EP3489577B1 - Lighting device for a motor vehicle headlight - Google Patents

Lighting device for a motor vehicle headlight Download PDF

Info

Publication number
EP3489577B1
EP3489577B1 EP17203860.6A EP17203860A EP3489577B1 EP 3489577 B1 EP3489577 B1 EP 3489577B1 EP 17203860 A EP17203860 A EP 17203860A EP 3489577 B1 EP3489577 B1 EP 3489577B1
Authority
EP
European Patent Office
Prior art keywords
lighting device
light
polarization
polarization rotation
beam path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17203860.6A
Other languages
German (de)
French (fr)
Other versions
EP3489577A1 (en
Inventor
Martin Brandstetter
Stefan MIEDLER
Matthias Riesinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZKW Group GmbH
Original Assignee
ZKW Group GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZKW Group GmbH filed Critical ZKW Group GmbH
Priority to EP17203860.6A priority Critical patent/EP3489577B1/en
Priority to CN201880076317.XA priority patent/CN111373196A/en
Priority to JP2020528877A priority patent/JP6976437B2/en
Priority to PCT/EP2018/077704 priority patent/WO2019101426A1/en
Priority to KR1020207016450A priority patent/KR102405591B1/en
Priority to US16/766,889 priority patent/US10969075B2/en
Publication of EP3489577A1 publication Critical patent/EP3489577A1/en
Application granted granted Critical
Publication of EP3489577B1 publication Critical patent/EP3489577B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/12Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of emitted light
    • F21S41/135Polarised
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/63Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on refractors, filters or transparent cover plates
    • F21S41/64Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on refractors, filters or transparent cover plates by changing their light transmissivity, e.g. by liquid crystal or electrochromic devices
    • F21S41/645Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on refractors, filters or transparent cover plates by changing their light transmissivity, e.g. by liquid crystal or electrochromic devices by electro-optic means, e.g. liquid crystal or electrochromic devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/14Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters for producing polarised light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the invention further relates to a motor vehicle headlight with at least one lighting device according to the invention.
  • Liquid crystal elements are often also used in headlight systems or in lighting devices for motor vehicle headlights, for example for a wide variety of projection applications and / or ADB (Adaptive Driving Beam) applications.
  • ADB Adaptive Driving Beam
  • liquid crystal element If a liquid crystal element is illuminated with unpolarized light from a light source, two polarization filters are usually necessary, one in the beam path in front of and one behind the liquid crystal element.
  • the first polarization filter is used to generate linearly polarized light, the linearly polarized light either being transmitted unchanged by the liquid crystal element or its polarization being rotated, depending on the control of the liquid crystal element.
  • the polarization filter arranged after the liquid crystal element is generally arranged in such a way that a light beam changed in polarization by the liquid crystal element is transmitted, whereas a light beam unchanged by the liquid crystal element is absorbed or reflected.
  • the first polarization filter can heat up at a high illuminance due to absorption, which can impair the function of the liquid crystal element.
  • such a lighting device can be used to generate the "low beam” light function, the lighting device generating a light distribution for this "low beam” light function which, when the lighting device is installed in a vehicle, meets the legal requirements in front of the vehicle Generated low beam distribution. It can be provided that such a lighting device can be used to generate the "high beam” light function, the lighting device generating a light distribution for this "high beam” light function which, when the lighting device is installed in a vehicle, is one of the legal requirements in front of the vehicle Requirements corresponding high beam distribution generated.
  • the lighting devices also being able to generate combinations of these light functions and / or only generating a partial light distribution, for example only part of a high beam, low beam, fog or daytime running light distribution.
  • the whole or the substantially whole amount of light which is emitted by a lighting means is used and brought to the second means for projection rotation or to the projection lens.
  • the lighting means comprises at least one light source. It can also be provided that the lighting means comprises two or more light sources.
  • each light source can be assigned its own optical attachment, which directs the light emitted by the light source in parallel.
  • the at least one light source is designed as an LED.
  • each light-emitting diode can be activated independently of the other light-emitting diodes.
  • Each light-emitting diode can thus be switched on and off independently of the other light-emitting diodes of a light source, and preferably, if the light-emitting diodes are dimmable, also dimmed independently of the other light-emitting diodes of the light source.
  • the at least one ancillary optics can be designed as a TIR lens.
  • the two parallelepipedes can advantageously be arranged directly one behind the other.
  • the second means for polarization rotation preferably designed as a liquid crystal element, can be illuminated by the entire luminous flux or amount of light from the illuminant.
  • a Fresnel parallelepiped is an optical prism that converts 45 ° linearly polarized light into circularly polarized light after double total reflection at a certain angle.
  • the advantage is that the phase shift hardly depends on the wavelength of the light incident on the Fresnel parallelepiped.
  • 45 ° linearly polarized light is directed vertically or orthogonally onto one end face of the prism, whereby the light does not experience any change in direction.
  • the light then falls on a first inclined longitudinal surface of the prism, the angle of incidence of the light on this longitudinal surface being greater than the critical angle of total reflection and being totally reflected.
  • the resulting phase shift causes the originally linearly polarized light to become elliptically polarized light.
  • a second total reflection within the prism is necessary to generate circularly polarized light.
  • the angle of incidence depends on the refractive index of the material used, for example crown glass, the refractive index of which is 1.51.
  • the at least one Fresnel parallelepiped is formed from plastic, for example polycarbonate or Tarflon.
  • the second means for polarization rotation is designed as a liquid crystal element.
  • liquid crystal element for example an LC display, which is made up of individual controllable segments, is based on the fact that liquid crystals or the segments influence the polarization direction of light when a certain amount of electrical voltage is applied.
  • liquid crystal element described here is composed of several liquid crystals, which are also referred to herein as segments.
  • the reflective means is designed as a mirror.
  • the second means for polarization rotation is an LCoS element.
  • an LCoS Liquid Crystal on Silicon
  • At least one optical element for example a lens or a reflector, is upstream of the second means for polarization rotation, which optical element is set up to enable homogeneous illumination of the second means for polarization rotation through the beam paths incident on the second means for polarization rotation.
  • the at least one optical element is set up in such a way that the polarization of the light beams does not change or only changes to a very small extent.
  • the second means for polarization rotation can advantageously be preceded by two optical elements, the optical elements each being assigned to a beam path.
  • Fig. 1 shows a lighting device 51, comprising a lighting means 100, which is designed as an LED in this embodiment and is set up to emit light beams, wherein the light beams can be collimated by an optical lens 200 connected downstream of the lighting means 100 in the main emission direction, that is, the light beams of the lighting means are parallel or be directed essentially parallel.
  • Main direction of emission is to be understood as the direction in which the illuminant emits the strongest or most of the light due to its directional effect.
  • the lighting device also includes Fig. 1 one of the optical head 200 downstream, polarizing beam splitter 300, which are collimated by the optical head 200 the light beams in a first and a second linearly polarized beam path 310, 320 is divided, wherein the polarization directions of the optical paths 310, 320 90 ° relative to each other.
  • the polarizing beam splitter 300 in FIG Fig. 1 is at a 45 ° angle to the main emission direction of the light beams collimated by the ancillary optics 200 , but other positions of the beam splitter 300 are also possible.
  • transverse component TE In general, light polarized linearly perpendicular to the plane of incidence is referred to as the transverse component TE or with the abbreviation "s". Light polarized linearly parallel to the plane of incidence is generally referred to as the transverse magnetic component TM or with the abbreviation “p”, the abbreviations “s” and “p” being used in the figures for a better overview.
  • plane of incidence is a well-known term from optics and generally designates the plane that is spanned by the direction of incidence of the light incident on an interface and the perpendicular to this interface.
  • the polarization state of the light is usually given in relation to the plane of incidence.
  • first means for polarization rotation 400 which is positioned after the polarizing beam splitter 300 in the second beam path 320 and is set up to rotate the polarization direction of the second beam path 320 by 90 ° so that the second beam path 320 has the same polarization direction as the first beam path 310 .
  • the first means for polarization rotation 400 is designed in this example as two Fresnel parallelepipedes, the parallelepipedes being arranged directly one behind the other, so that the end faces of the respective parallelepipedes are arranged without a spacing from one another.
  • a Fresnel parallelepiped which is usually a translucent body, for example made of crown glass, polycarbonate or tarflon, enables linearly polarized light to be converted into circularly polarized light by double total reflection.
  • linearly polarized light is directed vertically or orthogonally onto one end face of the parallelepiped, whereby the light does not experience any change in direction as a result.
  • the light then falls on a first inclined longitudinal surface of the prism, the angle of incidence of the light on this longitudinal surface being greater than the critical angle of total reflection and being totally reflected.
  • the resulting phase shift causes the originally linearly polarized light to become elliptically polarized light.
  • a second total reflection within the prism is necessary to generate circularly polarized light.
  • the angle of incidence depends on the refractive index of the material used, for example crown glass, the refractive index of which is 1.51.
  • circularly polarized light can be obtained by summing two mutually linearly polarized waves of equal amplitude and a suitable phase shift.
  • each linearly polarized wave can be represented as the sum of a left and right circularly polarized wave.
  • phase difference generated with a Fresnel parallelepiped shows little to no dependence on the wavelength of the incident light over a wide range, which means that light sources can also be used that emit white light or polychromatic light such spectral composition is understood, which causes the color impression "white” in humans.
  • a reflective means 350 is arranged in the first beam path 310, which reflective means 350 deflects the first beam path 310 essentially in the direction of the second beam path 320 changed by the first means for polarization rotation 400.
  • the lighting device 51 comprises a single second means for polarization rotation 600, which is connected downstream of the first means for polarization rotation 400 and the reflective means 350 , the second means for polarization 600 in the embodiment Fig. 1 is designed as a liquid crystal element, which comprises several segments or liquid crystals, which can be switched into an active and an inactive state by means of electrical signals, the polarization direction of the light rays being rotatable in the active state, preferably by 90 °, and not changing in the inactive state .
  • the second means for polarization rotation or the liquid crystal element 600 are preceded by two optical elements 500, for example lenses or reflectors, which are each assigned and set up to a beam path 310, 320 , a homogeneous illumination of the liquid crystal element 600 by the beam paths 310 incident on the liquid crystal element 600, 320 to enable.
  • the optical elements 500 are designed as optical lenses.
  • the liquid crystal element 600 is followed by a polarization filter means 610, which polarization filter means 610 is set up to transmit or absorb / block the light rays rotated by the segments or liquid crystals of the liquid crystal element 600 with respect to the polarization direction, whereby the desired light image or light distribution is generated.
  • a projection lens 700 is provided to generate a light distribution or a partial light distribution of a light function in front of a motor vehicle.
  • such a lighting device 51 , 52 , 53 can be used to generate the "high beam” light function, the lighting device 51, 52, 53 generating a light distribution in this "high beam” light function which, when the lighting device is installed 51, 52, 53 in a motor vehicle, in front of the motor vehicle a high beam distribution corresponding to the legal requirements is generated.
  • such a lighting device 51, 52, 53 can be used to generate the "low beam” light function, the lighting device generating a light distribution with this "low beam” light function which, when the lighting device 51, 52, 53 in a motor vehicle, in front of the motor vehicle a low beam distribution corresponding to the legal requirements is generated.
  • the light functions and light distributions mentioned above are not exhaustive and relate to the exemplary embodiment in FIG Fig. 1 as well as further possible embodiments, wherein the lighting devices 51 , 52 , 53 can also generate combinations of these light functions and / or only generate a partial light distribution, so for example only part of a high beam, low beam, fog or daytime running light distribution.
  • Fig. 2 shows a further example of a lighting device 52, in contrast to the embodiment in FIG Fig. 1 the first means for polarization rotation 400 is designed as a Fresnel parallelepiped, with an end face 410 of the parallelepiped 400 being mirrored.
  • the light which is perpendicularly linearly polarized by a polarizing beam splitter 300 and which is shown in FIG Fig. 2 is marked with "s”, is coupled into the Fresnel parallelepiped 400 and hits the mirrored end face 410 after two total reflection, the light or light rays being mirrored in the opposite direction and again experiencing two total reflections within the parallelepiped 400 and one around 90 ° rotated polarization direction, so a parallel linearly polarized light, what with "p” in Fig. 2 is characterized, has before it decouples or emerges from the parallelepiped.
  • the decoupling direction or the exit direction is opposite to the entry direction or the coupling direction of the light, as in FIG Fig. 2 is shown.
  • the parallel linearly polarized light emerging from the Fresnel parallelepiped 400 is transmitted unchanged by the polarizing beam splitter 300.
  • Fig. 3 shows a detailed view of the structure from Fig. 2 , wherein the lighting means 100 is formed from a plurality of LEDs, each comprising a downstream optical attachment 200 .
  • a TIR lens for example, can be provided in each case as ancillary optics 200.
  • Fig. 4 shows a perspective of the detailed view shown along the x-axis Fig. 3 , It being recognized that the light source 100 from the example in Figs. 3 and 4 has both a row of light sources along the x-axis and a row of light sources along the z-axis.
  • the lighting means 100 is, so to speak, formed from a light source matrix, it also being possible for the lighting means 100 to be formed only from a row of light sources or a light source array.
  • Fig. 5 shows a lighting device 53, comprising a lighting means 100, which is designed as an LED in this embodiment and is set up to emit light beams, wherein the light beams can be collimated by an attachment lens 200 connected downstream of the lighting means 100 in the main emission direction, that is, the light beams of the lighting means are parallel or be directed essentially parallel.
  • the lighting device also includes Fig. 5 one of the optical head 200 downstream, polarizing beam splitter 300, the polarized the collimated by the optical head 200 the light rays into a first and a second linear Beam path 310, 320 divides, the polarization directions of beam paths 310, 320 being rotated 90 ° to one another.
  • the polarizing beam splitter 300 in FIG Fig. 5 is at a 45 ° angle to the main emission direction of the light beams collimated by the ancillary optics 200 , but other positions of the beam splitter 300 are also possible.
  • first means for polarization rotation 400 which is positioned after the polarizing beam splitter 300 in the second beam path 320 and is set up to rotate the polarization direction of the second beam path 320 by 90 ° so that the second beam path 320 has the same polarization direction as the first beam path 310 .
  • the first means for polarization rotation 400 is designed in this example as two Fresnel parallelepipedes, the parallelepipedes being arranged directly one behind the other, so that the end faces of the respective parallelepipedes are arranged without a spacing from one another.
  • a reflective means 350 is arranged in the first beam path 310 , which reflective means 350 deflects the first beam path 310 essentially in the direction of the second beam path 320 changed by the first means for polarization rotation 400.
  • the lighting device 53 comprises a polarization filter means 660, which is connected downstream of the Fresnel parallelepipeds 400 and the reflective means 350 , the polarization filter means 660 deflecting or deflecting the beam paths 310, 320 impinging thereon, which have the same polarization direction, onto a second means for polarization rotation 650. reflected.
  • the polarization filter means 660 is off in the example Fig. 5 set up in such a way that it functions like a polarizing beam splitter, similar to the polarizing beam splitter 300 from the previous examples.
  • the second polarization rotation means 650 is in FIG Fig. 5 designed as an LCoS element.
  • an LCoS 650 Liquid Crystal on Silicon
  • the LCoS 650 like the liquid crystal element 600 in one active or inactive state can be set. More detailed explanations with regard to the inactive or active state are given in relation to the explanations Fig. 1 refer to.
  • the outcoupling direction or the exit direction of the beam paths 310 , 320 from the LCoS element 650 is opposite to the entry direction or the infeed direction of the beam paths 310 , 320 or the light, as in FIG Fig. 5 is shown.
  • the light emerging from the segments, or liquid crystals of the LCoS element 650, with respect to its polarization direction changed light is transmitted by the polarizing filter means 660 or blocked, whereby the desired light image is formed, wherein the polarizing filter means 660 is connected downstream a projection lens 700, which is one for the production Light distribution or a partial light distribution of a light function is provided in front of a motor vehicle.
  • the polarization filter means 660 is preceded by two optical elements 500 which are each assigned to a beam path 310, 320 and set up to enable homogeneous illumination of the polarization filter means 660 by the beam paths 310, 320 incident on the polarization filter means 660.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Description

Die Erfindung eine Beleuchtungsvorrichtung für einen Kraftfahrzeugscheinwerfer, welche Beleuchtungsvorrichtung umfasst:

  • ein Leuchtmittel, das eingerichtet ist, Lichtstrahlen zu emittieren, wobei die Lichtstrahlen von zumindest einer dem Leuchtmittel in Hauptabstrahlrichtung nachgeschalteten Vorsatzoptik kollimierbar sind,
  • ein der zumindest einen Vorsatzoptik nachgeschalteter polarisierender Strahlteiler, der die von der Vorsatzoptik kollimierten Lichtstrahlen in einen ersten und einen zweiten linear polarisierten Strahlengang aufteilt, wobei die Polarisationsrichtungen der Strahlengänge 90° zueinander verdreht sind,
  • ein erstes Mittel zur Polarisationsdrehung, welches eingerichtet ist, die Polarisationsrichtung des zweiten Strahlengangs um 90° zu verdrehen, sodass der zweite Strahlengang die Polarisationsrichtung des ersten Strahlengangs aufweist,
  • ein reflektives Mittel, welches eingerichtet ist, den ersten Strahlengang im Wesentlichen in die Richtung des durch das erste Mittel zur Polarisationsdrehung veränderten zweiten Strahlengangs umzulenken,
  • ein einziges dem ersten Mittel zur Polarisationsdrehung und dem reflektiven Mittel nachgeschaltetes zweites Mittel zur Polarisationsdrehung, welches zumindest ein Segment umfasst, welches mittels elektrischer Signale in einen aktiven und einen inaktiven Zustand versetzbar ist, wobei die Polarisation von Lichtstrahlen im aktiven Zustand um 90° drehbar ist und im inaktiven Zustand keine Änderung erfährt,
  • ein Polarisationsfiltermittel, welches dem zweiten Mittel zur Polarisationsdrehung nachgeschalten ist, welches Polarisationsfiltermittel eingerichtet ist, die von dem zweiten Mittel zur Polarisationsdrehung im aktiven bzw. inaktiven Zustand hinsichtlich der Polarisation gedrehten Lichtstrahlen zu transmittieren bzw. zu blockieren, und
  • zumindest eine Projektionslinse, welche zur Erzeugung einer Lichtverteilung oder einer Teil-Lichtverteilung einer Lichtfunktion vor einem Kraftfahrzeug vorgesehen ist.
The invention relates to a lighting device for a motor vehicle headlight, which lighting device comprises:
  • a lighting means which is set up to emit light beams, wherein the light beams can be collimated by at least one ancillary optics connected downstream of the lighting means in the main emission direction,
  • a polarizing beam splitter connected downstream of the at least one optical attachment, which splits the light beams collimated by the optical attachment into a first and a second linearly polarized beam path, the polarization directions of the beam paths being rotated 90 ° to one another,
  • a first means for polarization rotation which is set up to rotate the polarization direction of the second beam path by 90 ° so that the second beam path has the polarization direction of the first beam path,
  • a reflective means which is set up to deflect the first beam path essentially in the direction of the second beam path changed by the first means for polarization rotation,
  • a single second means for polarization rotation connected downstream of the first means for polarization rotation and the reflective means, which comprises at least one segment which can be switched into an active and an inactive state by means of electrical signals, the polarization of light beams being rotatable by 90 ° in the active state and does not experience any change in the inactive state,
  • a polarization filter means, which is connected downstream of the second means for polarization rotation, which polarization filter means is set up to transmit or block the light beams rotated with respect to polarization by the second means for polarization rotation in the active or inactive state, and
  • at least one projection lens which is provided for generating a light distribution or a partial light distribution of a light function in front of a motor vehicle.

Die Erfindung betrifft weiters einen Kraftfahrzeugscheinwerfer mit zumindest einer erfindungsgemäßen Beleuchtungsvorrichtung.The invention further relates to a motor vehicle headlight with at least one lighting device according to the invention.

Hierzu zeigt die DE 10 2015 115 339 A1 und die EP 1 351 015 A2 Beleuchtungsvorrichtungen aus dem Stand der Technik.The DE 10 2015 115 339 A1 and the EP 1 351 015 A2 Prior art lighting devices.

In Scheinwerfersystemen bzw. in Beleuchtungsvorrichtungen für Kraftfahrzeugscheinwerfer finden häufig auch Flüssigkristallelemente Verwendung, beispielsweise für unterschiedlichste Projektionsanwendungen und/ oder ADB-Anwendungen (Adaptive Driving Beam).Liquid crystal elements are often also used in headlight systems or in lighting devices for motor vehicle headlights, for example for a wide variety of projection applications and / or ADB (Adaptive Driving Beam) applications.

Wird ein Flüssigkristallelement mit unpolarisiertem Licht eines Leuchtmittels ausgeleuchtet, sind in der Regel zwei Polarisationsfilter notwendig, wobei einer im Strahlengang vor und einer nach dem Flüssigkristallelement angeordnet ist.If a liquid crystal element is illuminated with unpolarized light from a light source, two polarization filters are usually necessary, one in the beam path in front of and one behind the liquid crystal element.

Der erste Polarisationsfilter dient dazu, linear polarisiertes Licht zu erzeugen, wobei je nach Ansteuerung des Flüssigkristallelements das linear polarisierte Licht entweder unverändert von dem Flüssigkristallelement transmittiert wird oder in seiner Polarisation gedreht wird.The first polarization filter is used to generate linearly polarized light, the linearly polarized light either being transmitted unchanged by the liquid crystal element or its polarization being rotated, depending on the control of the liquid crystal element.

Der nach dem Flüssigkristallelement angeordnete Polarisationsfilter ist in der Regel derart angeordnet, dass ein von dem Flüssigkristallelement hinsichtlich der Polarisation veränderter Lichtstrahl transmittiert wird, wohingegen ein von dem Flüssigkristallelement unveränderter Lichtstrahl absorbiert bzw. reflektiert wird.The polarization filter arranged after the liquid crystal element is generally arranged in such a way that a light beam changed in polarization by the liquid crystal element is transmitted, whereas a light beam unchanged by the liquid crystal element is absorbed or reflected.

Durch diese Vorgehensweise verliert man in dieser Anordnung zumindest die halbe Lichtmenge, welche von dem ersten Polarisationsfilter absorbiert und/ oder reflektiert wird, wodurch wiederum der Wirkungsgrad der Beleuchtungsvorrichtung verringert wird.As a result of this procedure, in this arrangement at least half the amount of light that is absorbed and / or reflected by the first polarization filter is lost, which in turn reduces the efficiency of the lighting device.

Zusätzlich kann sich der erste Polarisationsfilter bei einer hohen Beleuchtungsstärke aufgrund der Absorption erwärmen, was die Funktion des Flüssigkristallelements beeinträchtigen kann.In addition, the first polarization filter can heat up at a high illuminance due to absorption, which can impair the function of the liquid crystal element.

Es ist eine Aufgabe der Erfindung eine verbesserte Beleuchtungseinrichtung bereitzustellen, welche die Effizienz bzw. den Wirkungsgrad einer Beleuchtungseinrichtung erhöht.It is an object of the invention to provide an improved lighting device which increases the efficiency or the degree of effectiveness of a lighting device.

Diese Aufgabe wird durch die Merkmale des Anspruchs 1 gelöst.This object is achieved by the features of claim 1.

Bei einer vorteilhaften Variante kann eine solche Beleuchtungsvorrichtung zur Erzeugung der Lichtfunktion "Abblendlicht" eingesetzt werden, wobei die Beleuchtungsvorrichtung bei dieser Lichtfunktion "Abblendlicht" eine Lichtverteilung erzeugt, welche in einem eingebauten Zustand der Beleuchtungsvorrichtung in ein Fahrzeug, vor dem Fahrzeug eine den gesetzlichen Anforderungen entsprechende Abblendlichtverteilung erzeugt. Es kann vorgesehen sein, dass eine solche Beleuchtungsvorrichtung zur Erzeugung der Lichtfunktion "Fernlicht" eingesetzt werden kann, wobei die Beleuchtungsvorrichtung bei dieser Lichtfunktion "Fernlicht" eine Lichtverteilung erzeugt, welche in einem eingebauten Zustand der Beleuchtungsvorrichtung in ein Fahrzeug, vor dem Fahrzeug eine den gesetzlichen Anforderungen entsprechende Fernlichtverteilung erzeugt. Die oben genannten, aufgezählten Lichtfunktionen bzw. Lichtverteilungen sind nicht abschließend, wobei die Beleuchtungsvorrichtungen auch Kombinationen dieser Lichtfunktionen erzeugen kann und/ oder nur eine Teillichtverteilung erzeugt, also beispielsweise nur einen Teil einer Fern-, Abblend-, Nebel- oder Tagfahrlichtverteilung. Durch die erfindungsgemäße Beleuchtungsvorrichtung wird die ganze bzw. die im Wesentlichen ganze Lichtmenge, welche von einem Leuchtmittel emittiert wird, genutzt und auf das zweite Mittel zur Projektionsdrehung bzw. auf die Projektionslinse gebracht. Es kann vorgesehen sein, dass das Leuchtmittel zumindest eine Lichtquelle umfasst. Es kann auch vorgesehen sein, dass das Leuchtmittel zwei oder mehrere Lichtquellen umfasst.In an advantageous variant, such a lighting device can be used to generate the "low beam" light function, the lighting device generating a light distribution for this "low beam" light function which, when the lighting device is installed in a vehicle, meets the legal requirements in front of the vehicle Generated low beam distribution. It can be provided that such a lighting device can be used to generate the "high beam" light function, the lighting device generating a light distribution for this "high beam" light function which, when the lighting device is installed in a vehicle, is one of the legal requirements in front of the vehicle Requirements corresponding high beam distribution generated. The light functions or light distributions mentioned above are not exhaustive, the lighting devices also being able to generate combinations of these light functions and / or only generating a partial light distribution, for example only part of a high beam, low beam, fog or daytime running light distribution. By means of the lighting device according to the invention, the whole or the substantially whole amount of light which is emitted by a lighting means is used and brought to the second means for projection rotation or to the projection lens. It can be provided that the lighting means comprises at least one light source. It can also be provided that the lighting means comprises two or more light sources.

Vorteilhafterweise kann jeder Lichtquelle eine eigene Vorsatzoptik zugeordnet sein, welche das von der Lichtquelle emittierte Licht parallel richtet.Advantageously, each light source can be assigned its own optical attachment, which directs the light emitted by the light source in parallel.

Es kann günstig sein, wenn die zumindest eine Lichtquelle als LED ausgebildet ist.It can be advantageous if the at least one light source is designed as an LED.

Vorzugsweise ist vorgesehen, dass im Fall, dass zwei oder mehr Leuchtdioden vorgesehen sind, jede Leuchtdiode unabhängig von den anderen Leuchtdioden angesteuert werden kann.It is preferably provided that in the event that two or more light-emitting diodes are provided, each light-emitting diode can be activated independently of the other light-emitting diodes.

Jede Leuchtdiode kann somit unabhängig von den anderen Leuchtdioden einer Lichtquelle ein- und ausgeschaltet werden, und vorzugsweise, wenn es sich um dimmbare Leuchtdioden handelt, auch unabhängig von den anderen Leuchtdioden der Lichtquelle gedimmt werden.Each light-emitting diode can thus be switched on and off independently of the other light-emitting diodes of a light source, and preferably, if the light-emitting diodes are dimmable, also dimmed independently of the other light-emitting diodes of the light source.

In einer praxisgerechten Ausführungsform kann die zumindest eine Vorsatzoptik als TIR-Linse ausgebildet sein.In a practical embodiment, the at least one ancillary optics can be designed as a TIR lens.

Vorteilhafterweise können die zwei Parallelepipede unmittelbar hintereinander angeordnet sind.The two parallelepipedes can advantageously be arranged directly one behind the other.

Das Fresnelsche Parallelepiped mit einer verspiegelten Stirnfläche sowie die zwei Fresnelschen Parallelepipede, welche unmittelbar hintereinander angeordnet sind, dienen dazu, die Polarisationsrichtung des zweiten Strahlengangs in dieselbe Polarisationsrichtung wie der erste Strahlengang umzuwandeln. Dadurch kann das zweite Mittel zur Polarisationsdrehung, vorzugsweise als Flüssigkristallelement ausgebildet, vom gesamten Lichtstrom bzw. Lichtmenge des Leuchtmittels ausgeleuchtet werden.The Fresnel parallelepiped with a mirrored end face and the two Fresnel parallelepipeds, which are arranged directly one behind the other, serve to convert the polarization direction of the second beam path into the same polarization direction as the first beam path. As a result, the second means for polarization rotation, preferably designed as a liquid crystal element, can be illuminated by the entire luminous flux or amount of light from the illuminant.

Im Allgemeinen ist ein Fresnelsches Parallelepiped ein optisches Prisma, das 45° linear polarisiertes Licht nach zweimaliger Totalreflexion unter einem bestimmten Winkel in zirkular polarisiertes Licht umwandelt.In general, a Fresnel parallelepiped is an optical prism that converts 45 ° linearly polarized light into circularly polarized light after double total reflection at a certain angle.

Der Vorteil liegt im Gegensatz zu einer Verzögerungsplatte darin, dass die Phasenverschiebung kaum von der Wellenlänge des auf das Fresnelsche Parallelepiped einfallende Licht abhängt.In contrast to a retardation plate, the advantage is that the phase shift hardly depends on the wavelength of the light incident on the Fresnel parallelepiped.

Hierzu wird 45° linear polarisiertes Licht senkrecht bzw. orthogonal auf eine Stirnseite des Prismas gelenkt, wobei das Licht dadurch keine Richtungsänderung erfährt. Anschließend fällt das Licht auf eine erste schräge Längsfläche des Prismas, wobei der Einfallswinkel des Lichts auf diese Längsfläche größer als der Grenzwinkel einer Totalreflexion ist und totalreflektiert wird.For this purpose, 45 ° linearly polarized light is directed vertically or orthogonally onto one end face of the prism, whereby the light does not experience any change in direction. The light then falls on a first inclined longitudinal surface of the prism, the angle of incidence of the light on this longitudinal surface being greater than the critical angle of total reflection and being totally reflected.

Die dabei auftretende Phasenverschiebung bewirkt, dass aus dem ursprünglich linear polarisierten Licht ein elliptisch polarisiertes Licht wird. Für die Erzeugung von zirkular polarisiertem Licht ist eine zweite Totalreflexion innerhalb des Prismas notwendig.The resulting phase shift causes the originally linearly polarized light to become elliptically polarized light. A second total reflection within the prism is necessary to generate circularly polarized light.

Der Einfallswinkel ist abhängig vom Brechungsindex des eingesetzten Materials, beispielsweise Kronglas, dessen Brechungsindex 1,51 beträgt.The angle of incidence depends on the refractive index of the material used, for example crown glass, the refractive index of which is 1.51.

Es kann auch vorgesehen sein, dass das zumindest eine Fresnelsche Parallelepiped aus Kunststoff, beispielsweise Polycarbonat oder Tarflon, gebildet ist.It can also be provided that the at least one Fresnel parallelepiped is formed from plastic, for example polycarbonate or Tarflon.

Bei zwei unmittelbar hintereinander angeordneten Fresnelschen Parallelepipeden, welche die gleichen Eigenschaften im Sinne von Material und Form aufweisen, treten insgesamt vier Totalreflexionen auf, welche das einfallende linear polarisierte Licht nach dem Austritt aus den beiden Prismen in ein um ein 90° verdrehtes linear polarisiertes Licht umwandeln.In the case of two Fresnel parallelepipeds arranged directly one behind the other, which have the same properties in terms of material and shape, a total of four total reflections occur, which convert the incident linearly polarized light after exiting the two prisms into linearly polarized light rotated by 90 ° .

Es kann vorgesehen sein, dass das zweite Mittel zur Polarisationsdrehung als Flüssigkristallelement ausgebildet ist.It can be provided that the second means for polarization rotation is designed as a liquid crystal element.

Die Funktion eines Flüssigkristallelements, beispielsweise ein LC-Display, welches aus einzelnen ansteuerbaren Segmenten aufgebaut ist, beruht darauf, dass Flüssigkristalle bzw. die Segmente die Polarisationsrichtung von Licht beeinflussen, wenn ein bestimmtes Maß an elektrischer Spannung angelegt wird.The function of a liquid crystal element, for example an LC display, which is made up of individual controllable segments, is based on the fact that liquid crystals or the segments influence the polarization direction of light when a certain amount of electrical voltage is applied.

Es sei nochmals explizit darauf hingewiesen, dass ein hier beschriebenes Flüssigkristallelement aus mehreren Flüssigkristallen aufgebaut ist, welche hierin auch als Segmente bezeichnet werden.It should again be explicitly pointed out that a liquid crystal element described here is composed of several liquid crystals, which are also referred to herein as segments.

Ebenso kann vorgesehen sein, dass das reflektive Mittel als Spiegel ausgebildet ist.It can also be provided that the reflective means is designed as a mirror.

In einer weiteren zweckmäßigen Ausführungsform kann vorgesehen sein, dass das zweite Mittel zur Polarisationsdrehung ein LCoS-Element ist.In a further expedient embodiment it can be provided that the second means for polarization rotation is an LCoS element.

Im Gegensatz zu LC-Displays lässt ein LCoS (Liquid Crystal on Silicon) Licht nicht durch bzw. transmittiert es nicht, sondern reflektiert es.In contrast to LC displays, an LCoS (Liquid Crystal on Silicon) does not let light through or does not transmit it, but rather reflects it.

Es kann günstig sein, wenn dem zweiten Mittel zur Polarisationsdrehung zumindest ein Optikelement, beispielsweise eine Linse oder ein Reflektor, vorgelagert ist, welches eingerichtet ist, eine homogene Ausleuchtung des zweiten Mittels zur Polarisationsdrehung durch die auf das zweite Mittel zur Polarisationsdrehung einfallenden Strahlengänge zu ermöglichen.It can be advantageous if at least one optical element, for example a lens or a reflector, is upstream of the second means for polarization rotation, which optical element is set up to enable homogeneous illumination of the second means for polarization rotation through the beam paths incident on the second means for polarization rotation.

Das zumindest eine Optikelement ist jedoch so eingerichtet, dass die Polarisation der Lichtstrahlen nicht oder nur in sehr geringem Ausmaß verändert.However, the at least one optical element is set up in such a way that the polarization of the light beams does not change or only changes to a very small extent.

Vorteilhafterweise können dem zweiten Mittel zur Polarisationsdrehung zwei Optikelemente vorgelagert sein, wobei die Optikelemente je einem Strahlengang zugeordnet sind.The second means for polarization rotation can advantageously be preceded by two optical elements, the optical elements each being assigned to a beam path.

Nachfolgend wird die Erfindung anhand von beispielhaften Zeichnungen näher erläutert. Hierbei zeigt

  • Fig. 1 eine beispielhafte Beleuchtungsvorrichtung mit zwei unmittelbar hintereinander angeordneten Fresnelschen Parallelepipeden,
  • Fig. 2 eine weiteres Beispiel mit einem Fresnelschen Parallelepiped, wobei eine Stirnfläche des Parallelepipeds eine Verspiegelung aufweist,
  • Fig. 3 eine Detailansicht des Aufbaus des Beispiels aus Fig. 2, wobei mehrere LEDs als Leuchtmittel vorgesehen sind,
  • Fig. 4 eine Detailansicht entlang der x-Achse des Aufbaus aus Fig. 3, und
  • Fig. 5 ein weiteres Beispiel mit zwei unmittelbar hintereinander angeordneten Fresnelschen Parallelepipeden und einem LCoS.
The invention is explained in more detail below with the aid of exemplary drawings. Here shows
  • Fig. 1 an exemplary lighting device with two Fresnel parallelepipeds arranged directly one behind the other,
  • Fig. 2 another example with a Fresnel parallelepiped, one end face of the parallelepiped having a mirror coating,
  • Fig. 3 a detailed view of the structure of the example Fig. 2 , whereby several LEDs are provided as light sources,
  • Fig. 4 a detailed view along the x-axis of the structure Fig. 3 , and
  • Fig. 5 another example with two Fresnel parallelepipeds arranged directly one behind the other and an LCoS.

Fig. 1 zeigt eine Beleuchtungsvorrichtung 51, umfassend ein Leuchtmittel 100, welches in diesem Ausführungsbeispiel als LED ausgeführt ist und eingerichtet ist, Lichtstrahlen zu emittieren, wobei die Lichtstrahlen von einer dem Leuchtmittel 100 in Hauptabstrahlrichtung nachgeschalteten Vorsatzoptik 200 kollimierbar sind, d.h. dass die Lichtstrahlen des Leuchtmittels parallel bzw. im Wesentlichen parallel gerichtet werden. Fig. 1 shows a lighting device 51, comprising a lighting means 100, which is designed as an LED in this embodiment and is set up to emit light beams, wherein the light beams can be collimated by an optical lens 200 connected downstream of the lighting means 100 in the main emission direction, that is, the light beams of the lighting means are parallel or be directed essentially parallel.

Unter "Hauptabstrahlrichtung" ist die Richtung zu verstehen, in der das Leuchtmittel infolge seiner Richtwirkung am stärksten bzw. am meisten Licht abstrahlt.“Main direction of emission” is to be understood as the direction in which the illuminant emits the strongest or most of the light due to its directional effect.

Weiters umfasst die Beleuchtungseinrichtung aus Fig. 1 einen der Vorsatzoptik 200 nachgeschalteten, polarisierenden Strahlteiler 300, der die von der Vorsatzoptik 200 kollimierten Lichtstrahlen in einen ersten und einen zweiten linear polarisierten Strahlengang 310, 320 aufteilt, wobei die Polarisationsrichtungen der Strahlengänge 310, 320 90° verdreht zueinander sind.The lighting device also includes Fig. 1 one of the optical head 200 downstream, polarizing beam splitter 300, which are collimated by the optical head 200 the light beams in a first and a second linearly polarized beam path 310, 320 is divided, wherein the polarization directions of the optical paths 310, 320 90 ° relative to each other.

Es sei angemerkt, dass der polarisierende Strahlteiler 300 in Fig. 1 in einem 45°-Winkel zur Hauptabstrahlrichtung der durch die Vorsatzoptik 200 kollimierten Lichtstrahlen steht, jedoch auch andere Positionen des Strahlteilers 300 möglich sind.It should be noted that the polarizing beam splitter 300 in FIG Fig. 1 is at a 45 ° angle to the main emission direction of the light beams collimated by the ancillary optics 200 , but other positions of the beam splitter 300 are also possible.

Im Allgemeinen bezeichnet man linear senkrecht zur Einfallsebene polarisiertes Licht als transversale Komponente TE bzw. mit dem Kürzel "s". Linear parallel zur Einfallsebene polarisiertes Licht bezeichnet man in der Regel als transversalmagnetische Komponente TM bzw. mit dem Kürzel "p", wobei sich die Abkürzungen "s" und "p" in den Figuren zur besseren Übersicht wiederfinden.In general, light polarized linearly perpendicular to the plane of incidence is referred to as the transverse component TE or with the abbreviation "s". Light polarized linearly parallel to the plane of incidence is generally referred to as the transverse magnetic component TM or with the abbreviation “p”, the abbreviations “s” and “p” being used in the figures for a better overview.

Der Begriff "Einfallsebene" ist ein bekannter Begriff aus der Optik und bezeichnet im Allgemeinen die Ebene, die von der Einfallsrichtung des auf eine Grenzfläche einfallenden Lichts und dem Lot auf diese Grenzfläche aufgespannt wird. Der Polarisationszustand des Lichts wird in der Regel bezüglich der Einfallsebene angegeben.The term “plane of incidence” is a well-known term from optics and generally designates the plane that is spanned by the direction of incidence of the light incident on an interface and the perpendicular to this interface. The polarization state of the light is usually given in relation to the plane of incidence.

Ferner ist ein erstes Mittel zur Polarisationsdrehung 400, welches nach dem polarisierenden Strahlteiler 300 im zweiten Strahlengang 320 positioniert und eingerichtet ist, die Polarisationsrichtung des zweiten Strahlengangs 320 um 90° zu verdrehen, sodass der zweite Strahlengang 320 die gleiche Polarisationsrichtung wie der erste Strahlengang 310 aufweist. Das erste Mittel zur Polarisationsdrehung 400 ist in diesem Beispiel als zwei Fresnelsche Parallelepipede ausgebildet, wobei die Parallelepipede unmittelbar hintereinander angeordnet sind, sodass Stirnflächen der jeweiligen Parallelepipede ohne einem Abstand zueinander angeordnet sind.Furthermore, there is a first means for polarization rotation 400, which is positioned after the polarizing beam splitter 300 in the second beam path 320 and is set up to rotate the polarization direction of the second beam path 320 by 90 ° so that the second beam path 320 has the same polarization direction as the first beam path 310 . The first means for polarization rotation 400 is designed in this example as two Fresnel parallelepipedes, the parallelepipedes being arranged directly one behind the other, so that the end faces of the respective parallelepipedes are arranged without a spacing from one another.

Ein Fresnelsches Parallelepiped, welches in der Regel ein lichtdurchlässiger Körper ist, beispielsweise aus Kronglas, Polycarbonat oder Tarflon, ermöglicht, ein linear polarisiertes Licht durch zweifache Totalreflexion in zirkular polarisiertes Licht umzuwandeln.A Fresnel parallelepiped, which is usually a translucent body, for example made of crown glass, polycarbonate or tarflon, enables linearly polarized light to be converted into circularly polarized light by double total reflection.

Hierzu wird linear polarisiertes Licht senkrecht bzw. orthogonal auf eine Stirnseite des Parallelepipeds gelenkt, wobei das Licht dadurch keine Richtungsänderung erfährt. Anschließend fällt das Licht auf eine erste schräge Längsfläche des Prismas, wobei der Einfallswinkel des Lichts auf diese Längsfläche größer als der Grenzwinkel einer Totalreflexion ist, und totalreflektiert wird.For this purpose, linearly polarized light is directed vertically or orthogonally onto one end face of the parallelepiped, whereby the light does not experience any change in direction as a result. The light then falls on a first inclined longitudinal surface of the prism, the angle of incidence of the light on this longitudinal surface being greater than the critical angle of total reflection and being totally reflected.

Die dabei auftretende Phasenverschiebung bewirkt, dass aus dem ursprünglich linear polarisierten Licht ein elliptisch polarisiertes Licht wird. Für die Erzeugung von zirkular polarisiertem Licht ist eine zweite Totalreflexion innerhalb des Prismas notwendig.The resulting phase shift causes the originally linearly polarized light to become elliptically polarized light. A second total reflection within the prism is necessary to generate circularly polarized light.

Der Einfallswinkel ist abhängig vom Brechungsindex des eingesetzten Materials, beispielsweise Kronglas, dessen Brechungsindex 1,51 beträgt.The angle of incidence depends on the refractive index of the material used, for example crown glass, the refractive index of which is 1.51.

Im Allgemeinen lässt sich zirkular polarisiertes Licht durch Summation von zwei senkrecht zueinander linear polarisierten Wellen gleicher Amplitude und passender Phasenverschiebung erhalten. In gleicher Weise kann man jede linear polarisierte Welle als Summe einer links- und rechtszirkular polarisierten Welle darstellen.In general, circularly polarized light can be obtained by summing two mutually linearly polarized waves of equal amplitude and a suitable phase shift. In the same way, each linearly polarized wave can be represented as the sum of a left and right circularly polarized wave.

Die mit einem Fresnelschen Parallelepiped erzeugte Phasendifferenz zeigt in weiten Bereichen nur eine geringe bis gar keine Abhängigkeit von der Wellenlänge des einfallenden Lichts, wodurch auch Lichtquellen zur Anwendung kommen können, die weißes Licht bzw. polychromatisches Licht emittieren, wobei unter "weißes Licht" Licht einer solchen Spektralzusammensetzung verstanden wird, welches beim Menschen den Farbeindruck "weiß" hervorruft.The phase difference generated with a Fresnel parallelepiped shows little to no dependence on the wavelength of the incident light over a wide range, which means that light sources can also be used that emit white light or polychromatic light such spectral composition is understood, which causes the color impression "white" in humans.

Bei zwei unmittelbar hintereinander angeordneten Fresnelschen Parallelepipeden, welche die gleichen Eigenschaften im Sinne von Material und Form aufweisen, treten insgesamt vier Totalreflexionen auf, welche das einfallende linear polarisierte Licht nach dem Austritt aus den beiden Prismen in ein um ein 90° verdrehtes linear polarisiertes Licht umwandeln, wobei das Licht seine Richtung beibehält.In the case of two Fresnel parallelepipeds arranged directly one behind the other, which have the same properties in terms of material and shape, a total of four total reflections occur, which convert the incident linearly polarized light after exiting the two prisms into linearly polarized light rotated by 90 ° with the light keeping its direction.

Weiters ist ein reflektives Mittel 350 im ersten Strahlengang 310 angeordnet, welches reflektive Mittel 350 den ersten Strahlengang 310 im Wesentlichen in die Richtung des durch das erste Mittel zur Polarisationsdrehung 400 veränderten zweiten Strahlengangs 320 umlenkt.Furthermore, a reflective means 350 is arranged in the first beam path 310, which reflective means 350 deflects the first beam path 310 essentially in the direction of the second beam path 320 changed by the first means for polarization rotation 400.

Ferner umfasst die Beleuchtungsvorrichtung 51 ein einziges zweites Mittel zur Polarisationsdrehung 600, welches dem ersten Mittel zur Polarisationsdrehung 400 und dem reflektiven Mittel 350 nachgeschalten ist, wobei das zweite Mittel zur Polarisation 600 in dem Ausführungsbeispiel aus Fig. 1 als Flüssigkristallelement ausgebildet ist, welches mehrere Segmente bzw. Flüssigkristalle umfasst, welche mittels elektrischer Signale in einen aktiven und einen inaktiven Zustand versetzbar sind, wobei die Polarisationsrichtung der Lichtstrahlen im aktiven Zustand drehbar ist, vorzugsweise um 90°, und im inaktiven Zustand keine Änderung erfährt.Furthermore, the lighting device 51 comprises a single second means for polarization rotation 600, which is connected downstream of the first means for polarization rotation 400 and the reflective means 350 , the second means for polarization 600 in the embodiment Fig. 1 is designed as a liquid crystal element, which comprises several segments or liquid crystals, which can be switched into an active and an inactive state by means of electrical signals, the polarization direction of the light rays being rotatable in the active state, preferably by 90 °, and not changing in the inactive state .

Dem zweiten Mittel zur Polarisationsdrehung bzw. dem Flüssigkristallelement 600 sind zwei Optikelemente 500, beispielsweise Linsen oder Reflektoren, vorgelagert, welche je einem Strahlengang 310, 320 zugeordnet und eingerichtet sind, eine homogene Ausleuchtung des Flüssigkristallelements 600 durch die auf das Flüssigkristallelement 600 einfallenden Strahlengänge 310, 320 zu ermöglichen. In den gezeigten Beispielen sind die Optikelemente 500 als optische Linsen ausgebildet.The second means for polarization rotation or the liquid crystal element 600 are preceded by two optical elements 500, for example lenses or reflectors, which are each assigned and set up to a beam path 310, 320 , a homogeneous illumination of the liquid crystal element 600 by the beam paths 310 incident on the liquid crystal element 600, 320 to enable. In the examples shown, the optical elements 500 are designed as optical lenses.

Dem Flüssigkristallelement 600 ist ein Polarisationsfiltermittel 610 nachgeschalten, welches Polarisationsfiltermittel 610 eingerichtet ist, die von den Segmenten bzw. Flüssigkristallen des Flüssigkristallelements 600 hinsichtlich der Polarisationsrichtung gedrehten Lichtstrahlen zu transmittieren bzw. zu absorbieren/blockieren, wodurch das gewünschte Lichtbild bzw. Lichtverteilung erzeugt wird.The liquid crystal element 600 is followed by a polarization filter means 610, which polarization filter means 610 is set up to transmit or absorb / block the light rays rotated by the segments or liquid crystals of the liquid crystal element 600 with respect to the polarization direction, whereby the desired light image or light distribution is generated.

Zur Erzeugung einer Lichtverteilung oder einer Teil-Lichtverteilung einer Lichtfunktion vor einem Kraftfahrzeug ist eine Projektionslinse 700 vorgesehen.A projection lens 700 is provided to generate a light distribution or a partial light distribution of a light function in front of a motor vehicle.

Es kann vorgesehen sein, dass eine solche Beleuchtungsvorrichtung 51, 52, 53 zur Erzeugung der Lichtfunktion "Fernlicht" eingesetzt werden kann, wobei die Beleuchtungsvorrichtung 51, 52, 53 bei dieser Lichtfunktion "Fernlicht" eine Lichtverteilung erzeugt, welche in einem eingebauten Zustand der Beleuchtungsvorrichtung 51, 52, 53 in ein Kraftfahrzeug, vor dem Kraftfahrzeug eine den gesetzlichen Anforderungen entsprechende Fernlichtverteilung erzeugt.It can be provided that such a lighting device 51 , 52 , 53 can be used to generate the "high beam" light function, the lighting device 51, 52, 53 generating a light distribution in this "high beam" light function which, when the lighting device is installed 51, 52, 53 in a motor vehicle, in front of the motor vehicle a high beam distribution corresponding to the legal requirements is generated.

Es kann vorgesehen sein, dass eine solche Beleuchtungsvorrichtung 51, 52, 53 zur Erzeugung der Lichtfunktion "Abblendlicht" eingesetzt werden kann, wobei die Beleuchtungsvorrichtung bei dieser Lichtfunktion "Abblendlicht" eine Lichtverteilung erzeugt, welche in einem eingebauten Zustand der Beleuchtungsvorrichtung 51, 52, 53 in ein Kraftfahrzeug, vor dem Kraftfahrzeug eine den gesetzlichen Anforderungen entsprechende Abblendlichtverteilung erzeugt.It can be provided that such a lighting device 51, 52, 53 can be used to generate the "low beam" light function, the lighting device generating a light distribution with this "low beam" light function which, when the lighting device 51, 52, 53 in a motor vehicle, in front of the motor vehicle a low beam distribution corresponding to the legal requirements is generated.

Die oben genannten, aufgezählten Lichtfunktionen bzw. Lichtverteilungen sind nicht abschließend und beziehen sich auf das Ausführungsbeispiel in Fig. 1 sowie weitere mögliche Ausführungsformen, wobei die Beleuchtungsvorrichtungen 51, 52, 53 auch Kombinationen dieser Lichtfunktionen erzeugen können und/ oder nur eine Teillichtverteilung erzeugen, also beispielsweise nur einen Teil einer Fern-, Abblend-, Nebel-oder Tagfahrlichtverteilung.The light functions and light distributions mentioned above are not exhaustive and relate to the exemplary embodiment in FIG Fig. 1 as well as further possible embodiments, wherein the lighting devices 51 , 52 , 53 can also generate combinations of these light functions and / or only generate a partial light distribution, so for example only part of a high beam, low beam, fog or daytime running light distribution.

Fig. 2 zeigt ein weiteres Beispiel einer Beleuchtungsvorrichtung 52, wobei im Gegensatz zur Ausführungsform in Fig. 1 das erste Mittel zur Polarisationsdrehung 400 als ein Fresnelsches Parallelepiped ausgebildet ist, wobei eine Stirnfläche 410 des Parallelepipeds 400 verspiegelt ist. Fig. 2 shows a further example of a lighting device 52, in contrast to the embodiment in FIG Fig. 1 the first means for polarization rotation 400 is designed as a Fresnel parallelepiped, with an end face 410 of the parallelepiped 400 being mirrored.

Hierbei wird das durch einen polarisierenden Strahlteiler 300 senkrecht linear polarisierte Licht, welches in Fig. 2 mit "s" gekennzeichnet ist, in das Fresnelsche Parallelepiped 400 einkoppelt und nach zweimaliger Totalreflexion auf die verspiegelte Stirnfläche 410 trifft, wobei das Licht bzw. die Lichtstrahlen in die entgegengesetzte Richtung gespiegelt werden und wiederum zwei Totalreflexionen innerhalb des Parallelepipeds 400 erfährt und eine um 90° gedrehte Polarisationsrichtung, also ein parallel linear polarisiertes Licht, was mit "p" in Fig. 2 gekennzeichnet ist, aufweist, bevor es aus dem Parallelepiped auskoppelt bzw. austritt.In this case, the light which is perpendicularly linearly polarized by a polarizing beam splitter 300 and which is shown in FIG Fig. 2 is marked with "s", is coupled into the Fresnel parallelepiped 400 and hits the mirrored end face 410 after two total reflection, the light or light rays being mirrored in the opposite direction and again experiencing two total reflections within the parallelepiped 400 and one around 90 ° rotated polarization direction, so a parallel linearly polarized light, what with "p" in Fig. 2 is characterized, has before it decouples or emerges from the parallelepiped.

Die Auskoppelrichtung bzw. die Austrittsrichtung ist hierbei der Eintrittsrichtung bzw. der Einkoppelrichtung des Lichts entgegengesetzt, wie in Fig. 2 dargestellt ist.The decoupling direction or the exit direction is opposite to the entry direction or the coupling direction of the light, as in FIG Fig. 2 is shown.

Das aus dem Fresnelsches Parallelepiped 400 austretende, parallel linear polarisierte Licht wird von dem polarisierenden Strahlteiler 300 unverändert transmittiert.The parallel linearly polarized light emerging from the Fresnel parallelepiped 400 is transmitted unchanged by the polarizing beam splitter 300.

Der übrige Aufbau des in Fig. 2 gezeigten Beispiels gleicht im Wesentlichen dem Aufbau des Beispiels aus Fig. 1 . The rest of the structure of the in Fig. 2 The example shown essentially compensates for the structure of the example Fig. 1 .

Fig. 3 zeigt eine Detailansicht des Aufbaus aus Fig. 2 , wobei das Leuchtmittel 100 aus mehreren LEDs gebildet ist, die jeweils eine nachgeschaltete Vorsatzoptik 200 umfassen. Als Vorsatzoptik 200 kann jeweils beispielsweise eine TIR-Linse vorgesehen sein. Fig. 3 shows a detailed view of the structure from Fig. 2 , wherein the lighting means 100 is formed from a plurality of LEDs, each comprising a downstream optical attachment 200 . A TIR lens, for example, can be provided in each case as ancillary optics 200.

Fig. 4 zeigt eine entlang der x-Achse dargestellte Perspektive der Detailansicht aus Fig. 3 , wobei zu erkennen ist, dass das Leuchtmittel 100 aus dem Beispiel in Fig. 3 und 4 sowohl eine Reihe von Lichtquellen entlang der x-Achse als auch eine Reihe von Lichtquellen entlang der z-Achse aufweist. Fig. 4 shows a perspective of the detailed view shown along the x-axis Fig. 3 , It being recognized that the light source 100 from the example in Figs. 3 and 4 has both a row of light sources along the x-axis and a row of light sources along the z-axis.

Das Leuchtmittel 100 ist gewissermaßen aus einer Lichtquellen-Matrix gebildet, wobei auch vorgesehen sein kann, dass das Leuchtmittel 100 nur aus einer Reihe von Lichtquellen bzw. einem Lichtquellen-Array gebildet sein kann.The lighting means 100 is, so to speak, formed from a light source matrix, it also being possible for the lighting means 100 to be formed only from a row of light sources or a light source array.

Fig. 5 zeigt eine Beleuchtungsvorrichtung 53, umfassend ein Leuchtmittel 100, welches in diesem Ausführungsbeispiel als LED ausgeführt ist und eingerichtet ist, Lichtstrahlen zu emittieren, wobei die Lichtstrahlen von einer dem Leuchtmittel 100 in Hauptabstrahlrichtung nachgeschalteten Vorsatzoptik 200 kollimierbar sind, d.h. dass die Lichtstrahlen des Leuchtmittels parallel bzw. im Wesentlichen parallel gerichtet werden. Fig. 5 shows a lighting device 53, comprising a lighting means 100, which is designed as an LED in this embodiment and is set up to emit light beams, wherein the light beams can be collimated by an attachment lens 200 connected downstream of the lighting means 100 in the main emission direction, that is, the light beams of the lighting means are parallel or be directed essentially parallel.

Weiters umfasst die Beleuchtungseinrichtung aus Fig. 5 einen der Vorsatzoptik 200 nachgeschalteten, polarisierenden Strahlteiler 300, der die von der Vorsatzoptik 200 kollimierten Lichtstrahlen in einen ersten und einen zweiten linear polarisierten Strahlengang 310, 320 aufteilt, wobei die Polarisationsrichtungen der Strahlengänge 310, 320 90° verdreht zueinander sind.The lighting device also includes Fig. 5 one of the optical head 200 downstream, polarizing beam splitter 300, the polarized the collimated by the optical head 200 the light rays into a first and a second linear Beam path 310, 320 divides, the polarization directions of beam paths 310, 320 being rotated 90 ° to one another.

Es sei angemerkt, dass der polarisierende Strahlteiler 300 in Fig. 5 in einem 45°-Winkel zur Hauptabstrahlrichtung der durch die Vorsatzoptik 200 kollimierten Lichtstrahlen steht, jedoch auch andere Positionen des Strahlteilers 300 möglich sind.It should be noted that the polarizing beam splitter 300 in FIG Fig. 5 is at a 45 ° angle to the main emission direction of the light beams collimated by the ancillary optics 200 , but other positions of the beam splitter 300 are also possible.

Ferner ist ein erstes Mittel zur Polarisationsdrehung 400, welches nach dem polarisierenden Strahlteiler 300 im zweiten Strahlengang 320 positioniert und eingerichtet ist, die Polarisationsrichtung des zweiten Strahlengangs 320 um 90° zu verdrehen, sodass der zweite Strahlengang 320 die gleiche Polarisationsrichtung wie der erste Strahlengang 310 aufweist.Furthermore, there is a first means for polarization rotation 400, which is positioned after the polarizing beam splitter 300 in the second beam path 320 and is set up to rotate the polarization direction of the second beam path 320 by 90 ° so that the second beam path 320 has the same polarization direction as the first beam path 310 .

Das erste Mittel zur Polarisationsdrehung 400 ist in diesem Beispiel als zwei Fresnelsche Parallelepipede ausgebildet, wobei die Parallelepipede unmittelbar hintereinander angeordnet sind, sodass Stirnflächen der jeweiligen Parallelepipede ohne einem Abstand zueinander angeordnet sind.The first means for polarization rotation 400 is designed in this example as two Fresnel parallelepipedes, the parallelepipedes being arranged directly one behind the other, so that the end faces of the respective parallelepipedes are arranged without a spacing from one another.

Weiters ist ein reflektives Mittel 350 im ersten Strahlengang 310 angeordnet, welches reflektive Mittel 350 den ersten Strahlengang 310 im Wesentlichen in die Richtung des durch das erste Mittel zur Polarisationsdrehung 400 veränderten zweiten Strahlengangs 320 umlenkt.Furthermore, a reflective means 350 is arranged in the first beam path 310 , which reflective means 350 deflects the first beam path 310 essentially in the direction of the second beam path 320 changed by the first means for polarization rotation 400.

Ferner umfasst die Beleuchtungsvorrichtung 53 ein Polarisationsfiltermittel 660, welches den Fresnelschen Parallelepipeden 400 und dem reflektiven Mittel 350 nachgeschalten ist, wobei das Polarisationsfiltermittel 660 die darauf auftreffenden Strahlengänge 310, 320, welche die gleiche Polarisationsrichtung aufweisen, auf ein zweites Mittel zur Polarisationsdrehung 650 umlenkt bzw. reflektiert. Das Polarisationsfiltermittel 660 ist in dem Beispiel aus Fig. 5 derart eingerichtet, dass es wie ein polarisierender Strahlteiler, ähnlich dem polarisierenden Strahlteiler 300 aus den vorherigen Beispielen, funktioniert.Furthermore, the lighting device 53 comprises a polarization filter means 660, which is connected downstream of the Fresnel parallelepipeds 400 and the reflective means 350 , the polarization filter means 660 deflecting or deflecting the beam paths 310, 320 impinging thereon, which have the same polarization direction, onto a second means for polarization rotation 650. reflected. The polarization filter means 660 is off in the example Fig. 5 set up in such a way that it functions like a polarizing beam splitter, similar to the polarizing beam splitter 300 from the previous examples.

Das zweite Mittel zur Polarisationsdrehung 650 ist in Fig. 5 als LCoS-Element ausgebildet. Im Gegensatz zu LC-Displays bzw. dem Flüssigkristallelement 600 aus den vorigen Ausführungsbeispielen lässt ein LCoS 650 (Liquid Crystal on Silicon) Licht nicht durch, sondern reflektiert es, wobei das LCoS 650 wie das Flüssigkristallelement 600 in einen aktiven bzw. inaktiven Zustand versetzt werden kann. Nähere Erläuterungen bezüglich des inaktiven bzw. aktiven Zustands sind den Ausführungen bezüglich Fig. 1 zu entnehmen.The second polarization rotation means 650 is in FIG Fig. 5 designed as an LCoS element. In contrast to LC displays or the liquid crystal element 600 from the previous exemplary embodiments, an LCoS 650 (Liquid Crystal on Silicon) does not let light through but rather reflects it, the LCoS 650 like the liquid crystal element 600 in one active or inactive state can be set. More detailed explanations with regard to the inactive or active state are given in relation to the explanations Fig. 1 refer to.

Die Auskoppelrichtung bzw. die Austrittsrichtung der Strahlengänge 310, 320 aus dem LCoS-Element 650 ist hierbei der Eintrittsrichtung bzw. der Einkoppelrichtung der Strahlengänge 310, 320 bzw. des Lichts entgegengesetzt, wie in Fig. 5 dargestellt ist.The outcoupling direction or the exit direction of the beam paths 310 , 320 from the LCoS element 650 is opposite to the entry direction or the infeed direction of the beam paths 310 , 320 or the light, as in FIG Fig. 5 is shown.

Das aus den Segmenten bzw. Flüssigkristallen des LCoS-Elements 650 austretende, hinsichtlich seiner Polarisationsrichtung veränderte Licht wird von dem Polarisationsfiltermittel 660 transmittiert bzw. blockiert, wodurch das gewünschte Lichtbild erzeugt wird, wobei dem Polarisationsfiltermittel 660 ein Projektionslinse 700 nachgeschalten ist, welcher zur Erzeugung einer Lichtverteilung oder einer Teil-Lichtverteilung einer Lichtfunktion vor einem Kraftfahrzeug vorgesehen ist.The light emerging from the segments, or liquid crystals of the LCoS element 650, with respect to its polarization direction changed light is transmitted by the polarizing filter means 660 or blocked, whereby the desired light image is formed, wherein the polarizing filter means 660 is connected downstream a projection lens 700, which is one for the production Light distribution or a partial light distribution of a light function is provided in front of a motor vehicle.

Ferner sind dem Polarisationsfiltermittel 660 zwei Optikelemente 500 vorgelagert, welche je einem Strahlengang 310, 320 zugeordnet und eingerichtet sind, eine homogene Ausleuchtung des Polarisationsfiltermittels 660 durch die auf das Polarisationsfiltermittel 660 einfallenden Strahlengänge 310, 320 zu ermöglichen.Furthermore, the polarization filter means 660 is preceded by two optical elements 500 which are each assigned to a beam path 310, 320 and set up to enable homogeneous illumination of the polarization filter means 660 by the beam paths 310, 320 incident on the polarization filter means 660.

Es sei angemerkt, dass alle in den Figuren gezeigten Beispiele in einem und als Teil eines Kraftfahrzeugscheinwerfers vorgesehen sein können.It should be noted that all of the examples shown in the figures can be provided in and as part of a motor vehicle headlight.

BEZUGSZEICHENLISTEREFERENCE LIST

Beleuchtungsvorrichtung...Lighting device ...
51, 52, 5351, 52, 53
Leuchtmittel...Light source ...
100100
Vorsatzoptik...Front lens ...
200200
Polarisierenden Strahlteiler...Polarizing Beamsplitter ...
300300
Erster Strahlengang...First beam path ...
310310
Zweiter Strahlengang...Second beam path ...
320320
Reflektives Mittel...Reflective means ...
350350
Erstes Mittel zur Polarisationsdrehung...First means of polarization rotation ...
400400
Fresnelsches Parallelepiped...Fresnel parallelepiped ...
400400
Verspiegelte Stirnfläche...Mirrored face ...
410410
Optikelement...Optical element ...
500500
Zweites Mittel zur Polarisationsdrehung...Second means of polarization rotation ...
600600
Flüssigkristallelement...Liquid crystal element ...
600600
LCoS...LCoS ...
650650
Projektionslinse...Projection lens ...
700700

Claims (14)

  1. Lighting device (51, 52, 53) for a motor vehicle headlamp, which lighting device comprises:
    - an illuminating means (100) which is arranged to emit light beams, the light beams being collimatable by at least one attachment optics (200) arranged downstream of the illuminating means in the main radiation direction,
    - a polarizing beam splitter (300) connected downstream of the at least one attachment optics (200), which splits the light beams collimated by the attachment optics (200) into a first and a second linearly polarized beam path (310, 320), wherein the polarization directions of the beam paths (310, 320) are rotated 90° with respect to one another
    - a first polarization rotation means (400) arranged to rotate the polarization direction of the second beam path (320) by 90° so that the second beam path (320) has the polarization direction of the first beam path (310)
    - reflective means (350) arranged to redirect the first beam path (310) substantially in the direction of the second beam path (320) modified by the first means for polarization rotation (400),
    - a single second means for polarization rotation (600) connected downstream of said first means for polarization rotation (400) and said reflective means (350), said second means for polarization rotation (600) comprising at least one segment which can be set into an active and an inactive state by means of electrical signals, wherein the polarization of light beams can be rotated by 90° in the active state and does not undergo any change in the inactive state
    - a polarization filter means (610) connected downstream of the second means for polarization rotation (600), which polarization filter means (610) is arranged to transmit and block, respectively, the light beams rotated with respect to polarization by the second means for polarization rotation (600) in the active and inactive state, respectively, and
    - at least one projection lens (700) which is provided for generating a light distribution or a partial light distribution of a light function in front of a motor vehicle,
    the first means for polarization rotation (400) is formed as a Fresnel parallelepiped, wherein an end face of the parallelepiped is mirrored, or the first means for polarization rotation (400) is formed as two Fresnel parallelepipeds.
  2. Lighting device according to claim 1, characterized in that the illuminating means (100) comprises at least one light source.
  3. Lighting device according to claim 1 or 2, characterized in that the illuminating means (100) comprises two or more light sources.
  4. Lighting device according to claim 2 or 3, characterized in that each light source is assigned its own attachment optics (200).
  5. Lighting device according to one of claims 2 to 4, characterized in that the at least one light source is designed as an LED.
  6. Lighting device according to one of claims 1 to 5, characterized in that the at least one optical attachment (200) is designed as a TIR lens.
  7. Lighting device according to one of claims 1 to 6, characterized in that the two parallelepipeds are arranged directly one behind the other.
  8. Lighting device according to one of claims 1 to 7, characterized in that the Fresnel parallelepiped is formed of crown glass, polycarbonate or Tarflon.
  9. Lighting device according to any one of claims 1 to 8, characterized in that the second means for polarization rotation (600) is formed as a liquid crystal element.
  10. Lighting device according to one of claims 1 to 9, characterized in that the reflective means (350) is formed as a mirror.
  11. Lighting device according to any one of claims 1 to 10, characterized in that the second means for polarization rotation (600) is an LCoS element.
  12. Lighting device according to one of claims 1 to 11, characterized in that the second means for polarization rotation (600) is preceded by at least one optical element (500) which is set up to enable homogeneous illumination of the second means for polarization rotation (600) by the beam paths incident on the second means for polarization rotation (600).
  13. Lighting device according to claim 12, characterized in that two optical elements (500) are arranged upstream of the second means for polarization rotation (600), the optical elements each being associated with a beam path (310, 320).
  14. Motor vehicle headlamp comprising at least one illumination device according to any one of claims 1 to 13.
EP17203860.6A 2017-11-27 2017-11-27 Lighting device for a motor vehicle headlight Active EP3489577B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP17203860.6A EP3489577B1 (en) 2017-11-27 2017-11-27 Lighting device for a motor vehicle headlight
CN201880076317.XA CN111373196A (en) 2017-11-27 2018-10-11 Lighting device for a motor vehicle headlight
JP2020528877A JP6976437B2 (en) 2017-11-27 2018-10-11 Lighting equipment for floodlights for automatic vehicles
PCT/EP2018/077704 WO2019101426A1 (en) 2017-11-27 2018-10-11 Illumination device for a motor vehicle headlight
KR1020207016450A KR102405591B1 (en) 2017-11-27 2018-10-11 Lighting device for automobile headlamps
US16/766,889 US10969075B2 (en) 2017-11-27 2018-10-11 Illumination device for a motor vehicle headlight

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP17203860.6A EP3489577B1 (en) 2017-11-27 2017-11-27 Lighting device for a motor vehicle headlight

Publications (2)

Publication Number Publication Date
EP3489577A1 EP3489577A1 (en) 2019-05-29
EP3489577B1 true EP3489577B1 (en) 2021-11-24

Family

ID=60473435

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17203860.6A Active EP3489577B1 (en) 2017-11-27 2017-11-27 Lighting device for a motor vehicle headlight

Country Status (6)

Country Link
US (1) US10969075B2 (en)
EP (1) EP3489577B1 (en)
JP (1) JP6976437B2 (en)
KR (1) KR102405591B1 (en)
CN (1) CN111373196A (en)
WO (1) WO2019101426A1 (en)

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3432223A (en) * 1963-04-10 1969-03-11 Nippon Electric Co Modulator for a light beam
FR2298208A1 (en) * 1975-01-15 1976-08-13 Comp Generale Electricite POWER LASER CHAIN
JPH04331913A (en) * 1991-05-07 1992-11-19 Canon Inc Polarized light illumination element and projection type display device with the same
JPH04355323A (en) * 1991-06-03 1992-12-09 Toshiba Corp Optical fiber sensor
JPH10221008A (en) * 1997-02-06 1998-08-21 Nikon Corp Polarization optical element and optical wave interference measuring device using the same
JP2003297116A (en) * 2002-04-05 2003-10-17 Honda Motor Co Ltd Projecting light device
JP2004136838A (en) * 2002-10-21 2004-05-13 Toyota Industries Corp Vehicular projecting device and display device
JP2006285043A (en) * 2005-04-01 2006-10-19 Yamaha Corp Light source device
JP2007199351A (en) * 2006-01-26 2007-08-09 Nikon Corp Display system, display device, and camera
CN101021447A (en) * 2007-03-15 2007-08-22 中国科学院上海光学精密机械研究所 Method and apparatus for measuring 1/4 wave plate phase delay and quick shaft direction
CN201032473Y (en) * 2007-03-15 2008-03-05 中国科学院上海光学精密机械研究所 Device for measuring phase delay and fast axis direction of 1/4 wave plate
EP2147244B1 (en) * 2007-05-07 2015-12-02 Koninklijke Philips N.V. Led-based lighting fixtures for surface illumination with improved heat dissipation and manufacturability
US8025416B2 (en) * 2008-02-18 2011-09-27 3D4K Displays, Inc. Integrated optical polarization combining prism for projection displays
JP4711009B2 (en) * 2008-10-16 2011-06-29 ソニー株式会社 Optical measuring device
WO2011146267A2 (en) * 2010-05-19 2011-11-24 3M Innovative Properties Company Polarized projection illuminator
US9778475B2 (en) * 2014-11-06 2017-10-03 The United States of America as represesnted by the Secretary of the Air Forice Universal polarization converter
US10174894B2 (en) * 2014-12-11 2019-01-08 Stanley Electric Co., Ltd. Vehicle headlamp unit and vehicle headlamp system
DE102015115339A1 (en) * 2015-09-11 2017-03-16 Hella Kgaa Hueck & Co. Lighting device for vehicles
DE102015115348A1 (en) * 2015-09-11 2017-03-16 Hella Kgaa Hueck & Co. Lighting device for a motor vehicle

Also Published As

Publication number Publication date
JP2021504900A (en) 2021-02-15
EP3489577A1 (en) 2019-05-29
CN111373196A (en) 2020-07-03
KR20200088376A (en) 2020-07-22
US20200363030A1 (en) 2020-11-19
JP6976437B2 (en) 2021-12-08
US10969075B2 (en) 2021-04-06
KR102405591B1 (en) 2022-06-07
WO2019101426A1 (en) 2019-05-31

Similar Documents

Publication Publication Date Title
DE102012224079B4 (en) Light guide with a band-shaped light exit surface
DE102013207850A1 (en) Light module for a motor vehicle headlight
DE102012202508B4 (en) Optical fiber device for a motor vehicle light
DE102012212436A1 (en) Light module for a projection device and method for generating the blue component in a light module for a projection device
EP2688769B1 (en) Vehicle lamp for lighting the interior of the vehicle
DE102014218540B4 (en) Vehicle light and method for providing a light function by means of a vehicle light
DE102015115339A1 (en) Lighting device for vehicles
EP3208531B1 (en) Motor vehicle headlight comprising a liquid crystal display
DE2753545A1 (en) MOTOR VEHICLE HEADLIGHTS WITH POLARIZED AND UNPOLARIZED LIGHT COMPONENT
DE102013207841A1 (en) lighting device
EP3211470B1 (en) Device for illuminating a sight
DE102016211691B4 (en) Apparatus and method for generating an output light emission
EP3489577B1 (en) Lighting device for a motor vehicle headlight
DE102017106441A1 (en) Motor vehicle light with a planar light guide
EP3832194B1 (en) Optical system for influencing the light emitted by an extended light source
DE102020101598B4 (en) Light module for a motor vehicle headlight with an LCD display and two polarization filters
DE102013223947A1 (en) lighting device
EP3473918B1 (en) Lighting device for a motor vehicle headlight
EP3516290B1 (en) Lighting device for a vehicle
DE102015202595A1 (en) Lighting device of a vehicle
DE102021214549B3 (en) Head-up display imaging unit with folding mirror
EP4198610A1 (en) Head-up display image generation unit with folding mirror
WO2016091795A1 (en) Lighting device for vehicles
DE102018222079B3 (en) Headlights, vehicle and method for a headlight
DE973383C (en) Glare-free headlights and fog lights with thin-film polarizers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190930

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: F21S 41/64 20180101AFI20210728BHEP

Ipc: F21S 41/135 20180101ALI20210728BHEP

Ipc: F21V 9/14 20060101ALI20210728BHEP

Ipc: F21Y 115/10 20160101ALN20210728BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F21Y 115/10 20160101ALN20210907BHEP

Ipc: F21V 9/14 20060101ALI20210907BHEP

Ipc: F21S 41/135 20180101ALI20210907BHEP

Ipc: F21S 41/64 20180101AFI20210907BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTG Intention to grant announced

Effective date: 20211005

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1450132

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017012090

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20211124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220324

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220324

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220224

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220225

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211127

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017012090

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211127

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

26N No opposition filed

Effective date: 20220825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20171127

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1450132

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221127

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231120

Year of fee payment: 7

Ref country code: DE

Payment date: 20231121

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124