EP3489588B1 - System for heating water for domestic use - Google Patents

System for heating water for domestic use Download PDF

Info

Publication number
EP3489588B1
EP3489588B1 EP18208398.0A EP18208398A EP3489588B1 EP 3489588 B1 EP3489588 B1 EP 3489588B1 EP 18208398 A EP18208398 A EP 18208398A EP 3489588 B1 EP3489588 B1 EP 3489588B1
Authority
EP
European Patent Office
Prior art keywords
transfer liquid
heat
tank
outlet
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18208398.0A
Other languages
German (de)
French (fr)
Other versions
EP3489588A1 (en
Inventor
Roland BAVIERE
Cédric Paulus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP3489588A1 publication Critical patent/EP3489588A1/en
Application granted granted Critical
Publication of EP3489588B1 publication Critical patent/EP3489588B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1051Arrangement or mounting of control or safety devices for water heating systems for domestic hot water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1066Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1066Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water
    • F24D19/1069Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water regulation in function of the temperature of the domestic hot water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/02Fluid distribution means
    • F24D2220/0235Three-way-valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/04Sensors
    • F24D2220/042Temperature sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/04Sensors
    • F24D2220/048Level sensors, e.g. water level sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/08Storage tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2240/00Characterizing positions, e.g. of sensors, inlets, outlets
    • F24D2240/26Vertically distributed at fixed positions, e.g. multiple sensors distributed over the height of a tank, or a vertical inlet distribution pipe having a plurality of orifices

Definitions

  • the domestic hot water outlet makes it possible to quickly deliver domestic hot water, even if the thermal source is far from the point where the domestic hot water is drawn.
  • the tank is used to store hot heat transfer liquid which cannot be immediately cooled. Thanks to this, the temperature, called return temperature and denoted T R , of the heat transfer liquid returned to the thermal source is lower. This is advantageous because the efficiency of the thermal source is better when the return temperature T R is low.
  • GB2451019A describes the control of a valve to connect and, alternately, isolate a thermal source and a tank from the domestic hot water network
  • the invention aims to improve the efficiency of the demand heating system DE102008014204 .
  • the invention aims to limit the occurrence and the duration of situations where the return temperature T R cannot be lowered because the tank is completely filled with hot heat transfer liquid, while effectively peaking production peaks. thermal energy. It will be recalled that a high temperature T R is detrimental to the proper functioning of the thermal source.
  • the invention therefore relates to such a heating system according to claim 1.
  • the embodiments of this heating system may include one or more of the features of the dependent claims.
  • the invention also relates to an electronic control unit of a bypass valve for the production of the claimed heating system.
  • a subject of the invention is also a medium for recording information readable by the claimed electronic control unit, in which the medium includes the instructions necessary for the execution of the claimed control method when these instructions are executed by the electronic unit ordered.
  • connect means "fluidly connect” between two objects.
  • the figure 1 represents a sanitary water heating system 2.
  • a system 2 is used to produce and distribute domestic hot water consumed by users distributed in different places.
  • a system makes it possible to produce and distribute domestic hot water in different apartments or premises of collective housing, such as a building or a subdivision of individual residences.
  • Such a system makes it possible to pool the production of domestic hot water used by the different inhabitants of such collective housing.
  • the temperature T min-DHW is here chosen so as to prevent the development of bacteria, such as legionellosis.
  • the temperature T min-DHW is here taken equal to 55 ° C.
  • the source 4 is composed of one or more heat production units each capable of heating the heat transfer liquid.
  • this production unit can be a gas boiler, such as a condensing boiler, a wood or pellet boiler, an oil boiler, a solar boiler which heats the heat transfer liquid with solar panels or any other known type of production unit capable of heating the heat transfer liquid.
  • the heat source comprises several heat generating units, these units can be of the same type or, on the contrary, of different types.
  • one of these heat generating units may be a gas boiler and another may be a solar boiler.
  • source 4 consumes renewable energy or not.
  • the source 4 is separated by several hundred meters from the domestic hot water distribution points. Under these circumstances, the time taken to convey thermal energy from the source 4 to the point of distribution of domestic hot water can exceed several tens of seconds.
  • the loop 6 allows the user to draw domestic hot water almost immediately and this despite the distance which separates it from the source 4. For this, the loop 6 contains domestic hot water which is permanently maintained at a temperature higher than the temperature T min-DHW .
  • the temperature of the domestic hot water is higher in line 22 than in line 24.
  • the difference between the temperatures measured at the levels of outlet 36 and l entry 38 is generally greater than 3 ° C or 5 ° C.
  • the temperature of domestic hot water at inlet 38 is 55 ° C
  • the temperature of domestic hot water at outlet 36 is 60 ° C.
  • the loop 6 also includes an inlet 41 by means of which preheated domestic water is introduced into the loop 6 to compensate for the volume of domestic hot water drawn off via the point 40.
  • the inlet 41 is for example placed on the conduit 22.
  • the valve 44 is placed after the outlet 34. However, it could also have been placed before the inlet 30 for example.
  • the unit 46 controls the valve 44 as a function of the difference between the setpoint C 42 and the temperature T 42 measured by the probe 42. More precisely, when the difference between the setpoint C 42 and the temperature T 42 increases, l unit 46 controls the valve 44 to increase the flow of hot heat transfer liquid which circulates in the exchanger 20. Conversely, when this difference decreases, the unit 44 controls the valve 44 to reduce this flow of hot heat transfer liquid. In addition, for example, if the temperature T 42 becomes higher than the set point C 42 , the unit 46 controls the valve 44 to stop the circulation of the heat transfer liquid through the exchanger 20.
  • the outlet 58 is directly connected to the inlet 41 by a conduit 66.
  • conduit 68 is also equipped with a pump 70 for circulating the heat transfer liquid from the outlet 10 towards the inlet 12.
  • Valve 76 is a three-way valve. It has an inlet 80 and two outlets 82 and 84. The inlet 80 is directly connected to one end of the conduit 78. The other end of the conduit 78 is connected to the outlet 34. Here, the valve 44 is mounted on this conduit 78.
  • the outlet 82 is directly connected to one end of the conduit 74.
  • the other end of the conduit 74 is connected to the inlet 52.
  • the valve 76 distributes the heat transfer liquid received on its inlet 80 between the outlets 82 and 84.
  • the sum of the outgoing flows at the outlets 82 and 84 is permanently equal to the incoming flow via the entry 80.
  • the valve 76 is controllable. More precisely, the valve 76 modifies the distribution of the outgoing flows between the outputs 82 and 84. Here, the valve 76 makes it possible to vary each of these outgoing flows between a zero value and a maximum value where it is equal to the incoming flow.
  • the reservoir 88 has a high nozzle 96 directly connected by a conduit 97 to the conduit 74 without passing through the valve 76.
  • This conduit 97 comprises a non-return valve 98 which prevents the circulation of the heat transfer liquid from the conduit 74 towards the high nozzle 96.
  • the nozzle 96 and the conduit 97 therefore make it possible to draw off the heat transfer liquid stored in the upper part of the reservoir 88 in order to circulate it in the exchanger 50 and therefore preheat the cold sanitary water.
  • a non-return valve 109 is installed in the conduit 68 between the connection points, on this conduit 68, of the conduits which lead, respectively, to the bottom tappings 100 and 102.
  • this non-return valve 109 only authorizes the circulation of the heat transfer liquid from the outlet 54 towards the inlet 12 of the source 4.
  • the system 2 comprises a conduit 120 which connects the outlet 10 from the source 4 directly to the primary input 52 of the exchanger 50 without passing through the exchanger 20 and without passing through the reservoir 88.
  • This conduit 120 is equipped with a controllable valve 122 which makes it possible to regulate the flow rate of the hot heat transfer liquid which circulates in the conduit 120.
  • the system 2 also includes an electronic unit 124 for controlling the valve 122.
  • the unit 124 is configured to regulate the flow rate inside the conduit 120 so as to control the temperature T 126 of the preheated sanitary water delivered via the outlet 58 on a temperature setpoint C 126 .
  • the setpoint C 126 is greater than or equal to the temperature T min-DHW and, for example, equal to the setpoint C 42 .
  • the setpoint C 126 is equal to 55 ° C or 60 ° C.
  • the system 2 includes a probe 126 which measures the temperature T 126 and transfers these measurements to the unit 124.
  • the unit 124 controls the valve 122 according to the difference between the setpoint C 126 and the temperature measured T 126 .
  • the probe 136 measures the temperature of the heat transfer liquid at a measurement point located midway, in the vertical direction, between the measurement points of the probes 132 and 134.
  • the apparatus 130 transfers these measurements to the unit 90.
  • the unit 90 acquires the measurements of the apparatus 130 and of the flowmeters 64 and 108.
  • the unit 90 compares the temperature T 132 measured by the probe 132 with a low threshold S 132 .
  • the threshold S 132 is equal to 20 ° C.
  • the unit 90 controls the pump 106 so that the flow of hot heat-transfer liquid which successively passes through the conduit 97, the conduit 74 and l exchanger 50 is equal to the flow rate measured by flowmeter 64.
  • the unit 90 stops the pump 106 to stop the circulation of the heat-transfer liquid in the duct. 97. In the latter case, the preheating of the cold domestic water is then only ensured by the hot heat transfer liquid supplied to the inlet 52 of the exchanger 50 by the conduit 120.
  • the unit 90 automatically adjusts the flow rates of the heat transfer liquid entering and leaving the reservoir 88 to increase the probability that at any given moment, the state of charge of this reservoir 88 is as it contains in its upper part hot heat transfer liquid and, simultaneously, in its lower part, cold heat transfer liquid.
  • T r-min is equal to 20 ° C and T r-max is equal to 60 ° C.
  • the indicator I c is equal to or close to 1 when the reservoir 88 is completely filled with hot heat transfer liquid and equal to or close to 0 when it is completely filled with cold heat transfer liquid. Subsequently, it is considered that the indicator I c is equal to 1 when its value exceeds a predetermined threshold close to 1 such as 0.95. Similarly, thereafter, it is considered that the indicator I c is equal to 0 when its value is below a predetermined threshold close to 0 such as 0.05
  • the unit 90 updates the value of two durations D p and D v.
  • the durations D p and D v correspond to the accumulation, over the last 24 hours, of the time intervals where, respectively, the indicator I c is equal to 1 and the indicator I c is equal to 0.
  • step 156 is repeated once or twice a day.
  • the duration D p is compared with a predetermined threshold S p .
  • the threshold S p is price equal to 30 minutes.
  • the unit 90 controls the valve 114 to reduce the flow rate by a predetermined step hot circulating coolant in the conduit 112. This therefore makes it possible to limit the flow of hot heat-transfer liquid entering the reservoir 88 and therefore to reduce the duration D p .
  • the unit 90 controls the valve 76 to increase the flow of hot heat transfer liquid by a predetermined step in the duct 74 and, simultaneously, decrease by the same predetermined step the flow of hot heat transfer liquid entering the tank 88 via the nozzle 86. Since the heat transfer liquid which circulates in the pipe 74 is either cooled by the exchanger 50 , then stored in the lower part of the reservoir 88, or directed towards the inlet 12 of the source 4, this control of the valve 76 makes it possible to reduce the flow of hot heat-transfer liquid entering the reservoir 88.
  • the process continues with a step 164.
  • the duration D v is compared with a predetermined threshold S v .
  • the threshold S v is equal to 30 minutes.
  • the unit 90 controls the valve 76 to reduce by a predetermined step the outgoing flow rate through its outlet 82. By doing this, the flow rate of hot heat transfer liquid discharged through the outlet 34 which is directed towards the reservoir 88 increases, which makes it possible to reduce the duration D v.
  • the unit 90 controls the valve 114 to increase by a predetermined step the flow of hot heat transfer liquid which circulates in the duct 112. This therefore leads to increasing the flow of hot heat transfer liquid entering the tank 88 and therefore to reducing the duration D v.
  • the curve 188 corresponds to the flow rate in the reservoir 88. This flow rate is counted positively when it goes from the low nozzles to the high nozzles.
  • This graph shows that in system 2, the peaks of thermal energy production by source 4 are clipped, that is to say less significant than the peaks of thermal energy consumption.
  • the figure 6 represents a heating system 200 practically identical to system 2, except that it additionally comprises a space heating circuit 202.
  • the circuit 202 comprises a heat exchanger 204 and a conduit 206 which connects the secondary outlet of the exchanger 204 to its secondary inlet and which passes through one or more radiators 208.
  • radiator is meant here any heat emitter that it either fixed on a wall or housed in the ground as in the case of a heated floor.
  • Only one radiator 208 has been shown. Each radiator 208 heats a room or a room.
  • the heating liquid circulates inside this heating circuit thanks to a pump 209.
  • the primary input of the exchanger 204 is directly connected to the output 10 of the source 4.
  • the primary output of the exchanger 204 is connected, successively, through a conduit 210 and a valve 212 to the high point 86.
  • the conduit 210 is also equipped with a controllable valve 214 able to adjust the flow rate which circulates in the conduit 210.
  • the valve 214 is controlled by a control unit 216 to control the temperature of the heating liquid which circulates in the duct 206 on a heating instruction.
  • a temperature probe 218 measures the temperature of this heating liquid.
  • the heating liquid is a heat transfer liquid like water.
  • the valve 212 has an inlet 220 connected to the end of the duct 210, an outlet 222 connected to the inlet 52 of the exchanger 50, without passing through the reservoir 88, and an outlet 224 connected to the high point 86
  • the valve 212 is for example identical to the valve 76. It is controlled by the unit 90.
  • the control method executed by the unit 90 is, for example, identical to that described with reference to the figure 2 , except that in addition, the valve 212 is controlled.
  • this valve 212 is controlled in the same manner as that which has been described in the particular case of the valve 76.
  • the operation of the system 200 is therefore deduced from the explanations given for the system 2.
  • the loop 272 is identical to the loop 6, except that the end of the conduit 66 is connected to the conduit 24 and no longer to the conduit 22.
  • the duct 284 is equipped, for example, with a non-return valve 286 which only allows the circulation of the heat-transfer liquid in this duct from the outlet 82 towards the duct 68.
  • the reservoir 282 is for example identical to the reservoir 88, except that the top stitching 96 is omitted.
  • the conduit 284 which is used to divert part or all of the hot heat transfer liquid towards the inlet 12 of the source 4 without passing through the reservoir 282 and without passing through the exchanger 50.
  • the hot heat transfer liquid which circulates in the duct 284 is not cooled before reaching the duct 68.
  • the hot heat transfer liquid which arrives in the conduit 68 is mixed with the cold heat transfer liquid to reduce the temperature T R.
  • valves 292 and 284 are controlled so that at all times, the sum of the flows leaving by the outputs 82 and 84 is equal to the flow entering by the input 80.
  • valve 300 By controlling the opening of valve 302 and adjusting the pressure at outlet 84, it is possible to operate valve 300 like valve 76 except that the flow rate at outlet 84 cannot be completely canceled .
  • conduit 120, the valve 122, unit 124 and probe 126 are omitted.
  • a non-return valve can be installed in the duct 74 to prevent the circulation of the heat-transfer liquid from the inlet 52 to the nozzle 86.
  • the exchanger 50 has two primary inputs and the ends of the conduits 74 and 120 are each connected to a respective primary input of the exchanger 50.
  • the measurement point of the probe 136 is not necessarily midway between the measurement points of the probes 132 and 134.
  • the temperature T m can still be calculated from the measured temperatures T 132 , T 134 and T 136 , but each of these measurements is weighted by a weighting coefficient to take into account the fact that the measurement point of the probe 136 is not halfway between the measurement points of the probes 132 and 134.
  • the apparatus 130 can be produced differently. For example, it can include more than three temperature probes. In other embodiments, it includes in addition to or instead of temperature probes, a thermal camera which makes it possible to obtain a physical quantity representative of the temperature at any point on a vertical plane intersecting the reservoir 88. L The state of charge of the reservoir 88 can also be obtained from flowmeter measurements measuring the incoming and outgoing flow rates of coolant and temperature measurements of these incoming and outgoing flow rates.
  • the construction of the indicator must be adapted as a function of the type of measurement provided by the apparatus 130.
  • the unit 90 can implement other control methods to permanently maintain or as much as possible the indicator I c between thresholds S i-min and S i-max , where S i-min is strictly greater than 0 and S i-max is strictly less than 1.
  • the durations D p and D v can be replaced by averages of the durations D p and D v calculated over several previous days.
  • the unit 90 can be configured to make these adjustments each time a new value of the indicator I c is constructed. For example, if the indicator falls below the threshold S i-min , the unit 90 controls the valves 76 and 114 to immediately increase the flow entering the reservoir of hot heat transfer liquid. Conversely, if the indicator I c exceeds the threshold S i-max , the unit 90 controls the valves 76 and 114 to immediately reduce the incoming flow of coolant hot. In this latter embodiment, the durations D v and D p are not used and their calculation can be omitted.
  • the unit 90 can also predict time intervals when the consumption of domestic hot water is high. For this purpose, for example, the domestic hot water consumption is measured using the flow meter 64. In this case, just before an interval where the predicted domestic hot water consumption is significant, the unit 90 controls the valves 76 and 114 to increase the indicator I c . Then, towards the end of this interval, the unit 90 controls the valves 76 and 114 to decrease the value of the indicator I c . In this case too, the durations D p and D v are not used.
  • the conduit 120, the valve 122, the unit 124 and the probe 126 can be implemented independently of the conduit 112 and the valve 114.
  • the various embodiments described here all make it possible to dynamically adapt the incoming flow of heat-transfer liquid into the tank as a function of the use which is made of this heating system. Thanks to this, the occurrence and the duration of extreme situations where the return temperature T R cannot be lowered are limited. More precisely, these adaptations of the incoming flow of hot heat-transfer liquid make it possible to preserve for a longer period a residual stock of cold heat-transfer liquid which makes it possible to limit sudden variations in the temperature T R.
  • the dynamic adaptation of the incoming flow of heat transfer liquid also makes it possible to limit the occurrence and the duration of extreme situations where the peaks of thermal energy production peaks are no longer possible. More specifically, these adaptations of the incoming flow of hot heat transfer liquid make it possible to preserve for a longer period a residual stock of hot heat transfer liquid which can be used to preheat cold domestic water.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Bidet-Like Cleaning Device And Other Flush Toilet Accessories (AREA)

Description

L'invention concerne un système de chauffage d'eau sanitaire. L'invention concerne également :

  • un procédé de commande de ce système de chauffage,
  • une unité électronique de commande pour ce système de chauffage, et
  • un support d'enregistrement pour la mise en œuvre du procédé de commande de ce système de chauffage.
The invention relates to a sanitary water heating system. The invention also relates to:
  • a method for controlling this heating system,
  • an electronic control unit for this heating system, and
  • a recording medium for implementing the method for controlling this heating system.

Des systèmes connus de chauffage d'eau sanitaire comportent :

  • une source thermique apte à chauffer un liquide caloporteur, cette source thermique comportant une entrée pour recevoir le liquide caloporteur à chauffer et une sortie pour délivrer le liquide caloporteur chauffé,
  • une boucle d'eau chaude sanitaire comportant :
    • une pompe apte à faire circuler en boucle l'eau chaude sanitaire dans cette boucle,
    • un échangeur thermique d'appoint apte à maintenir la température de l'eau chaude sanitaire qui circule dans la boucle à une température supérieure à une température Tmin-ECS prédéterminée par échange thermique avec le liquide caloporteur chauffé, cet échangeur thermique comportant à cet effet une entrée primaire raccordée à la sortie de la source thermique et une sortie primaire par laquelle s'évacue le liquide caloporteur chaud après qu'il ait réchauffé l'eau chaude sanitaire de la boucle,
    • au moins un point de soutirage par l'intermédiaire duquel l'eau chaude sanitaire peut être soutirée de la boucle par un usager, et
    • une entrée par l'intermédiaire de laquelle de l'eau sanitaire pré-chauffée peut être introduite dans cette boucle pour compenser l'eau chaude sanitaire soutirée par l'usager,
  • un réservoir apte à stocker le liquide caloporteur chaud évacué par l'intermédiaire de la sortie primaire de l'échangeur thermique d'appoint, ce réservoir comportant au moins un piquage haut et au moins un piquage bas permettant de soutirer directement le liquide caloporteur stocké dans, respectivement, une partie haute et une partie basse de ce réservoir, ledit au moins un piquage haut étant raccordé à la sortie primaire de l'échangeur d'appoint et ledit au moins un piquage bas étant raccordé à l'entrée de la source thermique,
  • un échangeur thermique de préchauffage apte à préchauffer de l'eau sanitaire froide, par échange thermique avec le liquide caloporteur stocké dans la partie haute du réservoir, avant de l'injecter dans la boucle d'eau chaude sanitaire par l'intermédiaire de son entrée, cet échangeur thermique de préchauffage comportant à cet effet une entrée primaire et une sortie primaire raccordées, respectivement, auxdits au moins un piquages haut et bas du réservoir,
  • un conduit de dérivation apte à dévier au moins une partie du liquide caloporteur évacué par la sortie primaire de l'échangeur thermique d'appoint pour l'amener à l'entrée de la source thermique sans passer par l'intermédiaire du réservoir.
Known sanitary water heating systems include:
  • a heat source capable of heating a heat-transfer liquid, this heat source comprising an inlet for receiving the heat-transfer liquid to be heated and an outlet for delivering the heated heat-transfer liquid,
  • a domestic hot water loop comprising:
    • a pump capable of circulating domestic hot water in this loop,
    • an additional heat exchanger capable of maintaining the temperature of the domestic hot water circulating in the loop at a temperature above a temperature T min-DHW predetermined by heat exchange with the heated heat transfer liquid, this heat exchanger comprising for this purpose a primary inlet connected to the outlet of the thermal source and a primary outlet through which the hot heat transfer liquid is discharged after it has heated the domestic hot water of the loop,
    • at least one draw-off point via which the domestic hot water can be drawn from the loop by a user, and
    • an inlet via which preheated domestic water can be introduced into this loop to compensate for domestic hot water drawn off by the user,
  • a tank capable of storing the hot heat transfer liquid discharged via the primary outlet of the auxiliary heat exchanger, this tank comprising at least one high connection and at least one low connection allowing direct withdrawal of the heat transfer liquid stored in , respectively, an upper part and a lower part of this tank, said at least one high nozzle being connected to the primary outlet of the additional exchanger and said at least one low nozzle being connected to the inlet of the heat source ,
  • a preheating heat exchanger capable of preheating cold domestic water, by heat exchange with the heat transfer liquid stored in the upper part of the tank, before injecting it into the domestic hot water loop via its inlet , this preheating heat exchanger comprising for this purpose a primary inlet and a primary outlet connected, respectively, to said at least one top and bottom tapping of the tank,
  • a bypass duct capable of diverting at least part of the heat transfer liquid discharged through the primary outlet of the auxiliary heat exchanger to bring it to the entry of the thermal source without passing through the tank.

Par exemple, un tel système connu de chauffage est décrit dans la demande DE102008014204 .For example, such a known heating system is described in the application. DE102008014204 .

La bouche d'eau chaude sanitaire permet de délivrer rapidement à un utilisateur de l'eau chaude sanitaire, même si la source thermique est éloignée du point où est soutirée l'eau chaude sanitaire.The domestic hot water outlet makes it possible to quickly deliver domestic hot water, even if the thermal source is far from the point where the domestic hot water is drawn.

Le réservoir est utilisé pour stocker le liquide caloporteur chaud qui ne peut pas être immédiatement refroidi. Grâce à cela, la température, appelée température de retour et notée TR, du liquide caloporteur renvoyé vers la source thermique est plus faible. Cela est avantageux car le rendement de la source thermique est meilleur quand la température de retour TR est faible.The tank is used to store hot heat transfer liquid which cannot be immediately cooled. Thanks to this, the temperature, called return temperature and denoted T R , of the heat transfer liquid returned to the thermal source is lower. This is advantageous because the efficiency of the thermal source is better when the return temperature T R is low.

Enfin, le liquide caloporteur chaud stocké dans le réservoir peut aussi être utilisé pour préchauffer l'eau sanitaire froide avant qu'elle soit introduite dans la boucle d'eau chaude sanitaire. Ainsi, cela limite la quantité d'énergie thermique à produire par la source thermique lorsque de l'eau chaude sanitaire est soutirée. Classiquement, on dit que cela permet d'écrêter les pics de production d'énergie thermique.Finally, the hot heat transfer liquid stored in the tank can also be used to preheat cold domestic water before it is introduced into the domestic hot water loop. Thus, this limits the amount of thermal energy to be produced by the thermal source when domestic hot water is drawn off. Conventionally, it is said that this allows peaks in thermal energy production to be clipped.

De l'état de la technique est également connu de :

  • GB2451019A ,
  • DE202010017764U1 ,
  • WO2011/023193A2 .
From the state of the art is also known from:
  • GB2451019A ,
  • DE202010017764U1 ,
  • WO2011 / 023193A2 .

En particulier, GB2451019A décrit la commande d'une vanne pour raccorder et, en alternance, isoler une source thermique et un réservoir du réseau d'eau chaude sanitaireIn particular, GB2451019A describes the control of a valve to connect and, alternately, isolate a thermal source and a tank from the domestic hot water network

L'invention vise à améliorer l'efficacité du système de chauffage de la demande DE102008014204 . Par exemple, l'invention vise à limiter l'occurrence et la durée des situations où la température de retour TR ne peut pas être abaissée car le réservoir est entièrement rempli de liquide caloporteur chaud, tout en écrêtant efficacement des pics de production d'énergie thermique. On rappelle qu'une température TR élevée est préjudiciable au bon fonctionnement de la source thermique.The invention aims to improve the efficiency of the demand heating system DE102008014204 . For example, the invention aims to limit the occurrence and the duration of situations where the return temperature T R cannot be lowered because the tank is completely filled with hot heat transfer liquid, while effectively peaking production peaks. thermal energy. It will be recalled that a high temperature T R is detrimental to the proper functioning of the thermal source.

L'invention a donc pour objet un tel système de chauffage conforme à la revendication 1.The invention therefore relates to such a heating system according to claim 1.

Les modes de réalisation de ce système de chauffage peuvent comporter une ou plusieurs des caractéristiques des revendications dépendantes.The embodiments of this heating system may include one or more of the features of the dependent claims.

L'invention a également pour objet un procédé de commande du système revendiqué de chauffage.The invention also relates to a method for controlling the claimed heating system.

L'invention a également pour objet une unité électronique de commande d'une vanne de dérivation pour la réalisation du système revendiqué de chauffage.The invention also relates to an electronic control unit of a bypass valve for the production of the claimed heating system.

L'invention a également pour objet un support d'enregistrement d'informations lisibles par l'unité électronique de commande revendiquée, dans lequel, le support comporte les instructions nécessaires à l'exécution du procédé revendiqué de commande lorsque ces instructions sont exécutées par l'unité électronique de commande.A subject of the invention is also a medium for recording information readable by the claimed electronic control unit, in which the medium includes the instructions necessary for the execution of the claimed control method when these instructions are executed by the electronic unit ordered.

L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple non limitatif, et en se référant aux dessins, sur lesquels :

  • la figure 1 est une illustration schématique de l'architecture d'un système de chauffage d'eau sanitaire ;
  • la figure 2 est un organigramme d'un procédé de commande du système de chauffage de la figure 1 ;
  • les figures 3 à 5 sont des graphiques illustrant chacun l'évolution au cours du temps de différentes grandeurs physiques mesurées dans le système de chauffage de la figure 1 lorsque le procédé de la figure 2 est mis en œuvre ;
  • les figures 6 à 9 sont des illustrations schématiques de différentes variantes de l'architecture du système de chauffage de la figure 1 ;
  • les figures 10 et 11 sont des illustrations schématiques de différentes variantes d'une vanne de dérivation utilisable dans le système de chauffage de la figure 1.
The invention will be better understood on reading the description which follows, given solely by way of nonlimiting example, and with reference to the drawings, in which:
  • the figure 1 is a schematic illustration of the architecture of a domestic water heating system;
  • the figure 2 is a flow diagram of a method for controlling the heating system of the figure 1 ;
  • the figures 3 to 5 are graphs each illustrating the evolution over time of different physical quantities measured in the heating system of the figure 1 when the process of the figure 2 is implemented;
  • the figures 6 to 9 are schematic illustrations of different variants of the architecture of the heating system of the figure 1 ;
  • the figures 10 and 11 are schematic illustrations of different variants of a bypass valve usable in the heating system of the figure 1 .

I. Notations et définitions :I. Notations and definitions:

Dans ces figures, les mêmes références sont utilisées pour désigner les mêmes éléments.In these figures, the same references are used to designate the same elements.

Dans la suite de cette description, les caractéristiques et fonctions bien connues de l'homme du métier ne sont pas décrites en détail.In the rest of this description, the characteristics and functions well known to those skilled in the art are not described in detail.

Dans cette demande, à moins d'indication contraire, le terme « raccorder » signifie « raccorder fluidiquement » entre deux objets.In this application, unless otherwise indicated, the term "connect" means "fluidly connect" between two objects.

Dans ce texte, le terme « conduit » désigne typiquement une canalisation ou un tuyau.In this text, the term “conduit” typically designates a pipe or a pipe.

Les termes tels que « haut » et « bas » sont définis par rapport à la direction verticale. Ainsi, par exemple, une partie haute d'un objet se trouve en haut, dans la direction verticale de cet objet.Terms such as "up" and "down" are defined relative to the vertical direction. So, for example, an upper part of an object is at the top, in the vertical direction of this object.

II. Exemples de modes de réalisation :II. Examples of embodiments:

La figure 1 représente un système 2 de chauffage d'eau sanitaire. Un tel système 2 est utilisé pour produire et distribuer de l'eau chaude sanitaire consommée par des utilisateurs répartis à différents endroits. Par exemple, un tel système permet de produire et de distribuer de l'eau chaude sanitaire dans différents appartements ou locaux d'un habitat collectif, tel qu'un immeuble ou un lotissement de résidences individuelles. Un tel système permet de mutualiser la production de l'eau chaude sanitaire utilisée par les différents habitants d'un tel habitat collectif.The figure 1 represents a sanitary water heating system 2. Such a system 2 is used to produce and distribute domestic hot water consumed by users distributed in different places. For example, such a system makes it possible to produce and distribute domestic hot water in different apartments or premises of collective housing, such as a building or a subdivision of individual residences. Such a system makes it possible to pool the production of domestic hot water used by the different inhabitants of such collective housing.

Le système 2 comporte :

  • une source thermique 4 apte à chauffer le liquide caloporteur à une température élevée T10, et
  • une boucle 6 d'eau chaude sanitaire dans laquelle circule en boucle de l'eau chaude sanitaire maintenue à une température supérieure à une température minimale Tmin-ECS
System 2 includes:
  • a heat source 4 able to heat the heat-transfer liquid to a high temperature T 10 , and
  • a domestic hot water loop 6 in which domestic hot water circulates maintained at a temperature above a minimum temperature T min-DHW

La température Tmin-ECS est ici choisie de manière à empêcher le développement de bactéries, telle que la légionellose. À cet effet, la température Tmin-ECS est ici prise égale à 55° C.The temperature T min-DHW is here chosen so as to prevent the development of bacteria, such as legionellosis. For this purpose, the temperature T min-DHW is here taken equal to 55 ° C.

Par « température élevée », on désigne une température supérieure d'au moins 3°C ou 5°C à la température Tmin-ECS. Par exemple, ici, la température T10 est égale à 90°C.By "high temperature" is meant a temperature at least 3 ° C or 5 ° C above the temperature T min-DHW . For example, here, the temperature T 10 is equal to 90 ° C.

Le liquide caloporteur est par exemple de l'eau ou de l'eau glycolée. Sa fonction est de transporter de l'énergie thermique d'un point à un autre du système 2.The heat transfer liquid is for example water or glycol water. Its function is to transport thermal energy from one point to another in system 2.

La source 4 comporte :

  • une sortie 10 par laquelle est évacué le liquide caloporteur chaud à la température T10, et
  • une entrée 12 par laquelle est reçu le liquide caloporteur à réchauffer avant de l'évacuer par la sortie 10.
Source 4 includes:
  • an outlet 10 through which the hot heat transfer liquid at the temperature T 10 is discharged, and
  • an inlet 12 through which the heat transfer liquid to be heated is received before discharging it through outlet 10.

La source 4 est composée d'une ou plusieurs unités de production de chaleur apte chacune à chauffer le liquide caloporteur. Par exemple, cette unité de production peut être une chaudière à gaz, telle qu'une chaudière à condensation, une chaudière à bois ou à granulés, une chaudière au fioul, une chaudière solaire qui réchauffe le liquide caloporteur avec des panneaux solaires ou tout autre type connu d'unité de production apte à chauffer le liquide caloporteur. De plus, lorsque la source thermique comporte plusieurs unités de production de chaleur, ces unités peuvent être du même type ou, au contraire, de différents types. Par exemple, l'une de ces unités de production de chaleur peut être une chaudière à gaz et une autre peut être une chaudière solaire. Pour produire de l'énergie thermique, la source 4 consomme des énergies renouvelables ou non.The source 4 is composed of one or more heat production units each capable of heating the heat transfer liquid. For example, this production unit can be a gas boiler, such as a condensing boiler, a wood or pellet boiler, an oil boiler, a solar boiler which heats the heat transfer liquid with solar panels or any other known type of production unit capable of heating the heat transfer liquid. In addition, when the heat source comprises several heat generating units, these units can be of the same type or, on the contrary, of different types. For example, one of these heat generating units may be a gas boiler and another may be a solar boiler. To produce thermal energy, source 4 consumes renewable energy or not.

Généralement, la source 4 est séparée par plusieurs centaines de mètres des points de distribution d'eau chaude sanitaire. Dans ces circonstances, le temps d'acheminement de l'énergie thermique de la source 4 jusqu'au point de distribution d'eau chaude sanitaire peut dépasser plusieurs dizaines de secondes. La boucle 6 permet à l'utilisateur de soutirer de l'eau chaude sanitaire quasiment immédiatement et cela malgré la distance qui le sépare de la source 4. Pour cela, la boucle 6 contient de l'eau chaude sanitaire qui est maintenue en permanence à une température supérieure à la température Tmin-ECS.Generally, the source 4 is separated by several hundred meters from the domestic hot water distribution points. Under these circumstances, the time taken to convey thermal energy from the source 4 to the point of distribution of domestic hot water can exceed several tens of seconds. The loop 6 allows the user to draw domestic hot water almost immediately and this despite the distance which separates it from the source 4. For this, the loop 6 contains domestic hot water which is permanently maintained at a temperature higher than the temperature T min-DHW .

En pratique, il peut exister plusieurs boucles d'eau chaude sanitaire raccordées en parallèle les unes aux autres dans le système 2. Ces boucles supplémentaires d'eau chaude sanitaire sont raccordées aux différents éléments du système 2 comme cela est décrit par la suite dans le cas particulier de la boucle 6. De plus, la structure et le fonctionnement de ces boucles supplémentaires d'eau chaude sanitaire se déduisent sans difficultés des explications données ci-dessous dans le cas particulier de la boucle 6. Ainsi, pour simplifier la figure 1, seule la boucle 6 a été représentée et décrite ci-dessous.In practice, there can be several domestic hot water loops connected in parallel to each other in system 2. These additional domestic hot water loops are connected to the various elements of system 2 as described below in the particular case of loop 6. In addition, the structure and operation of these additional domestic hot water loops can easily be deduced from the explanations given below in the particular case of loop 6. Thus, to simplify the figure 1 , only loop 6 has been shown and described below.

La boucle 6 comporte :

  • un échangeur thermique 20 d'appoint qui permet de réchauffer l'eau chaude sanitaire qui circule dans la boucle 6,
  • au moins un point de soutirage d'eau chaude sanitaire par l'intermédiaire duquel un usager peut soutirer de l'eau chaude sanitaire,
  • un conduit 22 d'amenée d'eau chaude sanitaire,
  • un conduit 24 de retour d'eau chaude sanitaire, et
  • une pompe 26 qui fait circuler en boucle l'eau chaude sanitaire en passant successivement, dans le sens de circulation de l'eau chaude sanitaire, dans l'échangeur 20, le conduit 22, le conduit 24, puis de nouveau l'échangeur 20.
Loop 6 includes:
  • an additional heat exchanger 20 which makes it possible to reheat the domestic hot water which circulates in the loop 6,
  • at least one domestic hot water withdrawal point through which a user can withdraw domestic hot water,
  • a pipe 22 for supplying sanitary hot water,
  • a pipe 24 for returning domestic hot water, and
  • a pump 26 which circulates the domestic hot water in a loop, passing successively, in the direction of circulation of the domestic hot water, in the exchanger 20, the conduit 22, the conduit 24, then again the exchanger 20 .

L'échangeur 20 comporte :

  • une entrée primaire 30 directement raccordée à la sortie 10 de la source 4 par l'intermédiaire d'un conduit 32 pour recevoir le liquide caloporteur chaud produit par la source 4,
  • une sortie primaire 34 par laquelle s'évacue le liquide caloporteur chaud après qu'il ait transféré une partie de son énergie thermique vers l'eau chaude sanitaire qui circule dans la boucle 6,
  • une entrée secondaire 38 raccordée à une extrémité du conduit 24, et
  • une sortie secondaire 36 raccordée à une extrémité du conduit 22.
The exchanger 20 comprises:
  • a primary inlet 30 directly connected to the outlet 10 of the source 4 via a conduit 32 for receiving the hot heat-transfer liquid produced by the source 4,
  • a primary outlet 34 through which the hot heat transfer liquid is discharged after it has transferred part of its thermal energy to the domestic hot water which circulates in the loop 6,
  • a secondary inlet 38 connected to one end of the conduit 24, and
  • a secondary outlet 36 connected to one end of the duct 22.

L'échangeur 20 est capable de réchauffer l'eau chaude sanitaire qui circule dans la boucle 6 à partir de l'énergie thermique du liquide caloporteur. À cet effet, typiquement, l'échangeur 20 comporte des parois qui séparent mécaniquement le liquide caloporteur qui circule de l'entrée 30 vers la sortie 34, de l'eau chaude sanitaire qui circule de l'entrée 38 vers la sortie 36. Ces parois sont généralement d'un côté directement en contact avec le liquide caloporteur et, du côté opposé, directement en contact avec l'eau sanitaire à réchauffer. Ces parois sont réalisées dans des matériaux bons conducteurs thermiques, de sorte que l'énergie thermique du liquide caloporteur est transférée à l'eau sanitaire à travers ces parois par conduction thermique.The exchanger 20 is capable of heating the domestic hot water which circulates in the loop 6 from the thermal energy of the heat transfer liquid. To this end, typically, the exchanger 20 has walls which mechanically separate the heat transfer liquid which circulates from the inlet 30 towards the outlet 34, from the domestic hot water which circulates from the inlet 38 towards the outlet 36. These walls are generally on one side directly in contact with the heat transfer liquid and, on the opposite side, directly in contact with the domestic water to be heated. These walls are made of materials which are good thermal conductors, so that the thermal energy of the heat transfer liquid is transferred to the sanitary water through these walls by thermal conduction.

Généralement, la boucle 6 comporte plusieurs points de soutirage situés à différents endroits le long du conduit 22 ou 24. Pour simplifier la figure 1, un seul point 40 de soutirage a été représenté. Ce point 40 est raccordé à un équipement 42 qui permet de soutirer de l'eau chaude sanitaire. L'équipement 42 est typiquement un robinet déplaçable manuellement ou automatiquement entre des positions ouverte et fermée. Dans la position ouverte, l'eau chaude sanitaire s'écoule et sort de la boucle 6. Dans la position fermée, l'eau chaude sanitaire ne s'échappe pas de la boucle 6.Generally, the loop 6 has several withdrawal points located at different locations along the conduit 22 or 24. To simplify the figure 1 , a single point 40 of withdrawal has been shown. This point 40 is connected to an equipment 42 which makes it possible to draw off domestic hot water. The equipment 42 is typically a valve that can be moved manually or automatically between open and closed positions. In the open position, the domestic hot water flows out of the loop 6. In the closed position, the domestic hot water does not escape from the loop 6.

À cause des pertes thermiques qui existent inévitablement dans la boucle 6, la température de l'eau chaude sanitaire est plus élevée dans le conduit 22 que dans le conduit 24. L'écart entre les températures mesurées aux niveaux de la sortie 36 et de l'entrée 38 est généralement supérieur à 3°C ou 5°C. Par exemple, la température de l'eau chaude sanitaire au niveau de l'entrée 38 est égale à 55°C, tandis que la température de l'eau chaude sanitaire au niveau de la sortie 36 est égale à 60°C.Because of the heat losses which inevitably exist in loop 6, the temperature of the domestic hot water is higher in line 22 than in line 24. The difference between the temperatures measured at the levels of outlet 36 and l entry 38 is generally greater than 3 ° C or 5 ° C. For example, the temperature of domestic hot water at inlet 38 is 55 ° C, while the temperature of domestic hot water at outlet 36 is 60 ° C.

La pompe 26 est ici installée sur le conduit 24. Toutefois, elle aurait pu être installée ailleurs dans la boucle 6. Par exemple, la pompe 26 assure un débit constant d'eau chaude sanitaire dans la boucle 6 lorsqu'il n'y a pas de soutirage d'eau chaude.The pump 26 is here installed on the conduit 24. However, it could have been installed elsewhere in the loop 6. For example, the pump 26 ensures a constant flow of domestic hot water in the loop 6 when there is no withdrawal of hot water.

La boucle 6 comporte aussi une entrée 41 par l'intermédiaire de laquelle de l'eau sanitaire préchauffée est introduite dans la boucle 6 pour compenser le volume d'eau chaude sanitaire soutiré par l'intermédiaire du point 40. Ici, l'entrée 41 est par exemple placée sur le conduit 22.The loop 6 also includes an inlet 41 by means of which preheated domestic water is introduced into the loop 6 to compensate for the volume of domestic hot water drawn off via the point 40. Here, the inlet 41 is for example placed on the conduit 22.

La température de l'eau chaude sanitaire est régulée. Ici, la température au niveau de la sortie 36 est asservie sur une consigne C42. La consigne C42 est choisie strictement supérieure à la température Tmin-ECS de manière à ce que la température de l'eau chaude sanitaire en tout point de la boucle 6 soit supérieure à cette température Tmin-ECS. Par exemple, ici, la consigne C42 est égale à 60°. Pour mettre en œuvre cet asservissement en température de la boucle 6, le système 2 comporte :

  • une sonde 42 de température qui mesure la température de l'eau chaude sanitaire au niveau de la sortie 36, et
  • une vanne 44 commandable qui permet de régler le débit du liquide caloporteur chaud qui circule dans l'échangeur 20 de l'entrée 30 vers la sortie 34, et
  • une unité 46 de commande de la vanne 44.
The domestic hot water temperature is regulated. Here, the temperature at the output 36 is controlled by a setpoint C 42 . The setpoint C 42 is chosen to be strictly higher than the temperature T min-DHW so that the temperature of the domestic hot water at any point in the loop 6 is higher than this temperature T min-DHW . For example, here, the setpoint C 42 is equal to 60 °. To implement this temperature control of the loop 6, the system 2 comprises:
  • a temperature probe 42 which measures the temperature of the domestic hot water at the outlet 36, and
  • a controllable valve 44 which makes it possible to adjust the flow rate of the hot heat transfer liquid which circulates in the exchanger 20 from the inlet 30 to the outlet 34, and
  • a valve control unit 46.

Ici, la vanne 44 est placée après la sortie 34. Toutefois, elle aurait pu aussi être placée avant l'entrée 30 par exemple. L'unité 46 commande la vanne 44 en fonction de l'écart entre la consigne C42 et la température T42 mesurée par la sonde 42. Plus précisément, lorsque l'écart entre la consigne C42 et la température T42 augmente, l'unité 46 commande la vanne 44 pour augmenter le débit de liquide caloporteur chaud qui circule dans l'échangeur 20. À l'inverse, lorsque cet écart diminue, l'unité 44 commande la vanne 44 pour diminuer ce débit de liquide caloporteur chaud. De plus, par exemple, si la température T42 devient supérieure à la consigne C42, l'unité 46 commande la vanne 44 pour arrêter la circulation du liquide caloporteur à travers l'échangeur 20.Here, the valve 44 is placed after the outlet 34. However, it could also have been placed before the inlet 30 for example. The unit 46 controls the valve 44 as a function of the difference between the setpoint C 42 and the temperature T 42 measured by the probe 42. More precisely, when the difference between the setpoint C 42 and the temperature T 42 increases, l unit 46 controls the valve 44 to increase the flow of hot heat transfer liquid which circulates in the exchanger 20. Conversely, when this difference decreases, the unit 44 controls the valve 44 to reduce this flow of hot heat transfer liquid. In addition, for example, if the temperature T 42 becomes higher than the set point C 42 , the unit 46 controls the valve 44 to stop the circulation of the heat transfer liquid through the exchanger 20.

Pour préchauffer l'eau sanitaire à une température typiquement supérieure à la température Tmin-ECS, le système 2 comporte un échangeur thermique 50 de préchauffage. La structure de l'échangeur 50 est par exemple similaire ou identique à celle de l'échangeur 20. Elle n'est donc pas décrite ici en détail. Par la suite, l'entrée primaire, la sortie primaire, l'entrée secondaire et la sortie secondaire de l'échangeur 50 portent, respectivement, les références numériques 52, 54, 56 et 58.To preheat the domestic water to a temperature typically higher than the temperature T min-DHW , the system 2 includes a preheating heat exchanger 50. The structure of the exchanger 50 is for example similar or identical to that of the exchanger 20. It is therefore not described here in detail. Thereafter, the primary inlet, the primary outlet, the secondary inlet and the secondary outlet of the exchanger 50 bear, respectively, the numerical references 52, 54, 56 and 58.

L'entrée 56 est raccordée, par l'intermédiaire d'un conduit 60, à une source 62 d'eau sanitaire froide. Par exemple, l'eau sanitaire froide est à une température inférieure ou égale à 20°C.The inlet 56 is connected, via a conduit 60, to a source 62 of cold sanitary water. For example, cold sanitary water is at a temperature less than or equal to 20 ° C.

Ici, un débitmètre 64 est installé sur le conduit 60 pour mesurer le débit d'eau sanitaire froide.Here, a flow meter 64 is installed on the conduit 60 to measure the flow of cold sanitary water.

La sortie 58 est directement raccordée à l'entrée 41 par un conduit 66.The outlet 58 is directly connected to the inlet 41 by a conduit 66.

La sortie 54 est directement raccordée à l'entrée 12 de la source 4 par un conduit 68. Dans le système 2, le liquide caloporteur circule en boucle fermé, c'est-à-dire que le volume de liquide caloporteur évacué par la sortie 10 est en permanence égal, à quelques pertes près, au volume de liquide caloporteur reçu sur l'entrée 12 de la source 4. Le conduit 68 permet donc de ramener le liquide caloporteur utilisé vers la source 4 pour qu'il soit à nouveau réchauffé. La température du liquide caloporteur au niveau de l'entrée 12 correspond à la température de retour TR. Plus la température TR est faible, plus le rendement de la source 4 est élevé. Par conséquent, comme expliqué plus loin, ici, le système 2 est conçu pour limiter autant que possible cette température TR.The outlet 54 is directly connected to the inlet 12 of the source 4 by a conduit 68. In system 2, the heat transfer liquid circulates in a closed loop, that is to say that the volume of heat transfer liquid discharged through the outlet 10 is permanently equal, with a few losses, to the volume of heat transfer liquid received on the inlet 12 of the source 4. The conduit 68 therefore makes it possible to bring the heat transfer liquid used towards the source 4 so that it is reheated again. The temperature of the heat transfer liquid at the inlet 12 corresponds to the return temperature T R. The lower the temperature T R , the higher the efficiency of the source 4. Consequently, as explained below, here, the system 2 is designed to limit this temperature T R as much as possible.

Ici, le conduit 68 est aussi équipé d'une pompe 70 pour faire circuler le liquide caloporteur depuis la sortie 10 vers l'entrée 12.Here, the conduit 68 is also equipped with a pump 70 for circulating the heat transfer liquid from the outlet 10 towards the inlet 12.

L'entrée 52 de l'échangeur 50 doit recevoir si possible du liquide caloporteur encore suffisamment chaud pour réchauffer l'eau sanitaire froide à une température supérieure à la température Tmin-ECS. À cet effet, l'entrée 52 est raccordée à la sortie 34 de l'échangeur 20 par l'intermédiaire, successivement en allant de l'entrée 52 vers la sortie 34, d'un conduit de dérivation 74, d'une vanne 76 de dérivation et d'un conduit 78.The inlet 52 of the exchanger 50 must, if possible, receive heat transfer liquid which is still hot enough to heat the cold domestic water to a temperature higher than the temperature T min-DHW . To this end, the inlet 52 is connected to the outlet 34 of the exchanger 20 via, successively going from the inlet 52 towards the outlet 34, a bypass duct 74, a valve 76 bypass and conduit 78.

La vanne 76 est une vanne trois voies. Elle comporte une entrée 80 et deux sorties 82 et 84. L'entrée 80 est directement raccordée à une extrémité du conduit 78. L'autre extrémité du conduit 78 est raccordée à la sortie 34. Ici, la vanne 44 est montée sur ce conduit 78.Valve 76 is a three-way valve. It has an inlet 80 and two outlets 82 and 84. The inlet 80 is directly connected to one end of the conduit 78. The other end of the conduit 78 is connected to the outlet 34. Here, the valve 44 is mounted on this conduit 78.

La sortie 82 est directement raccordée à une extrémité du conduit 74. L'autre extrémité du conduit 74 est raccordée à l'entrée 52.The outlet 82 is directly connected to one end of the conduit 74. The other end of the conduit 74 is connected to the inlet 52.

La sortie 84 est directement raccordée à un piquage haut 86 d'un réservoir 88.The outlet 84 is directly connected to a high nozzle 86 of a reservoir 88.

La vanne 76 répartit le liquide caloporteur reçu sur son entrée 80 entre les sorties 82 et 84. Ainsi, la somme des débits sortant au niveau des sorties 82 et 84 est en permanence égale au débit entrant par l'intermédiaire de l'entrée 80.The valve 76 distributes the heat transfer liquid received on its inlet 80 between the outlets 82 and 84. Thus, the sum of the outgoing flows at the outlets 82 and 84 is permanently equal to the incoming flow via the entry 80.

La vanne 76 est commandable. Plus précisément, la vanne 76 modifie la répartition des débits sortant entre les sorties 82 et 84. Ici, la vanne 76 permet de faire varier chacun de ces débits sortants entre une valeur nulle et une valeur maximale où elle est égale au débit entrant.The valve 76 is controllable. More precisely, the valve 76 modifies the distribution of the outgoing flows between the outputs 82 and 84. Here, the valve 76 makes it possible to vary each of these outgoing flows between a zero value and a maximum value where it is equal to the incoming flow.

La vanne 76 est commandée par une unité électronique 90 de commande. Cette unité 90 est configurée pour mettre en œuvre le procédé de la figure 2. Par exemple, elle comporte un microprocesseur programmable 92 et une mémoire 94 comportant les instructions et les données nécessaires pour l'exécution du procédé de la figure 2. En particulier, l'unité 90 est apte à acquérir les mesures des débitmètres tel que le débitmètre 64 et d'un appareillage de mesure d'un état de charge du réservoir 88.The valve 76 is controlled by an electronic control unit 90. This unit 90 is configured to implement the method of figure 2 . For example, it comprises a programmable microprocessor 92 and a memory 94 comprising the instructions and the data necessary for the execution of the method of the figure 2 . In particular, the unit 90 is able to acquire the measurements of the flowmeters such as the flowmeter 64 and of an apparatus for measuring a state of charge of the tank 88.

Le réservoir 88 est utilisé pour écrêter les pics de production d'énergie thermique par la source 4 et aussi pour maintenir la température TR la plus basse possible. À cet effet, du liquide caloporteur chaud est stocké dans la partie haute du réservoir 88 et du liquide caloporteur froid est stocké dans sa partie basse. Ainsi, lorsque l'utilisateur soutire de l'eau chaude sanitaire de la boucle 6, il est possible d'utiliser le liquide caloporteur chaud stocké dans la partie haute du réservoir 88 pour préchauffer l'eau sanitaire froide utilisée pour remplir la boucle 6. Dès lors, à chaque fois que l'utilisateur soutire de l'eau chaude sanitaire, il n'est pas nécessaire d'augmenter immédiatement la production d'énergie thermique par la source 4. Cela permet donc de limiter les pics de production d'énergie thermique de la source 4.The reservoir 88 is used to peak the peaks of thermal energy production by the source 4 and also to keep the temperature T R as low as possible. To this end, hot heat transfer liquid is stored in the upper part of the reservoir 88 and cold heat transfer liquid is stored in its lower part. Thus, when the user draws domestic hot water from loop 6, it is possible to use the hot heat transfer liquid stored in the upper part of the tank 88 to preheat the cold domestic water used to fill the loop 6. Therefore, each time the user draws domestic hot water, there is no It is not necessary to immediately increase the thermal energy production by the source 4. This therefore makes it possible to limit the peaks in thermal energy production from the source 4.

À cet effet, le réservoir 88 comporte un piquage haut 96 directement raccordé par un conduit 97 au conduit 74 sans passer par l'intermédiaire de la vanne 76. Ce conduit 97 comporte un clapet anti-retour 98 qui empêche la circulation du liquide caloporteur depuis le conduit 74 vers le piquage haut 96. Le piquage 96 et le conduit 97 permettent donc de soutirer du liquide caloporteur stocké dans la partie haute du réservoir 88 pour le faire circuler dans l'échangeur 50 et donc préchauffer l'eau sanitaire froide.To this end, the reservoir 88 has a high nozzle 96 directly connected by a conduit 97 to the conduit 74 without passing through the valve 76. This conduit 97 comprises a non-return valve 98 which prevents the circulation of the heat transfer liquid from the conduit 74 towards the high nozzle 96. The nozzle 96 and the conduit 97 therefore make it possible to draw off the heat transfer liquid stored in the upper part of the reservoir 88 in order to circulate it in the exchanger 50 and therefore preheat the cold sanitary water.

À l'inverse, par exemple, lorsque l'utilisateur ne soutire pas d'eau chaude sanitaire, il est possible d'utiliser le liquide caloporteur froid stocké dans la partie basse du réservoir 88 pour renvoyer vers l'entrée 12 de la source 4 du liquide caloporteur froid à la place du liquide caloporteur chaud issu de la sortie 34.Conversely, for example, when the user does not draw domestic hot water, it is possible to use the cold heat transfer liquid stored in the lower part of the tank 88 to return to the inlet 12 of the source 4 cold heat transfer liquid instead of hot heat transfer liquid from outlet 34.

À cet effet, le réservoir 88 comporte un piquage bas 100 directement raccordé au conduit 68 sans passer par l'échangeur 50. Ainsi, il est possible d'introduire dans la partie haute un volume prédéterminé de liquide caloporteur chaud évacué par la sortie 34 et, en même temps, de soutirer un volume identique de liquide caloporteur froid stocké dans la partie basse du réservoir 88 pour l'envoyer vers l'entrée 12 de la source 4. En faisant cela, la température de retour TR est maintenue en dessous de 20°C et le liquide caloporteur chaud n'est pas directement renvoyé à la source 4.To this end, the reservoir 88 includes a bottom nozzle 100 directly connected to the conduit 68 without passing through the exchanger 50. Thus, it is possible to introduce into the upper part a predetermined volume of hot heat transfer liquid discharged through the outlet 34 and , at the same time, to extract an identical volume of cold heat-transfer liquid stored in the lower part of the reservoir 88 to send it to the inlet 12 of the source 4. By doing this, the return temperature T R is kept below of 20 ° C and the hot heat transfer liquid is not directly returned to the source 4.

Pour remplir la partie basse du réservoir 88 avec du liquide caloporteur froid, le réservoir 88 comporte aussi un piquage bas 102 raccordé au conduit 68 par un conduit 104. Ce conduit 104 comporte une pompe commandable 106 qui permet d'aspirer au moins une partie du liquide caloporteur froid rejeté par l'échangeur 50 afin de remplir la partie basse du réservoir 88. Ici, la pompe 106 est commandée par l'unité 90. Le conduit 104 est aussi équipé d'un débitmètre 108 qui permet de mesurer le débit de fluide caloporteur dans ce conduit 104 et de communiquer ces mesures à l'unité 90.To fill the lower part of the reservoir 88 with cold coolant, the reservoir 88 also has a bottom nozzle 102 connected to the conduit 68 by a conduit 104. This conduit 104 comprises a controllable pump 106 which makes it possible to suck at least part of the cold heat transfer liquid rejected by the exchanger 50 in order to fill the lower part of the reservoir 88. Here, the pump 106 is controlled by the unit 90. The conduit 104 is also equipped with a flow meter 108 which makes it possible to measure the flow of heat transfer fluid in this conduit 104 and communicate these measurements to the unit 90.

Un clapet anti-retour 109 est installé dans le conduit 68 entre les points de branchement, sur ce conduit 68, des conduits qui conduisent, respectivement, aux piquages bas 100 et 102. Ainsi, le liquide caloporteur aspiré par la pompe 106 ne peut que provenir de l'échangeur 50. En effet, ce clapet anti-retour 109 autorise uniquement la circulation du liquide caloporteur depuis la sortie 54 vers l'entrée 12 de la source 4.A non-return valve 109 is installed in the conduit 68 between the connection points, on this conduit 68, of the conduits which lead, respectively, to the bottom tappings 100 and 102. Thus, the heat transfer liquid sucked by the pump 106 can only come from the exchanger 50. Indeed, this non-return valve 109 only authorizes the circulation of the heat transfer liquid from the outlet 54 towards the inlet 12 of the source 4.

Afin de garantir que l'énergie thermique du liquide caloporteur qui traverse l'échangeur 50 est toujours suffisante pour préchauffer l'eau sanitaire froide au-delà de la température Tmin-ECS, le système 2 comporte un conduit 120 qui raccorde la sortie 10 de la source 4 directement à l'entrée primaire 52 de l'échangeur 50 sans passer par l'échangeur 20 et sans passer par le réservoir 88. Ce conduit 120 est équipé d'une vanne 122 commandable qui permet de régler le débit du liquide caloporteur chaud qui circule dans le conduit 120. Le système 2 comporte aussi une unité électronique 124 de commande de la vanne 122. Ici, l'unité 124 est configurée pour réguler le débit à l'intérieur du conduit 120 de manière à asservir la température T126 de l'eau sanitaire préchauffée délivrée par l'intermédiaire de la sortie 58 sur une consigne de température C126. Ici, la consigne C126 est supérieure ou égale à la température Tmin-ECS et, par exemple, égale à la consigne C42. Par exemple, la consigne C126 est égale à 55°C ou 60°C. Pour réaliser cet asservissement, le système 2 comporte une sonde 126 qui mesure la température T126 et transfère ces mesures à l'unité 124. L'unité 124 commande la vanne 122 en fonction de l'écart entre la consigne C126 et la température mesurée T126. Typiquement, plus cet écart augmente, plus l'unité 124 commande la vanne 122 pour accroître le débit de liquide caloporteur chaud dans le conduit 120. À l'inverse, si la température T126 dépasse la consigne C126, l'unité 124 commande la vanne 122 pour réduire le débit dans le conduit 120.In order to guarantee that the thermal energy of the heat-transfer liquid which passes through the exchanger 50 is always sufficient to preheat the cold domestic water beyond the temperature T min-DHW , the system 2 comprises a conduit 120 which connects the outlet 10 from the source 4 directly to the primary input 52 of the exchanger 50 without passing through the exchanger 20 and without passing through the reservoir 88. This conduit 120 is equipped with a controllable valve 122 which makes it possible to regulate the flow rate of the hot heat transfer liquid which circulates in the conduit 120. The system 2 also includes an electronic unit 124 for controlling the valve 122. Here, the unit 124 is configured to regulate the flow rate inside the conduit 120 so as to control the temperature T 126 of the preheated sanitary water delivered via the outlet 58 on a temperature setpoint C 126 . Here, the setpoint C 126 is greater than or equal to the temperature T min-DHW and, for example, equal to the setpoint C 42 . For example, the setpoint C 126 is equal to 55 ° C or 60 ° C. To achieve this control, the system 2 includes a probe 126 which measures the temperature T 126 and transfers these measurements to the unit 124. The unit 124 controls the valve 122 according to the difference between the setpoint C 126 and the temperature measured T 126 . Typically, the more this difference increases, the more the unit 124 controls the valve 122 to increase the flow of hot coolant in the conduit 120. Conversely, if the temperature T 126 exceeds the setpoint C 126 , the unit 124 controls the valve 122 to reduce the flow in the conduit 120.

Le réservoir 88 est également équipé d'un appareillage 130 de mesure d'une grandeur physique représentative de l'état de charge de ce réservoir. L'état de charge du réservoir est une grandeur physique représentative du volume de liquide caloporteur chaud actuellement stocké dans le réservoir 88. Pour cela, ici, l'appareillage 130 comporte :

  • une sonde haute 132 de température qui mesure la température du liquide caloporteur dans la partie haute du réservoir 88,
  • une sonde basse 134 de température qui mesure la température du liquide caloporteur dans la partie basse du réservoir 88, et
  • une sonde intermédiaire 136 de température qui mesure la température dans une partie intermédiaire du réservoir 88, située entre les parties haute et basse.
The reservoir 88 is also equipped with an apparatus 130 for measuring a physical quantity representative of the state of charge of this reservoir. The state of charge of the tank is a physical quantity representative of the volume of hot heat transfer liquid currently stored in the tank 88. For this, here, the apparatus 130 comprises:
  • a high temperature probe 132 which measures the temperature of the heat transfer liquid in the upper part of the reservoir 88,
  • a low temperature probe 134 which measures the temperature of the heat transfer liquid in the lower part of the reservoir 88, and
  • an intermediate temperature probe 136 which measures the temperature in an intermediate part of the reservoir 88, located between the upper and lower parts.

Par exemple, la sonde 136 mesure la température du liquide caloporteur en un point de mesure situé à mi-distance, dans la direction verticale, entre les points de mesure des sondes 132 et 134. L'appareillage 130 transfert ces mesures à l'unité 90.For example, the probe 136 measures the temperature of the heat transfer liquid at a measurement point located midway, in the vertical direction, between the measurement points of the probes 132 and 134. The apparatus 130 transfers these measurements to the unit 90.

Le fonctionnement du système 2 et de l'unité 90 va maintenant être décrit en référence à la figure 2.The operation of the system 2 and of the unit 90 will now be described with reference to the figure 2 .

Lors d'une étape 140, à intervalle prédéterminé, l'unité 90 acquiert les mesures de l'appareillage 130 et des débitmètres 64 et 108.During a step 140, at a predetermined interval, the unit 90 acquires the measurements of the apparatus 130 and of the flowmeters 64 and 108.

En parallèle, lors d'une étape 142, l'unité 90 compare la température T132 mesurée par la sonde 132 à un seuil bas S132. Par exemple, le seuil S132 est égal à 20°C.In parallel, during a step 142, the unit 90 compares the temperature T 132 measured by the probe 132 with a low threshold S 132 . For example, the threshold S 132 is equal to 20 ° C.

Si la température T132 acquise est supérieure au seuil S132, alors, lors d'une étape 144, l'unité 90 commande la pompe 106 pour que le débit de liquide caloporteur chaud qui traverse successivement le conduit 97, le conduit 74 et l'échangeur 50 soit égal au débit mesuré par le débitmètre 64.If the temperature T 132 acquired is greater than the threshold S 132 , then, during a step 144, the unit 90 controls the pump 106 so that the flow of hot heat-transfer liquid which successively passes through the conduit 97, the conduit 74 and l exchanger 50 is equal to the flow rate measured by flowmeter 64.

Dans le cas contraire, c'est-à-dire si la température mesurée T132 est inférieure au seuil S132, lors d'une étape 146, l'unité 90 arrête la pompe 106 pour stopper la circulation du liquide caloporteur dans le conduit 97. Dans ce dernier cas, le préchauffage de l'eau sanitaire froide est à alors uniquement assuré par le liquide caloporteur chaud amené sur l'entrée 52 de l'échangeur 50 par le conduit 120.In the opposite case, that is to say if the measured temperature T 132 is lower than the threshold S 132 , during a step 146, the unit 90 stops the pump 106 to stop the circulation of the heat-transfer liquid in the duct. 97. In the latter case, the preheating of the cold domestic water is then only ensured by the hot heat transfer liquid supplied to the inlet 52 of the exchanger 50 by the conduit 120.

Également en parallèle, lors d'une phase 150, l'unité 90 ajuste automatiquement les débits du liquide caloporteur entrant et sortant du réservoir 88 pour augmenter la probabilité qu'à un instant donné quelconque, l'état de charge de ce réservoir 88 soit tel qu'il contient dans sa partie haute du liquide caloporteur chaud et, simultanément, dans sa partie basse, du liquide caloporteur froid.Also in parallel, during a phase 150, the unit 90 automatically adjusts the flow rates of the heat transfer liquid entering and leaving the reservoir 88 to increase the probability that at any given moment, the state of charge of this reservoir 88 is as it contains in its upper part hot heat transfer liquid and, simultaneously, in its lower part, cold heat transfer liquid.

Pour cela, à intervalle prédéterminé, lors d'une étape 152, l'unité 90 acquiert les mesures de l'appareillage 130, puis construit à partir de ces mesures un indicateur de charge Ic. Par exemple, l'indicateur Ic est construit selon la relation Suivante : Ic = (Tm - Tr-min) / (Tr-max - Tr-min), où :

  • Tm est la température moyenne du liquide caloporteur à l'intérieur du réservoir 88, calculée à partir des températures T132, T134 et T136, mesurées, respectivement, par les sondes 132, 134 et 136,
  • Tr-max est une constante dont la valeur est choisie égale à la valeur de la température Tm lorsque le réservoir 88 est entièrement rempli de liquide caloporteur chaud,
  • Tr-min est une constante dont la valeur est choisie égale à la valeur de la température Tm lorsque le réservoir 88 est entièrement rempli de liquide caloporteur froid.
For this, at a predetermined interval, during a step 152, the unit 90 acquires the measurements of the apparatus 130, then builds from these measurements a charge indicator I c . For example, the indicator I c is constructed according to the following relationship: I c = (T m - T r-min ) / (T r-max - T r-min ), where:
  • T m is the average temperature of the heat transfer liquid inside the tank 88, calculated from the temperatures T132, T134 and T136, measured, respectively, by the probes 132, 134 and 136,
  • T r-max is a constant, the value of which is chosen to be equal to the value of the temperature T m when the tank 88 is completely filled with hot heat transfer liquid,
  • T r-min is a constant, the value of which is chosen to be equal to the value of the temperature T m when the tank 88 is completely filled with cold coolant.

Par exemple, dans le cas particulier décrit ici, la température Tm peut être calculée à l'aide de la relation suivante : Tm = (T132 + T134 + T136)/3. Par exemple, Tr-min est égale 20°C et Tr-max est égale à 60°C. Ainsi, l'indicateur Ic est égal ou proche de 1 lorsque le réservoir 88 est entièrement rempli de liquide caloporteur chaud et égal ou proche de 0 lorsqu'il est entièrement rempli de liquide caloporteur froid. Par la suite, on considère que l'indicateur Ic est égal à 1 lorsque sa valeur dépasse un seuil prédéterminé proche de 1 tel que 0,95. De façon similaire, par la suite, on considère que l'indicateur Ic est égal à 0 lorsque sa valeur est en-dessous d'un seuil prédéterminé proche de 0 tel que 0,05For example, in the particular case described here, the temperature Tm can be calculated using the following relation: T m = (T 132 + T 134 + T 136 ) / 3. For example, T r-min is equal to 20 ° C and T r-max is equal to 60 ° C. Thus, the indicator I c is equal to or close to 1 when the reservoir 88 is completely filled with hot heat transfer liquid and equal to or close to 0 when it is completely filled with cold heat transfer liquid. Subsequently, it is considered that the indicator I c is equal to 1 when its value exceeds a predetermined threshold close to 1 such as 0.95. Similarly, thereafter, it is considered that the indicator I c is equal to 0 when its value is below a predetermined threshold close to 0 such as 0.05

Dans ce mode de réalisation, lors d'une étape 154, à partir de la valeur courante de l'indicateur Ic et des précédentes valeurs de cet indicateur Ic construites, par exemple, pendant les dernières 24 heures, l'unité 90 actualise la valeur de deux durées Dp et Dv. Les durées Dp et Dv correspondent au cumul, sur les dernières 24 heures, des intervalles de temps où, respectivement, l'indicateur Ic est égal à 1 et l'indicateur Ic est égal à 0.In this embodiment, during a step 154, on the basis of the current value of the indicator I c and of the previous values of this indicator I c constructed, for example, during the last 24 hours, the unit 90 updates the value of two durations D p and D v. The durations D p and D v correspond to the accumulation, over the last 24 hours, of the time intervals where, respectively, the indicator I c is equal to 1 and the indicator I c is equal to 0.

En parallèle de l'étape 152, l'unité 90 réitère aussi à intervalle prédéterminé une étape 156. Par exemple, l'étape 156 est réitérée une ou deux fois par jour.In parallel with step 152, the unit 90 also repeats at a predetermined interval step 156. For example, step 156 is repeated once or twice a day.

Lors de l'étape 156, la durée Dp est comparée à un seuil prédéterminé Sp. Par exemple, le seuil Sp est prix égal à 30 minutes.During step 156, the duration D p is compared with a predetermined threshold S p . For example, the threshold S p is price equal to 30 minutes.

Si la durée Dp dépasse le seuil Sp et si la vanne 114 n'est pas déjà complètement fermée, alors, lors d'une étape 160, l'unité 90 commande la vanne 114 pour réduire d'un pas prédéterminé le débit de liquide caloporteur chaud circulant dans le conduit 112. Cela permet donc de limiter le débit de liquide caloporteur chaud entrant dans le réservoir 88 et donc de réduire la durée Dp.If the duration D p exceeds the threshold S p and if the valve 114 is not already completely closed, then, during a step 160, the unit 90 controls the valve 114 to reduce the flow rate by a predetermined step hot circulating coolant in the conduit 112. This therefore makes it possible to limit the flow of hot heat-transfer liquid entering the reservoir 88 and therefore to reduce the duration D p .

Si la durée Dp dépasse le seuil Sp et si la vanne 114 est déjà complètement fermée, alors, lors d'une étape 162, l'unité 90 commande la vanne 76 pour augmenter d'un pas prédéterminé le débit de liquide caloporteur chaud dans le conduit 74 et, simultanément, diminuer du même pas prédéterminé le débit de liquide caloporteur chaud entrant dans le réservoir 88 par l'intermédiaire du piquage 86. Puisque le liquide caloporteur qui circule dans le conduit 74 est soit refroidi par l'échangeur 50, puis stocké dans la partie basse du réservoir 88, soit dirigé vers l'entrée 12 de la source 4, cette commande de la vanne 76 permet de diminuer le débit de liquide caloporteur chaud entrant dans le réservoir 88.If the duration D p exceeds the threshold S p and if the valve 114 is already completely closed, then, during a step 162, the unit 90 controls the valve 76 to increase the flow of hot heat transfer liquid by a predetermined step in the duct 74 and, simultaneously, decrease by the same predetermined step the flow of hot heat transfer liquid entering the tank 88 via the nozzle 86. Since the heat transfer liquid which circulates in the pipe 74 is either cooled by the exchanger 50 , then stored in the lower part of the reservoir 88, or directed towards the inlet 12 of the source 4, this control of the valve 76 makes it possible to reduce the flow of hot heat-transfer liquid entering the reservoir 88.

Seulement si la durée Dp est inférieure au seuil Sp, alors le procédé se poursuit par une étape 164. Lors de cette étape 164, la durée Dv est comparée à un seuil prédéterminé Sv. Par exemple, le seuil Sv est égal à 30 minutes.Only if the duration D p is less than the threshold S p , then the process continues with a step 164. During this step 164, the duration D v is compared with a predetermined threshold S v . For example, the threshold S v is equal to 30 minutes.

Si la durée Dv est supérieure au seuil Sv et si la vanne 76 n'est pas déjà dans une position où sa sortie 82 est fermée, alors, lors d'une étape 166, l'unité 90 commande la vanne 76 pour réduire d'un pas prédéterminé le débit sortant par sa sortie 82. En faisant cela, le débit de liquide caloporteur chaud évacué par la sortie 34 qui est dirigé vers le réservoir 88 augmente, ce qui permet de réduire la durée Dv. If the duration D v is greater than the threshold S v and if the valve 76 is not already in a position where its outlet 82 is closed, then, during a step 166, the unit 90 controls the valve 76 to reduce by a predetermined step the outgoing flow rate through its outlet 82. By doing this, the flow rate of hot heat transfer liquid discharged through the outlet 34 which is directed towards the reservoir 88 increases, which makes it possible to reduce the duration D v.

Si la durée Dv est supérieure au seuil Sv et si la sorite 82 de la vanne 76 est déjà complètement fermée, alors, lors d'une étape 168, l'unité 90 commande la vanne 114 pour augmenter d'un pas prédéterminé le débit de liquide caloporteur chaud qui circule dans le conduit 112. Cela conduit donc à augmenter le débit de liquide caloporteur chaud entrant dans le réservoir 88 et donc à diminuer la durée Dv. If the duration D v is greater than the threshold S v and if the outlet 82 of the valve 76 is already completely closed, then, during a step 168, the unit 90 controls the valve 114 to increase by a predetermined step the flow of hot heat transfer liquid which circulates in the duct 112. This therefore leads to increasing the flow of hot heat transfer liquid entering the tank 88 and therefore to reducing the duration D v.

Si la durée Dv est inférieure au seuil Sv, les réglages des vannes 76 et 114 sont laissés inchangés.If the duration D v is less than the threshold S v , the settings of the valves 76 and 114 are left unchanged.

Le système 2 a été simulé dans les conditions suivantes :

  • T10 = 90°C,
  • la température de l'eau sanitaire froide dans le conduit 60 est égale à 5°C,
  • Tmin-ECS = 55°C,
  • l'écart de température entre la sortie 36 et l'entrée 38 est égal à 5°C,
  • la consommation journalière d'eau chaude sanitaire est de 3 500 litres, réparties sur 145 plages horaires de 90 secondes chacune,
  • le ratio k entre l'énergie thermique apportée par l'échangeur thermique 20 et celle apportée par l'échangeur thermique 50 pour compenser les pertes thermique dans la boucle 6, est égal à 0,75, et
  • le volume du réservoir 88 est égal à 3 500 litres.
System 2 was simulated under the following conditions:
  • T 10 = 90 ° C,
  • the temperature of the cold sanitary water in the conduit 60 is equal to 5 ° C.,
  • T min-DHW = 55 ° C,
  • the temperature difference between outlet 36 and inlet 38 is 5 ° C,
  • the daily consumption of domestic hot water is 3,500 liters, distributed over 145 time slots of 90 seconds each,
  • the ratio k between the thermal energy provided by the heat exchanger 20 and that provided by the heat exchanger 50 to compensate for the heat losses in the loop 6, is equal to 0.75, and
  • the volume of the reservoir 88 is equal to 3,500 liters.

Les résultats de cette simulation sont représentés sur les graphiques des figures 3 à 5. Dans ces graphiques, l'axe des abscisses est gradué en jours. L'axe des ordonnées des graphiques des figures 3 à 5 est gradué, respectivement, en degrés Celsius, en kg/s et en kW. Dans le graphique de la figure 3, les courbes 180, 182, 184 et 186 correspondent respectivement :

  • à la température T36 au niveau de la sortie 36,
  • à la température T132,
  • à la température T134, et
  • à la température de retour TR.
The results of this simulation are represented on the graphs of the figures 3 to 5 . In these graphs, the abscissa axis is graduated in days. The ordinate axis of the graphs of figures 3 to 5 is graduated, respectively, in degrees Celsius, in kg / s and in kW. In the graph of the figure 3 , the curves 180, 182, 184 and 186 correspond respectively:
  • at the temperature T 36 at the outlet 36,
  • at temperature T 132 ,
  • at temperature T 134 , and
  • at the return temperature T R.

Ce graphique montre qu'après un régime transitoire initial de 0,25 jour, la température TR reste stable et faible dans le système 2.This graph shows that after an initial transient regime of 0.25 days, the temperature T R remains stable and low in system 2.

Dans le graphique de la figure 4, la courbe 188 correspond au débit dans le réservoir 88. Ce débit est compté positivement lorsqu'il va des piquages bas vers les piquages hauts.In the graph of the figure 4 , the curve 188 corresponds to the flow rate in the reservoir 88. This flow rate is counted positively when it goes from the low nozzles to the high nozzles.

Dans le graphique de la figure 5, les courbes 190 et 192 correspondent, respectivement :

  • à l'énergie thermique produite par la source 4 pour chauffer le liquide caloporteur, et
  • à l'énergie thermique consommée par les utilisateurs.
In the graph of the figure 5 , the curves 190 and 192 correspond, respectively:
  • to the thermal energy produced by the source 4 to heat the heat transfer liquid, and
  • thermal energy consumed by users.

Ce graphique montre que dans le système 2, les pics de production d'énergie thermique par la source 4 sont écrêtés, c'est-à-dire moins importants que les pics de consommation d'énergie thermique.This graph shows that in system 2, the peaks of thermal energy production by source 4 are clipped, that is to say less significant than the peaks of thermal energy consumption.

La figure 6 représente un système 200 de chauffage pratiquement identique au système 2, sauf qu'il comporte en plus un circuit 202 de chauffage de locaux. Le circuit 202 comporte un échangeur thermique 204 et un conduit 206 qui raccorde la sortie secondaire de l'échangeur 204 à son entrée secondaire et qui traverse un ou plusieurs radiateurs 208. Par « radiateur », on désigne ici tout émetteur de chaleur qu'il soit fixé sur un mur ou logé dans le sol comme dans le cas d'un plancher chauffant. Sur la figure 6, un seul radiateur 208 a été représenté. Chaque radiateur 208 chauffe un local ou une pièce. Le liquide de chauffage circule à l'intérieur de ce circuit de chauffage grâce à une pompe 209.The figure 6 represents a heating system 200 practically identical to system 2, except that it additionally comprises a space heating circuit 202. The circuit 202 comprises a heat exchanger 204 and a conduit 206 which connects the secondary outlet of the exchanger 204 to its secondary inlet and which passes through one or more radiators 208. By “radiator”, is meant here any heat emitter that it either fixed on a wall or housed in the ground as in the case of a heated floor. On the figure 6 , only one radiator 208 has been shown. Each radiator 208 heats a room or a room. The heating liquid circulates inside this heating circuit thanks to a pump 209.

L'entrée primaire de l'échangeur 204 est directement raccordée à la sortie 10 de la source 4. La sortie primaire de l'échangeur 204 est raccordée par l'intermédiaire, successivement, d'un conduit 210 et d'une vanne 212 au point haut 86.The primary input of the exchanger 204 is directly connected to the output 10 of the source 4. The primary output of the exchanger 204 is connected, successively, through a conduit 210 and a valve 212 to the high point 86.

Le conduit 210 est aussi équipé d'une vanne commandable 214 apte à ajuster le débit qui circule dans le conduit 210. De façon similaire ce qui a été décrit dans le cas de la vanne 44, la vanne 214 est commandée par une unité de commande 216 pour asservir la température du liquide de chauffage qui circule dans le conduit 206 sur une consigne de chauffage. À cet effet, une sonde 218 de température mesure la température de ce liquide de chauffage. Le liquide de chauffage est un liquide caloporteur comme de l'eau.The conduit 210 is also equipped with a controllable valve 214 able to adjust the flow rate which circulates in the conduit 210. In a similar manner what has been described in the case of the valve 44, the valve 214 is controlled by a control unit 216 to control the temperature of the heating liquid which circulates in the duct 206 on a heating instruction. To this end, a temperature probe 218 measures the temperature of this heating liquid. The heating liquid is a heat transfer liquid like water.

La vanne 212 comporte une entrée 220 raccordée à l'extrémité du conduit 210, une sortie 222 raccordée à l'entrée 52 de l'échangeur 50, sans passer par l'intermédiaire du réservoir 88, et une sortie 224 raccordée au point haut 86. La vanne 212 est par exemple identique à la vanne 76. Elle est commandée par l'unité 90.The valve 212 has an inlet 220 connected to the end of the duct 210, an outlet 222 connected to the inlet 52 of the exchanger 50, without passing through the reservoir 88, and an outlet 224 connected to the high point 86 The valve 212 is for example identical to the valve 76. It is controlled by the unit 90.

Le système 200 comporte aussi :

  • un clapet anti-retour 226 qui empêche le liquide caloporteur d'entrer à l'intérieur de la vanne 76 par l'intermédiaire de sa sortie 82, et
  • un clapet anti-retour 228 qui empêche le liquide caloporteur d'entrer à l'intérieur de la vanne 212 par l'intermédiaire de sa sortie 222.
System 200 also includes:
  • a non-return valve 226 which prevents the heat transfer liquid from entering the interior of the valve 76 via its outlet 82, and
  • a non-return valve 228 which prevents the heat transfer liquid from entering the interior of the valve 212 via its outlet 222.

Dans le système 200, le procédé de commande exécuté par l'unité 90 est, par exemple, identique à celui décrit en référence à la figure 2, sauf qu'en plus, la vanne 212 est commandée. Ici, à titre d'illustration, cette vanne 212 est commandée de la même manière que ce qui a été décrit dans le cas particulier de la vanne 76. Le fonctionnement du système 200 se déduit donc des explications données pour le système 2.In the system 200, the control method executed by the unit 90 is, for example, identical to that described with reference to the figure 2 , except that in addition, the valve 212 is controlled. Here, by way of illustration, this valve 212 is controlled in the same manner as that which has been described in the particular case of the valve 76. The operation of the system 200 is therefore deduced from the explanations given for the system 2.

La figure 7 représente un système 250 de chauffage identique au système 2, sauf que le réservoir 88 est remplacé par un réservoir 252. Le réservoir 252 est identique au réservoir 88, sauf que :

  • les piquages hauts 86, 96 et 110 sont remplacés par un seul piquage haut 254, et
  • les piquages bas 100 et 102 sont remplacés par un seul piquage bas 256.
The figure 7 represents a heating system 250 identical to system 2, except that the tank 88 is replaced by a tank 252. The tank 252 is identical to the tank 88, except that:
  • the high nozzles 86, 96 and 110 are replaced by a single high nozzles 254, and
  • the low taps 100 and 102 are replaced by a single low tap 256.

Tous les conduits qui étaient raccordé aux piquages 86, 96 et 110 dans le système 2 sont maintenant raccordés directement au piquage haut 254 dans le système 250. De même, tous les conduits qui étaient raccordés aux piquages 100 et 102 dans le système 2 sont maintenant raccordés directement au même piquage bas 256 du système 250. Le fait d'utiliser un seul piquage haut et un seul piquage bas simplifie la réalisation du réservoir 252.All the conduits which were connected to the nozzles 86, 96 and 110 in system 2 are now connected directly to the high nozzle 254 in the system 250. Likewise, all the conduits which were connected to the nozzles 100 and 102 in the system 2 are now directly connected to the same low branch 256 of the system 250. The fact of using a single high branch and a single low branch simplifies the construction of the reservoir 252.

La figure 8 représente un système 270 de chauffage identique au système 2, sauf que :

  • le conduit 120, la vanne 122 et la sonde 126 sont omis, et
  • la boucle 6 est remplacée par une boucle 272.
The figure 8 represents a heating system 270 identical to system 2, except that:
  • the conduit 120, the valve 122 and the probe 126 are omitted, and
  • loop 6 is replaced by loop 272.

La boucle 272 est identique à la boucle 6, sauf que l'extrémité du conduit 66 est raccordée sur le conduit 24 et non plus sur le conduit 22.The loop 272 is identical to the loop 6, except that the end of the conduit 66 is connected to the conduit 24 and no longer to the conduit 22.

La suppression du conduit 120 simplifie l'architecture du système de chauffage d'eau chaude sanitaire.The removal of the conduit 120 simplifies the architecture of the domestic hot water heating system.

La figure 9 représente un système 280 de chauffage identique au système 2, sauf que :

  • le conduit 97 et le clapet anti-retour 98 sont omis,
  • le réservoir 88 est remplacé par un réservoir 282,
  • la sortie 82 de la vanne 76 est directement raccordée au conduit 68 sans passer par l'intermédiaire de l'échangeur 50 et du réservoir 282 grâce à un conduit 284 qui les raccorde directement ensemble,
  • l'extrémité du conduit 74 est directement raccordée au piquage haut 86 sans passer par l'intermédiaire de la vanne 76.
The figure 9 represents a heating system 280 identical to system 2, except that:
  • the duct 97 and the non-return valve 98 are omitted,
  • the reservoir 88 is replaced by a reservoir 282,
  • the outlet 82 of the valve 76 is directly connected to the conduit 68 without passing through the exchanger 50 and the reservoir 282 by means of a conduit 284 which connects them directly together,
  • the end of the conduit 74 is directly connected to the top nozzle 86 without passing through the valve 76.

Le conduit 284 est équipé, par exemple, d'un clapet anti-retour 286 qui autorise seulement la circulation du liquide caloporteur dans ce conduit en allant de la sortie 82 vers le conduit 68.The duct 284 is equipped, for example, with a non-return valve 286 which only allows the circulation of the heat-transfer liquid in this duct from the outlet 82 towards the duct 68.

Le réservoir 282 est par exemple identique au réservoir 88, sauf que le piquage haut 96 est omis.The reservoir 282 is for example identical to the reservoir 88, except that the top stitching 96 is omitted.

Dans le système 280, c'est le conduit 284 qui est utilisé pour dévier une partie ou la totalité du liquide caloporteur chaud vers l'entrée 12 de la source 4 sans passer par le réservoir 282 et sans passer par l'échangeur 50. Ainsi, le liquide caloporteur chaud qui circule dans le conduit 284 n'est pas refroidi avant d'atteindre le conduit 68. Par contre, il est possible de faire circuler dans le conduit 68 un liquide caloporteur froid puisé dans la partie basse du réservoir 282 et/ou issu de la sortie primaire 54 de l'échangeur 50. Ainsi, le liquide caloporteur chaud qui arrive dans le conduit 68 est mélangé avec le liquide caloporteur froid pour diminuer la température TR.In the system 280, it is the conduit 284 which is used to divert part or all of the hot heat transfer liquid towards the inlet 12 of the source 4 without passing through the reservoir 282 and without passing through the exchanger 50. Thus , the hot heat transfer liquid which circulates in the duct 284 is not cooled before reaching the duct 68. On the other hand, it is possible to circulate in the duct 68 a cold heat transfer liquid drawn from the lower part of the tank 282 and / or coming from the primary outlet 54 of the exchanger 50. Thus, the hot heat transfer liquid which arrives in the conduit 68 is mixed with the cold heat transfer liquid to reduce the temperature T R.

Le fonctionnement des différents modes de réalisation décrits en référence aux figures 7 à 9 se déduit des explications données en référence aux figures 1 et 2.The operation of the various embodiments described with reference to figures 7 to 9 is deduced from the explanations given with reference to Figures 1 and 2 .

La figure 10 représente une vanne 290 commandable utilisable à la place de la vanne 76. La vanne 290 comporte l'entrée 80 et les deux sorties 82 et 84. Dans ce mode de réalisation, la vanne 290 comporte :

  • une vanne mono-voie 292 raccordée entre l'entrée 80 et la sortie 82 pour régler le débit de liquide caloporteur chaud sortant par la sortie 82, et
  • une vanne mono-voie 284 raccordée entre l'entrée 80 et la sortie 84 pour régler le débit de liquide caloporteur chaud sortant par la sortie 84.
The figure 10 represents a controllable valve 290 which can be used in place of the valve 76. The valve 290 comprises the inlet 80 and the two outlets 82 and 84. In this embodiment, the valve 290 comprises:
  • a single-way valve 292 connected between the inlet 80 and the outlet 82 to regulate the flow of hot heat-transfer liquid leaving through the outlet 82, and
  • a single-way valve 284 connected between the inlet 80 and the outlet 84 to regulate the flow of hot heat-transfer liquid leaving through the outlet 84.

Typiquement, ces vannes 292 et 284 sont commandées pour qu'à chaque instant, la somme des débits sortant par les sorties 82 et 84 soit égale au débit entrant par l'entrée 80.Typically, these valves 292 and 284 are controlled so that at all times, the sum of the flows leaving by the outputs 82 and 84 is equal to the flow entering by the input 80.

La figure 11 représente une vanne 300 commandable, utilisable à la place de la vanne 76. Dans ce mode de réalisation, la vanne 300 comporte :

  • une vanne mono-voie 302 raccordée entre l'entrée 80 et la sortie 82 pour régler le débit de liquide caloporteur chaud qui circule dans le conduit 74, et
  • un conduit 304 dépourvu de vanne qui raccorde directement l'entrée 80 à la sortie 84.
The figure 11 represents a controllable valve 300, which can be used in place of the valve 76. In this embodiment, the valve 300 comprises:
  • a single-way valve 302 connected between the inlet 80 and the outlet 82 to regulate the flow of hot heat-transfer liquid which circulates in the duct 74, and
  • a pipe 304 without valve which directly connects the inlet 80 to the outlet 84.

En commandant l'ouverture de la vanne 302 et en ajustant la pression au niveau de la sortie 84, il est possible de faire fonctionner la vanne 300 comme la vanne 76 sauf que le débit au niveau de la sortie 84 ne peut pas être totalement annulé.By controlling the opening of valve 302 and adjusting the pressure at outlet 84, it is possible to operate valve 300 like valve 76 except that the flow rate at outlet 84 cannot be completely canceled .

III. Variantes :III. Variants: III.1. Variantes de l'architecture :III.1. Variants of architecture:

Le conduit 97 peut être omis. Dans ce cas, le liquide caloporteur chaud soutiré à partir du réservoir 88 traverse la vanne 76. Dans ce mode de réalisation, il n'est dès lors pas possible, simultanément, de :

  • remplir le réservoir avec du liquide caloporteur chaud évacué par la sortie primaire 34, et
  • de soutirer du liquide caloporteur chaud du réservoir par l'intermédiaire du piquage haut 86.
Line 97 can be omitted. In this case, the hot heat transfer liquid withdrawn from the reservoir 88 passes through the valve 76. In this embodiment, it is therefore not possible, simultaneously, to:
  • fill the tank with hot heat transfer liquid discharged through the primary outlet 34, and
  • to draw hot heat transfer liquid from the tank via the top nozzle 86.

Dans un mode de réalisation simplifié, le conduit 120, la vanne 122, l'unité 124 et la sonde 126 sont omis.In a simplified embodiment, the conduit 120, the valve 122, unit 124 and probe 126 are omitted.

Dans le système 280, avantageusement, un clapet anti-retour peut être installé dans le conduit 74 pour empêcher la circulation du liquide caloporteur depuis l'entrée 52 vers le piquage 86.In the system 280, advantageously, a non-return valve can be installed in the duct 74 to prevent the circulation of the heat-transfer liquid from the inlet 52 to the nozzle 86.

En variantes, l'échangeur 50 comporte deux entrées primaires et les extrémités des conduits 74 et 120 sont chacune raccordées à une entrée primaire respective de l'échangeur 50.As a variant, the exchanger 50 has two primary inputs and the ends of the conduits 74 and 120 are each connected to a respective primary input of the exchanger 50.

Les modes de réalisation ont été décrits dans le cas particulier où les différentes unités de commande utilisées sont décentralisées. Toutefois, en variante, les différentes fonctions de ces différentes unités de commande décentralisées sont regroupées dans une seule et même unité de commande centralisée qui commande alors toutes les vannes du système de chauffage.The embodiments have been described in the particular case where the different control units used are decentralized. However, as a variant, the different functions of these different decentralized control units are grouped together in a single centralized control unit which then controls all of the valves of the heating system.

Le point de mesure de la sonde 136 n'est pas nécessairement à mi-distance des points de mesure des sondes 132 et 134. Dans ce cas, la température Tm peut quand même être calculée à partir des températures mesurées T132, T134 et T136, mais chacune de ces mesures est pondérée par un coefficient de pondération pour tenir compte du fait que le point de mesure de la sonde 136 n'est pas à mi-distance entre les points de mesure des sondes 132 et 134.The measurement point of the probe 136 is not necessarily midway between the measurement points of the probes 132 and 134. In this case, the temperature T m can still be calculated from the measured temperatures T 132 , T 134 and T 136 , but each of these measurements is weighted by a weighting coefficient to take into account the fact that the measurement point of the probe 136 is not halfway between the measurement points of the probes 132 and 134.

L'appareillage 130 peut être réalisé différemment. Par exemple, il peut comporter plus de trois sondes de température. Dans d'autres modes de réalisation, il comporte en plus ou à la place des sondes de température, une caméra thermique qui permet d'obtenir une grandeur physique représentative de la température en tout point d'un plan vertical coupant le réservoir 88. L'état de charge du réservoir 88 peut aussi être obtenu à partir des mesures de débitmètres mesurant les débits entrant et sortant de liquide caloporteur et des mesures de température de ces débits entrant et sortant.The apparatus 130 can be produced differently. For example, it can include more than three temperature probes. In other embodiments, it includes in addition to or instead of temperature probes, a thermal camera which makes it possible to obtain a physical quantity representative of the temperature at any point on a vertical plane intersecting the reservoir 88. L The state of charge of the reservoir 88 can also be obtained from flowmeter measurements measuring the incoming and outgoing flow rates of coolant and temperature measurements of these incoming and outgoing flow rates.

D'autres méthodes de construction de l'indicateur Ic sont possibles. En particulier, la construction de l'indicateur doit être adaptée en fonction du type de mesure fourni par l'appareillage 130.Other methods of constructing the indicator I c are possible. In particular, the construction of the indicator must be adapted as a function of the type of measurement provided by the apparatus 130.

III.2. Variantes du procédé :III.2. Variants of the process:

L'unité 90 peut implémenter d'autres procédés de commande pour maintenir en permanence ou autant que possible l'indicateur Ic entre des seuils Si-min et Si-max, où Si-min est strictement supérieur à 0 et Si-max est strictement inférieur à 1. Par exemple, les durées Dp et Dv peuvent être remplacées par des moyennes des durées Dp et Dv calculées sur plusieurs jours précédents.The unit 90 can implement other control methods to permanently maintain or as much as possible the indicator I c between thresholds S i-min and S i-max , where S i-min is strictly greater than 0 and S i-max is strictly less than 1. For example, the durations D p and D v can be replaced by averages of the durations D p and D v calculated over several previous days.

Plutôt que d'ajuster quelques fois par jour le débit dans les conduits 74 et 112, l'unité 90 peut être configurée pour faire ces ajustements à chaque fois qu'une nouvelle valeur de l'indicateur Ic est construite. Par exemple, si l'indicateur tombe en dessous du seuil Si-min, l'unité 90 commande les vannes 76 et 114 pour immédiatement accroître le débit entrant dans le réservoir de liquide caloporteur chaud. À l'inverse, si l'indicateur Ic dépasse le seuil Si-max, l'unité 90 commande les vannes 76 et 114 pour diminuer immédiatement le débit entrant de liquide caloporteur chaud. Dans ce dernier mode de réalisation, les durées Dv et Dp ne sont pas utilisées et leur calcul peut être omis.Rather than adjusting the flow rate in the conduits 74 and 112 a few times a day, the unit 90 can be configured to make these adjustments each time a new value of the indicator I c is constructed. For example, if the indicator falls below the threshold S i-min , the unit 90 controls the valves 76 and 114 to immediately increase the flow entering the reservoir of hot heat transfer liquid. Conversely, if the indicator I c exceeds the threshold S i-max , the unit 90 controls the valves 76 and 114 to immediately reduce the incoming flow of coolant hot. In this latter embodiment, the durations D v and D p are not used and their calculation can be omitted.

À partir d'un historique des consommations d'eau chaude sanitaire, l'unité 90 peut aussi prédire des intervalles de temps où la consommation d'eau chaude sanitaire est importante. A cet effet, par exemple, la consommation d'eau chaude sanitaire est mesurée à l'aide du débitmètre 64. Dans ce cas, juste avant un intervalle où la consommation d'eau chaude sanitaire prédite est importante, l'unité 90 commande les vannes 76 et 114 pour faire augmenter l'indicateur Ic. Ensuite, vers la fin de cet intervalle, l'unité 90 commande les vannes 76 et 114 pour faire diminuer la valeur de l'indicateur Ic. Dans ce cas aussi, les durées Dp et Dv ne sont pas utilisées.From a history of domestic hot water consumption, the unit 90 can also predict time intervals when the consumption of domestic hot water is high. For this purpose, for example, the domestic hot water consumption is measured using the flow meter 64. In this case, just before an interval where the predicted domestic hot water consumption is significant, the unit 90 controls the valves 76 and 114 to increase the indicator I c . Then, towards the end of this interval, the unit 90 controls the valves 76 and 114 to decrease the value of the indicator I c . In this case too, the durations D p and D v are not used.

Le conduit 120, la vanne 122, l'unité 124 et la sonde 126 peuvent être mis en œuvre indépendamment du conduit 112 et de la vanne 114.The conduit 120, the valve 122, the unit 124 and the probe 126 can be implemented independently of the conduit 112 and the valve 114.

IV. Avantages des modes de réalisation décrits :IV. Advantages of the embodiments described:

Les différents modes de réalisation décrits ici permettent tous d'adapter dynamiquement le débit entrant de liquide caloporteur dans le réservoir en fonction de l'usage qui est fait de ce système de chauffage. Grâce à cela on limite l'occurrence et la durée des situations extrêmes où la température de retour TR ne peut pas être abaissée. Plus précisément, ces adaptations du débit entrant de liquide caloporteur chaud permettent de préserver pendant plus longtemps un stock résiduel de liquide caloporteur froid qui permet de limiter de brusques variations de la température TR.The various embodiments described here all make it possible to dynamically adapt the incoming flow of heat-transfer liquid into the tank as a function of the use which is made of this heating system. Thanks to this, the occurrence and the duration of extreme situations where the return temperature T R cannot be lowered are limited. More precisely, these adaptations of the incoming flow of hot heat-transfer liquid make it possible to preserve for a longer period a residual stock of cold heat-transfer liquid which makes it possible to limit sudden variations in the temperature T R.

De façon similaire, l'adaptation dynamique du débit entrant de liquide caloporteur permet aussi de limiter l'occurrence et la durée des situations extrêmes où l'écrêtage des pics de production d'énergie thermique n'est plus possible. Plus précisément, ces adaptations du débit entrant de liquide caloporteur chaud permettent de préserver pendant plus longtemps un stock résiduel de liquide caloporteur chaud utilisable pour préchauffer l'eau sanitaire froide.Similarly, the dynamic adaptation of the incoming flow of heat transfer liquid also makes it possible to limit the occurrence and the duration of extreme situations where the peaks of thermal energy production peaks are no longer possible. More specifically, these adaptations of the incoming flow of hot heat transfer liquid make it possible to preserve for a longer period a residual stock of hot heat transfer liquid which can be used to preheat cold domestic water.

La vanne 114 et le conduit 112 permettent de remplir le réservoir en liquide caloporteur chaud avec un débit qui peut être réglé indépendamment du débit de liquide caloporteur qui circule dans l'échangeur 20. En effet, le débit de liquide caloporteur chaud dans l'échangeur 20 est régulé en fonction de la température T42 et de la consigne C42. Par conséquent, la vanne 114 et le conduit 112 permettent d'accélérer le remplissage de réservoir 88 avec du liquide caloporteur chaud et cela indépendamment de la température T42. Ce degré de liberté supplémentaire permet d'ajuster plus simplement et plus rapidement le volume stocké de liquide caloporteur chaud. Cela permet donc de maintenir sur des périodes de temps plus longues le volume stocké de liquide caloporteur chaud au niveau requis. En fin de compte, cela se traduit par un écrêtage plus efficace des pics de production d'énergie thermique.The valve 114 and the conduit 112 allow the tank to be filled with hot heat transfer liquid with a flow rate which can be adjusted independently of the flow of heat transfer liquid which circulates in the exchanger 20. In fact, the flow of hot heat transfer liquid in the exchanger 20 is regulated as a function of the temperature T 42 and of the setpoint C 42 . Consequently, the valve 114 and the conduit 112 make it possible to accelerate the filling of the reservoir 88 with hot heat transfer liquid and this independently of the temperature T 42 . This additional degree of freedom allows the stored volume of hot heat transfer liquid to be adjusted more simply and quickly. This therefore makes it possible to maintain, over longer periods of time, the stored volume of hot heat transfer liquid at the required level. Ultimately, this translates into more efficient clipping of thermal energy peaks.

L'utilisation du conduit 120 et de la vanne 122 permet de préchauffer à l'aide de l'échangeur 50 l'eau sanitaire froide, même dans le cas extrême où le volume de liquide caloporteur chaud contenu dans le réservoir 88 est nul.The use of the conduit 120 and of the valve 122 makes it possible to preheat using the exchanger 50 the cold sanitary water, even in the extreme case where the volume of hot heat-transfer liquid contained in the tank 88 is zero.

Dans le système 200, le fait d'utiliser la vanne 212 de façon similaire à la vanne 76 permet aussi de préserver plus longtemps un stock résiduel d'eau froide. Cela aide donc aussi à limiter les brusques variations de la température TR.In system 200, using valve 212 similarly to valve 76 also makes it possible to preserve a residual supply of cold water for a longer time. This therefore also helps to limit sudden variations in temperature T R.

Claims (12)

  1. Domestic water heating system comprising:
    - a heat source (4) capable of heating a heat-transfer liquid, this heat source comprising an inlet (12) for receiving the heat-transfer liquid to be heated and an outlet (10) for delivering the heated heat-transfer liquid,
    - a domestic hot water loop (6; 272) comprising:
    • a pump (26) capable of circulating the domestic hot water loopwise in this loop,
    • a top-up heat exchanger (20) capable of maintaining the temperature of the domestic hot water which circulates in the loop at a temperature higher than a predetermined temperature Tmin-ECS by heat exchange with the heated heat-transfer liquid, this heat exchanger comprising, to this end, a primary inlet (30) coupled to the outlet of the heat source and a primary outlet (34) through which the hot heat-transfer liquid is discharged after it has reheated the domestic hot water of the loop,
    • at least one tapping point (40) via which the domestic hot water can be drawn from the loop by a user, and
    • an inlet (41) via which preheated domestic water can be introduced into this loop to compensate for the domestic hot water drawn by the user,
    - a module for servocontrolling the temperature of the domestic hot water which circulates in the loop (6; 272) to a set point higher than the temperature Tmin-ECS, this servocontrol module comprising, to this end:
    • a temperature probe (42) which measures the temperature of the domestic hot water at a domestic hot water outlet (36) of the top-up heat exchanger (20), and
    • a controllable valve (44) which makes it possible to set the flow rate of the hot heat-transfer liquid which circulates in the heat exchanger (20) from the primary inlet (30) to the primary outlet (34), and
    • a valve 44 control unit (46),
    - a tank (88; 252; 282) capable of storing the hot heat-transfer liquid discharged via the primary outlet of the top-up heat exchanger, this tank comprising at least one top tapping (86, 96, 110; 254) and at least one bottom tapping (100, 102; 256) making it possible to directly draw the heat-transfer liquid stored in, respectively, a high part and a low part of this tank, said at least one high tapping being coupled to the primary outlet (34) of the top-up exchanger and said at least one bottom tapping being coupled to the inlet (12) of the heat source,
    - a preheating heat exchanger (50) capable of preheating cold domestic water, by heat exchange with the heat-transfer liquid stored in the high part of the tank, before injecting it into the domestic hot water loop via its inlet (41), this preheating heat exchanger comprising, to this end, a primary inlet (52) and a primary outlet (54) coupled, respectively, to said at least one top and bottom tappings of the tank,
    - a bypass line (74; 284) capable of diverting at least a portion of the heat-transfer liquid discharged by the primary outlet (34) of the top-up heat exchanger to bring it to the inlet of the heat source without passing through the tank,
    characterized in that the system also comprises:
    - instrumentation (130) for measuring a physical quantity representative of the volume of hot heat-transfer liquid currently stored in the tank,
    - a first controllable bypass valve (76; 290; 300) capable of adjusting the flow rate in the bypass line,
    - an electronic unit (90) for controlling the first bypass valve configured to:
    • acquire the measurements from the measurement instrumentation, and
    • control, as a function of the acquired measurements, the first bypass valve to increase the flow rate in the bypass line when the volume of hot heat-transfer liquid stored exceeds a first predetermined threshold strictly lower than the maximum volume of heat-transfer liquid that can be stored in this tank, and wherein:
    - the system comprises:
    • a direct line (112) supplying the tank with hot heat-transfer liquid which couples the outlet of the heat source to said at least one top tapping of the tank, without passing via the top-up heat exchanger, and
    • a controllable valve (114) directly supplying the tank with hot heat-transfer liquid capable of adjusting the flow rate in the direct line supplying the tank with hot heat-transfer liquid, and
    - the control unit is configured to control, as a function of the acquired measurements, the valve (114) directly supplying the tank with hot heat-transfer liquid so as to speed up the flow rate of hot heat-transfer liquid introduced into the tank via the direct line supplying the tank with hot heat-transfer liquid without modifying the flow rate of the hot heat-transfer liquid discharged by the primary outlet of the top-up heat exchanger.
  2. System according to Claim 1, wherein the control unit (90) is also configured to control, as a function of the acquired measurements, the first bypass valve (76) to reduce the flow rate in the bypass line when the volume of hot heat-transfer liquid stored drops below a second, positive predetermined threshold.
  3. System according to either one of the preceding claims, wherein the first bypass valve comprises:
    - an inlet (80) coupled to the primary outlet of the top-up heat exchanger,
    - a first outlet (82) coupled to an end of the bypass line, and
    - a second outlet (84) coupled to the top tapping of the tank,
    this first valve being able to allocate, as a function of a command from the control unit, between the first and second outlets, all of the heat-transfer liquid entering through its inlet.
  4. System according to Claim 3, wherein the bypass line (74) couples the first outlet (82) of the first bypass valve:
    - to the primary inlet (52) of the preheating heat exchanger, or
    - to the inlet (12) of the heat source without passing via the preheating heat exchanger and without passing via the tank.
  5. System according to any one of the preceding claims, wherein:
    - the preheating heat exchanger (50) comprises a secondary outlet (58) coupled to the domestic hot water loop and by which the domestic water preheated by the preheating heat exchanger is discharged, and the system comprises:
    - a direct line (120) supplying the preheating heat exchanger with hot heat-transfer liquid which couples the outlet (10) of the heat source to the preheating heat exchanger without passing through the top-up heat exchanger and without passing through the tank,
    - a controllable valve (122) directly supplying the preheating heat exchanger with hot heat-transfer liquid capable of reducing and, alternatively, increasing the flow rate in the direct line supplying the preheating heat exchanger with hot heat-transfer liquid,
    - a temperature probe (126) capable of measuring the temperature of the domestic water discharged via the secondary outlet (58) of the preheating heat exchanger, and
    - an electronic unit (124) controlling the valve that directly supply the preheating heat exchanger with hot heat-transfer liquid, this control unit being configured to control this valve as a function of the temperature measured by the temperature probe which measures the temperature of the domestic water discharged by the secondary outlet of the preheating heat exchanger and a setpoint for this temperature.
  6. System according to any one of the preceding claims, wherein the system comprises:
    - a room heating circuit (202), this circuit comprising:
    • a pump (209) capable of circulating, loopwise, a heating liquid in this heating circuit, and
    • a heat exchanger (204) capable of maintaining the temperature of the heating liquid which circulates in this circuit at a temperature higher than a predetermined temperature Tmin-ch by heat exchange with the heated heat-transfer liquid, this heat exchanger comprising, to this end, a primary inlet coupled to the outlet (10) of the heat source and a primary outlet, by which the hot heat-transfer liquid is discharged after it has reheated the heating liquid of the heating loop,
    • at least one radiator (208) capable of heating the air of a room from the heating liquid that passes through it,
    - a second bypass valve (212) comprising:
    • an inlet (220) coupled to the primary outlet of the heat exchanger of the heating circuit,
    • a first outlet (224) coupled to said at least one top tapping of the tank, and
    • a second outlet (222) coupled to the bypass line,
    this second bypass valve being able to allocate, between its first and second outlets, all of the heat-transfer liquid entering through its inlet in variable proportions as a function of the command from the control unit, and
    - the control unit is also configured to control, as a function of the acquired measurements, the second bypass valve to increase the flow rate in the bypass line when the volume of hot heat-transfer liquid stored in the tank exceeds the first predetermined threshold or a third predetermined threshold.
  7. System according to Claim 6, wherein the control unit is also configured to control, as a function of the acquired measurements, the second bypass valve (212) to reduce the flow rate in the bypass line when the volume of hot heat-transfer liquid stored drops below the second predetermined threshold or below a fourth, positive predetermined threshold.
  8. System according to any one of the preceding claims, wherein the measurement instrumentation (130) comprises at least one top temperature probe (132), one intermediate temperature probe (136) and one bottom temperature probe (134) that are capable of measuring the temperature of the heat-transfer liquid stored in, respectively, the top part, an intermediate part and the bottom part of the tank, the intermediate part of the tank being situated between the top and bottom parts of the tank.
  9. System according to any one of the preceding claims, wherein the tank (88; 252; 282) is permanently entirely filled with heat-transfer liquid so that when a volume of heat-transfer liquid is introduced into the tank via said at least one top tapping, an identical volume of heat-transfer liquid is drawn via said at least one bottom tapping and vice versa.
  10. Method for controlling a heating system according to any one of the preceding claims, characterized in that the method comprises:
    - the acquisition (140) of the measurements from the measurement instrumentation,
    - the controlling (166, 168), as a function of the acquired measurements, of the first bypass valve to increase the flow rate in the bypass line when the volume of hot heat-transfer liquid stored exceeds a first predetermined threshold strictly lower than the maximum volume of heat-transfer liquid that can be stored in this tank, and
    - controlling (168), as a function of the acquired measurements, the valve (114) directly supplying the tank with hot heat-transfer liquid so as to speed up the flow rate of hot heat-transfer liquid introduced into the tank via the direct line supplying the tank with hot heat-transfer liquid without modifying the flow rate of the hot heat-transfer liquid discharged via the primary outlet of the top-up heat exchanger.
  11. Electronic unit for controlling a bypass valve for producing a heating system according to any one of Claims 1 to 9, characterized in that this electronic control unit is configured to:
    - acquire measurements from the measurement instrumentation,
    - control, as a function of the acquired measurements, the first bypass valve to increase the flow rate in the bypass line when the volume of hot heat-transfer liquid stored exceeds a first predetermined threshold strictly lower than the maximum volume of heat-transfer liquid that can be stored in this tank, and
    - control, as a function of the acquired measurements, the valve (114) directly supplying the tank with hot heat-transfer liquid so as to speed up the flow rate of hot heat-transfer liquid introduced into the tank via the direct line supplying the tank with hot heat-transfer liquid without modifying the flow rate of the hot heat-transfer liquid discharged via the primary outlet of the top-up heat exchanger.
  12. Information storage medium that can be read by an electronic control unit according to Claim 11, characterized in that the medium comprises the instructions necessary to the execution of a control method according to Claim 10, when these instructions are executed by the electronic control unit.
EP18208398.0A 2017-11-28 2018-11-26 System for heating water for domestic use Active EP3489588B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1761326A FR3074264B1 (en) 2017-11-28 2017-11-28 HEATING SYSTEM FOR SANITARY WATER

Publications (2)

Publication Number Publication Date
EP3489588A1 EP3489588A1 (en) 2019-05-29
EP3489588B1 true EP3489588B1 (en) 2020-07-01

Family

ID=60955310

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18208398.0A Active EP3489588B1 (en) 2017-11-28 2018-11-26 System for heating water for domestic use

Country Status (3)

Country Link
EP (1) EP3489588B1 (en)
ES (1) ES2818983T3 (en)
FR (1) FR3074264B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3102836B1 (en) * 2019-10-30 2022-06-17 Atlantic Industrie Sas WATER HEATER DEVICE
FR3110217B1 (en) * 2020-05-13 2022-05-06 Commissariat Energie Atomique System for producing and distributing heat and cold and its management method
FR3130946B1 (en) 2021-12-21 2023-12-08 Commissariat Energie Atomique Domestic hot water and heating production system integrated into a low temperature heat network
AT525350B1 (en) * 2022-04-26 2023-03-15 Theodor Ernst Seebacher System for heat supply of a building

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008014204A1 (en) * 2007-04-25 2008-10-30 Fachhochschule München Drinking water heating system for a number of business units, households or similar consumers has two-stage throughflow principle for achieving low return temperatures for large supply unit
GB0713476D0 (en) * 2007-07-11 2007-08-22 Ec Power As Control of hot water
RU2520003C2 (en) * 2009-08-25 2014-06-20 Данфосс А/С Thermal storage system
DE202010017764U1 (en) * 2010-04-07 2012-09-18 Hochschule für angewandte Wissenschaften München Device for supplying heat to buildings
FR2995979B1 (en) * 2012-09-24 2018-09-21 Electricite De France INSTALLATION OF HEATING WATER HEATER WITH HEATING FUNCTION

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
FR3074264A1 (en) 2019-05-31
ES2818983T3 (en) 2021-04-14
EP3489588A1 (en) 2019-05-29
FR3074264B1 (en) 2019-11-22

Similar Documents

Publication Publication Date Title
EP3489588B1 (en) System for heating water for domestic use
EP2247897B1 (en) Equipment for producing domestic hot water
EP3404334B2 (en) Method and facility for energy storage using a water heater
EP2729741A1 (en) Heat exchange system and method for regulating a heat power developed by such a heat exchange system
FR2979418A1 (en) Household thermal control installation for heating/cooling interior air of building to produce warm water for building in winter, has valve mounted parallel to branch exchanger, and air-fluid exchanger located in air extracted circuit
FR2936042A1 (en) Energy loss controlling and Legionella bacteria proliferation avoiding method for e.g. boarding school, involves reducing water temperature in short-circuited hot water distribution loop circuit below threshold temperature
FR2982623A1 (en) Water distribution system for use in e.g. building, has temperature sensor placed on hot water supply pipe, and control unit that is adapted to drive back hot water remaining in pipe toward hot-water tank during closing of mixing valve tap
WO2021140251A1 (en) Heating system and method
FR3031575A1 (en) THERMAL TRANSFER MODULE WITH ASSOCIATED REGULATION FOR THERMODYNAMIC SYSTEM FOR HOT WATER PRODUCTION
EP3517871B1 (en) Heat recovery device
FR2851644A1 (en) COMBINED SOLAR INSTALLATION COMPRISING MEANS OF MANAGING OVERHEATING AND METHOD OF MONITORING THE INSTALLATION
WO2013093246A1 (en) Method for managing a heat pump system, heat pump system, and heating equipment including such a system
FR3088990A1 (en) Heating system
EP4202310B1 (en) System for producing domestic hot water and heating integrated with low-temperature heat network
FR3038368B1 (en) DEVICE FOR CONTROLLING SANITARY WATER TEMPERATURE AND METHOD FOR REGULATING THE SUPPLY OF A POISING POINT
WO2009125090A1 (en) System and method for heating the hydraulic fluid of an aircraft
FR2468074A1 (en) Production of hot water using heat pump - utilises low grade heat from building ventilation system which is circulated through heating circuit of hot water storage cylinder
FR3098808A1 (en) Glass beverage dispenser comprising in-line cooling and / or heating system
EP3722703B1 (en) Thermodynamic machine being a heating and refrigerating heat-pump and corresponding operating method
FR3047844A1 (en) METHOD FOR REGULATING THE TEMPERATURE OF A FUEL CELL AND ASSOCIATED SYSTEM
EP3660415A1 (en) Apparatus for thermal control of a building, associated installation and method
EP4124803A1 (en) Regulation method of a storage and thermodynamic heating system
EP2947393B1 (en) Circuit for protection against the effects of overheating in a hot-water production system, and corresponding hot-water production system
FR3019631A1 (en) METHOD AND UNIT FOR REGULATING A HOT WATER PRODUCTION PLANT
FR2667136A1 (en) Module for heating and producing domestic hot water, and communal heating installation equipped with such modules

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181126

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F24D 19/10 20060101AFI20191212BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200128

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1286549

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018005719

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201001

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200701

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1286549

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201002

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201001

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201102

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602018005719

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2818983

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

26N No opposition filed

Effective date: 20210406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201126

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220701

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220701

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231215

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231130

Year of fee payment: 6

Ref country code: FR

Payment date: 20231120

Year of fee payment: 6

Ref country code: DE

Payment date: 20231120

Year of fee payment: 6