EP3500732B1 - Förderaggregat - Google Patents

Förderaggregat Download PDF

Info

Publication number
EP3500732B1
EP3500732B1 EP17731127.1A EP17731127A EP3500732B1 EP 3500732 B1 EP3500732 B1 EP 3500732B1 EP 17731127 A EP17731127 A EP 17731127A EP 3500732 B1 EP3500732 B1 EP 3500732B1
Authority
EP
European Patent Office
Prior art keywords
drive shaft
bearing sleeve
rotor
delivery unit
unit according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17731127.1A
Other languages
English (en)
French (fr)
Other versions
EP3500732A1 (de
Inventor
Chen Zhou
Guido Bernd Finnah
David Paul THIBAULT
Martin Hiller
Dieter Amesoeder
Thomas Frahammer
Marian Kacmar
Dominik ROCKER
Raed Hamada
Thorsten Stoeberl
Yihao Zhu
Joerg Engelhardt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3500732A1 publication Critical patent/EP3500732A1/de
Application granted granted Critical
Publication of EP3500732B1 publication Critical patent/EP3500732B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/02Arrangements of bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C11/00Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations
    • F04C11/008Enclosed motor pump units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C3/00Rotary-piston machines or pumps, with non-parallel axes of movement of co-operating members, e.g. of screw type
    • F04C3/06Rotary-piston machines or pumps, with non-parallel axes of movement of co-operating members, e.g. of screw type the axes being arranged otherwise than at an angle of 90 degrees
    • F04C3/08Rotary-piston machines or pumps, with non-parallel axes of movement of co-operating members, e.g. of screw type the axes being arranged otherwise than at an angle of 90 degrees of intermeshing engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/40Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/50Bearings
    • F04C2240/56Bearing bushings or details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/60Shafts
    • F04C2240/605Shaft sleeves or details thereof

Definitions

  • the invention relates to a conveyor unit according to the type of the main claim. It is already a conveyor unit from the DE102014209140 A1 known, with a drive shaft and a rotor driven by the drive shaft, rotatably arranged in a pump stator.
  • the drive shaft has an inclined sliding plane which interacts with the rotor and causes the rotor with its rotor axis to wobble around a drive axis of the drive shaft.
  • the rotor has a toothing on its end facing away from the drive shaft, which meshes with a toothing formed on the pump stator. Working spaces for conveying media are formed between the teeth of the rotor and the teeth of the pump stator.
  • the drive shaft, the rotor and the pump stator are individual pump components that work together to achieve certain properties, such as delivery volume, efficiency and pressure build-up, within certain tolerances. Whether the pump components can jointly meet these required properties can only be tested in a functional test on the finished product, i.e. after the delivery unit has been completely assembled.
  • the delivery unit according to the invention with the characterizing features of the main claim has the advantage that the drive shaft, the rotor and the pump stator form a pump unit that can be tested for the fulfillment of the necessary properties alone.
  • a drive of a test bench is used to drive the pump unit.
  • the pump unit is achieved in that the drive shaft is arranged in a bearing sleeve which has a shoulder which projects in the radial direction with respect to the drive axis has, on which the pump stator is held by means of at least one holding means. If the pump unit does not meet the required properties in the function test, the pump unit is improved in a post-processing step. This rectification can take place immediately after the pump unit has been assembled and not only after the pump unit and drive have been assembled, that is, not only after the entire delivery unit has been completed. This reduces manufacturing costs.
  • the at least one holding means can advantageously achieve a positive and / or non-positive connection between the shoulder of the bearing sleeve and the pump stator, in particular a snap-in, clamp, press or screw connection.
  • the at least one holding means is formed by a deformed ring collar which is provided on the shoulder of the bearing sleeve and engages behind the pump stator.
  • the at least one holding means is formed by a holding ring which is arranged on the side of the pump stator facing away from the rotor and engages behind the shoulder of the bearing sleeve with latching means.
  • the pump stator can be pressed against the shoulder of the bearing sleeve by a housing of the delivery unit.
  • the bearing sleeve is attached to the pump stator in such a way that the bearing sleeve is arranged concentrically to the drive axis of the drive shaft. In this way, an alignment or centering of the components of the pump unit with respect to one another is achieved, so that the radial forces on the rotating components can be reduced and the wear and the reduction in pump efficiency resulting from the internal leakage can be minimized.
  • At least one sealant is provided which seals a gap between the bearing sleeve and the drive shaft. In this way, the internal losses between the high-pressure side and the low-pressure side in the form of returning medium to the suction point of the delivery unit are reduced and the pump efficiency is increased.
  • the bearing sleeve has three step sections with different diameters, a sliding bearing being provided on each of the two outer step sections and the at least one sealing means being provided on the middle step section. In this way, the tread for the sealant can be produced particularly inexpensively.
  • the bearing sleeve is conical, since this simplifies the deep-drawing of the bearing sleeve.
  • the drive shaft In order to obtain a constant sealing gap, seen in the axial direction, in spite of the taper of the bearing sleeve, the drive shaft must also be conical in a corresponding manner. Due to the constant sealing gap seen in the axial direction, a good seal is achieved and a hydrodynamic lubricating film is generated.
  • the bearing sleeve is made of a stainless steel and the drive shaft, the rotor and the pump stator are made of a plastic, in particular a thermoset. This selection of materials makes the conveyor unit suitable for conveying aqueous urea solutions.
  • the drive shaft is coupled to a rotatably mounted magnet armature which surrounds the drive shaft in a ring and is rotatably mounted on the bearing sleeve.
  • the bearing sleeve provides a plain bearing for the drive shaft and a plain bearing for the magnet armature.
  • the pump stator has an upper layer facing the rotor and a carrier layer facing away from the rotor, the upper layer being made of a thermosetting plastic and the carrier layer being made of a thermoplastic. Due to the more flexible plastic of the carrier layer, the stator can adapt better to the rotor, so that gaps between the teeth of the rotor and pump stator are reduced.
  • the drive shaft has an upper layer facing the bearing sleeve and a carrier layer facing away from the bearing sleeve, the The top layer is made of a thermosetting plastic and the backing layer is made of a thermoplastic. In this way, the dimensional accuracy of the drive shaft is improved.
  • Fig. 1 shows a sectional view of a delivery unit with a pump unit according to the invention according to a first embodiment.
  • the delivery unit according to the invention is used to deliver fluid delivery media.
  • the conveyor unit 1 comprises a drive shaft 2 and a rotor 4 driven by the drive shaft 2 and rotatably arranged in a pump stator 3.
  • the drive shaft 2, the pump stator 3 and the rotor 4 are made, for example, of a plastic, in particular a thermoset.
  • the drive shaft 2 has an inclined sliding plane 5 which interacts with the rotor 4 and causes the rotor 4 with its rotor axis 6 to wobble around a drive axis 7 of the drive shaft 2.
  • the inclined sliding plane 5 is provided, for example, on an end face of a shoulder section 10 of the drive shaft 2.
  • the rotor 4 has on its end facing away from the drive shaft 2 a toothing 11 which meshes with a toothing 12 formed on the pump stator 3, 3 working spaces for conveying the conveying medium being formed between the toothing 11 of the rotor 4 and the toothing 12 of the pump stator.
  • the pump stator 3 can be made of a single material or alternatively can comprise a top layer facing the rotor 4 and a carrier layer facing away from the rotor 4, the top layer being made of a thermosetting plastic and the carrier layer being made of a thermoplastic.
  • magnets 14 are provided, by means of which the drive shaft 2 can be driven in cooperation with a magnetic field of an electrical winding 15 of a stator 16.
  • the stator 16 is designed, for example, as a stator laminated core.
  • the magnets 14 are provided on a magnet armature 17 which is rotatably mounted about the drive axis 7 and which surrounds the drive shaft 2 in a ring shape and is mechanically connected to the drive shaft 2.
  • the magnet armature 17 is positively connected to the magnet armature 17, according to the exemplary embodiment via a toothing 18, 19.
  • the magnet armature 17 has a through opening 22 for receiving a section of the drive shaft 2.
  • the toothing 18 is formed, which interacts mechanically with the toothing 19 of the drive shaft 2.
  • the teeth 18, 19 are designed as straight teeth, for example as involute teeth or circular arc teeth.
  • the drive shaft 2 can be displaced in the axial direction with respect to the drive axis 7 with respect to the magnet armature 17, so that the weight of the magnets 14 is supported on the bearing sleeve 24 via the support disk 30 and does not act on the drive shaft 2.
  • the magnet armature 17 has a magnet carrier 20 holding the magnets 14, which is made of plastic and encloses the magnets 14 in the radial direction on the inside facing the drive shaft 2, in the circumferential direction between the magnets 14 and in the axial direction on the end faces.
  • the hollow cylindrical magnet armature 17 is surrounded by the stator 16 and arranged in a first, for example pot-shaped, housing section 23.
  • the stator 16 is provided, for example, on the outer circumference of the first housing section 23.
  • a bearing sleeve 24 is provided for mounting the drive shaft 2, which extends into the through opening 22 of the magnet armature 17 and in which the drive shaft 2 is rotatably mounted.
  • the bearing sleeve 24 is, for example, cylindrical and / or sheet-shaped.
  • the section of the drive shaft 2 which is mounted in the bearing sleeve 24 is also cylindrical.
  • the Bearing sleeve 24 is slightly conical and the corresponding section of the drive shaft 2 is also conical at the same angle.
  • the bearing sleeve 24 is made of a sheet metal, which consists for example of stainless steel.
  • the drive shaft 2 projects in the axial direction with respect to the drive axis 7 with the shoulder section 10 from the bearing sleeve 24.
  • the drive shaft 2 can be made from a single material or alternatively can have an upper layer facing the bearing sleeve 24 and a carrier layer facing away from the bearing sleeve 24, the top layer being made of a thermosetting plastic and the carrier layer being made of a thermoplastic.
  • a bearing ring 25 is fastened to an end face of the magnet armature 17 and has a sleeve section 28 and a disk section 29 which projects in the radial direction with respect to the drive axis 7.
  • the sleeve section 28 of the bearing ring 25 is rotatably mounted on the bearing sleeve 24.
  • the disk section 29 of the bearing ring 25 forms an axial slide bearing with a support disk 30 resting on the housing section 23.
  • the support disk 30 is made of stainless steel, for example, and the bearing ring 25 is made of high-temperature-resistant thermoplastic, in particular PEEK.
  • the drive shaft 2, the pump stator 3, the rotor 4 and the bearing sleeve 24 form a pump unit 26.
  • the bearing sleeve 24 has at its end facing the rotor 4 a shoulder 31 which is in the form of an annular disk in the radial direction with respect to the drive axis 7 protrudes and on which the pump stator 3 is held by means of at least one holding means 27.
  • the at least one holding means 27 establishes a positive and / or non-positive connection between the shoulder 31 of the bearing sleeve 24 and the pump stator 3, for example a snap, clamp, press or screw connection.
  • the at least one holding means 27 is formed by a deformed ring collar 46 which is provided on the shoulder 31 of the bearing sleeve 24 and engages behind the pump stator 3.
  • a receiving section 32 for receiving the pump stator 3 is formed by the shoulder 31 and the annular collar 46 of the bearing sleeve 24.
  • the bearing sleeve 24 is fastened to the pump stator 3 in such a way that the bearing sleeve 24 is concentric with the drive axis 7 the drive shaft 2 is arranged.
  • the pump stator 3 and the receiving section 32 of the bearing sleeve 24 enclose a space in which the shoulder section 10 of the drive shaft 2 and the rotor 4 are arranged.
  • the shoulder 31 of the bearing sleeve 24 bears against the support disk 30.
  • a second, for example lid-shaped, housing section 34 which closes the first housing section 23, presses the support disk 30 with at least one holding section 36 against a shoulder 35 of the first housing section 23 and the pump stator 3 against the shoulder 31 of the bearing sleeve 24.
  • the first housing section 23 and the second housing section 34 together form a housing of the conveying unit 1.
  • the second housing section 34 together with the support disk 30 and the receiving section 32 of the bearing sleeve 24, encloses an annular space 37 in which, for example, an annular sealing element 38 is arranged.
  • a channel 40 is formed in the drive shaft 2, in which a spring 41 is provided, which is biased at one end by a bearing pin 42 protruding into the channel 40 and presses the drive shaft 2 against the rotor 4 with its other end.
  • the bearing pin 42 is fastened, for example, to a bottom 43 of the cup-shaped first housing section 23.
  • a ball 44 can be provided, which rotates with the spring 41 and the drive shaft 2 and represents a low-wear connection to the bearing pin 42.
  • the channel 40 is, for example, a through-channel extending in the axial direction, which runs from an end facing away from the rotor 4 to the end facing the rotor 4 with the inclined sliding plane 5 and leads fluid on the suction side to the working chambers or discharges it on the pressure side.
  • Fig. 2 shows an exploded view of the conveyor unit after Fig. 1 .
  • Fig. 2 shows an exploded view of the conveyor unit after Fig. 1 .
  • Fig. 1 parts that remain the same or have the same function are identified by the same reference numerals.
  • Fig. 3 shows the pump unit according to the first embodiment.
  • Fig. 4 shows a pump unit according to the second embodiment.
  • the at least one holding means 27 is designed as a separate retaining ring 47, which is arranged on the side of the pump stator 3 facing away from the rotor 4 and engages behind the shoulder 31 of the bearing sleeve 24 with locking means 48, for example resilient locking arms.
  • the retaining ring 47 is made of stainless steel, for example.
  • Fig. 5 shows an exploded view of the pump unit according to Fig. 4 .
  • Fig. 6 shows a pump unit according to a third embodiment.
  • At least one sealant 50 is provided on a gap 51 between the bearing sleeve 24 and the drive shaft 2, which seals the gap 51.
  • the bearing sleeve 24 has, for example, four step sections 24.1, each with a different diameter.
  • a slide bearing is formed on each of the two outer step sections 24.1 of the bearing sleeve 24.
  • the at least one sealing means 50 is provided on the drive shaft 2 in a groove 53.
  • the sealant 50 comprises, for example, a PTFE sealing ring which interacts in the groove 53 with an EPDM O-ring.
  • a shim can be provided between the shoulder 31 of the bearing sleeve 24 and the pump stator 24 in order to determine the gap dimension between the drive shaft 2 and the bearing sleeve 24. This gap dimension is important in order to generate a hydrodynamic sliding film on the rotating drive shaft 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Rotary Pumps (AREA)

Description

    Stand der Technik
  • Die Erfindung geht aus von einem Förderaggregat nach der Gattung des Hauptanspruchs.
    Es ist schon ein Förderaggregat aus der DE102014209140 A1 bekannt, mit einer Antriebswelle und einem von der Antriebswelle angetriebenen, in einem Pumpenstator drehbar angeordneten Rotor. Die Antriebswelle weist eine mit dem Rotor zusammenwirkende schiefe Gleitebene auf, die den Rotor mit seiner Rotorachse um eine Antriebsachse der Antriebswelle taumeln lässt. Der Rotor hat an seiner der Antriebswelle abgewandten Stirnseite eine Verzahnung, die mit einer an dem Pumpenstator ausgebildeten Verzahnung kämmt. Zwischen der Verzahnung des Rotors und der Verzahnung des Pumpenstators sind Arbeitsräume zum Fördern von Fördermedien gebildet. Die Antriebswelle, der Rotor und der Pumpenstator sind einzelne Pumpenkomponenten, die im gemeinsamen Zusammenwirken bestimmte Eigenschaften wie beispielsweise Fördermenge, Wirkungsgrad und Druckaufbau innerhalb bestimmter Toleranzen zu erfüllen haben. Ob die Pumpenkomponenten gemeinsam diese geforderten Eigenschaften erfüllen können, kann erst am fertigen Produkt, also nach dem vollständigen Zusammenbau des Förderaggregates, in einem Funktionstest getestet werden können.
  • Vorteile der Erfindung
  • Das erfindungsgemäße Förderaggregat mit den kennzeichnenden Merkmalen des Hauptanspruchs hat demgegenüber den Vorteil, dass die Antriebswelle, der Rotor und der Pumpenstator eine Pumpeneinheit bilden, die für sich allein bereits auf die Erfüllung der nötigen Eigenschaften getestet werden kann. Bei diesem Funktionstest wird ein Antrieb eines Prüfstands zum Antrieb der Pumpeneinheit verwendet. Die Pumpeneinheit wird erreicht, indem die Antriebswelle in einer Lagerhülse angeordnet ist, die eine in radialer Richtung bezüglich der Antriebsachse auskragende Schulter aufweist, an der der Pumpenstator mittels von zumindest einem Haltemittel gehalten ist. Erfüllt die Pumpeneinheit die erforderlichen Eigenschaften im Funktionstest nicht, wird die Pumpeneinheit in einem Nachbearbeitungsschritt nachgebessert. Diese Nachbesserung kann sofort nach dem Zusammenbau der Pumpeneinheit und nicht erst nach dem Zusammenbau von Pumpeneinheit und Antrieb, also nicht erst nach Fertigstellung des gesamten Förderaggregates erfolgen. Dadurch werden die Herstellungskosten verringert.
  • Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Hauptanspruch angegebenen Förderaggregats möglich.
  • Vorteilhafterweise kann das zumindest eine Haltemittel eine formschlüssige und/oder kraftschlüssige Verbindung zwischen der Schulter der Lagerhülse und dem Pumpenstator erreichen, insbesondere eine Rast-, Klemm-, Press- oder Schraubverbindung.
  • Nach einem ersten Ausführungsbeispiel wird das zumindest eine Haltemittel durch einen umgeformten Ringkragen gebildet, der an der Schulter der Lagerhülse vorgesehen ist und den Pumpenstator hintergreift. Nach einem zweiten Ausführungsbeispiel wird das zumindest eine Haltemittel durch einen Haltering gebildet, der auf der dem Rotor abgewandten Seite des Pumpenstators angeordnet ist und mit Rastmitteln die Schulter der Lagerhülse hintergreift. Nach einem dritten Ausführungsbeispiel kann der Pumpenstator von einem Gehäuse des Förderaggregates gegen die Schulter der Lagerhülse gedrückt werden.
  • Weiterhin vorteilhaft ist, wenn die Lagerhülse derart am Pumpenstator befestigt ist, dass die Lagerhülse konzentrisch zur Antriebsachse der Antriebswelle angeordnet ist. Auf diese Weise wird eine Ausrichtung bzw. Zentrierung der Bauteile der Pumpeneinheit zueinander erzielt, so dass die Radialkräfte an den drehenden Bauteilen verringert werden können und dadurch der Verschleiß und die durch die interne Leckage resultierende Reduzierung der Pumpeneffizienz minimiert werden kann.
  • Sehr vorteilhaft ist es, wenn zumindest ein Dichtmittel vorgesehen ist, das einen Spalt zwischen der Lagerhülse und der Antriebswelle abdichtet. Auf diese Weise werden die in Form von rücklaufendem Medium zur Ansaugstelle des Förderaggregates auftretenden internen Verluste zwischen Hochdruckseite und Niederdruckseite verringert und die Pumpeneffizienz erhöht.
  • Des Weiteren vorteilhaft ist, wenn die Lagerhülse drei Stufenabschnitte mit unterschiedlichem Durchmesser aufweist, wobei an den beiden äußeren Stufenabschnitten jeweils ein Gleitlager und an dem mittleren Stufenabschnitt das zumindest eine Dichtmittel vorgesehen ist. Auf diese Weise lässt sich die Lauffläche für das Dichtmittel besonders kostengünstig herstellen.
  • Darüber hinaus vorteilhaft ist, wenn die Lagerhülse konisch ausgeführt ist, da dies das Tiefziehen der Lagerhülse vereinfacht. Um trotz der Konizität der Lagerhülse einen in axialer Richtung gesehen konstanten Dichtspalt zu erhalten, muss auch die Antriebswelle in entsprechender Weise konisch ausgeführt sein. Durch den in axialer Richtung gesehen konstanten Dichtspalt wird eine gute Abdichtung erreicht und ein hydrodynamischer Schmierfilm erzeugt.
  • Vorteilhaft ist, wenn die Lagerhülse aus einem Edelstahl und die Antriebswelle, der Rotor und der Pumpenstator aus einem Kunststoff, insbesondere einem Duroplast, hergestellt sind. Durch diese Materialauswahl ist das Förderaggregat geeignet, wässrige Harnstofflösungen zu fördern.
  • Außerdem vorteilhaft ist, wenn die Antriebswelle mit einem drehbar gelagerten Magnetanker gekoppelt ist, der die Antriebswelle ringförmig umgibt und auf der Lagerhülse drehbar gelagert ist. Die Lagerhülse stellt auf diese Weise eine Gleitlagerung für die Antriebswelle und eine Gleitlagerung für den Magnetanker bereit.
  • Besonders vorteilhaft ist, wenn der Pumpenstator eine dem Rotor zugewandte Oberschicht und eine dem Rotor abgewandte Trägerschicht aufweist, wobei die Oberschicht aus einem Duroplast und die Trägerschicht aus einem Thermoplast hergestellt ist. Durch den flexibleren Kunststoff der Trägerschicht kann sich der Stator besser an den Rotor anpassen, so dass Spalte zwischen den Verzahnungen von Rotor und Pumpenstator verringert werden.
  • Auch vorteilhaft ist, wenn die Antriebswelle eine der Lagerhülse zugewandte Oberschicht und eine der Lagerhülse abgewandte Trägerschicht aufweist, wobei die Oberschicht aus einem Duroplast und die Trägerschicht aus einem Thermoplast hergestellt ist. Auf diese Weise wird die Maßhaltigkeit der Antriebswelle verbessert.
  • Zeichnung
  • Drei Ausführungsbeispiele der Erfindung sind in der Zeichnung vereinfacht dargestellt und in der nachfolgenden Beschreibung näher erläutert.
  • Fig.1
    zeigt eine Schnittansicht eines Förderaggregates mit einer erfindungsgemäßen Pumpeneinheit nach einem ersten Ausführungsbeispiel,
    Fig.2
    eine Explosionsdarstellung des Förderaggregates nach Fig.1,
    Fig.3
    die Pumpeneinheit nach dem ersten Ausführungsbeispiel,
    Fig.4
    eine Pumpeneinheit nach einem zweiten Ausführungsbeispiel,
    Fig.5
    eine Explosionsansicht der Pumpeneinheit nach Fig.4 und
    Fig.6
    eine Pumpeneinheit nach einem dritten Ausführungsbeispiel.
    Beschreibung der Ausführungsbeispiele
  • Fig.1 zeigt eine Schnittansicht eines Förderaggregates mit einer erfindungsgemäßen Pumpeneinheit nach einem ersten Ausführungsbeispiel.
  • Das erfindungsgemäße Förderaggregat dient dem Fördern von fluiden Fördermedien.
  • Das Förderaggregat 1 umfasst eine Antriebswelle 2 und einen von der Antriebswelle 2 angetriebenen, in einem Pumpenstator 3 drehbar angeordneten Rotor 4. Die Antriebswelle 2, der Pumpenstator 3 und der Rotor 4 sind beispielsweise aus einem Kunststoff, insbesondere einem Duroplast, hergestellt. Die Antriebswelle 2 weist eine mit dem Rotor 4 zusammenwirkende schiefe Gleitebene 5 auf, die den Rotor 4 mit seiner Rotorachse 6 um eine Antriebsachse 7 der Antriebswelle 2 taumeln lässt. Die schiefe Gleitebene 5 ist beispielsweise an einer Stirnseite eines Schulterabschnittes 10 der Antriebswelle 2 vorgesehen. Der Rotor 4 hat an seiner der Antriebswelle 2 abgewandten Stirnseite eine Verzahnung 11, die mit einer an dem Pumpenstator 3 ausgebildeten Verzahnung 12 kämmt, wobei zwischen der Verzahnung 11 des Rotors 4 und der Verzahnung 12 des Pumpenstators 3 Arbeitsräume zur Förderung des Fördermediums gebildet sind.
  • Der Pumpenstator 3 kann aus einem einzigen Material hergestellt sein oder alternativ eine dem Rotor 4 zugewandte Oberschicht und eine dem Rotor 4 abgewandte Trägerschicht umfassen, wobei die Oberschicht aus einem Duroplast und die Trägerschicht aus einem Thermoplast hergestellt ist.
  • Weiterhin sind Magnete 14 vorgesehen, mittels denen die Antriebswelle 2 im Zusammenwirken mit einem Magnetfeld einer elektrischen Wicklung 15 eines Stators 16 antreibbar ist. Der Stator 16 ist beispielsweise als Statorblechpaket ausgeführt.
  • Die Magnete 14 sind an einem um die Antriebsachse 7 drehbar gelagerten Magnetanker 17 vorgesehen, der die Antriebswelle 2 ringförmig umgibt und mit der Antriebswelle 2 mechanisch verbunden ist. Beispielsweise ist der Magnetanker 17 formschlüssig, nach dem Ausführungsbeispiel über eine Verzahnung 18,19, mit dem Magnetanker 17 verbunden. Der Magnetanker 17 weist eine Durchgangsöffnung 22 zum Aufnehmen eines Abschnitts der Antriebswelle 2 auf. In der Durchgangsöffnung 22 ist die Verzahnung 18 ausgebildet ist, die mit der Verzahnung 19 der Antriebswelle 2 mechanisch zusammenwirkt. Die Verzahnung 18,19 ist als Geradverzahnung ausgebildet, beispielsweise als Evolventenverzahnung oder Kreisbogenverzahnung. Dadurch ist die Antriebswelle 2 in axialer Richtung bezüglich der Antriebsachse 7 gegenüber dem Magnetanker 17 verschiebbar, so dass das Gewicht der Magnete 14 über die Stützscheibe 30 auf der Lagerhülse 24 gelagert ist und nicht auf die Antriebswelle 2 wirkt. Der Magnetanker 17 weist einen die Magnete 14 haltenden Magnetträger 20 auf, der aus Kunststoff hergestellt ist und die Magnete 14 in radialer Richtung an der der Antriebswelle 2 zugewandten Innenseite, in Umfangsrichtung zwischen den Magneten 14 und in axialer Richtung an den Stirnseiten umschließt.
  • Der hohlzylinderförmige Magnetanker 17 ist von dem Stator 16 umgeben und in einem ersten, beispielsweise topfförmigen Gehäuseabschnitt 23 angeordnet. Der Stator 16 ist beispielsweise am Außenumfang des ersten Gehäuseabschnitts 23 vorgesehen.
  • Zur Lagerung der Antriebswelle 2 ist eine Lagerhülse 24 vorgesehen, die in die Durchgangsöffnung 22 des Magnetankers 17 hineinreicht und in der die Antriebswelle 2 drehbar gelagert ist. Die Lagerhülse 24 ist beispielsweise zylinderförmig und/oder blechförmig ausgeführt. Entsprechend ist der Abschnitt der Antriebswelle 2, der in der Lagerhülse 24 gelagert ist, ebenso zylinderförmig ausgebildet. Alternativ kann die die Lagerhülse 24 geringfügig konisch und der entsprechende Abschnitt der Antriebswelle 2 mit gleichem Winkel ebenfalls konisch ausgeführt sein.
  • Die Lagerhülse 24 ist aus einem Blech, das beispielsweise aus Edelstahl besteht, hergestellt. Die Antriebswelle 2 steht in axialer Richtung bezüglich der Antriebsachse 7 mit dem Schulterabschnitt 10 aus der Lagerhülse 24 heraus. Die Antriebswelle 2 kann aus einem einzigen Material hergestellt sein oder alternativ eine der Lagerhülse 24 zugewandte Oberschicht und eine der Lagerhülse 24 abgewandte Trägerschicht aufweisen, wobei die Oberschicht aus einem Duroplast und die Trägerschicht aus einem Thermoplast hergestellt ist.
  • Zur Lagerung des Magnetankers 17 ist an einer Stirnseite des Magnetankers 17 ein Lagerring 25 befestigt, der einen Hülsenabschnitt 28 und einen in radialer Richtung bezüglich der Antriebsachse 7 auskragenden Scheibenabschnitt 29 aufweist. Der Hülsenabschnitt 28 des Lagerrings 25 ist drehbar auf der Lagerhülse 24 gelagert. Der Scheibenabschnitt 29 des Lagerrings 25 bildet mit einer am Gehäuseabschnitt 23 anliegenden Stützscheibe 30 ein axiales Gleitlager. Die Stützscheibe 30 ist beispielsweise aus Edelstahl und der Lagerring 25 aus hochtemperaturbeständigem thermoplastischen Kunststoff, insbesondere PEEK, hergestellt.
  • Erfindungsgemäß bilden die Antriebswelle 2, der Pumpenstator 3, der Rotor 4 und die Lagerhülse 24 eine Pumpeneinheit 26. Zur Bildung der Pumpeneinheit 26 weist die Lagerhülse 24 an ihrem dem Rotor 4 zugewandten Ende eine Schulter 31 auf, die ringscheibenförmig in radialer Richtung bezüglich der Antriebsachse 7 auskragt und an der der Pumpenstator 3 mittels von zumindest einem Haltemittel 27 gehalten ist. Nach dem ersten und zweiten Ausführungsbeispiel der Pumpeneinheit 26 stellt das zumindest eine Haltemittel 27 eine formschlüssige und/oder kraftschlüssige Verbindung zwischen der Schulter 31 der Lagerhülse 24 und dem Pumpenstator 3 her, beispielsweise eine Rast-, Klemm-, Press- oder Schraubverbindung.
  • Nach dem ersten Ausführungsbeispiel der Pumpeneinheit 26 ist das zumindest eine Haltemittel 27 durch einen umgeformten Ringkragen 46 gebildet, der an der Schulter 31 der Lagerhülse 24 vorgesehen ist und den Pumpenstator 3 hintergreift. Durch die Schulter 31 und den Ringkragen 46 der Lagerhülse 24 wird ein Aufnahmeabschnitt 32 zur Aufnahme des Pumpenstators 3 gebildet. Die Lagerhülse 24 ist derart am Pumpenstator 3 befestigt, dass die Lagerhülse 24 konzentrisch zur Antriebsachse 7 der Antriebswelle 2 angeordnet ist. Der Pumpenstator 3 und der Aufnahmeabschnitt 32 der Lagerhülse 24 umschließen einen Raum, in dem der Schulterabschnitt 10 der Antriebswelle 2 und der Rotor 4 angeordnet sind.
  • Die Schulter 31 der Lagerhülse 24 liegt an der Stützscheibe 30 an.
  • Weiterhin ist ein zweiter, beispielsweise deckelförmiger Gehäuseabschnitt 34 vorgesehen, der den ersten Gehäuseabschnitt 23 verschließt, die Stützscheibe 30 mit zumindest einem Halteabschnitt 36 gegen einen Absatz 35 des ersten Gehäuseabschnitts 23 und den Pumpenstator 3 gegen die Schulter 31 der Lagerhülse 24 drückt. Der erste Gehäuseabschnitt 23 und der zweite Gehäuseabschnitt 34 bilden gemeinsam ein Gehäuse des Förderaggregates 1.
  • Der zweite Gehäuseabschnitt 34 schließt zusammen mit dem Stützscheibe 30 und dem Aufnahmeabschnitt 32 der Lagerhülse 24 einen ringförmigen Raum 37 ein, in dem ein beispielsweise ringförmiges Dichtelement 38 angeordnet ist.
  • In der Antriebswelle 2 ist ein Kanal 40 ausgebildet, in dem eine Feder 41 vorgesehen ist, die an ihrem einen Ende von einem in den Kanal 40 hineinragenden Lagerstift 42 vorgespannt ist und mit ihrem anderen Ende die Antriebswelle 2 gegen den Rotor 4 drückt. Der Lagerstift 42 ist beispielsweise an einem Boden 43 des topfförmigen ersten Gehäuseabschnitts 23 befestigt. Zwischen der Feder, die beispielsweise eine Schraubenfeder ist, und dem Lagerstift 42 kann eine Kugel 44 vorgesehen sein, die mit der Feder 41 und der Antriebswelle 2 dreht und eine verschleißarme Verbindung zum Lagerstift 42 darstellt.
  • Der Kanal 40 ist beispielsweise ein in axialer Richtung verlaufender Durchgangskanal, der von einer dem Rotor 4 abgewandten Stirnseite zu der dem Rotor 4 zugewandten Stirnseite mit der schiefen Gleitebene 5 verläuft und Fluid saugseitig zu den Arbeitskammern hinleitet oder druckseitig abführt.
  • Fig.2 zeigt eine Explosionsdarstellung des Förderaggregates nach Fig.1.
    Bei der Ansicht nach Fig.2 sind die gegenüber der Ansicht nach Fig.1 gleichbleibenden oder gleichwirkenden Teile durch die gleichen Bezugszeichen gekennzeichnet.
  • Fig.3 zeigt die Pumpeneinheit nach dem ersten Ausführungsbeispiel.
  • Fig.4 zeigt eine Pumpeneinheit nach dem zweiten Ausführungsbeispiel.
  • Bei der Pumpeneinheit nach dem zweiten Ausführungsbeispiel ist das zumindest eine Haltemittel 27 als ein separater Haltering 47 ausgebildet, der auf der dem Rotor 4 abgewandten Seite des Pumpenstators 3 angeordnet ist und die Schulter 31 der Lagerhülse 24 mit Rastmitteln 48, beispielsweise federnden Rastarmen, hintergreift. Der Haltering 47 ist beispielsweise aus Edelstahl hergestellt.
  • Fig.5 zeigt eine Explosionsansicht der Pumpeneinheit nach Fig.4.
  • Fig.6 zeigt eine Pumpeneinheit nach einem dritten Ausführungsbeispiel.
  • Bei der Pumpeneinheit 26 nach dem dritten Ausführungsbeispiel ist an einem Spalt 51 zwischen der Lagerhülse 24 und der Antriebswelle 2 zumindest ein Dichtmittel 50 vorgesehen ist, das den Spalt 51 abdichtet.
  • Die Lagerhülse 24 hat beispielsweise vier Stufenabschnitte 24.1 mit jeweils unterschiedlichem Durchmesser. An den beiden äußeren Stufenabschnitten 24.1 der Lagerhülse 24 ist jeweils ein Gleitlager gebildet. In axialer Richtung gesehen zwischen diesen Gleitlagern ist an der Antriebswelle 2 in einer Nut 53 das zumindest eine Dichtmittel 50 vorgesehen. Das Dichtmittel 50 umfasst beispielsweise einen PTFE-Dichtring, der in der Nut 53 mit einem EPDM-O-Ring zusammenwirkt.
  • Zwischen der Schulter 31 der Lagerhülse 24 und dem Pumpenstator 24 kann eine nicht dargestellte Ausgleichsscheibe vorgesehen sein, um das Spaltmaß zwischen der Antriebswelle 2 und der Lagerhülse 24 zu bestimmen. Dieses Spaltmaß ist wichtig, um einen hydrodynamischen Gleitfilm auf der drehenden Antriebswelle 2 zu erzeugen.

Claims (11)

  1. Förderaggregat (1) mit einer Antriebswelle (2) und einem von der Antriebswelle (2) angetriebenen, in einem Pumpenstator (3) drehbar angeordneten Rotor (4), wobei die Antriebswelle (2) eine mit dem Rotor (4) zusammenwirkende schiefe Gleitebene (5) aufweist, die den Rotor (4) mit seiner Rotorachse (6) um eine Antriebsachse (7) der Antriebswelle (2) taumeln lässt, wobei der Rotor (4) an seiner der Antriebswelle (2) abgewandten Stirnseite eine Verzahnung (11) aufweist, die mit einer an dem Pumpenstator (3) ausgebildeten Verzahnung (12) kämmt, wobei zwischen der Verzahnung (11) des Rotors (4) und der Verzahnung (12) des Pumpenstators (3) Arbeitsräume gebildet sind, dadurch gekennzeichnet, dass die Antriebswelle (2) in einer Lagerhülse (24) angeordnet ist, die eine in radialer Richtung bezüglich der Antriebsachse (7) auskragende Schulter (31) aufweist, an der der Pumpenstator (3) mittels von zumindest einem Haltemittel (27) gehalten ist.
  2. Förderaggregat nach Anspruch 1, dadurch gekennzeichnet, dass das zumindest eine Haltemittel (27) eine formschlüssige und/oder kraftschlüssige Verbindung zwischen der Schulter (31) der Lagerhülse (24) und dem Pumpenstator (3) erreicht, insbesondere eine Rast-, Klemm-, Press- oder Schraubverbindung.
  3. Förderaggregat nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass das zumindest eine Haltemittel (27) ein umgeformter Ringkragen (46) ist, der an der Schulter (31) der Lagerhülse (24) vorgesehen ist und den Pumpenstator (3) hintergreift, oder einen Haltering (47) umfasst, der auf der dem Rotor (4) abgewandten Seite des Pumpenstators (3) angeordnet ist und mit Rastmitteln (48) die Schulter (31) der Lagerhülse (24) hintergreift.
  4. Förderaggregat nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Lagerhülse (24) derart am Pumpenstator (3) befestigt ist, dass die Lagerhülse (24) konzentrisch zur Antriebsachse (7) der Antriebswelle (2) angeordnet ist.
  5. Förderaggregat nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zumindest ein Dichtmittel (50) vorgesehen ist, das einen Spalt (51) zwischen der Lagerhülse (24) und der Antriebswelle (2) abdichtet.
  6. Förderaggregat nach Anspruch 5, dadurch gekennzeichnet, dass die Lagerhülse (24) drei oder vier Stufenabschnitte (24.1) mit unterschiedlichem Durchmesser aufweist, wobei an den beiden äußeren Stufenabschnitten (24.1) jeweils ein Gleitlager und in axialer Richtung gesehen zwischen den Gleitlagern das zumindest eine Dichtmittel (50) in einer Nut (53) der Antriebswelle (2) vorgesehen ist.
  7. Förderaggregat nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die miteinander zusammenwirkenden Abschnitte der Antriebswelle (2) und der Lagerhülse (24) konisch ausgeführt sind.
  8. Förderaggregat nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Lagerhülse (24) aus einem Edelstahl und die Antriebswelle (2), der Rotor (4) und der Pumpenstator (3) aus einem Kunststoff, insbesondere einem Duroplast, hergestellt sind.
  9. Förderaggregat nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Antriebswelle (2) mit einem drehbar gelagerten Magnetanker (17) gekoppelt ist, der die Antriebswelle (2) ringförmig umgibt und auf der Lagerhülse (24) drehbar gelagert ist.
  10. Förderaggregat nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Pumpenstator eine dem Rotor zugewandte Oberschicht und eine dem Rotor abgewandte Trägerschicht aufweist, wobei die Oberschicht aus einem Duroplast und die Trägerschicht aus einem Thermoplast hergestellt ist.
  11. Förderaggregat nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Antriebswelle eine der Lagerhülse zugewandte Oberschicht und eine der Lagerhülse abgewandte Trägerschicht aufweist, wobei die Oberschicht aus einem Duroplast und die Trägerschicht aus einem Thermoplast hergestellt ist.
EP17731127.1A 2016-08-18 2017-06-14 Förderaggregat Active EP3500732B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016215474.5A DE102016215474A1 (de) 2016-08-18 2016-08-18 Förderaggregat
PCT/EP2017/064621 WO2018033273A1 (de) 2016-08-18 2017-06-14 Förderaggregat

Publications (2)

Publication Number Publication Date
EP3500732A1 EP3500732A1 (de) 2019-06-26
EP3500732B1 true EP3500732B1 (de) 2020-04-15

Family

ID=59078058

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17731127.1A Active EP3500732B1 (de) 2016-08-18 2017-06-14 Förderaggregat

Country Status (5)

Country Link
EP (1) EP3500732B1 (de)
KR (1) KR20190034673A (de)
CN (1) CN109563739B (de)
DE (1) DE102016215474A1 (de)
WO (1) WO2018033273A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020124825A1 (de) 2020-09-23 2022-03-24 Kolektor Group D.O.O. Motor-Pumpe-Einheit
DE102021103306A1 (de) 2021-02-12 2022-08-18 Kolektor Group D.O.O. Handgeführtes Druckflüssigkeitsgerät

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3687578A (en) * 1970-09-04 1972-08-29 Trw Inc Hydraulic pump motor
US5708311A (en) * 1996-07-17 1998-01-13 Vickers, Inc. Integrated electric motor driven in line hydraulic pump
DE29709007U1 (de) * 1997-05-22 1997-07-24 Lieu, Chen-Ta, Feng Yuan, Taichung Magnetisch kuppelbare Pumpe
AU4297800A (en) * 1999-04-20 2000-11-02 Forschungszentrum Julich Gmbh Rotor device
DE102010064190A1 (de) * 2010-12-27 2012-06-28 Robert Bosch Gmbh Elektrische Maschine mit verbesserten Wärmemanagement
DE102011015110B3 (de) * 2011-03-19 2012-01-26 Ebm-Papst St. Georgen Gmbh & Co. Kg Dosiersystem
DE102014209140A1 (de) 2013-05-23 2014-11-27 Robert Bosch Gmbh Förderaggregat

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3500732A1 (de) 2019-06-26
CN109563739A (zh) 2019-04-02
CN109563739B (zh) 2021-04-30
DE102016215474A1 (de) 2018-02-22
WO2018033273A1 (de) 2018-02-22
KR20190034673A (ko) 2019-04-02

Similar Documents

Publication Publication Date Title
DE102009028148A1 (de) Zahnradpumpe
DE3152000A1 (de) Elektrisch betaetigbare fluessigkeitspumpe
EP1725775A1 (de) Anordnung mit einem elektronisch kommutierten aussenläufermotor
EP2056432A1 (de) Magnetische Antriebsanordnung
EP1474611B1 (de) Flüssigkeitspumpe
EP3500732B1 (de) Förderaggregat
DE102014226002B4 (de) Innenzahnradpumpe
EP0918932B1 (de) Elektromotor-/pumpenaggregat
EP3084126B1 (de) Taumelpumpe mit im stator gelagerter welle
DE102011017339A1 (de) Kreiselpumpe
DE102019118708A1 (de) Druckversorgungseinrichtung mit einer Zahnradpumpe
DE2922731A1 (de) Kraftstoff-foerderaggregat
EP3501088B1 (de) Förderaggregat
DE3219513C2 (de)
DE3516061A1 (de) Kreiselpumpe
WO2020161116A1 (de) Zahnradpumpe
WO2018033275A1 (de) Förderaggregat
DE102015108923B3 (de) Elektrisch angetriebene Flüssigkeits-Verdrängerpumpe
DE2922710A1 (de) Kraftstoff-foerderaggregat
DE102010041237A1 (de) Pumpe mit Elektromotor
WO2012038199A2 (de) Pumpe mit elektromotor
WO2018158112A1 (de) Förderaggregat
DE202013005458U1 (de) Vakuumpumpe
DE202019107191U1 (de) Druckversorgungseinrichtung mit einer Zahnradpumpe
DE102020215571A1 (de) Pumpenvorrichtung für ein hydraulisches System eines Kraftfahrzeugs, hydraulisches System

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190318

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200108

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ROBERT BOSCH GMBH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017004773

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1257508

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200515

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200415

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200716

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200815

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017004773

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

26N No opposition filed

Effective date: 20210118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200614

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200614

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230622

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1257508

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220614

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230817

Year of fee payment: 7