belt therefore preferably runs between the two toothed belt wheels connected to the shaft ends.
  • tooth gap play of the two toothed belt wheels of more than 0.10 mm can be accepted.
  • the backlash is defined by the combination of the tooth shape of the toothed belt wheels used and the tooth shape and size of the teeth of the toothed belt. Due to the relatively large gap between teeth, the service life of the toothed belt is significantly increased.
  • the effective diameter is not increased and thus no forced pitch error occurs.
  • a toothed belt for driving and synchronizing the two rotor shafts has the particular advantage that no oil lubrication has to be provided. This has the particular advantage that the sealing of the shaft ends with respect to the scooping space can be made significantly more cost-effective. It is also possible to provide grease-lubricated roller bearings.
  • the two shafts are mounted in the housing wall through which the shaft ends are guided, and these bearings can be grease-lubricated bearings.
  • the opposite shaft ends, which are arranged in the area of the inlet side, are preferably supported by grease-lubricated bearings, but oil-lubricated bearings can also be used.
  • a belt tensioning device can be provided in order to keep the belt constantly tensioned.
  • This is preferably an automatic tensioning device in which the tension is generated, for example, by means of a spring or the like, or a fixed prestress is applied during assembly. It is also possible to tension the belt in that the drive motor is held displaceably.
  • Another advantage of the drive according to the invention by means of toothed belts is that it is possible to change the speed of the vacuum pump in a simple manner. All that is required is to replace the toothed belt pulley connected to the drive device. When replacing the toothed belt pulley, the toothed belt may also need to be replaced.
  • a pump housing 10 is shown in a highly simplified manner.
  • a scoop chamber is formed within the pump housing 10, in which two rotor elements 14 are arranged.
  • the rotor elements 14 in the exemplary embodiment shown are screw rotors.
  • the screw rotors 14 have helical compression elements that interlock.
  • the two screw rotors 14 are driven in opposite directions.
  • the two screw rotors 14 have two pump stages 16, 18.
  • the two rotor elements are each arranged on a rotor shaft 22.
  • the two rotor shafts 22 are mounted on the suction side in a housing cover 24 via bearing elements 26.
  • shaft ends 28 protrude through a housing wall 30.
  • the two rotor shafts 22 are supported in the housing wall 30 via grease-lubricated bearings 32.
  • the dry compressing vacuum pump conveys medium through an inlet 34 to an outlet 36.
  • the two shaft ends 28 are each connected to a toothed belt wheel 38, the two toothed belt wheels 38 not meshing with one another.
  • the synchronization is done by an in Fig. 1 Not shown timing belt 40 ( Fig. 2 ).
  • the toothed belt is designed as a double-sided toothed belt and is guided between them to synchronize the two toothed belt wheels 38 or the two shaft ends 28 connected to the toothed belt wheels.
  • a drive device 42 is provided, the drive shaft 44 of which is connected to a toothed belt pulley 46.
  • Figure 3 schematically shows teeth of a toothed belt pulley 38 or 46 in connection with a toothed belt 40.
  • a tooth 48 of a toothed belt 40 is designed such that a gap is shown hatched in relation to a tooth space 50 between two adjacent teeth 52 of the toothed belt wheel 38.
  • the synchronization of the two rotor shafts 22 is somewhat deteriorated, but the service life of the toothed belt 48 is increased.
  • a toothed belt as shown schematically in Figure 4 shown, be provided. As a so-called zero gap, this has no distances between the tooth space 50 and the tooth 48 of the belt 40.
  • the rotor has two displacement elements 110, 112, which form the two pump stages 16, 18.
  • a first displacement-side displacement element 110 has a large pitch of approximately 50-150 mm / revolution. The slope is constant over the entire displacement element 110. The contour of the helical recess is also constant.
  • the second pressure-side displacement element 112 again has a constant slope and a constant contour of the recess over its length. The slope of the pressure-side displacement element 112 is preferably in the range of 10-30 mm / revolution.
  • An annular cylindrical recess 114 is provided between the two displacement elements. This serves to ensure that due to the one-piece design of the in Fig. 5 shown screw rotor a tool outlet is realized.
  • the one-piece screw rotor has two bearing seats 116 and a shaft end 118.
  • a gearwheel for driving is connected to the shaft end 118.
  • the two displacement elements 110, 112 manufactured separately and then fixed on a rotor shaft 120, for example by pressing. Although this production is somewhat more complex, the cylindrical distance 114 between two adjacent displacement elements 110, 112 is not required as a tool outlet.
  • the bearing seats 116 and the shaft ends 118 can be an integral part of the shaft 120.
  • a continuous shaft 120 can also be made from another material that differs from the displacement elements 110, 112.
  • Fig. 7 shows a schematic sectional view of an asymmetrical profile (for example a Quimby profile).
  • the asymmetrical profile shown is a so-called "Quimby profile”.
  • the sectional view shows two screw rotors which mesh with one another and whose longitudinal direction is perpendicular to the plane of the drawing. The opposite rotation of the rotors is indicated by the two arrows 115.
  • the profiles of the flanks 119 and 121 are designed differently for each rotor.
  • the opposite flanks 119, 121 must therefore be produced independently of one another.
  • the production which is therefore somewhat more complex and difficult, has the advantage, however, that there is no continuous blow hole, but only a short circuit between two adjacent chambers.
  • Such an asymmetrical profile is preferably provided in the suction-side displacement element 110.
  • FIG. 8 The schematic sectional view in Fig. 8 again shows a cross section of two displacement elements or two screw rotors, which in turn rotate in opposite directions (arrows 115). Relative to the axis of symmetry 117, the flanks 123 are formed symmetrically for each displacement element. At the in Fig. 8 The illustrated preferred embodiment of a symmetrically designed contour is a cycloid profile.
  • a symmetrical profile, as in Fig. 8 is preferably provided in the pressure-side displacement elements 112.
  • displacement elements are provided. If necessary, these can also have different head diameters and corresponding foot diameters. It is preferred here that a displacement element with a larger head diameter at the inlet, i.e. is arranged on the suction side in order to achieve a greater pumping speed in this area and / or to increase the built-in volume ratio. Combinations of the above-described embodiments are also possible.
  • one or more displacement elements can be produced in one piece with the shaft or an additional displacement element independent of the shaft and then mounted on the shaft.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

  • Die Erfindung betrifft eine trockenlaufende Vakuumpumpe insbesondere eine Schraubenpumpe.
  • Trockenverdichtende Vakuumpumpen wie beispielsweise Schraubenpumpen weisen zwei in einem Schöpfraum angeordnete Rotorelemente auf. Bei Schraubenpumpen sind die Rotorelemente als schraubenlinienförmige Verdrängerelemente ausgebildet. Jedes Rotorelement ist von einer Rotorwelle getragen. Die beiden Rotorelemente sind bei einer Schraubenpumpe in dem durch das Pumpengehäuse ausgebildeten Schöpfraum angeordnet. Die beiden Rotorwellen ragen durch eine Gehäusewand, die den Schöpfraum begrenzt. Mit den beiden Wellenenden sind Zahnräder verbunden. Bei Schraubenpumpen kämmen die beiden Zahnräder miteinander. Hierdurch erfolgt einerseits ein Synchronisieren der beiden sich gegenläufig drehenden Wellen, sowie andererseits ein Antreiben der beiden Wellen. Durch Vorsehen der kämmenden Zahnräder muss nur eine der beiden Wellen angetrieben werden. Zur Erzielung eines effizienten Verdichtungsprozesses und eines guten Liefergrades sind enge Spalte zwischen den Rotoren notwendig, die eine sehr exakte Synchronisierung notwendig machen. Hierbei sind typischerweise maximal Synchronisationsfehler bzw. Verdrehflankenspiele zwischen den Rotoren von ± 0,25° zulässig. Dies kann bei auf dem Markt befindlichen trockenverdichtenden Vakuumpumpen durch Vorsehen kämmender Zahnräder auf den Wellenenden realisiert werden. Aufgrund der geforderten Präzision und der geringen zulässigen Toleranzen sind die Kosten hoch.
  • Des Weiteren ist es beim Vorsehen kämmender Zahnräder zur Synchronisation erforderlich eine Ölschmierung vorzugsehen. Dies hat zur Folge, dass eine aufwendige und komplizierte Abdichtung in der Gehäusewand, durch die die Wellenenden ragen, erforderlich ist.
  • Bekannt ist auch eine elektronische Synchronisation der beiden Rotorwellen. Diese ist allerdings ebenfalls aufwendig und teuer. Zum Antrieb in der Rotorwelle sind Antriebseinrichtungen üblicherweise Elektromotoren vorgesehen. Diese können zur Drehzahlerhöhung der Vakuumpumpe mit einem Frequenzumrichter verbunden sein. Hierbei handelt es sich ebenfalls um ein verhältnismäßig teures Bauteil. Gegebenenfalls sind zwischengeschaltete Getriebe vorgesehen, wobei diese sodann wiederum ölgeschmiert sein müssen.
  • Des Weiteren ist es beispielsweise aus der DE 38 23 927 bekannt, zwei Rotorwellen einer Schraubenpumpe über einen Zahnriemen zu synchronisieren. Ein entsprechendes Produkt wurde jedoch nicht technisch realisiert und auf dem Markt angeboten. Um mit einem Riementrieb angetriebene Schraubenpumpen zu konstruieren, mit denen beim Pumpen gegen Atmosphäre mindestens ein Vakuum von 200 mbar Absolutdruck erzielt werden kann, müssen entsprechend geringe Synchronisationsfehler zwischen den schraubenförmigen Rotorelementen realisiert werden. Dies wäre beim Einsatz von Zahnriemen nur möglich, wenn die Zahnräder bzw. Zahnriemenscheiben, die von den Zahnriemen angetrieben werden, ein sehr enges Zahnlückenspiel aufweisen. Dies beträgt nach ISO 13050 je nach Profil weniger als 0,1 mm bzw. weniger als 0,2 mm. Alternativ müsste ein vergrößerter Wirkdurchmesser von typischerweise 0,2 bis 0,4 mm bei Zahnriemenrädern vorgesehen werden. Dies führt zu einem erzwungenen Teilungsfehler, der die Synchronisation verschlechtert. Das Vorsehen vergrößerter Wirkdurchmesser verkürzt allerdings die Lebensdauer der eingesetzten Zahnriemen erheblich. Dies ist bei trockenverdichtenden Vakuumpumpen im Markt nicht akzeptiert.
  • Eine trockenverdichtende Vakuumpumpe mit den Merkmalen des Oberbegriffs des Anspruchs 1 ist aus DE 103 34 481 bekannt.
  • Aufgabe der Erfindung ist es, eine trockenverdichtende Vakuumpumpe zu schaffen, die mit einem Zahnriemen angetrieben und synchronisiert wird, und die vorstehenden Nachteile nicht aufweist.
  • Die Lösung der Aufgabe erfolgt erfindungsgemäß durch die Merkmale des Anspruchs 1.
  • Die trockenverdichtende Vakuumpumpe weist einen von einem Pumpengehäuse gebildeten Schöpfraum auf. In dem Schöpfraum sind zwei Rotorelemente angeordnet, wobei es sich bei der Vakuumpumpe insbesondere um eine Schraubenpumpe handelt. Jedes Rotorelement ist von einer Rotorwelle getragen. Die beiden Rotorwellen ragen durch eine den Schöpfraum begrenzende Gehäusewand, so dass je Rotorwelle ein Wellenende aus dem Schöpfraum ragt. Auf den beiden Wellenenden ist jeweils ein Zahnriemenrad angeordnet. Da der Antrieb der beiden Rotorwellen über einen Zahnriemen erfolgt, kämmen die beiden Zahnriemenräder nicht miteinander. Ferner ist eine Antriebseinrichtung wie ein Elektromotor vorgesehen. Hierbei ist insbesondere auf einer Antriebswelle des Elektromotors eine Riemenscheibe angeordnet. Der Zahnriemen ist mit den beiden Zahnriemenrädern und der Antriebseinrichtung, insbesondere der Riemenscheibe der Antriebseinrichtung verbunden. Um zum Antrieb der beiden Rotorwellen einen Zahnriemen vorsehen zu können, ist erfindungsgemäß ein Verdrehflankenspiel zwischen den beiden Rotorelemente von mehr als ± 0,75° insbesondere mehr als ± 1° vorgesehen. Nur aufgrund des Vorsehens eines derart großen Verdrehflankenspiels ist der Einsatz von Zahnriemen möglich.
  • Um trotz des großen Verdrehflankenspiels bei Verdichtung gegen Atmosphäre ein hohes Vakuum von insbesondere weniger als 200 mbar Absolutdruck erzielen zu können, sind besondere Ausgestaltungen der Verdichtungsstufen, d. h. der auf der Rotorwelle angeordneten Verdrängerelemente bevorzugt, wobei die Verdrängerelemente selbstverständlich auch einstückig mit der Rotorwelle ausgebildet sein können.
  • Aufgrund des erfindungsgemäß zulässigen großen Verdrehflankenspiels tritt insbesondere bei den saugseitig angeordneten Verdichtungselementen, d.h. bei den auf den Pumpeneinlass folgenden Verdichtungselementen eine vergleichsweise hohe Rückströmung auf.
  • Bei Schraubenrotoren mit in Förderrichtung veränderlicher Steigung ist der Profileingriffsspalt im Einlassbereich aufgrund der hier vorhandenen großen Steigung der Windung der Verdrängungselemente bestimmend für den maximal zulässigen Synchronisationsfehler. Bereits vergleichsweise kleine Winkelabweichungen führen zu unerwünschten Flankenkontakten bei den saugseitigen Verdrängungselementen. Um dies zu vermeiden, muss ein großes Verdrehflankenspiel gewählt werden. Um trotz des hierdurch entstehenden großen Spalts einen guten Liefergrad der Pumpe zu erzielen, ist es bevorzugt im Einlassbereich die Anzahl der Windungen mit großer Steigung und großem Profilspalt zu erhöhen. Insbesondere sind in diesem Bereich vorzugsweise zwei bis drei Windungen vorgesehen. Zusätzlich oder alternativ kann auch die Anzahl der Windungen im Auslassbereich, d.h. druckseitig erhöht werden. Hierdurch ergibt sich ein geringerer Druckgradient im Einlassbereich und somit ebenfalls eine verringerte Rückströmung. Im Auslassbereich weisen die Windungen eine geringere Steigung auf. Vorzugsweise sind hierbei sechs bis 10 Windungen vorgesehen.
  • Des Weiteren ist es bei einer alternativen bevorzugten Ausführungsform möglich, dass die beiden Schraubenrotoren mehrere Rotor- bzw. Verdrängungselemente bzw. Verdrängungsstufen aufweisen. Vorzugsweise sind mindestens zwei Verdrängungselemente bzw. Verdrängungsstufen vorgesehen.
  • Ein derartiger Vakuumpumpen-Schraubenrotor weist vorzugsweise mindestens zwei auf einer Rotorwelle angeordnete schraubenlinienförmige Verdrängungselemente auf. Die mindestens zwei Verdrängungselemente weisen vorzugsweise unterschiedliche Steigungen auf, wobei je Verdrängungselement die Steigung konstant ist. Beispielsweise weist der Vakuumpumpen-Schraubenrotor zwei Verdrängungselemente auf, wobei ein erstes saugseitiges Verdrängungselement eine größere konstante Steigung und ein zweites druckseitiges Verdrängungselement eine kleinere konstante Steigung aufweist. Durch das bevorzugte Vorsehen von mehreren Verdrängungselementen, die jeweils eine konstante Steigung aufweisen, ist die Herstellung erheblich vereinfacht.
  • Vorzugsweise weist jedes Verdrängungselement mindestens eine schraubenlinienförmige Ausnehmung auf, die über ihre gesamte Länge dieselbe Kontur aufweist. Die Konturen sind vorzugsweise je Verdrängungselement unterschiedlich. Das einzelne Verdrängungselement weist somit vorzugsweise eine konstante Steigung und eine gleichbleibende Kontur auf. Dies vereinfacht die Herstellung erheblich, so dass die Herstellungskosten stark gesenkt werden können.
  • Zur weiteren Verbesserung der Saugleistung ist die Kontur des saugseitigen Verdrängungselements, das heißt insbesondere des in Pumprichtung ersten Verdrängungselements asymmetrisch ausgebildet. Durch die asymmetrische Ausbildung der Kontur bzw. des Profils können die Flanken derart ausgestaltet werden, dass die Leckageflächen, die sogenannten Blaslöcher insbesondere vollständig verschwinden oder zumindest einen geringen Querschnitt aufweisen. Ein besonders geeignetes asymmetrisches Profil ist das sogenannte "Quimby-Profil". Ein derartiges Profil ist zwar relativ schwierig herzustellen, weist jedoch den Vorteil auf, dass kein durchgehendes Blasloch vorhanden ist. Ein Kurzschluss ist nur zwischen zwei benachbarten Kammern gegeben. Da es sich um ein asymmetrisches Profil mit unterschiedlichen Profilflanken handelt, sind für die Herstellung zumindest zwei Arbeitsschritte erforderlich, da die beiden Flanken aufgrund ihrer Asymmetrie in unterschiedlichen Arbeitsschritten hergestellt werden müssen.
  • Das druckseitige Verdrängungselement, insbesondere das in Pumprichtung letzte Verdrängungselement, ist vorzugsweise mit einer symmetrischen Kontur versehen. Die symmetrische Kontur hat insbesondere den Vorteil, dass die Herstellung einfacher ist. Insbesondere können beide Flanken mit symmetrischer Kontur durch einen rotierenden Fingerfräser oder durch einen rotierenden Scheibenfräser in einem Arbeitsschritt hergestellt werden. Derartige symmetrische Profile weisen nur kleine Blaslöcher auf, diese sind jedoch durchgehend, d.h. nicht nur zwischen zwei benachbarten Kammern vorgesehen. Die Größe des Blaslochs verringert sich bei Verringerung der Steigung. Insofern können derartige symmetrische Profile insbesondere bei dem druckseitigen Verdrängungselement vorgesehen werden, da diese in bevorzugter Ausführungsform eine kleinere Steigung als das saugseitige Verdrängungselement und vorzugsweise auch als das zwischen dem saugseitigen und dem druckseitigen Verdrängungselement angeordnete Verdrängungselemente aufweist. Wenngleich die Dichtigkeit derartiger symmetrischer Profile etwas geringer ist, weisen diese den Vorteil auf, dass die Herstellung deutlich einfacher ist. Insbesondere ist es möglich, das symmetrische Profil in einem einzigen Arbeitsschritt und vorzugsweise mit einem einfachen Fingerfräser oder Scheibenfräser herzustellen. Dies reduziert die Kosten erheblich. Ein besonders geeignetes symmetrisches Profil ist das sogenannte "Zykloiden-Profil".
  • Das Vorsehen mindestens zweier derartiger Verdrängungselemente führt dazu, dass die entsprechende Schraubenvakuumpumpe bei geringer Leistungsaufnahme niedrige Einlassdrücke erzeugen kann. Auch ist die thermische Belastung gering. Das Anordnen von mindestens zwei derartig bevorzugt ausgestalteten Verdrängungselementen mit konstanter Steigung und gleichbleibender Kontur in einer Vakuumpumpe führt zu im Wesentlichen gleichen Ergebnissen, wie bei einer Vakuumpumpe mit einem Verdrängungselement mit sich ändernder Steigung. Bei hohen eingebauten Volumenverhältnissen können je Rotor drei oder vier Vedrängungselemente vorgesehen werden.
  • Zur Verringerung des erzielbaren Einlassdrucks und/oder zur Verringerung der Leistungsaufnahme und/oder der thermischen Belastung weist bei einer besonders bevorzugten Ausführungsform ein druckseitiges, das heißt insbesondere in Pumprichtung letztes Verdrängungselement eine große Anzahl an Windungen auf. Durch eine hohe Anzahl an Windungen kann ein größerer Spalt zwischen dem Schraubenrotor und dem Gehäuse akzeptiert werden bei gleichbleibender Performance. Der Spalt kann hierbei eine Kalt-Spaltweite von 0,05 - 0,3 mm aufweisen. Eine große Anzahl an Auslasswindungen bzw. Anzahl an Windungen bei dem druckseitigen Verdrängungselement ist kostengünstig herstellbar, da dieses Verdrängungselement eine konstante Steigung und insbesondere auch eine symmetrische Kontur aufweist. Hierdurch ist eine einfache und kostengünstige Herstellung möglich, so dass das Vorsehen einer größeren Anzahl an Windungen akzeptabel ist. Vorzugsweise weist dieses druckseitige bzw. letzte Verdrängungselement mehr als 6, insbesondere mehr als 8 und besonders bevorzugt mehr als 10 Windungen auf. Das Verwenden symmetrischer Profile hat in besonders bevorzugter Ausführungsform den Vorteil, dass beide Flanken des Profils mit einem Fräser gleichzeitig geschnitten werden können. Hierbei erfolgt zusätzlich ein Abstützen des Fräsers durch die jeweils gegenüberliegende Flanke, so dass ein Verformen bzw. Verbiegen des Fräsers während des Fräsvorgangs und hierdurch hervorgerufene Ungenauigkeiten vermieden sind.
  • Zur weiteren Reduzierung der Herstellungskosten ist es besonders bevorzugt, die Verdrängungselemente und die Rotorwelle einstückig auszubilden.
  • Bei einer weiteren bevorzugten Ausführungsform ist der Steigungswechsel zwischen benachbarten Verdrängungselementen unstetig bzw. sprunghaft ausgebildet. Gegebenenfalls sind die beiden Verdrängungselemente in Längsrichtung in einem Abstand zueinander angeordnet, so dass zwischen zwei Verdrängungselementen eine umlaufende zylinderringförmige Kammer ausgebildet ist, die als Werkzeugauslauf dient. Dies ist insbesondere bei einstückig ausgebildeten Rotoren vorteilhaft, da das die Schraubenlinie herstellende Werkzeug in diesem Bereich auf einfache Weise herausgeführt werden kann. Sofern die Verdrängungselemente unabhängig voneinander hergestellt und sodann auf einer Welle montiert werden, ist das Vorsehen eines Werkzeugauslaufs, insbesondere eines derartigen ringzylindrischen Bereichs nicht erforderlich.
  • Bei einer bevorzugten Weiterbildung der Erfindung ist zwischen zwei benachbarten Verdrängungselementen am Steigungswechsel kein Werkzeugauslauf vorgesehen. In dem Bereich des Steigungswechsels weisen vorzugsweise beide Flanken eine Fehlstelle bzw. Ausnehmung auf, um das Werkzeug herausführen zu können. Eine derartige Fehlstelle hat keinen nennenswerten Einfluss auf die Verdichtungsleistung der Pumpe, da es sich um eine örtlich stark begrenzte Fehlstelle bzw. Ausnehmung handelt.
  • Der Vakuumpumpen-Schraubenrotor weist vorzugsweise mehrere Verdrängungselemente auf. Diese können jeweils den gleichen oder unterschiedliche Durchmesser aufweisen. Bevorzugt ist es hierbei, dass das druckseitige Verdrängungselement einen kleineren Durchmesser als das saugseitige Verdrängungselement aufweist.
  • Bei unabhängig von der Rotorwelle hergestellten Verdrängungselementen werden diese beispielsweise durch Presspassungen auf der Welle montiert. Hierbei ist es bevorzugt, Elemente wie Passstifte zur Festlegung der Winkelposition der Verdrängungselemente zueinander vorzusehen.
  • Insbesondere bei der einstückigen Ausgestaltung des Schraubenrotors aber auch bei einer mehrstückigen Ausgestaltung ist es bevorzugt, diesen aus Aluminium oder aus einer Aluminiumlegierung herzustellen. Besonders bevorzugt ist es, den Rotor aus Aluminium oder einer Aluminium-Legierung insbesondere AISi9Mg oder AlSi17Cu4Mg herzustellen. Die Legierung hat vorzugsweise einen hohen Silicium-Anteil von vorzugsweise mehr als 9 %, insbesondere mehr als 15 %, um den Ausdehnungskoeffizienten zu verringern.
  • Das für die Rotoren verwendete Aluminium weist in einer weiteren bevorzugten Weiterbildung der Erfindung einen geringen Ausdehnungskoeffizienten auf. Bevorzugt ist es, wenn das Material einen Ausdehnungskoeffizienten von weniger als 22 ∗ 10-6/K, insbesondere von weniger als 20 ∗ 10-6/K aufweist. In einer weiter bevorzugten Ausführungsform ist die Oberfläche der Verdrängungselemente beschichtet, wobei insbesondere eine Beschichtung gegen Verschleiß und/oder Korrosion vorgesehen ist. Hierbei ist es bevorzugt eine anodische oder eine andere geeignete Beschichtung je nach Anwendungsgebiet vorzusehen.
  • Die Vakuumpumpe weist mindestens zwei Verdichtungsstufen auf.
  • Des Weiteren ist es bei der erfindungsgemäßen trockenverdichtenden Vakuumpumpe bevorzugt, dass die Vakuumpumpe einen maximalen Liefergrad von mindestens 75%, insbesondere mindestens 85% aufweist. Der Liefergrad ist der Quotient aus dem real maximal erreichten Volumenstrom und dem theoretisch möglichen Volumenstrom bei einer verlustfreien Pumpe bezogen auf die Schöpfraumgeometrie und die Betriebsdrehzahl. Der maximale Liefergrad wird üblicherweise im Bereich von 1 bis 10 mbar erreicht.
  • Der verwendete Zahnriemen dient nicht nur zum Antrieb sondern auch zur Synchronisation der Rotorwellen. Die Rotorwellen drehen bei Schraubenpumpen gegenläufig. Der Zahnriemen ist daher in bevorzugter Ausführungsform als doppelseitiger Zahnriemen ausgebildet. In Draufsicht verläuft der Zahnriemen daher vorzugsweise zwischen den beiden mit den Wellenenden verbundenen Zahnriemenrädern.
  • In einer bevorzugten Ausführungsform, mit dem oben beschriebenen Rotor, können Zahnlückenspiele der beiden Zahnriemenräder von mehr als 0,10 mm akzeptiert werden. Das Zahnlückenspiel ist hierbei durch die Kombination der Zahnform der verwendeten Zahnriemenräder und der Zahnform und -größe der Zähne des Zahnriemens definiert. Aufgrund des relativ großen Zahnlückenspiels ist die Lebensdauer der Zahnriemen deutlich vergrößert.
  • Um eine weitere Vergrößerung der Lebensdauer der Zahnriemen erzielen zu können, ist es des Weiteren bevorzugt, dass der Wirkdurchmesser nicht vergrößert ist und somit kein erzwungener Teilungsfehler entsteht.
  • Das Vorsehen eines Zahnriemens zum Antreiben und Synchronisieren der beiden Rotorwellen hat insbesondere den Vorteil, dass keine Ölschmierung vorgesehen sein muss. Dies hat insbesondere den Vorteil, dass die Abdichtung der Wellenenden gegenüber dem Schöpfraum deutlich kostengünstiger ausgestaltet sein kann. Des Weiteren ist es möglich, fettgeschmierte Wälzlager vorzusehen. Insbesondere sind die beiden Wellen in der Gehäusewand, durch die die Wellenenden geführt sind, gelagert, wobei es sich bei diesen Lagern um fettgeschmierte Lager handeln kann. Die gegenüberliegenden Wellenenden, die im Bereich der Einlassseite angeordnet sind, sind vorzugsweise über fettgeschmierte Lager gelagert, jedoch können auch ölgeschmierte Lager eingesetzt werden.
  • Des Weiteren kann eine Riemenspanneinrichtung vorgesehen sein, um den Riemen konstant gespannt zu halten. Hierbei handelt es sich vorzugsweise um eine automatische Spanneinrichtung, bei der die Spannung beispielsweise mittels einer Feder oder dergleichen erzeugt wird, oder eine feste Vorspannung bei der Montage aufgebracht wird. Ebenso ist es möglich, den Riemen dadurch zu spannen, dass der Antriebsmotor verschiebbar gehalten ist.
  • Ein weiterer Vorteil des erfindungsgemäßen Antriebs mittels Zahnriemen besteht darin, dass es auf einfach Weise möglich ist, die Drehzahl der Vakuumpumpe zu verändern. Hierzu muss lediglich die mit der Antriebseinrichtung verbundene Zahnriemenscheibe ausgewechselt werden. Beim Austausch der Zahnriemenscheibe muss gegebenenfalls zusätzlich der Zahnriemen ausgetauscht werden.
  • Nachfolgend wird die Erfindung anhand einer bevorzugten Ausführungsform unter Bezugnahme auf die anliegenden Zeichnungen näher erläutert.
  • Es zeigen:
  • Fig. 1
    einen schematischen Längsschnitt einer Schrauben-Vakuumpumpe,
    Fig. 2
    eine schematische Darstellung des Antriebs der Vakuumpumpe,
    Fig. 3
    eine schematische Darstellung einer Kombination aus Zahnriemen und Zahnriemenscheibe mit Zahnlücke,
    Fig. 4
    eine schematische Darstellung einer Kombination aus Zahnriemen und Zahnriemenscheibe ohne Zahnlücke,
    Fig. 5
    eine schematische Draufsicht einer ersten bevorzugten Ausführungsform eines Vakuumpumpen-Schraubenrotors,
    Fig. 6
    eine schematische Draufsicht einer zweiten bevorzugten Ausführungsform eines Vakuumpumpen-Schraubenrotors,
    Fig. 7
    eine schematische Schnittansicht von Verdrängungselementen mit asymmetrischem Profil, und
    Fig. 8
    eine schematische Schnittansicht von Verdrängungselementen mit symmetrischem Profil.
  • In Fig. 1 ist stark vereinfacht schematisch ein Pumpengehäuse 10 dargestellt. Innerhalb des Pumpengehäuses 10 ist ein Schöpfraum ausgebildet, in dem zwei Rotorelemente 14 angeordnet sind. Bei den Rotorelementen 14 handelt es sich im dargestellten Ausführungsbeispiel um Schraubenrotoren. Die Schraubenrotoren 14 weisen schraubenlinienförmige Verdichtungselemente auf, die ineinandergreifen. Die beiden Schraubenrotoren 14 sind hierbei gegenläufig angetrieben. Die beiden Schraubenrotoren 14 weisen im dargestellten Ausführungsbeispiel zwei Pumpstufen 16, 18 auf.
  • Die beiden Rotorelemente sind jeweils auf einer Rotorwelle 22 angeordnet. Die beiden Rotorwellen 22 sind saugseitig in einem Gehäusedeckel 24 über Lagerelemente 26 gelagert. Auf der gegenüberliegenden Seite ragen Wellenenden 28 durch eine Gehäusewand 30 hindurch. In der Gehäusewand 30 sind die beiden Rotorwellen 22 über fettgeschmierte Lager 32 gelagert.
  • Die trockenverdichtende Vakuumpumpe fördert Medium durch einen Einlass 34 zu einem Auslass 36.
  • Zum Antrieb der beiden Rotorelemente 14 sind die beiden Wellenenden 28 jeweils mit einem Zahnriemenrad 38 verbunden, wobei die beiden Zahnriemenräder 38 nicht miteinander kämmen. Die Synchronisation erfolgt durch einen in Fig. 1 nicht dargestellten Zahnriemen 40 (Fig. 2). Der Zahnriemen ist als doppelseitiger Zahnriemen ausgebildet und zur Synchronisation der beiden Zahnriemenräder 38 bzw. der beiden mit den Zahnriemenrädern verbundenen Wellenenden 28 zwischen diesen hindurchgeführt. Ferner ist eine Antriebseinrichtung 42 vorgesehen, deren Antriebswelle 44 mit einer Zahnriemenscheibe 46 verbunden ist.
  • Figur 3 zeigt schematisch Zähne einer Zahnriemenscheibe 38 oder 46 in Verbindung mit einem Zahnriemen 40. Ein Zahn 48 eines Zahnriemens 40 ist derart ausgestaltet, dass gegenüber einem Zahnzwischenraum 50 zweier benachbarter Zähne 52 des Zahnriemenrades 38 eine schraffiert dargestellte Lücke ausgebildet ist. Hierdurch ist ein gewisses Spiel zwischen Zahnriemen 40 und Zahnriemenrad 38 gegeben. Hierdurch ist die Synchronisation der beiden Rotorwellen 22 zwar etwas verschlechtert, jedoch ist die Lebensdauer des Zahnriemens 48 vergrößert.
  • Alternativ kann ein Zahnriemen, wie schematisch in Figur 4 dargestellt, vorgesehen sein. Dieser weist als sogenannte Null-Lücke keine Abstände zwischen dem Zahnzwischenraum 50 und dem Zahn 48 des Riemens 40 auf.
  • Bei der ersten bevorzugten Ausführungsform (Fig. 5) des Vakuumpumpen-Schraubenrotors weist der Rotor zwei Verdrängungselemente 110, 112 auf, die die beiden Pumpenstufen 16, 18 ausbilden. Ein erstes saugseitiges Verdrängungselement 110 weist eine große Steigung von ca. 50 - 150 mm/Umdrehung auf. Die Steigung ist über das gesamte Verdrängungselement 110 konstant. Auch die Kontur der schraubenlinienförmigen Ausnehmung ist konstant. Das zweite druckseitige Verdrängungselement 112 weist über seine Länge wiederum eine konstante Steigung und eine konstante Kontur der Ausnehmung auf. Die Steigung des druckseitigen Verdrängungselements 112 liegt vorzugsweise im Bereich von 10 - 30 mm/Umdrehung. Zwischen den beiden Verdrängungselementen ist eine ringzylindrische Ausnehmung 114 vorgesehen. Diese dient dazu, das aufgrund der einstückigen Ausgestaltung des in Fig. 5 dargestellten Schraubenrotors ein Werkzeugauslauf realisiert ist.
  • Ferner weist der einstückig ausgebildete Schraubenrotor zwei Lagersitze 116 und ein Wellenende 118 auf. Mit dem Wellenende 118 wird beispielsweise ein Zahnrad zum Antrieb verbunden.
  • Bei der in Fig. 6 dargestellten zweiten bevorzugten Ausführungsform sind die beiden Verdrängungselemente 110, 112 gesondert hergestellt und sodann auf einer Rotorwelle 120 beispielsweise durch Aufpressen fixiert. Diese Herstellung ist zwar etwas aufwendiger, jedoch ist der zylindrische Abstand 114 zwischen zwei benachbarten Verdrängungselementen 110, 112 als Werkzeugauslauf nicht erforderlich. Die Lagersitze 116 und die Wellenenden 118 können integraler Bestandteil der Welle 120 sein. Eine durchgehende Welle 120 kann auch aus einem anderen sich von den Verdrängungselementen 110, 112 unterscheidenden Werkstoff hergestellt sein.
  • Fig. 7 zeigt eine schematische Schnittansicht eines asymmetrischen Profils (z.B. ein Quimby-Profil). Bei dem dargestellten asymmetrischen Profil handelt es sich um ein sogenanntes "Quimby-Profil". Die Schnittansicht zeigt zwei Schraubenrotoren, die miteinander kämmen und deren Längsrichtung senkrecht zur Zeichenebene ist. Die gegenläufige Drehung der Rotoren ist durch die beiden Pfeile 115 angedeutet. Bezogen auf eine senkrecht zur Längsachse der Verdrängungselemente verlaufenden Ebene 117 sind die Profile der Flanken 119 und 121 je Rotor unterschiedlich ausgestaltet. Die einander gegenüberliegenden Flanken 119, 121 müssen somit unabhängig voneinander hergestellt werden. Die daher zwar etwas aufwändigere und schwierigere Herstellung hat jedoch den Vorteil, dass kein durchgehendes Blasloch vorhanden ist, sondern lediglich zwischen zwei benachbarten Kammern ein Kurzschluss besteht.
  • Ein derartiges asymmetrisches Profil ist vorzugsweise bei dem saugseitigen Verdrängungselement 110 vorgesehen.
  • Die schematische Schnittansicht in Fig. 8 zeigt wiederum einen Querschnitt zweier Verdrängungselemente bzw. zweier Schraubenrotoren, die wiederum gegenläufig rotieren (Pfeile 115). Bezogen auf die Symmetrieachse 117 sind die Flanken 123 je Verdrängungselement symmetrisch ausgebildet. Bei dem in Fig. 8 dargestellten bevorzugten Ausführungsbeispiel einer symmetrisch ausgestalteten Kontur handelt es sich um ein Zykloiden-Profil.
  • Ein symmetrisches Profil, wie in Fig. 8 dargestellt, ist vorzugsweise bei den druckseitigen Verdrängungselementen 112 vorgesehen.
  • Ferner ist es möglich, dass mehr als zwei Verdrängungselemente vorgesehen sind. Diese können ggf. auch unterschiedliche Kopfdurchmesser und entsprechende Fußdurchmesser aufweisen. Hierbei ist es bevorzugt, dass ein Verdrängungselement mit größerem Kopfdurchmesser am Einlass, d.h. saugseitig angeordnet ist, um in diesem Bereich ein größeres Saugvermögen zu realisieren und/ oder das eingebaute Volumenverhältnis zu vergrößern. Ferner sind Kombinationen der vorstehend beschriebenen Ausführungsformen möglich. Beispielsweise können ein oder mehrere Verdrängungselemente einstückig mit der Welle oder ein zusätzliches Verdrängungselement unabhängig von der Welle hergestellt und sodann auf der Welle montiert werden.

Claims (10)

  1. Trockenverdichtende Vakuumpumpe mit
    zwei in einem Schöpfraum (12) angeordneten Rotorelementen (14),
    zwei, jeweils ein Rotorelement (14) tragenden Rotorwellen (22),
    zwei jeweils auf einem aus dem Schöpfraum (12) ragenden Wellenende (28) angeordneten Zahnriemenrädern (38),
    einer Antriebseinrichtung (42) zum Antreiben der Rotorwellen (22) und
    einem mit der Antriebseinrichtung (42) und den Zahnriemenrädern (38) verbundenen Zahnriemen zum Antrieb und zur Synchronisation der Rotorwellen (22),
    dadurch gekennzeichnet, dass
    ein Verdrehflankenspiel zwischen den beiden Rotorelementen von mehr als ± 0,75°, insbesondere mehr als ±1° vorgesehen ist.
  2. Trockenverdichtende Vakuumpumpe nach Anspruch 1, dadurch gekennzeichnet, dass der maximale Liefergrad der Vakuumpumpe bei einem Betriebspunkt, insbesondere zwischen 1 und 10 mbar, mindestens 75%, insbesondere mindestens 85% beträgt.
  3. Trockenverdichtende Vakuumpumpe nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Zahnriemen (40) zur Synchronisation gegenläufiger Rotorwellen (22) als doppelseitiger Zahnriemen ausgebildet ist.
  4. Trockenverdichtende Vakuumpumpe nach Anspruch 3, dadurch gekennzeichnet, dass der Zahnriemen zwischen den beiden Zahnriemenrädern (38) verläuft.
  5. Trockenverdichtende Vakuumpumpe nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Zahnlückenspiel der beiden Zahnriemenräder größer als 0,15 mm, insbesondere größer als 0,2 mm ist.
  6. Trockenverdichtende Vakuumpumpe nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Rotorwellen (22) durch fettgeschmierte Lager (32) gelagert sind.
  7. Trockenverdichtende Vakuumpumpe nach Anspruch 6, dadurch gekennzeichnet, dass in einer Gehäusewand (30), durch die die Wellenenden (28) geführt sind je Rotorwelle (22) ein Lager (32) angeordnet ist.
  8. Trockenverdichtende Vakuumpumpe nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Vakuumpumpe gegen Atmosphäre verdichtet und ein Vakuum von weniger als 200 mbar absolut erzeugt.
  9. Trockenverdichtende Vakuumpumpe nach einem der Ansprüche 1 bis 8, gekennzeichnet durch eine Riemen-Spanneinrichtung.
  10. Trockenverdichtende Vakuumpumpe nach Anspruch 9, dadurch gekennzeichnet, dass die Riemen-Spanneinrichtung an der Gehäusewand (32) angeordnet ist.
EP17751770.3A 2016-08-30 2017-08-14 Trockenverdichtende vakuumpumpe Active EP3507496B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE202016005208.0U DE202016005208U1 (de) 2016-08-30 2016-08-30 Trockenverdichtende Vakuumpumpe
PCT/EP2017/070626 WO2018041620A1 (de) 2016-08-30 2017-08-14 Trockenverdichtende vakuumpumpe

Publications (2)

Publication Number Publication Date
EP3507496A1 EP3507496A1 (de) 2019-07-10
EP3507496B1 true EP3507496B1 (de) 2020-07-15

Family

ID=59593115

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17751770.3A Active EP3507496B1 (de) 2016-08-30 2017-08-14 Trockenverdichtende vakuumpumpe

Country Status (9)

Country Link
US (1) US20190186493A1 (de)
EP (1) EP3507496B1 (de)
JP (1) JP2019526738A (de)
KR (1) KR20190043139A (de)
CN (1) CN109642574B (de)
BR (1) BR112019002903A2 (de)
CA (1) CA3034112A1 (de)
DE (1) DE202016005208U1 (de)
WO (1) WO2018041620A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202017003046U1 (de) * 2017-06-09 2018-09-14 Leybold Gmbh Trockenverdichtende Vakuumpumpe
EP3499041B1 (de) * 2017-12-15 2020-07-01 Pfeiffer Vacuum Gmbh Schraubenvakuumpumpe
DE202018000178U1 (de) * 2018-01-12 2019-04-15 Leybold Gmbh Kompressor
DE102018210922A1 (de) * 2018-07-03 2020-01-09 Leybold Gmbh Zwei- oder Mehrwellen-Vakuumpumpe
TW202040004A (zh) * 2019-04-19 2020-11-01 亞台富士精機股份有限公司 轉子及螺旋式幫浦
CN111120324A (zh) * 2019-12-30 2020-05-08 浙江思科瑞真空技术有限公司 一种具有多个吸入腔和排气口的螺杆真空泵

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62248801A (ja) * 1986-04-23 1987-10-29 Hitachi Ltd 無給油式スクリユ−流体機械
DE3706588C2 (de) * 1987-02-26 1993-12-02 Mannesmann Ag Antriebseinrichtung für Rotationskolbenverdichter
GB2207190A (en) 1987-07-18 1989-01-25 Boc Group Plc Pump drive arrangement
DE69132867T2 (de) * 1990-08-01 2002-09-12 Matsushita Electric Ind Co Ltd Drehkolbenanlage für flüssige Medien
JP3074845B2 (ja) * 1991-10-08 2000-08-07 松下電器産業株式会社 流体回転装置
DE4318707A1 (de) * 1993-06-04 1994-12-08 Sihi Gmbh & Co Kg Verdrängermaschine mit elektronischer Motorsynchronisation
SE501889C2 (sv) * 1993-10-18 1995-06-12 Opcon Autorotor Ab Anordning för koppling av en skruvrotormaskin till en drivande eller driven remskiva
CN2363091Y (zh) * 1998-03-19 2000-02-09 机械工业部郑州机械研究所 圆弧及修正渐开线齿形高粘度齿轮泵
JP2000161277A (ja) * 1998-11-27 2000-06-13 Toyota Autom Loom Works Ltd ポンプ装置
CN2397284Y (zh) * 1999-07-16 2000-09-20 大连理工大学 双螺杆压缩机螺杆转子新齿形
JP2003336656A (ja) * 2002-05-20 2003-11-28 Teijin Seiki Co Ltd 回転軸固定機構
DE10334481A1 (de) * 2003-07-29 2005-03-17 Steffens, Ralf, Dr. Antrieb einer Spindelvakuumpumpe
DE202009003981U1 (de) * 2009-03-24 2010-08-19 Vacuubrand Gmbh + Co Kg Antrieb für eine Vakuumpumpe
US20100322806A1 (en) * 2009-06-18 2010-12-23 Aregger Markus Arrangement including a gear pump
JP6079052B2 (ja) * 2012-08-24 2017-02-15 株式会社島津製作所 真空ポンプ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
KR20190043139A (ko) 2019-04-25
US20190186493A1 (en) 2019-06-20
EP3507496A1 (de) 2019-07-10
WO2018041620A1 (de) 2018-03-08
BR112019002903A2 (pt) 2019-05-21
CN109642574A (zh) 2019-04-16
CN109642574B (zh) 2020-08-04
CA3034112A1 (en) 2018-03-08
JP2019526738A (ja) 2019-09-19
DE202016005208U1 (de) 2017-12-01

Similar Documents

Publication Publication Date Title
EP3507496B1 (de) Trockenverdichtende vakuumpumpe
EP0552443B1 (de) Zahnradmaschine
DE4330609A1 (de) Rotationskolbenmaschine in Spiralbauweise
DE102013009040A1 (de) Spindelkompressor mit hoher innerer Verdichtung
DE10208408A1 (de) Zahnradverzahnung
EP3507497B1 (de) Vakuumpumpen-schraubenrotor
EP1252444B1 (de) Antrieb einer schraubenspindelpumpe
EP2745015B1 (de) Wälzkolbenpumpe
EP3189236A2 (de) Klauenpumpe
WO2018224409A1 (de) Trockenverdichtende vakuumpumpe
EP3507495B1 (de) Schraubenvakuumpumpe
EP0607497B1 (de) Sichellose Innenzahnradpumpe mit in die Zahnköpfe eingesetzten Dichtelementen
DE2134241C3 (de) Zweistufige außenachsige Rotationskolbenmaschine
EP3499040B1 (de) Schraubenvakuumpumpe
EP1722104B1 (de) Rotorpaar für Schraubenverdichter
EP2888481B1 (de) Vakuumpumpe mit riemenantrieb
EP1437512A2 (de) Zweiwellenvakuumpumpe
DE19717697B4 (de) Innenzahnradmaschine
DE2308195A1 (de) Drehkolbenmaschine, insbesondere schraubenkompressor, mit einzelnen rotorabschnitten
EP3737863A1 (de) Kompressor
WO2004074689A1 (de) Drehkolbenpumpe
DE102004009838A1 (de) Flügelzellenpumpe
EP2690252A1 (de) Trochoiden-Innenzahnradmaschine
EP4180665A1 (de) Innenzahnradpumpe mit drucktaschen am hohlrad und/oder am gehäuse
DE102021209030A1 (de) Pumpe mit Pulsationskompensation

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190320

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200207

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017006238

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1291323

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200815

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201116

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201015

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201016

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201015

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017006238

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200814

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

26N No opposition filed

Effective date: 20210416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200814

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230424

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1291323

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220814

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230824

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230821

Year of fee payment: 7

Ref country code: DE

Payment date: 20230829

Year of fee payment: 7