EP3502288A1 - Method for manufacturing a hairspring for clock movement - Google Patents

Method for manufacturing a hairspring for clock movement Download PDF

Info

Publication number
EP3502288A1
EP3502288A1 EP17209686.9A EP17209686A EP3502288A1 EP 3502288 A1 EP3502288 A1 EP 3502288A1 EP 17209686 A EP17209686 A EP 17209686A EP 3502288 A1 EP3502288 A1 EP 3502288A1
Authority
EP
European Patent Office
Prior art keywords
alloy
niobium
titanium
deformation
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP17209686.9A
Other languages
German (de)
French (fr)
Other versions
EP3502288B1 (en
Inventor
Christian Charbon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nivarox Far SA
Nivarox SA
Original Assignee
Nivarox Far SA
Nivarox SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=60811848&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3502288(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nivarox Far SA, Nivarox SA filed Critical Nivarox Far SA
Priority to EP17209686.9A priority Critical patent/EP3502288B1/en
Priority to US16/211,289 priority patent/US20190196406A1/en
Priority to JP2018234274A priority patent/JP6751749B2/en
Priority to RU2018145229A priority patent/RU2696809C1/en
Priority to CN201811562272.5A priority patent/CN110007582B/en
Publication of EP3502288A1 publication Critical patent/EP3502288A1/en
Application granted granted Critical
Publication of EP3502288B1 publication Critical patent/EP3502288B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21FWORKING OR PROCESSING OF METAL WIRE
    • B21F35/00Making springs from wire
    • B21F35/04Making flat springs, e.g. sinus springs
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1266Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/02Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for springs
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/02Alloys based on vanadium, niobium, or tantalum
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • G04B17/063Balance construction
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • G04B17/066Manufacture of the spiral spring
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/20Compensation of mechanisms for stabilising frequency
    • G04B17/22Compensation of mechanisms for stabilising frequency for the effect of variations of temperature
    • G04B17/227Compensation of mechanisms for stabilising frequency for the effect of variations of temperature composition and manufacture of the material used
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B43/00Protecting clockworks by shields or other means against external influences, e.g. magnetic fields
    • G04B43/007Antimagnetic alloys

Definitions

  • the invention relates to a method of manufacturing a spiral spring for equipping a balance of a watch movement.
  • spiral springs are also centered on the concern of thermal compensation, so as to ensure regular chronometric performance. This requires a thermoelastic coefficient close to zero. Spiral springs with limited sensitivity to magnetic fields are also desired.
  • New spirals have been developed from niobium and titanium alloys.
  • these alloys pose problems of sticking and seizing in drawing dies or wire drawing (diamond or hard metal) and against rolling rolls (hard metal or steel), which makes them almost impossible to transform into wires by the standard processes used for example for steel.
  • An object of the present invention is to provide a method of manufacturing a spiral spring for equipping a balance of a clockwork movement to facilitate deformation, and more particularly to obtain easy rolling.
  • the process comprises, before the deformation step, a step of depositing, on the alloy blank, a surface layer of a ductile material selected from the group consisting of copper, nickel, cupro-nickel, cupro-manganese, gold, silver, nickel-phosphorus Ni-P and nickel-boron Ni-B, to facilitate forming in wire form, the thickness of the layer of deposited ductile material being chosen so that the ratio of ductile material surface / NbTi alloy surface for a given wire section is less than 1, preferably lower at 0.5, and more preferably between 0.01 and 0.4.
  • Such a manufacturing method facilitates the shaping in the form of wire NbTi alloy blank, and more specifically to facilitate drawing, drawing and rolling.
  • the invention relates to a method of manufacturing a spiral spring for equipping a balance of a watch movement and made of a binary type alloy comprising niobium and titanium.
  • the ⁇ -form titanium content in the alloy of the blank is preferably less than or equal to 2.5% by volume, or even close to or equal to 0.
  • the alloy used in the present invention comprises between 40 and 49% by weight of titanium, preferably between 44 and 49% by weight of titanium, and more preferably between 46% and 48% by weight of titanium. , and preferably said alloy comprises more than 46.5% by weight of titanium and said alloy comprises less than 47.5% by weight of titanium.
  • titanium content is too high, it appears a martensitic phase causing problems of fragility of the alloy during its implementation. If the level of niobium is too high, the alloy will be too soft.
  • the development of the invention has made it possible to determine a compromise, with an optimum between these two characteristics close to 47% by weight of titanium.
  • the titanium content is greater than or equal to 46.5% by weight relative to the total of the composition.
  • the titanium content is less than or equal to 47.5% by weight relative to the total of the composition.
  • the NbTi alloy used in the present invention does not include other elements with the exception of possible and inevitable traces. This avoids the formation of fragile phases.
  • the oxygen content is less than or equal to 0.10% by weight of the total, or even less than or equal to 0.085% by weight of the total.
  • the tantalum content is less than or equal to 0.10% by weight of the total.
  • the carbon content is less than or equal to 0.04% by weight of the total, especially less than or equal to 0.020% by weight of the total, or even less than or equal to 0.0175% by weight of the total.
  • the iron content is less than or equal to 0.03% by weight of the total, in particular less than or equal to 0.025% by weight of the total, or even less than or equal to 0.020% by weight of the total.
  • the nitrogen content is less than or equal to 0.02% by weight of the total, especially less than or equal to 0.015% by weight of the total, or even less than or equal to 0.0075% by weight of the total.
  • the hydrogen content is less than or equal to 0.01% by weight of the total, in particular less than or equal to 0.0035% by weight of the total, or even less than or equal to 0.0005% by weight of the total.
  • the silicon content is less than or equal to 0.01% by weight of the total.
  • the nickel content is less than or equal to 0.01% by weight of the total, especially less than or equal to 0.16% by weight of the total.
  • the content of ductile material, such as copper, in the alloy is less than or equal to 0.01% by weight of the total, especially less than or equal to 0.005% by weight of the total.
  • the aluminum content is less than or equal to 0.01% by weight of the total.
  • the spiral spring produced according to the invention has a yield strength greater than or equal to 600 MPa.
  • this spiral spring has a modulus of elasticity less than or equal to 100 GPa, and preferably between 60 GPa and 80 GPa.
  • the spiral spring produced according to the invention has a thermoelastic coefficient, also called CTE, which enables it to guarantee the maintenance of chronometric performance despite the variation of the operating temperatures of a watch incorporating such a spiral spring.
  • the CTE of the alloy must be close to zero ( ⁇ 10 ppm / ° C) to obtain a thermal coefficient of the oscillator equal to ⁇ 0.6 s / d / ° C.
  • E is the Young's modulus of the spiral spring, and in this formula, E, ⁇ and ⁇ are expressed in ° C -1 .
  • CT is the thermal coefficient of the oscillator
  • (1 / E, dE / dT) is the CTE of the spiral alloy
  • is the coefficient of expansion of the balance and ⁇ that of the spiral.
  • Such a thickness of ductile material, and in particular of copper, makes it easy to draw, draw and roll the Cu / NbTi composite material.
  • the ductile material preferably copper, is thus deposited at a given moment to facilitate the shaping of the wire by drawing and drawing, so that there remains a thickness preferably between 1 and 500 microns on the wire with a total diameter of 0.2 to 1 millimeter.
  • the supply of ductile material in particular copper, may be galvanic, PVD or CVD, or mechanical, it is then a jacket or a ductile material tube such as copper which is fitted on a niobium alloy bar titanium to a large diameter, and which is thinned during the step or steps of deformation of the composite bar.
  • the method of the invention may comprise, after the deformation step, a step of eliminating said superficial layer of ductile material.
  • the ductile material is removed once all deformation processing operations have been performed, i.e. after the last rolling, prior to strapping.
  • the yarn is stripped of its layer of ductile material, such as copper, in particular by etching, with a solution based on cyanides or based on acids, for example nitric acid.
  • the surface layer of ductile material is preserved on the spiral spring, the thermoelastic coefficient of the niobium and titanium alloy being adapted accordingly to compensate for the effect of the ductile material.
  • the thermoelastic coefficient of the niobium and titanium alloy can be easily adjusted by choosing the rate of deformation and the appropriate heat treatments.
  • the surface layer of preserved ductile material makes it possible to obtain a final section of perfectly regular thread.
  • the ductile material may be here copper or gold, deposited by galvanic, PVD or CVD.
  • the method of the invention may further comprise a step of depositing, on the surface layer of preserved ductile material, a final layer of a material chosen from the group comprising Al 2 O 3 , TiO 2 , SiO 2 AlO, by PVD or CVD. It is also possible to provide a final layer of gold deposited by flash of galvanic gold if gold has not already been used as a ductile material of the superficial layer. Copper, nickel, cupro-nickel, cupro-manganese, silver, nickel-phosphorus Ni-P and nickel-boron Ni-B may also be used for the final layer, provided that the the final layer is different from the ductile material of the surface layer.
  • This final layer has a thickness of 0.1 .mu.m to 1 .mu.m and makes it possible to color the hairspring or to obtain an insensitivity to climatic aging (temperature and humidity).
  • the ⁇ quenching step is a dissolution treatment, with a duration of between 5 minutes and 2 hours at a temperature of temperature between 700 ° C and 1000 ° C, under vacuum, followed by cooling under gas.
  • this beta quench is a solution treatment, between 5 minutes and 1 hour at 800 ° C under vacuum, followed by cooling under gas.
  • the heat treatment is carried out for a period of between 1 hour and 80 hours or more, preferably between 1 hour and 15 hours at a temperature between 350 ° C and 700 ° C. More preferably, the heat treatment is carried out for a period of between 5 hours and 10 hours at a temperature between 350 ° C and 600 ° C. Even more preferentially, the heat treatment is carried out for a period of between 3 hours and 6 hours at a temperature of between 400 ° C. and 500 ° C.
  • a deformation step generally refers to one or more deformation treatments, which may include drawing and / or rolling.
  • the drawing may require the use of one or more dies during the same deformation step or during different deformation steps if necessary.
  • the drawing is carried out until a wire of round section is obtained.
  • the rolling can be carried out during the same deformation step as drawing or in another subsequent deformation step.
  • the last deformation treatment applied to the alloy is a rolling, preferably rectangular profile compatible with the input section of a pinning pin.
  • the total strain rate, the number of heat treatment and the parameters of the heat treatments are chosen to obtain a spiral spring having a thermoelastic coefficient as close as possible to 0. Moreover, depending on the rate of total deformation, the number of heat treatment and the parameters of the heat treatments, one obtains a NbTi alloy single-phase or two-phase.
  • the number of heat treatment and deformation steps is limited so that the niobium and titanium alloy of the spiral spring obtained retains a structure in which the titanium of said alloy is essentially in the form of solid solution with niobium in the ⁇ -phase (centered cubic structure), the ⁇ -phase titanium content being less than or equal to 10% by volume, preferably less than or equal to 5% by volume, more preferably less than or equal to 2.5% in volume.
  • the total deformation ratio is between 1 and 5, preferably between 2 and 5.
  • a blank whose dimensions are closer to the desired final dimensions is used so as to limit the number of heat treatment and deformation steps and maintain a substantially single phase structure ⁇ of the NbTi alloy.
  • the final structure of the alloy NbTi of the spiral spring may be different from the initial structure of the blank, for example the titanium content in ⁇ -form may have varied, the essential being that the final structure of the alloy NbTi of the spiral spring is substantially single-phase, the titanium of said alloy being essentially in the form of a solid solution with niobium in the ⁇ -phase, the ⁇ -phase titanium content being less than or equal to 10% by volume, preferably less than or equal to 5% by volume, more preferably less than or equal to 2.5% by volume.
  • the ⁇ -phase titanium content is preferably less than or equal to 5% by volume, more preferably less than or equal to 2.5% by volume, or even close to or equal to 0.
  • the method comprises a single deformation step with a strain rate of between 1 and 5, preferably between 2 and 5.
  • a particularly preferred method of the invention comprises, after the quenching step ⁇ , the deposition step, on the alloy blank, of the surface layer of ductile material, a deformation step including drawing by means of several dies then a rolling, a step of strapping and a final step of heat treatment (called fixing).
  • the method of the invention may further comprise at least one intermediate heat treatment step, so that the method comprises for example after the quenching step ⁇ , the deposition step, on the alloy blank, of the superficial layer of ductile material, a first deformation step, an intermediate heat treatment step, a second deformation step, the step of strapping and then a final heat treatment step.
  • a series of sequences of an alternating deformation step with a heat treatment step is applied until an alloy of niobium and titanium of two-phase structure comprising a solid solution of niobium with ⁇ -phase titanium (centered cubic structure) and a niobium solid solution with ⁇ -phase titanium (compact hexagonal structure), the ⁇ -phase titanium content being greater than 10% by volume.
  • heat treatments it is necessary to precipitate part of the ⁇ phase by heat treatments, according to the parameters indicated above, with a strong deformation between the heat treatments.
  • longer heat treatments are applied than those used to obtain a single-phase spring alloy, for example heat treatments carried out for a period of between 15 hours and 75 hours at a temperature of between 350 ° C. and 500 ° C. .
  • heat treatments are applied from 75h to 400h at 350.degree. C., from 25h to 400.degree. C. or from 18h to 480.degree.
  • this second "two-phase" variant a blank is used which, after quenching, has a diameter much larger than that of the blank prepared for the first "single-phase" variant.
  • use is made, for example, of a blank 30 mm in diameter after the ⁇ quenching, while using, for the first variant, a blank 0.2 to 2.0 mm in diameter after the ⁇ quenching.
  • each deformation is carried out with a degree of deformation of between 1 and 5, the overall accumulation of the deformations over the whole of said succession of sequences bringing a total rate of deformation between 1 and 14.
  • the degree of deformation corresponds to the conventional formula 21n (d0 / d), where d0 is the diameter of the last beta quench or that of a deformation step, and d is the diameter of the hardened yarn obtained at the stage of deformation. following deformation.
  • the method comprises in this second variant between three and five coupled deformation-heat treatment sequences.
  • the first coupled deformation-heat treatment sequence comprises a first deformation with at least 30% section reduction.
  • each deformation-heat treatment coupled sequence other than the first, has a deformation between two heat treatments with at least 25% section reduction.
  • the hardened ⁇ -phase alloy exhibits a strongly positive CT, and the precipitation of the ⁇ phase which has a strongly negative CT makes it possible to reduce the two-phase alloy to a CTE close to zero, which is particularly favorable.
  • the method of the invention allows the realization, and more particularly the shaping, of a spiral spring for a balance of alloy of niobium-titanium type, typically 47% by weight of titanium (40-60%), having a essentially single phase ⁇ -Nb-Ti microstructure in which the titanium is in the form of a solid solution with niobium in the ⁇ phase or a very fine lamellar two-phase microstructure comprising a solid solution of niobium with ⁇ -phase titanium and a solid solution of niobium with titanium in the ⁇ phase.
  • This alloy has high mechanical properties, combining a very high elastic limit, greater than 600 MPa, and a very low modulus of elasticity, of the order of 60 Gpa to 80 GPa. This combination of properties is well suited for a spiral spring.
  • Such an alloy is known and used for the manufacture of superconductors, such as magnetic resonance imaging apparatus, or particle accelerators, but is not used in watchmaking.
  • a binary type alloy comprising niobium and titanium, of the type selected above for the implementation of the invention, also has an effect similar to that of the "Elinvar", with a substantially zero thermoelastic coefficient. in the temperature range of usual use of watches, and suitable for the manufacture of self-compensating spirals.
  • such an alloy is paramagnetic.
  • niobium alloy consisting of 53% by weight of niobium and 47% by weight of single phase titanium (Examples 1 to 3) and two-phase (Example 4) and covered with a surface layer of copper of different thicknesses, before drawing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Springs (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

La présente invention concerne un procédé de fabrication d'un ressort spiral pour balancier en alliage de niobium et de titane qui comprend :- une étape d'élaboration d'une ébauche dans un alliage de niobium et de titane constitué de :- niobium : balance à 100% en poids,- titane: entre 40 et 60% en poids,- traces d'éléments sélectionnés parmi le groupe constitué de O, H, C, Fe, Ta, N, Ni, Si, Cu, Al, entre 0 et 1600 ppm en poids en individuel, avec cumul inférieur à 0.3% en poids,- une étape de trempe de type β de ladite ébauche à un diamètre donné, de façon à ce que le titane dudit alliage soit essentiellement sous forme de solution solide avec le niobium en phase β, la teneur en titane en phase α étant inférieure ou égale à 5% en volume,- au moins une étape de déformation dudit alliage alternée avec au moins une étape de traitement thermique de sorte que l'alliage de niobium et de titane obtenu présente une limite élastique supérieure ou égale à 600 MPa et un module d'élasticité inférieur ou égal à 100 GPa, une étape d'estrapadage pour former le ressort-spiral étant effectuée avant la dernière étape de traitement thermique- avant l'étape de déformation, une étape de dépôt, sur l'ébauche en alliage, d'une couche superficielle d'un matériau ductile tel que le cuivre pour faciliter la mise en forme sous forme de fil, l'épaisseur de la couche de matériau ductile déposée étant choisie de sorte que le rapport surface de matériau ductile/surface de l'alliage NbTi pour une section de fil donnée est inférieur à 1.The present invention relates to a method of manufacturing a spiral spring for balance wheel of niobium and titanium alloy which comprises: - a step of producing a blank in a niobium and titanium alloy consisting of: - niobium: balance at 100% by weight, - titanium: between 40 and 60% by weight, - traces of elements selected from the group consisting of O, H, C, Fe, Ta, N, Ni, Si, Cu, Al, between 0 and 1600 ppm by weight individually, with a total of less than 0.3% by weight, a step of type β quenching of said blank to a given diameter, so that the titanium of said alloy is essentially in the form of a solid solution with niobium in the β-phase, the α-phase titanium content being less than or equal to 5% by volume, at least one deformation step of said alternating alloy with at least one heat treatment step so that the niobium alloy and of titanium obtained has an elastic limit greater than or equal to 600 MPa and a modulus of elasticity less than or equal to 100 GPa, a step of strapping to form the spiral spring being performed before the last heat treatment step- before the deformation step, a deposition step, on the alloy blank, a surface layer of a ductile material such as copper to facilitate the shaping in the form of wire, the thickness of the layer of deposited ductile material being chosen so that the material surface ratio ductile / alloy surface NbTi for a given wire section is less than 1.

Description

Domaine de l'inventionField of the invention

L'invention concerne un procédé de fabrication d'un ressort spiral destiné à équiper un balancier d'un mouvement d'horlogerie.The invention relates to a method of manufacturing a spiral spring for equipping a balance of a watch movement.

Arrière-plan deBackground of l'inventionthe invention

La fabrication de ressorts spiraux pour l'horlogerie doit faire face à des contraintes souvent à première vue incompatibles :

  • nécessité d'obtention d'une limite élastique élevée,
  • facilité d'élaboration, notamment de tréfilage et de laminage,
  • excellente tenue en fatigue,
  • stabilité des performances dans le temps,
  • faibles sections.
The manufacture of spiral springs for watchmaking has to deal with constraints that are often at first sight incompatible:
  • need to obtain a high elastic limit,
  • ease of preparation, including drawing and rolling,
  • excellent fatigue performance,
  • stability of performance over time,
  • weak sections.

La réalisation de ressorts spiraux est en outre centrée sur le souci de la compensation thermique, de façon à garantir des performances chronométriques régulières. Il faut pour cela obtenir un coefficient thermoélastique proche de zéro. On recherche également à réaliser des ressorts spiraux présentant une sensibilité aux champs magnétiques limitée.The production of spiral springs is also centered on the concern of thermal compensation, so as to ensure regular chronometric performance. This requires a thermoelastic coefficient close to zero. Spiral springs with limited sensitivity to magnetic fields are also desired.

De nouveaux spiraux ont été développés à partir d'alliages de niobium et de titane. Toutefois, ces alliages posent des problèmes de collement et de grippage dans les filières d'étirage ou de tréfilage (diamant ou métal dur) et contre les rouleaux de laminage (métal dur ou acier), ce qui les rend quasiment impossibles à transformer en fils fins par les procédés standard utilisés par exemple pour l'acier.New spirals have been developed from niobium and titanium alloys. However, these alloys pose problems of sticking and seizing in drawing dies or wire drawing (diamond or hard metal) and against rolling rolls (hard metal or steel), which makes them almost impossible to transform into wires by the standard processes used for example for steel.

Toute amélioration sur au moins l'un de ces points, et en particulier sur la facilité d'élaboration, notamment de tréfilage et de laminage, représente donc une avancée significative.Any improvement on at least one of these points, and in particular on the ease of production, in particular drawing and rolling, represents a significant advance.

Résumésummary deof l'inventionthe invention

Un objet de la présente invention est de proposer un procédé de fabrication d'un ressort spiral destiné à équiper un balancier d'un mouvement d'horlogerie permettant de faciliter les déformations, et plus particulièrement d'obtenir un laminage aisé.An object of the present invention is to provide a method of manufacturing a spiral spring for equipping a balance of a clockwork movement to facilitate deformation, and more particularly to obtain easy rolling.

A cet effet, l'invention concerne un procédé de fabrication d'un ressort spiral destiné à équiper un balancier d'un mouvement d'horlogerie qui comprend :

  • une étape d'élaboration d'une ébauche dans un alliage de niobium et de titane constitué de :
    • niobium : balance à 100% en poids,
    • titane: entre 40 et 60% en poids,
    • traces d'éléments sélectionnés parmi le groupe constitué de O, H, C, Fe, Ta, N, Ni, Si, Cu, Al, chacun desdits éléments étant présent dans une quantité comprise entre 0 et 1600 ppm en poids, la quantité totale constituée par l'ensemble desdits éléments étant comprise entre 0% et 0.3% en poids,
  • une étape de trempe de type β de ladite ébauche à un diamètre donné, de façon à ce que le titane dudit alliage soit essentiellement sous forme de solution solide avec le niobium en phase β (structure cubique centrée), la teneur en titane en phase α (structure hexagonale compacte) étant inférieure ou égale à 5% en volume,
  • au moins une étape de déformation dudit alliage alternée avec au moins une étape de traitement thermique de sorte que l'alliage de niobium et de titane obtenu présente une limite élastique supérieure ou égale à 600 MPa et un module d'élasticité inférieur ou égal à 100 GPa, une étape d'estrapadage pour former le ressort-spiral étant effectuée avant une dernière étape de traitement thermique.
To this end, the invention relates to a method of manufacturing a spiral spring for equipping a balance of a watch movement which comprises:
  • a step of producing a blank in a niobium and titanium alloy consisting of:
    • niobium: balance at 100% by weight,
    • titanium: between 40 and 60% by weight,
    • trace elements selected from the group consisting of O, H, C, Fe, Ta, N, Ni, Si, Cu, Al, each of said elements being present in an amount between 0 and 1600 ppm by weight, the total amount constituted by all of said elements being between 0% and 0.3% by weight,
  • a step of type β quenching of said blank to a given diameter, so that the titanium of said alloy is essentially in the form of a solid solution with niobium in the β phase (centered cubic structure), the α-phase titanium content (compact hexagonal structure) being less than or equal to 5% by volume,
  • at least one step of deforming said alternating alloy with at least one heat treatment step so that the niobium and titanium alloy obtained has a yield strength greater than or equal to 600 MPa and a modulus of elasticity less than or equal to 100 GPa, a step of strapping to form the spiral spring being performed before a final heat treatment step.

Selon l'invention, le procédé comprend avant l'étape de déformation, une étape de dépôt, sur l'ébauche en alliage, d'une couche superficielle d'un matériau ductile choisi parmi le groupe comprenant le cuivre, le nickel, le cupro-nickel, le cupro-manganèse, l'or, l'argent, le nickel-phosphore Ni-P et le nickel-bore Ni-B, pour faciliter la mise en forme sous forme de fil, l'épaisseur de la couche de matériau ductile déposée étant choisie de sorte que le rapport surface de matériau ductile/surface de l'alliage NbTi pour une section de fil donnée est inférieur à 1, de préférence inférieur à 0.5, et plus préférentiellement compris entre 0.01 et 0.4.According to the invention, the process comprises, before the deformation step, a step of depositing, on the alloy blank, a surface layer of a ductile material selected from the group consisting of copper, nickel, cupro-nickel, cupro-manganese, gold, silver, nickel-phosphorus Ni-P and nickel-boron Ni-B, to facilitate forming in wire form, the thickness of the layer of deposited ductile material being chosen so that the ratio of ductile material surface / NbTi alloy surface for a given wire section is less than 1, preferably lower at 0.5, and more preferably between 0.01 and 0.4.

Un tel procédé de fabrication permet de faciliter la mise en forme sous forme de fil de l'ébauche en alliage NbTi, et plus spécifiquement de faciliter l'étirage, le tréfilage et le laminage.Such a manufacturing method facilitates the shaping in the form of wire NbTi alloy blank, and more specifically to facilitate drawing, drawing and rolling.

Description détaillée des modes de réalisation préférésDetailed Description of the Preferred Embodiments

L'invention concerne un procédé de fabrication d'un ressort spiral destiné à équiper un balancier d'un mouvement d'horlogerie et réalisé dans un alliage de type binaire comportant du niobium et du titane.The invention relates to a method of manufacturing a spiral spring for equipping a balance of a watch movement and made of a binary type alloy comprising niobium and titanium.

Pour réaliser ce ressort spiral, on utilise une ébauche dans un alliage de niobium et de titane constitué de :

  • niobium : balance à 100% en poids,
  • titane : entre 40 et 60% en poids,
  • traces d'éléments sélectionnés parmi le groupe constitué de O, H, C, Fe, Ta, N, Ni, Si, Cu, Al, chacun desdits éléments étant présent dans une quantité comprise entre 0 et 1600 ppm en poids, la quantité totale constituée par l'ensemble desdits éléments étant comprise entre 0% et 0.3% en poids,
et dans lequel le titane est essentiellement sous forme de solution solide avec le niobium en phase β, la teneur en titane en phase α étant inférieure ou égale à 5% en volume.To produce this spiral spring, a blank is used in an alloy of niobium and titanium consisting of:
  • niobium: balance at 100% by weight,
  • titanium: between 40 and 60% by weight,
  • trace elements selected from the group consisting of O, H, C, Fe, Ta, N, Ni, Si, Cu, Al, each of said elements being present in an amount between 0 and 1600 ppm by weight, the total amount constituted by all of said elements being between 0% and 0.3% by weight,
and in which the titanium is essentially in the form of a solid solution with niobium in the β-phase, the α-phase titanium content being less than or equal to 5% by volume.

La teneur en titane sous forme α dans l'alliage de l'ébauche est de préférence inférieure ou égale à 2.5% en volume, voire voisine ou égale à 0.The α-form titanium content in the alloy of the blank is preferably less than or equal to 2.5% by volume, or even close to or equal to 0.

D'une manière avantageuse, l'alliage utilisé dans la présente invention comprend entre 40 et 49% en poids de titane, de préférence entre 44 et 49% en poids de titane, et plus préférentiellement entre 46% et 48% en poids de titane, et de préférence ledit alliage comprend plus de 46.5% en poids de titane et ledit alliage comprend moins de 47.5% en poids de titane.Advantageously, the alloy used in the present invention comprises between 40 and 49% by weight of titanium, preferably between 44 and 49% by weight of titanium, and more preferably between 46% and 48% by weight of titanium. , and preferably said alloy comprises more than 46.5% by weight of titanium and said alloy comprises less than 47.5% by weight of titanium.

Si le taux de titane est trop élevé, il apparait une phase martensitique entrainant des problèmes de fragilité de l'alliage lors de sa mise en oeuvre. Si le taux de niobium est trop élevé, l'alliage sera trop mou. La mise au point de l'invention a permis de déterminer un compromis, avec un optimum entre ces deux caractéristiques voisin de 47 % en poids de titane.If the titanium content is too high, it appears a martensitic phase causing problems of fragility of the alloy during its implementation. If the level of niobium is too high, the alloy will be too soft. The development of the invention has made it possible to determine a compromise, with an optimum between these two characteristics close to 47% by weight of titanium.

Aussi, plus particulièrement, la teneur en titane est supérieure ou égale à 46.5% en poids par rapport au total de la composition.Also, more particularly, the titanium content is greater than or equal to 46.5% by weight relative to the total of the composition.

Plus particulièrement, la teneur en titane est inférieure ou égale à 47.5% en poids par rapport au total de la composition.More particularly, the titanium content is less than or equal to 47.5% by weight relative to the total of the composition.

D'une manière particulièrement avantageuse, l'alliage NbTi utilisé dans la présente invention ne comprend pas d'autres éléments à l'exception d'éventuelles et inévitables traces. Cela permet d'éviter la formation de phases fragiles.In a particularly advantageous manner, the NbTi alloy used in the present invention does not include other elements with the exception of possible and inevitable traces. This avoids the formation of fragile phases.

Plus particulièrement, la teneur en oxygène est inférieure ou égale à 0.10% en poids du total, voire encore inférieure ou égale à 0.085% en poids du total.More particularly, the oxygen content is less than or equal to 0.10% by weight of the total, or even less than or equal to 0.085% by weight of the total.

Plus particulièrement, la teneur en tantale est inférieure ou égale à 0.10% en poids du total.More particularly, the tantalum content is less than or equal to 0.10% by weight of the total.

Plus particulièrement, la teneur en carbone est inférieure ou égale à 0.04% en poids du total, notamment inférieure ou égale à 0.020% en poids du total, voire encore inférieure ou égale à 0.0175% en poids du total.More particularly, the carbon content is less than or equal to 0.04% by weight of the total, especially less than or equal to 0.020% by weight of the total, or even less than or equal to 0.0175% by weight of the total.

Plus particulièrement, la teneur en fer est inférieure ou égale à 0.03% en poids du total, notamment inférieure ou égale à 0.025% en poids du total, voire encore inférieure ou égale à 0.020% en poids du total.More particularly, the iron content is less than or equal to 0.03% by weight of the total, in particular less than or equal to 0.025% by weight of the total, or even less than or equal to 0.020% by weight of the total.

Plus particulièrement, la teneur en azote est inférieure ou égale à 0.02% en poids du total, notamment inférieure ou égale à 0.015% en poids du total, voire encore inférieure ou égale à 0.0075% en poids du total.More particularly, the nitrogen content is less than or equal to 0.02% by weight of the total, especially less than or equal to 0.015% by weight of the total, or even less than or equal to 0.0075% by weight of the total.

Plus particulièrement, la teneur en hydrogène est inférieure ou égale à 0.01 % en poids du total, notamment inférieure ou égale à 0.0035% en poids du total, voire encore inférieure ou égale à 0.0005% en poids du total.More particularly, the hydrogen content is less than or equal to 0.01% by weight of the total, in particular less than or equal to 0.0035% by weight of the total, or even less than or equal to 0.0005% by weight of the total.

Plus particulièrement, la teneur en silicium est inférieure ou égale à 0.01% en poids du total.More particularly, the silicon content is less than or equal to 0.01% by weight of the total.

Plus particulièrement, la teneur en nickel est inférieure ou égale à 0.01% en poids du total, notamment inférieure ou égale à 0.16% en poids du total.More particularly, the nickel content is less than or equal to 0.01% by weight of the total, especially less than or equal to 0.16% by weight of the total.

Plus particulièrement, la teneur en matériau ductile, tel que le cuivre, dans l'alliage, est inférieure ou égale à 0.01% en poids du total, notamment inférieure ou égale à 0.005% en poids du total.More particularly, the content of ductile material, such as copper, in the alloy is less than or equal to 0.01% by weight of the total, especially less than or equal to 0.005% by weight of the total.

Plus particulièrement, la teneur en aluminium est inférieure ou égale à 0.01% en poids du total.More particularly, the aluminum content is less than or equal to 0.01% by weight of the total.

Le ressort spiral réalisé selon l'invention a une limite élastique supérieure ou égale à 600 MPa.The spiral spring produced according to the invention has a yield strength greater than or equal to 600 MPa.

De manière avantageuse, ce ressort spiral a un module d'élasticité inférieur ou égal à 100 GPa, et de préférence compris entre 60 GPa et 80 GPa.Advantageously, this spiral spring has a modulus of elasticity less than or equal to 100 GPa, and preferably between 60 GPa and 80 GPa.

En outre le ressort spiral réalisé selon l'invention présente un coefficient thermoélastique, dit aussi CTE, lui permettant de garantir le maintien des performances chronométriques malgré la variation des températures d'utilisation d'une montre incorporant un tel ressort spiral.In addition, the spiral spring produced according to the invention has a thermoelastic coefficient, also called CTE, which enables it to guarantee the maintenance of chronometric performance despite the variation of the operating temperatures of a watch incorporating such a spiral spring.

Pour former un oscillateur chronométrique répondant aux conditions COSC, le CTE de l'alliage doit être proche de zéro (± 10 ppm/°C) pour obtenir un coefficient thermique de l'oscillateur égal à ± 0.6 s/j/°C.To form a chronometric oscillator meeting the COSC conditions, the CTE of the alloy must be close to zero (± 10 ppm / ° C) to obtain a thermal coefficient of the oscillator equal to ± 0.6 s / d / ° C.

La formule qui lie le CTE de l'alliage et les coefficients de dilatation du spiral et du balancier est la suivante : CT = dM dT = 1 2 E dE dT β + 3 2 α × 86400 s j°C

Figure imgb0001
The formula that binds the CTE of the alloy and the coefficients of expansion of the balance spring and balance is as follows: CT = dM dT = 1 2 E of dT - β + 3 2 α × 86400 s j ° C
Figure imgb0001

Les variables M et T sont respectivement la marche et la température. E est le module de Young du ressort-spiral, et, dans cette formule, E, β et α s'expriment en °C-1.The variables M and T are respectively the step and the temperature. E is the Young's modulus of the spiral spring, and in this formula, E, β and α are expressed in ° C -1 .

CT est le coefficient thermique de l'oscillateur, (1/E. dE/dT) est le CTE de l'alliage spiral, β est le coefficient de dilatation du balancier et α celui du spiral.CT is the thermal coefficient of the oscillator, (1 / E, dE / dT) is the CTE of the spiral alloy, β is the coefficient of expansion of the balance and α that of the spiral.

Un CTE et donc un CT adéquats sont facilement obtenus lors de la mise en oeuvre des différentes étapes du procédé de l'invention comme on le verra ci-dessous.A CTE and therefore an appropriate CT are easily obtained during the implementation of the various steps of the method of the invention as will be seen below.

Conformément à la présente invention, le procédé de fabrication d'un ressort spiral en alliage de type binaire NbTi tel que défini ci-dessus, comprend:

  • une étape d'élaboration d'une ébauche dans un alliage de niobium et de titane constitué de :
    • niobium : balance à 100% en poids,
    • titane: entre 40 et 60% en poids,
    • traces d'éléments sélectionnés parmi le groupe constitué de O, H, C, Fe, Ta, N, Ni, Si, Cu, Al, chacun desdits éléments étant présent dans une quantité comprise entre 0 et 1600 ppm en poids, la quantité totale constituée par l'ensemble desdits éléments étant comprise entre 0% et 0.3% en poids,
  • une étape de trempe de type β de ladite ébauche à un diamètre donné, de façon à ce que le titane dudit alliage soit essentiellement sous forme de solution solide avec le niobium en phase β, la teneur en titane en phase α étant inférieure ou égale à 5% en volume,
  • au moins une étape de déformation dudit alliage alternée avec au moins une étape de traitement thermique de sorte que l'alliage de niobium et de titane obtenu présente une limite élastique supérieure ou égale à 600 MPa et un module d'élasticité inférieur ou égal à 100 GPa, une étape d'estrapadage pour former le ressort-spiral étant effectuée avant la dernière étape de traitement thermique, cette dernière étape permettant de fixer la forme du spiral et d'ajuster le coefficient thermoélastique,
  • et, avant l'étape de déformation, une étape de dépôt, sur l'ébauche en alliage, d'une couche superficielle d'un matériau ductile choisi parmi le groupe comprenant le cuivre, le nickel, le cupro-nickel, le cupro-manganèse, l'or, l'argent, le nickel-phosphore Ni-P et le nickel-bore Ni-B, pour faciliter la mise en forme sous forme de fil, l'épaisseur de la couche de matériau ductile déposée étant choisie de sorte que le rapport surface de matériau ductile/surface de l'alliage NbTi pour une section de fil donnée est inférieur à 1, de préférence inférieur à 0.5, et plus préférentiellement compris entre 0.01 et 0.4.
According to the present invention, the method of manufacturing a binary type spiral spring NbTi as defined above, comprises:
  • a step of producing a blank in a niobium and titanium alloy consisting of:
    • niobium: balance at 100% by weight,
    • titanium: between 40 and 60% by weight,
    • trace elements selected from the group consisting of O, H, C, Fe, Ta, N, Ni, Si, Cu, Al, each of said elements being present in an amount between 0 and 1600 ppm by weight, the total amount constituted by all of said elements being between 0% and 0.3% by weight,
  • a step of type β quenching of said blank to a given diameter, so that the titanium of said alloy is essentially in the form of a solid solution with niobium in the β phase, the α-phase titanium content being less than or equal to 5% by volume,
  • at least one step of deforming said alternating alloy with at least one heat treatment step so that the niobium and titanium alloy obtained has a yield strength greater than or equal to 600 MPa and a modulus of elasticity less than or equal to 100 GPa, a step of strapping to form the spiral spring being performed before the last heat treatment step, this last step for fixing the shape of the spiral and adjust the thermoelastic coefficient,
  • and, before the deformation step, a step of depositing, on the alloy blank, a surface layer of a ductile material selected from the group consisting of copper, nickel, cupro-nickel, cupro- manganese, gold, silver, nickel-phosphorus Ni-P and nickel-boron Ni-B, to facilitate shaping in the form of wire, the thickness of the deposited layer of ductile material being chosen from so that the ratio of ductile material surface / NbTi alloy surface for a given wire section is less than 1, preferably less than 0.5, and more preferably between 0.01 and 0.4.

Une telle épaisseur de matériau ductile, et notamment de cuivre, permet d'étirer, de tréfiler et de laminer aisément le matériau composite Cu/NbTi.Such a thickness of ductile material, and in particular of copper, makes it easy to draw, draw and roll the Cu / NbTi composite material.

Le matériau ductile, de préférence du cuivre, est ainsi déposé à un moment donné pour faciliter la mise en forme du fil par étirage et tréfilage, de telle manière à ce qu'il en reste une épaisseur de préférence comprise entre 1 et 500 micromètres sur le fil au diamètre total de 0.2 à 1 millimètre.The ductile material, preferably copper, is thus deposited at a given moment to facilitate the shaping of the wire by drawing and drawing, so that there remains a thickness preferably between 1 and 500 microns on the wire with a total diameter of 0.2 to 1 millimeter.

L'apport de matériau ductile, notamment du cuivre, peut être galvanique, PVD ou CVD, ou bien mécanique, c'est alors une chemise ou un tube de matériau ductile tel que le cuivre qui est ajusté sur une barre d'alliage niobium-titane à un gros diamètre, puis qui est amincie au cours de la ou des étapes de déformation du barreau composite.The supply of ductile material, in particular copper, may be galvanic, PVD or CVD, or mechanical, it is then a jacket or a ductile material tube such as copper which is fitted on a niobium alloy bar titanium to a large diameter, and which is thinned during the step or steps of deformation of the composite bar.

Selon une première variante, le procédé de l'invention peut comprendre, après l'étape de déformation, une étape d'élimination de ladite couche superficielle de matériau ductile. De préférence, le matériau ductile est éliminé une fois toutes les opérations de traitement de déformation effectuées, c'est-à-dire après le dernier laminage, avant l'estrapadage.According to a first variant, the method of the invention may comprise, after the deformation step, a step of eliminating said superficial layer of ductile material. Preferably, the ductile material is removed once all deformation processing operations have been performed, i.e. after the last rolling, prior to strapping.

De préférence, le fil est débarrassé de sa couche de matériau ductile, tel que le cuivre, notamment par attaque chimique, avec une solution à base de cyanures ou à base d'acides, par exemple d'acide nitrique.Preferably, the yarn is stripped of its layer of ductile material, such as copper, in particular by etching, with a solution based on cyanides or based on acids, for example nitric acid.

Selon une autre variante du procédé de l'invention, la couche superficielle de matériau ductile est conservée sur le ressort spiral, le coefficient thermoélastique de l'alliage de niobium et de titane étant adapté en conséquence de manière à compenser l'effet du matériau ductile. Comme on le verra ci-dessous, le coefficient thermoélastique de l'alliage de niobium et de titane peut être ajusté facilement en choisissant le taux de déformation et les traitements thermiques appropriés. La couche superficielle de matériau ductile conservée permet d'obtenir une section finale de fil parfaitement régulière. Le matériau ductile peut être ici du cuivre ou de l'or, déposé par voie galvanique, PVD ou CVD.According to another variant of the method of the invention, the surface layer of ductile material is preserved on the spiral spring, the thermoelastic coefficient of the niobium and titanium alloy being adapted accordingly to compensate for the effect of the ductile material. . As will be seen below, the thermoelastic coefficient of the niobium and titanium alloy can be easily adjusted by choosing the rate of deformation and the appropriate heat treatments. The surface layer of preserved ductile material makes it possible to obtain a final section of perfectly regular thread. The ductile material may be here copper or gold, deposited by galvanic, PVD or CVD.

Le procédé de l'invention peut en outre comprendre une étape de dépôt, sur la couche superficielle de matériau ductile conservée, d'une couche finale d'un matériau choisi parmi le groupe comprenant Al2O3, TiO2, SiO2 AlO, par PVD ou CVD. On peut également prévoir une couche finale d'or déposée par flash d'or galvanique si l'or n'a pas déjà été utilisé comme matériau ductile de la couche superficielle. On peut aussi utiliser le cuivre, le nickel, le cupro-nickel, le cupro-manganèse, l'argent, le nickel-phosphore Ni-P et le nickel-bore Ni-B pour la couche finale, pour autant que le matériau de la couche finale soit différent du matériau ductile de la couche superficielle.The method of the invention may further comprise a step of depositing, on the surface layer of preserved ductile material, a final layer of a material chosen from the group comprising Al 2 O 3 , TiO 2 , SiO 2 AlO, by PVD or CVD. It is also possible to provide a final layer of gold deposited by flash of galvanic gold if gold has not already been used as a ductile material of the superficial layer. Copper, nickel, cupro-nickel, cupro-manganese, silver, nickel-phosphorus Ni-P and nickel-boron Ni-B may also be used for the final layer, provided that the the final layer is different from the ductile material of the surface layer.

Cette couche finale présente une épaisseur de 0.1 µm à 1 µm et permet de colorer le spiral ou d'obtenir une insensibilité au vieillissement climatique (température et humidité).This final layer has a thickness of 0.1 .mu.m to 1 .mu.m and makes it possible to color the hairspring or to obtain an insensitivity to climatic aging (temperature and humidity).

De préférence, l'étape de trempe β est un traitement de mise en solution, avec une durée comprise entre 5 minutes et 2 heures à une température comprise entre 700°C et 1000°C, sous vide, suivie d'un refroidissement sous gaz.Preferably, the β quenching step is a dissolution treatment, with a duration of between 5 minutes and 2 hours at a temperature of temperature between 700 ° C and 1000 ° C, under vacuum, followed by cooling under gas.

Plus particulièrement encore, cette trempe bêta est un traitement de mise en solution, entre 5 minutes et 1 heure à 800°C sous vide, suivie d'un refroidissement sous gaz.More particularly, this beta quench is a solution treatment, between 5 minutes and 1 hour at 800 ° C under vacuum, followed by cooling under gas.

De préférence, le traitement thermique est réalisé pendant une durée comprise entre 1 heure et 80 heures, voire plus, de préférence entre 1 heure et 15 heures à une température comprise entre 350°C et 700°C. Plus préférentiellement, le traitement thermique est réalisé pendant une durée comprise entre 5 heures et 10 heures à une température comprise entre 350°C et 600°C. Encore plus préférentiellement, le traitement thermique est réalisé pendant une durée comprise entre 3 heures et 6 heures à une température comprise entre 400°C et 500°C.Preferably, the heat treatment is carried out for a period of between 1 hour and 80 hours or more, preferably between 1 hour and 15 hours at a temperature between 350 ° C and 700 ° C. More preferably, the heat treatment is carried out for a period of between 5 hours and 10 hours at a temperature between 350 ° C and 600 ° C. Even more preferentially, the heat treatment is carried out for a period of between 3 hours and 6 hours at a temperature of between 400 ° C. and 500 ° C.

Une étape de déformation désigne d'une manière globale un ou plusieurs traitements de déformation, qui peuvent comprendre le tréfilage et/ou le laminage. Le tréfilage peut nécessiter l'utilisation d'une ou plusieurs filières lors de la même étape de déformation ou lors de différentes étapes de déformation si nécessaire. Le tréfilage est réalisé jusqu'à l'obtention d'un fil de section ronde. Le laminage peut être effectué lors de la même étape de déformation que le tréfilage ou dans une autre étape de déformation ultérieure. Avantageusement, le dernier traitement de déformation appliqué à l'alliage est un laminage, de préférence à profil rectangulaire compatible avec la section d'entrée d'une broche d'estrapadage.A deformation step generally refers to one or more deformation treatments, which may include drawing and / or rolling. The drawing may require the use of one or more dies during the same deformation step or during different deformation steps if necessary. The drawing is carried out until a wire of round section is obtained. The rolling can be carried out during the same deformation step as drawing or in another subsequent deformation step. Advantageously, the last deformation treatment applied to the alloy is a rolling, preferably rectangular profile compatible with the input section of a pinning pin.

D'une manière particulièrement avantageuse, le taux de déformation total, le nombre de traitement thermique ainsi que les paramètres des traitements thermiques sont choisis pour obtenir un ressort spiral présentant un coefficient thermoélastique le plus proche possible de 0. Par ailleurs, en fonction du taux de déformation total, du nombre de traitement thermique et des paramètres des traitements thermiques, on obtient un alliage NbTi monophasé ou biphasé.In a particularly advantageous manner, the total strain rate, the number of heat treatment and the parameters of the heat treatments are chosen to obtain a spiral spring having a thermoelastic coefficient as close as possible to 0. Moreover, depending on the rate of total deformation, the number of heat treatment and the parameters of the heat treatments, one obtains a NbTi alloy single-phase or two-phase.

Plus particulièrement, selon une première variante, le nombre d'étapes de traitement thermique et de déformation est limité de sorte que l'alliage de niobium et de titane du ressort spiral obtenu conserve une structure dans laquelle le titane dudit alliage est essentiellement sous forme de solution solide avec le niobium en phase β (structure cubique centrée), la teneur en titane en phase α étant inférieure ou égale à 10% en volume, de préférence inférieure ou égale à 5% en volume, plus préférentiellement inférieure ou égale à 2.5% en volume.More particularly, according to a first variant, the number of heat treatment and deformation steps is limited so that the niobium and titanium alloy of the spiral spring obtained retains a structure in which the titanium of said alloy is essentially in the form of solid solution with niobium in the β-phase (centered cubic structure), the α-phase titanium content being less than or equal to 10% by volume, preferably less than or equal to 5% by volume, more preferably less than or equal to 2.5% in volume.

De préférence, le taux de déformation total est compris entre 1 et 5, de préférence entre 2 et 5.Preferably, the total deformation ratio is between 1 and 5, preferably between 2 and 5.

D'une manière particulièrement avantageuse, on utilise une ébauche dont les dimensions sont au plus proche des dimensions finales recherchées de manière à limiter le nombre d'étapes de traitement thermique et de déformation et conserver une structure essentiellement monophasée β de l'alliage NbTi. La structure finale de l'alliage NbTi du ressort spiral peut être différente de la structure initiale de l'ébauche, par exemple la teneur en titane sous forme α peut avoir varié, l'essentiel étant que la structure finale de l'alliage NbTi du ressort spiral soit essentiellement monophasée, le titane dudit alliage étant essentiellement sous forme de solution solide avec le niobium en phase β, la teneur en titane en phase α étant inférieure ou égale à 10% en volume, de préférence inférieure ou égale à 5% en volume, plus préférentiellement inférieure ou égale à 2.5% en volume. Dans l'alliage de l'ébauche après la trempe β, la teneur en titane en phase α est de préférence inférieure ou égale à 5% en volume, plus préférentiellement inférieure ou égale à 2.5% en volume, voire voisine ou égale à 0.In a particularly advantageous manner, a blank whose dimensions are closer to the desired final dimensions is used so as to limit the number of heat treatment and deformation steps and maintain a substantially single phase structure β of the NbTi alloy. The final structure of the alloy NbTi of the spiral spring may be different from the initial structure of the blank, for example the titanium content in α-form may have varied, the essential being that the final structure of the alloy NbTi of the spiral spring is substantially single-phase, the titanium of said alloy being essentially in the form of a solid solution with niobium in the β-phase, the α-phase titanium content being less than or equal to 10% by volume, preferably less than or equal to 5% by volume, more preferably less than or equal to 2.5% by volume. In the alloy of the blank after the β quench, the α-phase titanium content is preferably less than or equal to 5% by volume, more preferably less than or equal to 2.5% by volume, or even close to or equal to 0.

Ainsi, selon cette variante, on obtient un ressort spiral réalisé dans un alliage NbTi présentant une structure essentiellement monophasée sous forme de solution solide β-Nb-Ti, la teneur en titane sous forme α étant inférieure ou égale à 10% en volume.Thus, according to this variant, there is obtained a spiral spring made of a NbTi alloy having a substantially single-phase structure in the form of solid solution β-Nb-Ti, the titanium content in α form being less than or equal to 10% by volume.

De préférence, le procédé comprend une seule étape de déformation avec un taux de déformation compris entre 1 et 5, de préférence entre 2 et 5.Preferably, the method comprises a single deformation step with a strain rate of between 1 and 5, preferably between 2 and 5.

Ainsi, un procédé particulièrement préféré de l'invention comprend, après l'étape de trempe β, l'étape de dépôt, sur l'ébauche en alliage, de la couche superficielle de matériau ductile, une étape de déformation incluant un tréfilage au moyen de plusieurs filières puis un laminage, une étape d'estrapadage puis une dernière étape de traitement thermique (appelée fixage).Thus, a particularly preferred method of the invention comprises, after the quenching step β, the deposition step, on the alloy blank, of the surface layer of ductile material, a deformation step including drawing by means of several dies then a rolling, a step of strapping and a final step of heat treatment (called fixing).

Le procédé de l'invention peut en outre comprendre au moins une étape de traitement thermique intermédiaire, de sorte que le procédé comprend par exemple après l'étape de trempe β, l'étape de dépôt, sur l'ébauche en alliage, de la couche superficielle de matériau ductile, une première étape de déformation, une étape de traitement thermique intermédiaire, une seconde étape de déformation, l'étape d'estrapadage puis une dernière étape de traitement thermique.The method of the invention may further comprise at least one intermediate heat treatment step, so that the method comprises for example after the quenching step β, the deposition step, on the alloy blank, of the superficial layer of ductile material, a first deformation step, an intermediate heat treatment step, a second deformation step, the step of strapping and then a final heat treatment step.

Plus le taux de déformation après la trempe β est élevé, plus le coefficient thermique CT est positif. Plus le matériau est recuit après la trempe β, dans la gamme de température adéquate, par les différents traitements thermiques, plus le coefficient thermique CT devient négatif. Un choix approprié du taux de déformation et des paramètres des traitements thermiques permet de ramener l'alliage NbTi monophasé à un CTE proche de zéro, ce qui est particulièrement favorable.The higher the degree of deformation after the β quench, the higher the thermal coefficient CT is positive. The more the material is annealed after the β quench, in the appropriate temperature range, by the different heat treatments, the more the thermal coefficient CT becomes negative. An appropriate choice of the strain rate and the parameters of the heat treatments makes it possible to reduce the single-phase NbTi alloy to a CTE close to zero, which is particularly favorable.

Selon une seconde variante, on applique une succession de séquences d'une étape de déformation alternée avec une étape de traitement thermique, jusqu'à l'obtention d'un alliage de niobium et de titane de structure biphasée comprenant une solution solide de niobium avec du titane en phase β (structure cubique centrée) et une solution solide de niobium avec du titane en phase α (structure hexagonale compacte), la teneur en titane en phase α étant supérieure à 10% en volume.According to a second variant, a series of sequences of an alternating deformation step with a heat treatment step is applied until an alloy of niobium and titanium of two-phase structure comprising a solid solution of niobium with β-phase titanium (centered cubic structure) and a niobium solid solution with α-phase titanium (compact hexagonal structure), the α-phase titanium content being greater than 10% by volume.

Pour obtenir une telle structure biphasée, il est nécessaire de précipiter une partie de la phase α par des traitements thermiques, selon les paramètres indiqués ci-dessus, avec une forte déformation entre les traitements thermiques. De préférence, on applique toutefois des traitements thermiques plus longs que ceux utilisés pour obtenir un alliage de ressort monophasé, par exemple des traitements thermiques réalisés pendant une durée comprise entre 15 heures et 75 heures à une température comprise entre 350°C et 500°C. Par exemple on applique des traitements thermiques de 75h à 400h à 350°C, de 25h à 400°C ou de 18h à 480°C.To obtain such a two-phase structure, it is necessary to precipitate part of the α phase by heat treatments, according to the parameters indicated above, with a strong deformation between the heat treatments. Preferably, however, longer heat treatments are applied than those used to obtain a single-phase spring alloy, for example heat treatments carried out for a period of between 15 hours and 75 hours at a temperature of between 350 ° C. and 500 ° C. . For example, heat treatments are applied from 75h to 400h at 350.degree. C., from 25h to 400.degree. C. or from 18h to 480.degree.

Dans cette seconde variante « biphasée », on utilise une ébauche qui présente, après la trempe β un diamètre beaucoup plus grand que celui de l'ébauche préparée pour la première variante « monophasée ». Ainsi, dans la seconde variante, on utilise par exemple une ébauche de 30 mm de diamètre après la trempe β, alors qu'on utilise, pour la première variante, une ébauche de 0.2 à 2.0 mm de diamètre après la trempe β.In this second "two-phase" variant, a blank is used which, after quenching, has a diameter much larger than that of the blank prepared for the first "single-phase" variant. Thus, in the second variant, use is made, for example, of a blank 30 mm in diameter after the β quenching, while using, for the first variant, a blank 0.2 to 2.0 mm in diameter after the β quenching.

De préférence, dans ces séquences couplées de déformation-traitement thermique, chaque déformation est effectuée avec un taux de déformation compris entre 1 et 5, le cumul global des déformations sur l'ensemble de ladite succession de séquences amenant un taux total de déformation compris entre 1 et 14.Preferably, in these coupled deformation-heat treatment sequences, each deformation is carried out with a degree of deformation of between 1 and 5, the overall accumulation of the deformations over the whole of said succession of sequences bringing a total rate of deformation between 1 and 14.

Le taux de déformation répond à la formule classique 21n(d0/d), où d0 est le diamètre de la dernière trempe bêta ou de celui d'une étape de déformation, et d est le diamètre du fil écroui obtenu à l'étape de déformation suivante.The degree of deformation corresponds to the conventional formula 21n (d0 / d), where d0 is the diameter of the last beta quench or that of a deformation step, and d is the diameter of the hardened yarn obtained at the stage of deformation. following deformation.

D'une manière avantageuse, le procédé comporte dans cette seconde variante entre trois et cinq séquences couplées de déformation-traitement thermique.Advantageously, the method comprises in this second variant between three and five coupled deformation-heat treatment sequences.

Plus particulièrement, la première séquence couplée de déformation-traitement thermique comporte une première déformation avec au moins 30 % de réduction de section.More particularly, the first coupled deformation-heat treatment sequence comprises a first deformation with at least 30% section reduction.

Plus particulièrement, chaque séquence couplée de déformation-traitement thermique, autre que la première, comporte une déformation entre deux traitements thermiques avec au moins 25 % de réduction de section.More particularly, each deformation-heat treatment coupled sequence, other than the first, has a deformation between two heat treatments with at least 25% section reduction.

Dans cette seconde variante, l'alliage en phase β écroui présente un CT fortement positif, et la précipitation de la phase α qui possède un CT fortement négatif, permet de ramener l'alliage biphasé à un CTE proche de zéro, ce qui est particulièrement favorable.In this second variant, the hardened β-phase alloy exhibits a strongly positive CT, and the precipitation of the α phase which has a strongly negative CT makes it possible to reduce the two-phase alloy to a CTE close to zero, which is particularly favorable.

Le procédé de l'invention permet la réalisation, et plus particulièrement la mise en forme, d'un ressort spiral pour balancier en alliage de type niobium-titane, typiquement à 47 % en poids de titane (40-60%), présentant une microstructure essentiellement monophasée de β-Nb-Ti dans laquelle le titane est sous forme de solution solide avec le niobium en phase β ou une microstructure biphasée lamellaire très fine comprenant une solution solide de niobium avec du titane en phase β et une solution solide de niobium avec du titane en phase α. Cet alliage présente des propriétés mécaniques élevées, en combinant une limite élastique très élevée, supérieure à 600 MPa, et un module d'élasticité très bas, de l'ordre de 60 Gpa à 80 GPa. Cette combinaison de propriétés convient bien pour un ressort spiral.The method of the invention allows the realization, and more particularly the shaping, of a spiral spring for a balance of alloy of niobium-titanium type, typically 47% by weight of titanium (40-60%), having a essentially single phase β-Nb-Ti microstructure in which the titanium is in the form of a solid solution with niobium in the β phase or a very fine lamellar two-phase microstructure comprising a solid solution of niobium with β-phase titanium and a solid solution of niobium with titanium in the α phase. This alloy has high mechanical properties, combining a very high elastic limit, greater than 600 MPa, and a very low modulus of elasticity, of the order of 60 Gpa to 80 GPa. This combination of properties is well suited for a spiral spring.

Un tel alliage est connu et utilisé pour la fabrication de supraconducteurs, tels qu'appareils d'imagerie par résonance magnétique, ou accélérateurs de particules, mais n'est pas utilisé en horlogerie.Such an alloy is known and used for the manufacture of superconductors, such as magnetic resonance imaging apparatus, or particle accelerators, but is not used in watchmaking.

Un alliage de type binaire comportant du niobium et du titane, du type sélectionné ci-dessus pour la mise en oeuvre de l'invention, présente également un effet similaire à celui de l' « Elinvar », avec un coefficient thermo-élastique pratiquement nul dans la plage de températures d'utilisation usuelle de montres, et apte à la fabrication de spiraux auto-compensateurs.A binary type alloy comprising niobium and titanium, of the type selected above for the implementation of the invention, also has an effect similar to that of the "Elinvar", with a substantially zero thermoelastic coefficient. in the temperature range of usual use of watches, and suitable for the manufacture of self-compensating spirals.

De plus, un tel alliage est paramagnétique.In addition, such an alloy is paramagnetic.

La présente invention sera maintenant illustrée plus en détails par les exemples non limitatifs qui suivent.The present invention will now be illustrated in more detail by the following non-limiting examples.

Différents spiraux ont été fabriqués selon le procédé de l'invention à partir de différents fils de diamètre donné en alliage à base de niobium constitué de 53% en poids de niobium et de 47% en poids de titane monophasé (exemples 1 à 3) et biphasé (exemple 4) et recouverts d'une couche superficielle de cuivre de différentes épaisseurs, avant le tréfilage.Different spirals were manufactured according to the method of the invention from different son diameter given niobium alloy consisting of 53% by weight of niobium and 47% by weight of single phase titanium (Examples 1 to 3) and two-phase (Example 4) and covered with a surface layer of copper of different thicknesses, before drawing.

Puis les fils sont laminés à plat.Then the wires are rolled flat.

Les résultats sont indiqués dans le tableau ci-dessous : Ex. Diamètre total du fil (mm) Diamètre section en NbTi (mm) Epaisseur Cu (µm) Surface NbTi (mm2) Surface cuivre (mm2) rapport surface Cu /surface NbTi Laminage 1 0.1 0.086 7 0.0058 0.0020 0.35 Possible 2 0.232 0.2 16 0.0314 0.0108 0.34 Possible 3 0.312 0.2 56 0.0314 0.0450 1.4 Impossible 4 0.212 0.2 6 0.0314 0.0039 0.12 Possible The results are shown in the table below: Ex. Total diameter of the wire (mm) Diameter section in NbTi (mm) Thickness Cu (μm) Surface NbTi (mm 2 ) Copper surface (mm 2 ) surface ratio Cu / surface NbTi lamination 1 0.1 0086 7 0.0058 0.0020 0.35 Possible 2 0232 0.2 16 0.0314 0.0108 0.34 Possible 3 0312 0.2 56 0.0314 0.0450 1.4 Impossible 4 0212 0.2 6 0.0314 0.0039 0.12 Possible

Ces exemples démontrent que seul un rapport surface de cuivre/surface de l'alliage NbTi pour une section de fil donnée inférieur à 1, de préférence inférieur à 0.5, et plus préférentiellement compris entre 0.01 et 0.4 permet de pouvoir laminer aisément le composite Cu/NbTi. L'épaisseur de cuivre est optimisée pour que la pointe, créée par limage ou par étirage à chaud) nécessaire à l'introduction du fil dans la filière lors de l'étirage ou du tréfilage soit recouverte de cuivre.These examples demonstrate that only a copper surface / surface area ratio of the NbTi alloy for a given wire section of less than 1, preferably less than 0.5, and more preferably of between 0.01 and 0.4 makes it possible to easily roll the composite Cu / NbTi. The copper thickness is optimized so that the spike, created by filing or by hot drawing) necessary for the introduction of the wire into the die during drawing or drawing is covered with copper.

Claims (18)

Procédé de fabrication d'un ressort spiral destiné à équiper un balancier d'un mouvement d'horlogerie, comprenant : - une étape d'élaboration d'une ébauche dans un alliage de niobium et de titane constitué de : - niobium : balance à 100% en poids, - titane: entre 40 et 60% en poids, - traces d'éléments sélectionnés parmi le groupe constitué de O, H, C, Fe, Ta, N, Ni, Si, Cu, Al, chacun desdits éléments étant présent dans une quantité comprise entre 0 et 1600 ppm en poids, la quantité totale constituée par l'ensemble desdits éléments étant comprise entre 0% et 0.3% en poids, - une étape de trempe de type β de ladite ébauche à un diamètre donné, de façon à ce que le titane dudit alliage soit essentiellement sous forme de solution solide avec le niobium en phase β, la teneur en titane en phase α étant inférieure ou égale à 5% en volume, - au moins une étape de déformation dudit alliage alternée avec au moins une étape de traitement thermique de sorte que l'alliage de niobium et de titane obtenu présente une limite élastique supérieure ou égale à 600 MPa et un module d'élasticité inférieur ou égal à 100 GPa, une étape d'estrapadage pour former le ressort-spiral étant effectuée avant la dernière étape de traitement thermique, caractérisé en ce qu'il comprend, avant l'étape de déformation, une étape de dépôt, sur l'ébauche en alliage, d'une couche superficielle d'un matériau ductile choisi parmi le groupe comprenant le cuivre, le nickel, le cupro-nickel, le cupro-manganèse, l'or, l'argent, le nickel-phosphore Ni-P et le nickel-bore Ni-B, pour faciliter la mise en forme sous forme de fil, l'épaisseur de la couche de matériau ductile déposée étant choisie de sorte que le rapport surface de matériau ductile/surface de l'alliage NbTi pour une section de fil donnée est inférieur à 1, de préférence inférieur à 0.5, et plus préférentiellement compris entre 0.01 et 0.4.A method of manufacturing a spiral spring for equipping a pendulum with a clockwork movement, comprising: a step of producing a blank in a niobium and titanium alloy consisting of: - niobium: balance at 100% by weight, titanium: between 40 and 60% by weight, traces of elements selected from the group consisting of O, H, C, Fe, Ta, N, Ni, Si, Cu, Al, each of said elements being present in an amount of between 0 and 1600 ppm by weight, the amount total consisting of all of said elements being between 0% and 0.3% by weight, a step of type β quenching of said blank at a given diameter, so that the titanium of said alloy is essentially in the form of a solid solution with niobium in the β phase, the α-phase titanium content being less than or equal to at 5% by volume, at least one step of deforming said alternating alloy with at least one heat treatment step so that the niobium and titanium alloy obtained has an elastic limit greater than or equal to 600 MPa and a modulus of elasticity less than or equal to 100 GPa, a step of strapping to form the spiral spring being performed before the last heat treatment step, characterized in that it comprises, before the deformation step, a step of depositing, on the alloy blank, a surface layer of a ductile material selected from the group comprising copper, nickel, cupron nickel, cupro-manganese, gold, silver, nickel-phosphorus Ni-P and nickel-boron Ni-B, to facilitate the shaping in the form of wire, the thickness of the layer of deposited ductile material being chosen so that the ratio of ductile material surface / NbTi alloy surface for a given wire section is less than 1, preferably less than 0.5, and more preferably between 0.01 and 0.4. Procédé de fabrication selon la revendication 1, caractérisé en ce qu'il comprend, après l'étape de déformation, une étape d'élimination de ladite couche superficielle de matériau ductile.Manufacturing method according to claim 1, characterized in that it comprises, after the deformation step, a step of removing said surface layer of ductile material. Procédé de fabrication selon la revendication 1, caractérisé en ce que la couche superficielle de matériau ductile est conservée, le coefficient thermoélastique de l'alliage de niobium et de titane étant adapté en conséquence.Production method according to claim 1, characterized in that the surface layer of ductile material is preserved, the thermoelastic coefficient of the niobium and titanium alloy being adapted accordingly. Procédé de fabrication selon la revendication 3, caractérisé en ce qu'il comprend une étape de dépôt, sur la couche superficielle de matériau ductile conservée, d'une couche finale d'un matériau choisi parmi le groupe comprenant le cuivre, le nickel, le cupro-nickel, le cupro-manganèse, l'argent, le nickel-phosphore Ni-P, le nickel-bore Ni-B, l'or, choisis différents du matériau ductile de la couche superficielle, Al2O3, TiO2, SiO2 et AlO.Manufacturing method according to claim 3, characterized in that it comprises a step of depositing, on the surface layer of preserved ductile material, a final layer of a material chosen from the group comprising copper, nickel, cupro-nickel, cupro-manganese, silver, nickel-phosphorus Ni-P, nickel-boron Ni-B, gold, chosen different from the ductile material of the surface layer, Al2O3, TiO2, SiO2 and AlO . Procédé selon l'une des revendications précédentes, caractérisé en ce que l'étape de déformation comprend un tréfilage et/ou un laminage.Method according to one of the preceding claims, characterized in that the deformation step comprises drawing and / or rolling. Procédé selon la revendication 5, caractérisé en ce que le dernier traitement de déformation appliqué à l'alliage est un laminage.Process according to claim 5, characterized in that the last deformation treatment applied to the alloy is a rolling. Procédé selon l'une des revendications précédentes, caractérisé en ce que le taux de déformation total, le nombre de traitement thermique ainsi que les paramètres des traitements thermiques sont choisis pour obtenir un ressort spiral présentant un coefficient thermoélastique le plus proche possible de 0.Method according to one of the preceding claims, characterized in that the total deformation rate, the number of heat treatment and the heat treatment parameters are chosen to obtain a spiral spring having a thermoelastic coefficient as close as possible to 0. Procédé de fabrication selon l'une des revendications précédentes, caractérisé en ce que ladite étape de trempe β est un traitement de mise en solution, avec une durée comprise entre 5 minutes et 2 heures à une température comprise entre 700°C et 1000°C, sous vide, suivie d'un refroidissement sous gaz.Manufacturing method according to one of the preceding claims, characterized in that said quenching step β is a solution treatment, with a duration of between 5 minutes and 2 hours at a temperature between 700 ° C and 1000 ° C under vacuum followed by cooling under gas. Procédé de fabrication selon l'une des revendications précédentes, caractérisé en ce que le traitement thermique est réalisé pendant une durée comprise entre 1 heure et 80 heures à une température comprise entre 350°C et 700°C.Manufacturing method according to one of the preceding claims, characterized in that the heat treatment is carried out for a period of between 1 hour and 80 hours at a temperature between 350 ° C and 700 ° C. Procédé de fabrication selon l'une des revendications précédentes, caractérisé en ce que le nombre d'étapes de traitement thermique et de déformation est limité de sorte que l'alliage de niobium et de titane du ressort spiral obtenu conserve une structure dans laquelle le titane dudit alliage est essentiellement sous forme de solution solide avec le niobium en phase β, la teneur en titane en phase α étant inférieure ou égale à 10% en volume.Manufacturing method according to one of the preceding claims, characterized in that the number of heat treatment and deformation steps is limited so that the niobium and titanium alloy of the spiral spring obtained maintains a structure in which the titanium said alloy is essentially in the form of a solid solution with niobium in the β-phase, the α-phase titanium content being less than or equal to 10% by volume. Procédé selon la revendication 10, caractérisé en ce qu'il comprend une seule étape de déformation avec un taux de déformation compris entre 1 et 5, de préférence entre 2 et 5.Process according to Claim 10, characterized in that it comprises a single deformation step with a degree of deformation of between 1 and 5, preferably of between 2 and 5. Procédé selon l'une des revendications 10 à 11, caractérisé en ce qu'il comprend après l'étape de trempe β, une étape de déformation, une étape d'estrapadage et une étape de traitement thermique.Process according to one of Claims 10 to 11, characterized in that it comprises, after the quenching step β, a deformation step, a stripping step and a heat treatment step. Procédé selon la revendication 12, caractérisé en ce qu'il comprend une étape de traitement thermique intermédiaire.Process according to claim 12, characterized in that it comprises an intermediate heat treatment step. Procédé de fabrication selon l'une des revendications 10 à 13, caractérisé en ce que le traitement thermique est réalisé pendant une durée comprise entre 5 heures et 10 heures à une température comprise entre 350°C et 600°C.Manufacturing method according to one of claims 10 to 13, characterized in that the heat treatment is carried out for a period of between 5 hours and 10 hours at a temperature between 350 ° C and 600 ° C. Procédé de fabrication selon la revendication 14, caractérisé en ce que le traitement thermique est réalisé pendant une durée comprise entre 3 heures et 6 heures à une température comprise entre 400°C et 500°C.Manufacturing method according to claim 14, characterized in that the heat treatment is carried out for a period of between 3 hours and 6 hours at a temperature between 400 ° C and 500 ° C. Procédé de fabrication selon l'une des revendications 1 à 9, caractérisé en ce qu'on applique une succession de séquences d'une étape de déformation alternée avec une étape de traitement thermique, jusqu'à l'obtention d'un alliage de niobium et de titane de structure biphasée comprenant une solution solide de niobium avec du titane en phase β et une solution solide de niobium avec du titane en phase α, la teneur en titane en phase α étant supérieure à 10% en volume.Production method according to one of Claims 1 to 9, characterized in that a succession of sequences of an alternating deformation step is applied with a heat treatment step, up to obtaining a niobium and titanium alloy of two-phase structure comprising a niobium solid solution with β-phase titanium and a solid solution of niobium with α-phase titanium, the α-phase titanium content being greater than 10% by volume. Procédé de fabrication selon la revendication 16, caractérisé en ce que chaque déformation est effectuée avec un taux de déformation compris entre 1 et 5, le cumul global des déformations sur l'ensemble de ladite succession de séquences amenant un taux total de déformation compris entre 1 et 14.Manufacturing method according to claim 16, characterized in that each deformation is carried out with a deformation rate of between 1 and 5, the overall accumulation of deformations over the whole of said succession of sequences bringing a total deformation rate of between 1 and 14. Procédé de fabrication selon l'une des revendications 16 à 17, caractérisé en ce que le traitement thermique est réalisé pendant une durée comprise entre 15 heures et 75 heures à une température comprise entre 350°C et 500°C.Manufacturing method according to one of claims 16 to 17, characterized in that the heat treatment is carried out for a period of between 15 hours and 75 hours at a temperature between 350 ° C and 500 ° C.
EP17209686.9A 2017-12-21 2017-12-21 Method for manufacturing a hairspring for clock movement Active EP3502288B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17209686.9A EP3502288B1 (en) 2017-12-21 2017-12-21 Method for manufacturing a hairspring for clock movement
US16/211,289 US20190196406A1 (en) 2017-12-21 2018-12-06 Method for manufacturing a balance spring for a timepiece movement
JP2018234274A JP6751749B2 (en) 2017-12-21 2018-12-14 How to make a balance spring for a watch movement
RU2018145229A RU2696809C1 (en) 2017-12-21 2018-12-20 Method of making a hair for a clock mechanism
CN201811562272.5A CN110007582B (en) 2017-12-21 2018-12-20 Method for manufacturing a balance spring for a timepiece movement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP17209686.9A EP3502288B1 (en) 2017-12-21 2017-12-21 Method for manufacturing a hairspring for clock movement

Publications (2)

Publication Number Publication Date
EP3502288A1 true EP3502288A1 (en) 2019-06-26
EP3502288B1 EP3502288B1 (en) 2020-10-14

Family

ID=60811848

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17209686.9A Active EP3502288B1 (en) 2017-12-21 2017-12-21 Method for manufacturing a hairspring for clock movement

Country Status (5)

Country Link
US (1) US20190196406A1 (en)
EP (1) EP3502288B1 (en)
JP (1) JP6751749B2 (en)
CN (1) CN110007582B (en)
RU (1) RU2696809C1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3828642A1 (en) * 2019-11-29 2021-06-02 Nivarox-FAR S.A. Hairspring for clock movement and method for manufacturing same
EP3845971A1 (en) * 2019-12-31 2021-07-07 Nivarox-FAR S.A. Hairspring for clock movement and method for manufacturing same
EP3885842A1 (en) * 2020-03-26 2021-09-29 Nivarox-FAR S.A. Non-magnetic timepiece component with improved wear resistance
EP4060424A1 (en) * 2021-03-16 2022-09-21 Nivarox-FAR S.A. Hairspring for timepiece movement

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3422116B1 (en) * 2017-06-26 2020-11-04 Nivarox-FAR S.A. Timepiece hairspring
EP3796101A1 (en) * 2019-09-20 2021-03-24 Nivarox-FAR S.A. Hairspring for clock movement
EP4060425A1 (en) 2021-03-16 2022-09-21 Nivarox-FAR S.A. Hairspring for timepiece movement

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB503070A (en) * 1937-10-19 1939-03-30 British Thomson Houston Co Ltd Improvements in and relating to the manufacture of wire
GB1166701A (en) * 1966-06-08 1969-10-08 Vacuumschmelze Gmbh Improvements in or relating to Non-Ferromagnetic Alloys
JPH04279212A (en) * 1991-03-07 1992-10-05 Shinko Kosen Kogyo Kk Manufacture of fine wire of titanium or its alloys
EP1039352A1 (en) * 1999-03-26 2000-09-27 Montres Rolex Sa Self-compensating spring for clockwork movement spring balance and method for treating the same
EP1083243A2 (en) * 1999-09-10 2001-03-14 Terumo Corporation Beta titanium wire, method for its production and medical devices using beta titanium wire
WO2005045532A2 (en) * 2003-11-07 2005-05-19 Seiko Epson Corporation Timepiece and mainspring
EP2696381A1 (en) * 2012-08-08 2014-02-12 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Niobium-titanium based superconducting wire

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH551032A (en) 1966-04-22 1974-06-28 Paramagnetic metal/semiconductor alloys - for oscillating and spring elements with particular elastic properties
JPS4814397B1 (en) 1969-03-11 1973-05-07
JPS5246889B2 (en) * 1971-09-30 1977-11-29
JPS62270754A (en) * 1986-05-16 1987-11-25 Hitachi Cable Ltd Manufacture of nb-ti alloy superconducting wire rod and nb-ti alloy superconducting wire rod
DE69128692T2 (en) * 1990-11-09 1998-06-18 Toyoda Chuo Kenkyusho Kk Titanium alloy made of sintered powder and process for its production
EP0886195B1 (en) 1997-06-20 2002-02-13 Montres Rolex Sa Auto-compensating spring for mechanical oscillatory spiral spring of clockwork movement and method of manufacturing the same
US7275301B2 (en) * 2001-01-30 2007-10-02 Shahin Pourrahimi Method for reinforcing superconducting coils with high-strength materials
US6918974B2 (en) * 2002-08-26 2005-07-19 General Electric Company Processing of alpha-beta titanium alloy workpieces for good ultrasonic inspectability
JP2010187524A (en) * 2009-01-14 2010-08-26 Seiko Epson Corp Piezoelectric drive device and electronic apparatus
EP2264553B1 (en) * 2009-06-19 2016-10-26 Nivarox-FAR S.A. Thermocompensated spring and manufacturing method thereof
CH703414A2 (en) * 2010-07-09 2012-01-13 Montres Breguet Sa Balance spring for forming sprung balance resonator of mechanical watch, has hair springs whose curves correspond to specific relation so as to reduce displacements of center of mass of balance spring during contraction and expansion
US20120076686A1 (en) * 2010-09-23 2012-03-29 Ati Properties, Inc. High strength alpha/beta titanium alloy
CH708231B1 (en) * 2013-06-27 2017-03-15 Nivarox Far Sa Clock spring made of austenitic stainless steel.
RU2525003C1 (en) * 2013-08-07 2014-08-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "МАТИ-Российский государственный технологический университет имени К.Э. Циолковского" (МАТИ) Titanium aluminide alloy and method for processing blanks thereof
EP2952972B1 (en) * 2014-06-03 2017-01-25 The Swatch Group Research and Development Ltd. Method for manufacturing a composite compensator spiral
WO2015189278A2 (en) 2014-06-11 2015-12-17 Cartier Création Studio Sa Oscillator for a timepiece balance spring assembly
EP2993531B1 (en) * 2014-09-08 2021-03-31 Precision Engineering AG A method for forming a spring
EP3002638B1 (en) 2014-09-08 2021-08-18 Richemont International S.A. Method for manufacturing a thermocompensated hairspring
CN104538543B (en) * 2014-12-11 2017-06-20 西部超导材料科技股份有限公司 A kind of low-temperature superconducting wire preparation method of NbTi rods
CH711913A2 (en) 2015-12-02 2017-06-15 Nivarox Far Sa Process for manufacturing a clockwork spiral spring
FR3064281B1 (en) * 2017-03-24 2022-11-11 Univ De Lorraine METASTABLE BETA TITANIUM ALLOY, CLOCK SPRING BASED ON SUCH AN ALLOY AND METHOD FOR MANUFACTURING IT
EP3422116B1 (en) 2017-06-26 2020-11-04 Nivarox-FAR S.A. Timepiece hairspring
EP3502785B1 (en) 2017-12-21 2020-08-12 Nivarox-FAR S.A. Hairspring for clock movement and method for manufacturing same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB503070A (en) * 1937-10-19 1939-03-30 British Thomson Houston Co Ltd Improvements in and relating to the manufacture of wire
GB1166701A (en) * 1966-06-08 1969-10-08 Vacuumschmelze Gmbh Improvements in or relating to Non-Ferromagnetic Alloys
JPH04279212A (en) * 1991-03-07 1992-10-05 Shinko Kosen Kogyo Kk Manufacture of fine wire of titanium or its alloys
EP1039352A1 (en) * 1999-03-26 2000-09-27 Montres Rolex Sa Self-compensating spring for clockwork movement spring balance and method for treating the same
EP1083243A2 (en) * 1999-09-10 2001-03-14 Terumo Corporation Beta titanium wire, method for its production and medical devices using beta titanium wire
WO2005045532A2 (en) * 2003-11-07 2005-05-19 Seiko Epson Corporation Timepiece and mainspring
EP2696381A1 (en) * 2012-08-08 2014-02-12 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Niobium-titanium based superconducting wire

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3828642A1 (en) * 2019-11-29 2021-06-02 Nivarox-FAR S.A. Hairspring for clock movement and method for manufacturing same
WO2021105352A1 (en) 2019-11-29 2021-06-03 Nivarox-Far S.A. Spiral spring for a timepiece movement, and manufacturing method thereof
EP3845971A1 (en) * 2019-12-31 2021-07-07 Nivarox-FAR S.A. Hairspring for clock movement and method for manufacturing same
RU2756785C1 (en) * 2019-12-31 2021-10-05 Ниварокс-Фар С.А. Balance spring for a clockwork and the method for its manufacture
EP4009114A1 (en) * 2019-12-31 2022-06-08 Nivarox-FAR S.A. Hairspring for clock movement and method for manufacturing same
EP3885842A1 (en) * 2020-03-26 2021-09-29 Nivarox-FAR S.A. Non-magnetic timepiece component with improved wear resistance
US11762338B2 (en) 2020-03-26 2023-09-19 Nivarox-Far S.A. Non-magnetic watch component with improved wear resistance
EP4060424A1 (en) * 2021-03-16 2022-09-21 Nivarox-FAR S.A. Hairspring for timepiece movement
US11898225B2 (en) 2021-03-16 2024-02-13 Nivarox-Far S.A. Spiral spring for a horological movement

Also Published As

Publication number Publication date
JP2019113549A (en) 2019-07-11
JP6751749B2 (en) 2020-09-09
CN110007582A (en) 2019-07-12
EP3502288B1 (en) 2020-10-14
RU2696809C1 (en) 2019-08-06
US20190196406A1 (en) 2019-06-27
CN110007582B (en) 2021-03-09

Similar Documents

Publication Publication Date Title
EP3502288A1 (en) Method for manufacturing a hairspring for clock movement
EP3502785A1 (en) Hairspring for clock movement and method for manufacturing same
EP3422116B1 (en) Timepiece hairspring
EP3502289B1 (en) Manufacturing method of a hairspring for a timepiece movement
EP3671359B1 (en) Manufacturing method of a timepiece spiral spring made of titanium
CH714492A2 (en) Spiral spring for clockwork and its manufacturing process.
EP3889691B1 (en) Horological hairspring made of a nb-hf alloy
CH714493A2 (en) Method of manufacturing a spiral spring for a watch movement
EP3796101A1 (en) Hairspring for clock movement
EP3422115B1 (en) Timepiece spiral spring
EP3845971B1 (en) Method for manufacturing an hairspring for clock movement
EP4060424A1 (en) Hairspring for timepiece movement
CH716155A2 (en) Method of manufacturing a spiral spring for a clockwork movement.
CH714494B1 (en) Spiral clockwork spring, in particular a barrel spring or a spiral spring.
EP4060425A1 (en) Hairspring for timepiece movement
EP3736638B1 (en) Method for manufacturing a hairspring for clock movement
CH714491A2 (en) Spiral spring for clockwork and its manufacturing process.
EP3828642A1 (en) Hairspring for clock movement and method for manufacturing same
CH716853A2 (en) Spiral spring for a watch movement and its manufacturing process.
CH716156B1 (en) Process for manufacturing a spiral spring for a clock movement.
CH718454A2 (en) Spiral spring for a clock movement and process for manufacturing this spiral spring.
CH717018A2 (en) Spiral spring for a watch movement and its manufacturing process.
CH718455A2 (en) Spiral spring for a clock movement and process for manufacturing this spiral spring.
EP4123393A1 (en) Hairspring for clock movement
CH715683A2 (en) Titanium-based clockwork spiral spring.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200102

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200512

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1323628

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201015

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ICB INGENIEURS CONSEILS EN BREVETS SA, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017025363

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1323628

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201014

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210114

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210215

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210115

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210214

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210114

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 602017025363

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

26 Opposition filed

Opponent name: E-PATENT S.A.

Effective date: 20210712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201221

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210214

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 602017025363

Country of ref document: DE

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20230117

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230611

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231121

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231122

Year of fee payment: 7

Ref country code: DE

Payment date: 20231121

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240101

Year of fee payment: 7