EP3479006A1 - Method and system for the real-time calculation of the amount of energy transported in a non-refrigerated, pressurised, liquefied natural gas tank - Google Patents

Method and system for the real-time calculation of the amount of energy transported in a non-refrigerated, pressurised, liquefied natural gas tank

Info

Publication number
EP3479006A1
EP3479006A1 EP17740051.2A EP17740051A EP3479006A1 EP 3479006 A1 EP3479006 A1 EP 3479006A1 EP 17740051 A EP17740051 A EP 17740051A EP 3479006 A1 EP3479006 A1 EP 3479006A1
Authority
EP
European Patent Office
Prior art keywords
lng
tank
density
temperature
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP17740051.2A
Other languages
German (de)
French (fr)
Inventor
Michel BEN BELGACEM-STREK
Gabrielle MENARD
Frédéric Legrand
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Engie SA
Original Assignee
Engie SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Engie SA filed Critical Engie SA
Publication of EP3479006A1 publication Critical patent/EP3479006A1/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • F17C13/021Special adaptations of indicating, measuring, or monitoring equipment having the height as the parameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • F17C13/026Special adaptations of indicating, measuring, or monitoring equipment having the temperature as the parameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0128Shape spherical or elliptical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/03Orientation
    • F17C2201/032Orientation with substantially vertical main axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/03Orientation
    • F17C2201/035Orientation with substantially horizontal main axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/056Small (<1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/03Control means
    • F17C2250/032Control means using computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0408Level of content in the vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0421Mass or weight of the content of the vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0439Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0447Composition; Humidity
    • F17C2250/0456Calorific or heating value
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0469Constraints, e.g. by gauges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0473Time or time periods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0486Indicating or measuring characterised by the location
    • F17C2250/0491Parameters measured at or inside the vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0486Indicating or measuring characterised by the location
    • F17C2250/0495Indicating or measuring characterised by the location the indicated parameter is a converted measured parameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0689Methods for controlling or regulating
    • F17C2250/0694Methods for controlling or regulating with calculations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/02Improving properties related to fluid or fluid transfer
    • F17C2260/026Improving properties related to fluid or fluid transfer by calculation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/06Fluid distribution
    • F17C2265/066Fluid distribution for feeding engines for propulsion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0168Applications for fluid transport or storage on the road by vehicles
    • F17C2270/0171Trucks

Definitions

  • the present invention generally relates to a method and system for calculating in real time the amount of residual chemical energy in a pressurized and non-refrigerated vessel containing liquefied natural gas (LNG) without having to determine the composition. LNG.
  • LNG liquefied natural gas
  • LNG fuel is a simple and effective alternative to conventional fuels, from the point of view of CO2 emissions, polluting particles and energy density. More and more actors are turning to its use, such as road, marine or rail carriers.
  • the density of the energy content of LNG is not constant. This is explained by two distinct phenomena. First, the temperature of LNG will increase throughout storage in a pressurized and non-refrigerated tank due to residual heat input. This rise in temperature will then cause a thermal expansion of the fluid (up to more than 20% increase in volume) and therefore a decrease in its energy density.
  • the second phenomenon explaining the change in energy density of LNG is the variation in its composition.
  • LNG is not a refined product, so its composition in hydrocarbons can vary depending on the exploited deposits.
  • the variability of the density energy density of LNG stored in a non-refrigerated tank can be problematic in systems requiring fine monitoring of fuel consumption.
  • a difference in density of LNG of between 15% and 20% by volume for an identical LNG composition, depending on whether the LNG is heavy and cold, or light and hot. This translates in practice by a hundred kilometers of difference on the mileage traveled, for the same quantity of LNG introduced initially, as illustrated in the comparative example.
  • the subject of the present invention is a method for calculating in real time the residual chemical energy E contained in a pressurized and non-refrigerated tank, defined by its shape and its dimensions and containing a layer of natural gas in the liquid state. (LNG), said LNG layer being defined at a given instant t, its temperature T, its density p, and its level h in said tank;
  • LNG natural gas in the liquid state.
  • said method consisting of an algorithm comprising, at a given instant t, the following steps:
  • said method being characterized in that said algorithm further comprises, for each instant t, the following steps:
  • the mass heat value of the natural gas is understood to mean the quantity of heat delivered by the complete combustion of a mass unit of the natural gas concerned contained in the air at a constant pressure and a given temperature. . It is expressed in heat quantity per fuel mass unit (in the context of the present invention in kWh / m 3 )
  • the algorithm of the method according to the invention makes it possible to calculate the quantity real residual chemical energy contained in any tank instantaneously.
  • the implementation of this method is simple because it does not require to determine the composition of LNG, which would require the use of a chromatograph or a calorimeter to determine the PCS mass LNG.
  • the mass PCS of an LNG is calculated according to its composition, generally by making the approximation that it is composed only of methane, ethane, propane, isobutane, n-butane , iso-pentane, n-pentane and nitrogen).
  • the error made by not being based on the exact composition of the LNG is at most of the order of 3%: this is the difference found between the PCS mass of a heavy LNG (containing more than 10% hydrocarbons other than methane) and PCS mass of light LNG (more than 99% pure methane) at the same temperature as that of the composition concerned.
  • the error that would be made with a different method of the invention for determining the PCS maS s LNG can quickly reach a value of the order of 20% if the PCS mass LNG is determined at a wrong temperature, including and even if composition is correct.
  • said algorithm can be either reiterated on demand by an operator using said tank, or is performed automatically, as soon as a given time interval ⁇ t has elapsed, this interval being for example of the order of second or, as the case may be, optimally defined to take account of latency times depending on the sensor technology used.
  • the determination of the total mass of LNG can be carried out in different ways.
  • the total mass m t of LNG contained in the tank can advantageously be made by direct measurement using a balance or strain gauges.
  • the determination of the total mass m t of LNG contained in the tank can be performed by a calculation according to the formula:
  • h is the level of the LNG layer in the tank
  • p the density of the LNG
  • g is a function related to the shape of the tank, giving a homogeneous value to a volume.
  • This mode of determination of the total mass m t may especially be used in the case where the direct measurement of the mass is complicated to implement on the tank, for example when it is in motion during the measurement.
  • the function f connecting the higher mass heating value PCS mass to the parameters T and p can be of the form:
  • A is a constant value for a given temperature
  • - B is a constant independent of the composition.
  • the values of the two constants present in the function f are defined in business publications, such as the LNG Industry magazine 2014, or in the scientific literature.
  • the present invention also relates to a system for calculating in real time, according to the method of the invention, the residual chemical energy E contained in a pressurized vessel defined by its shape and dimensions and containing a layer of natural gas at a temperature of liquid state (LNG), said LNG layer being defined at a given instant t, its temperature T, its density p, and its level h in said tank;
  • LNG liquid state
  • a computer intended to be connected to level, temperature, and density sensors of which said tank is equipped, said computer being able to execute the algorithm of the method according to the invention, an interface HMI interacting with said computer to trace back to an operator the amount of residual chemical energy obtained by the algorithm of the method according to the invention, when it is implemented by means of a computer connected to an interface HMI.
  • HMI interface is intended to mean a Human Machine interface allowing a user to view or be notified by any sound or mechanical signal of the information of the quantity of energy remaining, with a view to take appropriate action decisions.
  • HMI interface used in the context of the present invention, mention may be made of vehicle dashboards, computer keyboards, LED lights, touch screens and tablets, speakers, etc..
  • the system may be an embedded system in which:
  • the computer may be an on-board computer connected to said level, temperature and density sensors, the computer being specifically designed to execute the algorithm of the method according to the invention,
  • the HMI interface can also be on-board or alternatively remote (if for example the vehicle is connected to a central control unit,
  • this interface HMI if it is embedded, can be of the onboard dashboard type of vehicle, interacting specifically with said onboard computer to go back to the operator (here the driver) the duration of autonomy calculated according to the method of the invention .
  • an onboard computer comprising a processor associated with a dedicated storage memory and an interface motherboard; all of these elements being assembled so as to ensure the robustness of the "on-board computer” assembly in terms of mechanical, thermodynamic and electromagnetic resistance, and thus allow its adaptation to use in an LNG vehicle.
  • the system according to the invention makes it easily accessible to an operator the value of the amount of residual chemical energy contained in the tank, and this, even if it has not received training adapted to the handling of LNG . It also provides this value to a third-party system, such as an on-board computer.
  • the system may further comprise a balance or strain gauges to directly measure the total mass of LNG contained in the tank.
  • the present invention also relates to a vehicle (land, sea or air) comprising a pressurized tank containing a natural gas layer in the liquid state and being provided with level, temperature, and density sensors, said vehicle being characterized in that it further comprises a system according to the invention.
  • this vehicle is easily used by an operator who does not have extensive training on handling LNG. Indeed, this system allows either to display the value of the energy remaining in the tank or to transmit the value of the residual energy to a computer which can then deduce the number of kilometers remaining before a new filling of the tank is necessary.
  • Figure 1 shows the result of several LNG calorific value measurements as a function of the density of liquid natural gas for a given temperature and composition
  • FIG. 2 shows the diagram of a particular embodiment of the measuring system according to the invention
  • FIG. 3 shows the diagram of an example of a pressurized and non-refrigerated tank that can be used in the context of the present invention (in the case of a cylindrical and horizontal tank), on which are represented the various parameters making it possible to determine the function g ( h) allowing the calculation of the mass of LNG contained in this tank.
  • FIG. 4 shows the diagram of an example of a pressurized and non-refrigerated tank that can be used in the context of the present invention (in the case of a spherical tank), on which are represented the various parameters making it possible to determine the function g (h) allowing the calculation of the mass of LNG contained in this tank.
  • FIGS. 5 to 7 are screenshots of vehicle dashboard screens, each carrying a cylindrical and horizontal LNG tank, showing the input data used to calculate the residual chemical energy E according to the method of FIG. the invention, as well as the result of this calculation.
  • This equation f can therefore be used as a correlation function to determine the PC Smas s LNG when it is at the temperature of -160 ° C.
  • FIG. 2 represents the simplified diagram of a particular embodiment of the invention in the case where the tank 1 is cylindrical and vertical.
  • the sensors of density 4, temperature 3 and level 2 present in the tank record the temperature values of the liquid, the density and the level of this liquid in the tank.
  • This information is then sent to the computer 5 in which the operator 7 has previously informed, via a human machine interface (HMI) 6, the form of the tank 1 and its characteristic dimensions, in this particular case its radius.
  • HMI human machine interface
  • Figure 3 shows the diagram of a cylindrical tank and placed horizontally. In this case, calculating the volume of a layer of LNG in this tank is similar to an area calculation of a disk segment.
  • the function g (h) is then:
  • Figure 4 shows a spherical tank.
  • the calculation of the volume of a layer of LNG in this vessel is similar to a calculation of spherical calot.
  • the function g (h) is then:
  • the calculator 5 then calculates the total mass m t of LNG contained in the tank 1 and the value of the higher heat value PCM mass of the LNG, these values then allowing the calculator to obtain the value of the energy residual E contained in the tank at the time of measurement.
  • the value of the residual energy E can then be supplied to the operator via the HMI 6 or reprocessed in order to obtain easily understandable information, such as the remaining mileage.
  • EXAMPLE 1 (COMPARATIVE) This example illustrates the variability of the volume density of LNG stored in a non-refrigerated tank.
  • FIGS. 5 to 7 are screenshots of dashboard screens of a vehicle each carrying a cylindrical and horizontal LNG tank, showing the input data used to calculate the residual chemical energy E according to the method of FIG. invention, as well as the result of this calculation.
  • FIG. 5 is a screen shot of an onboard board showing the tank specific input data:
  • - Shape cylinder, arranged horizontally in the vehicle carrying it;
  • Fig. 6 is a screenshot of an onboard board showing the input data specific to the LNG layer:
  • level 0.501 m.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

The present invention relates to a method and system for the real-time calculation of the amount of residual chemical energy in a non-refrigerated, pressurised tank containing liquefied natural gas (LNG), without the composition of the LNG having to be determined.

Description

Procédé et système pour calculer en temps réel la quantité d' énergie transportée dans une cuve de gaz naturel liquéfié pressurisée et non réfrigérée.  Method and system for real - time calculation of the amount of energy transported in a tank of pressurized and non - refrigerated liquefied natural gas.
La présente invention se rapporte de manière générale à un procédé et un système permettant de calculer en temps réel la quantité d'énergie chimique résiduelle dans une cuve pressurisée et non réfrigérée, contenant du gaz naturel liquéfié (GNL) , sans avoir à déterminer la composition du GNL. The present invention generally relates to a method and system for calculating in real time the amount of residual chemical energy in a pressurized and non-refrigerated vessel containing liquefied natural gas (LNG) without having to determine the composition. LNG.
Le GNL carburant est une alternative simple et efficace aux combustibles classiques, tant du point de vue de l'émission de CO2, de particules polluantes que de la masse volumique énergétique. De plus en plus d'acteurs se tournent vers son utilisation, comme les transporteurs routiers, maritimes ou ferroviaires .  LNG fuel is a simple and effective alternative to conventional fuels, from the point of view of CO2 emissions, polluting particles and energy density. More and more actors are turning to its use, such as road, marine or rail carriers.
Cependant, contrairement aux carburants classiques, la masse volumique énergétique volumique du GNL, c'est-à-dire l'énergie contenue par unité de volume de GNL, n'est pas constante. Ceci s'explique par deux phénomènes distincts. Premièrement, la température du GNL va augmenter tout au long de son stockage dans une cuve pressurisée et non réfrigérée à cause des entrées de chaleur résiduelles. Cette élévation de température va alors engendrer une dilatation thermique du fluide (pouvant aller jusqu'à plus de 20% d'augmentation de volume) et donc une baisse de sa masse volumique énergétique.  However, unlike conventional fuels, the density of the energy content of LNG, that is to say the energy contained per unit volume of LNG, is not constant. This is explained by two distinct phenomena. First, the temperature of LNG will increase throughout storage in a pressurized and non-refrigerated tank due to residual heat input. This rise in temperature will then cause a thermal expansion of the fluid (up to more than 20% increase in volume) and therefore a decrease in its energy density.
Le deuxième phénomène expliquant la variation de masse volumique énergétique du GNL est la variation de sa composition. Le GNL n'est pas un produit raffiné, donc sa composition en hydrocarbures peut varier en fonction des gisements exploités.  The second phenomenon explaining the change in energy density of LNG is the variation in its composition. LNG is not a refined product, so its composition in hydrocarbons can vary depending on the exploited deposits.
La variabilité de la masse volumique énergétique volumique du GNL stocké dans un réservoir non réfrigéré peut s'avérer problématique dans des systèmes nécessitant un suivi fin de la consommation en carburant. Typiquement, dans le cas de camions roulant au GNL, on peut observer, pour un même réservoir contenant 600 L de GNL, une différence de masse volumique énergétique volumique du GNL de l'ordre de 15 à 20% pour une composition de GNL identique, selon que le GNL est lourd et froid ou qu'il est léger et chaud. Cela se traduit en pratique par une centaine de kilomètres de différence sur le kilométrage parcouru, pour une même quantité de GNL introduite au départ, comme illustré dans l'exemple comparatif. The variability of the density energy density of LNG stored in a non-refrigerated tank can be problematic in systems requiring fine monitoring of fuel consumption. Typically, in the case of trucks running on LNG, one can observe, for the same tank containing 600 L of LNG, a difference in density of LNG of between 15% and 20% by volume for an identical LNG composition, depending on whether the LNG is heavy and cold, or light and hot. This translates in practice by a hundred kilometers of difference on the mileage traveled, for the same quantity of LNG introduced initially, as illustrated in the comparative example.
Actuellement aucune solution n'existe pour informer en temps réel l'opérateur d'une cuve pressurisée de l'énergie restante contenue dans la cuve de GNL. Les seules informations a disposition de l'opérateur sont la pression du ciel gazeux, la température du GNL (dans le meilleur des cas) , ainsi que le niveau de remplissage de la cuve.  Currently no solution exists to inform the operator in real time of a pressurized tank of the remaining energy contained in the LNG tank. The only information available to the operator is the gaseous air pressure, the LNG temperature (in the best case), as well as the filling level of the tank.
Généralement lors du remplissage de la cuve par le fournisseur de carburant, un calcul d'énergie est réalisé conformément à la norme internationale ISO 6976.1995 à partir de la dernière composition de GNL connue (et donnée par le fournisseur) et de la masse de GNL transférée. Ce calcul sert de référence à la transaction financière. Ainsi, par ce calcul à la température de combustion du GNL, le pouvoir calorifique supérieure PCSma55 du GNL est déterminé, selon l'équation (1), en faisant l'hypothèse que le GNL est essentiellement constitué de méthane, d'éthane, de propane, d' isobutane, de n-butane, d' iso- pentane, de n-pentane et d'azote : (1) PCSmass(Tc) =∑( , x .PCSmass TC) Generally when filling the tank by the fuel supplier, an energy calculation is carried out in accordance with the international standard ISO 6976.1995 based on the last known LNG composition (and given by the supplier) and the mass of LNG transferred. . This calculation serves as a reference for the financial transaction. Thus, by this calculation at the combustion temperature of the LNG, the higher heating value PCS ma55 of the LNG is determined, according to the equation (1), by making the assumption that the LNG consists essentially of methane, ethane, propane, isobutane, n-butane, iso-pentane, n-pentane and nitrogen: (1) PCS mass (T c ) = Σ (, x .PCS mass T C )
Où : - PCSmass représente le pouvoir calorifique du GNL,Where: - PCS mass represents the heating value of LNG,
- Tc la température de combustion à laquelle le PCS est calculé, - T c the combustion temperature at which the PCS is calculated,
- Xj la fraction molaire du composant j dans le mélange,  - Xj the molar fraction of the component j in the mixture,
- M la masse molaire du composant j ,  - M the molar mass of the component j,
- M la masse molaire du GNL, donnée par la norme NF EN ISO 6976, et PCSmass j le pouvoir calorifique supérieur du composant j donnée par les abaques de la ISO 6976.1995. - M the molar mass of LNG, given by standard NF EN ISO 6976, and PCS mass j gross calorific value of component j given by the graphs of ISO 6976.1995.
Toutefois, ce calcul dépend de la composition du GNL. Or, cette composition peut s'avérer complexe à déterminer. En effet, l'installation d'un chromatographe est nécessaire.  However, this calculation depends on the composition of the LNG. However, this composition can be complex to determine. Indeed, the installation of a chromatograph is necessary.
L'absence d'informations en temps réel sur l'énergie contenue dans la cuve est problématique pour plusieurs raisons :  The lack of real-time information on the energy contained in the tank is problematic for several reasons:
Gestion de l'approvisionnement : actuellement, la gestion de l'approvisionnement en GNL de certaines cuves (notamment celles des camions) est uniquement basée sur le volume de liquide restant dans le réservoir. Or une gestion fondée sur l'énergie demandée par les unités connectées à la cuve serait plus cohérente, car c'est la donnée dont on a besoin, par exemple pour estimer le nombre de kilomètres que l'on peut encore parcourir ;  Supply management: currently, LNG supply management for certain tanks (especially trucks) is based solely on the volume of liquid remaining in the tank. But a management based on the energy demanded by the units connected to the tank would be more coherent, because it is the data which one needs, for example to estimate the number of kilometers that one can still travel;
Evitement des pénuries et des pannes : selon la masse volumique énergétique du GNL, la consommation volumique des unités peut varier brusquement à la hausse car une plus grande quantité de GNL est alors nécessaire pour obtenir la même quantité d'énergie. Cette variation non prévue par les opérateurs pourrait provoquer une pénurie en carburant non anticipée et donc une panne ; Formation des opérateurs : le marché du GNL carburant est de taille relativement faible. Les acteurs du marché sont en grande partie des professionnels ayant reçu une formation adaptée à la manipulation de GNL et aux bonnes pratiques. Néanmoins, si le marché venait à s'accroître rapidement, des acteurs moins formés devraient être amenés à manipuler et/ou gérer la consommation de GNL. La connaissance de la quantité d'énergie contenue dans la cuve pourrait permettre de calculer simplement des grandeurs facilement compréhensibles par ces opérateurs (par exemple le kilométrage restant) . Avoidance of shortages and breakdowns: Depending on the energy density of LNG, the volume consumption of the units can vary sharply upwards because a greater quantity of LNG is then necessary to obtain the same amount of energy. This variation not foreseen by the operators could cause an unanticipated fuel shortage and therefore a breakdown; Operator Training: The fuel LNG market is relatively small in size. Most of the market players are professionals who have received training in handling LNG and good practice. Nevertheless, should the market grow rapidly, less trained actors should be required to manipulate and / or manage LNG consumption. The knowledge of the amount of energy contained in the tank could allow to simply calculate quantities easily understandable by these operators (eg the remaining mileage).
Dans cette optique, pour assurer le développement du GNL carburant, le déposant a mis en place une solution permettant de mieux prévoir son contenu énergétique en temps réel uniquement à partir de paramètres thermodynamiques mesurés à l'intérieur de la cuve (masse volumique de GNL, température et niveau de la couche de GNL dans la cuve) , et ce sans connaître la composition du GNL contenu dans la cuve.  With this in mind, to ensure the development of fuel LNG, the applicant has put in place a solution to better predict its energy content in real time only from thermodynamic parameters measured inside the tank (density of LNG, temperature and level of the LNG layer in the tank), without knowing the composition of the LNG contained in the tank.
En particulier, la présente invention a pour objet un procédé pour calculer en temps réel l'énergie chimique résiduelle E contenue dans une cuve pressurisée et non réfrigérée, définie par sa forme et ses dimensions et contenant une couche de gaz naturel à l'état liquide (GNL), ladite couche de GNL étant définie à un instant t donné, par sa température T, sa masse volumique p , et son niveau h dans ladite cuve ;  In particular, the subject of the present invention is a method for calculating in real time the residual chemical energy E contained in a pressurized and non-refrigerated tank, defined by its shape and its dimensions and containing a layer of natural gas in the liquid state. (LNG), said LNG layer being defined at a given instant t, its temperature T, its density p, and its level h in said tank;
ledit procédé consistant en un algorithme comportant, à un instant t donné, les étapes suivantes :  said method consisting of an algorithm comprising, at a given instant t, the following steps:
A. Acquisition des paramètres caractéristiques de la couche de GNL par mesure :  A. Acquisition of the characteristic parameters of the LNG layer by measurement:
- du niveau h de la couche de GNL dans la cuve, à l'aide d'un capteur de niveau ;  - level h of the LNG layer in the tank, using a level sensor;
- de la température T à l'aide d'un capteur de température ; et  - temperature T using a temperature sensor; and
- de la masse volumique p à l'aide d'un capteur de masse volumique ; et  - the density p using a density sensor; and
B. Détermination de la masse totale mt du GNL contenu dans la cuve ; B. Determination of the total mass m t of the LNG contained in the tank;
ledit procédé étant caractérisé en ce que ledit algorithme comporte en outre, pour chaque instant t, les étapes suivantes :  said method being characterized in that said algorithm further comprises, for each instant t, the following steps:
C. Calcul du pouvoir calorifique supérieur massique PCSmass du GNL à l'aide d'une fonction f prenant en paramètres la température et la masse volumique du liquide selon la formule : PCSmass=f(T,p) C. Calculation of the mass higher heating value PCSmass of the LNG by means of a function f taking into parameters the temperature and the density of the liquid according to the formula: PCS mass = f (T, p)
D. Calcul de l'énergie chimique résiduelle E selon la formule : D. Calculation of residual chemical energy E according to the formula:
E— PCSmass * mt E- PCS mass * m t
Par pouvoir calorifique supérieur massique du gaz naturel, on entend au sens de la présente invention, la quantité de chaleur délivrée par la combustion complète d'une unité de masse du gaz naturel concerné contenue dans l'air à une pression constante et une température données. Il s'exprime en quantité de chaleur par unité de masse de combustible (dans le cadre de la présente invention en kWh/m3) For the purposes of the present invention, the mass heat value of the natural gas is understood to mean the quantity of heat delivered by the complete combustion of a mass unit of the natural gas concerned contained in the air at a constant pressure and a given temperature. . It is expressed in heat quantity per fuel mass unit (in the context of the present invention in kWh / m 3 )
A partir d'informations d'entrée telles que la forme et la dimension de la cuve, la température, le niveau de la couche de GNL et la masse volumique du GNL, l'algorithme du procédé selon l'invention permet de calculer la quantité réelle d'énergie chimique résiduelle contenue dans une cuve quelconque de manière instantanée .  On the basis of input information such as the shape and size of the tank, the temperature, the level of the LNG layer and the density of the LNG, the algorithm of the method according to the invention makes it possible to calculate the quantity real residual chemical energy contained in any tank instantaneously.
En outre, la mise en place de ce procédé est simple car il ne nécessite pas de déterminer la composition du GNL, ce qui nécessiterait l'utilisation d'un chromatographe ou d'un calorimètre pour déterminer le PCSmass du GNL. En effet, usuellement, on calcule le PCS massique d'un GNL en fonction de sa composition, généralement en faisant l'approximation qu'il est composé uniquement de méthane, d'éthane, de propane, d' isobutane, de n-butane, d' iso-pentane, de n-pentane et d' azote) . In addition, the implementation of this method is simple because it does not require to determine the composition of LNG, which would require the use of a chromatograph or a calorimeter to determine the PCS mass LNG. Indeed, usually, the mass PCS of an LNG is calculated according to its composition, generally by making the approximation that it is composed only of methane, ethane, propane, isobutane, n-butane , iso-pentane, n-pentane and nitrogen).
Avec le procédé selon l'invention l'erreur commise en ne se fondant pas sur la composition exacte du GNL est au maximum de l'ordre de 3% : c'est la différence constatée entre le PCSmass d'un GNL lourd (contenant plus de 10% d'hydrocarbures autres que le méthane) et le PCSmass d'un GNL léger (contenant plus de 99% de méthane pur) à la même température que celle de la composition concernée . With the method according to the invention, the error made by not being based on the exact composition of the LNG is at most of the order of 3%: this is the difference found between the PCS mass of a heavy LNG (containing more than 10% hydrocarbons other than methane) and PCS mass of light LNG (more than 99% pure methane) at the same temperature as that of the composition concerned.
Par comparaison, l'erreur qui serait commise avec un procédé différent de l'invention pour déterminer le PCSmaSs du GNL peut rapidement atteindre une valeur de l'ordre de 20% si le PCSmass du GNL est déterminé à une mauvaise température, y compris et même si composition est correcte. By comparison, the error that would be made with a different method of the invention for determining the PCS maS s LNG can quickly reach a value of the order of 20% if the PCS mass LNG is determined at a wrong temperature, including and even if composition is correct.
Avantageusement, ledit algorithme peut être soit réitéré à la demande par un opérateur utilisant ladite cuve, soit réalisé de manière automatique, dès qu'un intervalle de temps At donné s'est écoulé, cet intervalle pouvant être par exemple de l'ordre de la seconde ou le cas échéant défini de façon optimale pour tenir compte des délais de latence fonction de la technologie de capteurs utilisée.  Advantageously, said algorithm can be either reiterated on demand by an operator using said tank, or is performed automatically, as soon as a given time interval Δt has elapsed, this interval being for example of the order of second or, as the case may be, optimally defined to take account of latency times depending on the sensor technology used.
La détermination de la masse totale de GNL peut être réalisée de différentes manières.  The determination of the total mass of LNG can be carried out in different ways.
Selon un premier mode de détermination, la masse totale mt de GNL contenu dans la cuve peut être avantageusement faite par mesure directe à l'aide d'une balance ou de jauges de contrainte. According to a first mode of determination, the total mass m t of LNG contained in the tank can advantageously be made by direct measurement using a balance or strain gauges.
Selon un autre mode de réalisation avantageux, la détermination de la masse totale mt de GNL contenu dans la cuve peut être réalisée par un calcul selon la formule : According to another advantageous embodiment, the determination of the total mass m t of LNG contained in the tank can be performed by a calculation according to the formula:
mt = p*g î) m t = p * g i)
où :  or :
h est le niveau de la couche de GNL dans la cuve, p la masse volumique du GNL, et  h is the level of the LNG layer in the tank, p the density of the LNG, and
g est une fonction liée à la forme de la cuve, donnant une valeur homogène à un volume.  g is a function related to the shape of the tank, giving a homogeneous value to a volume.
Ce mode de détermination de la masse totale mt pourra notamment être utilisé dans le cas où la mesure directe de la masse est compliquée à implémenter sur la cuve, par exemple quand celle-ci est en mouvement lors de la mesure. Avantageusement, la fonction f reliant le pouvoir calorifique supérieur massique PCSmass aux paramètres T et p peut être de la forme : This mode of determination of the total mass m t may especially be used in the case where the direct measurement of the mass is complicated to implement on the tank, for example when it is in motion during the measurement. Advantageously, the function f connecting the higher mass heating value PCS mass to the parameters T and p can be of the form:
f(T,p =A(T) + B*p  f (T, p = A (T) + B * p
où :  or :
- A est une valeur constante pour une température donnée ;  A is a constant value for a given temperature;
- B est une constante indépendante de la composition. Les valeurs des deux constantes présentes dans la fonction f sont définies dans des publications métier, telles que le LNG Industry magazine 2014, ou dans la littérature scientifique.  - B is a constant independent of the composition. The values of the two constants present in the function f are defined in business publications, such as the LNG Industry magazine 2014, or in the scientific literature.
La présente invention a aussi pour objet un système pour calculer en temps réel, selon le procédé de l'invention, l'énergie chimique résiduelle E contenue dans une cuve pressurisée définie par sa forme et ses dimensions et contenant une couche de gaz naturel à l'état liquide (GNL) , ladite couche de GNL étant définie à un instant t donné, par sa température T, sa masse volumique p , et son niveau h dans ladite cuve ;  The present invention also relates to a system for calculating in real time, according to the method of the invention, the residual chemical energy E contained in a pressurized vessel defined by its shape and dimensions and containing a layer of natural gas at a temperature of liquid state (LNG), said LNG layer being defined at a given instant t, its temperature T, its density p, and its level h in said tank;
ledit système étant caractérisé en ce qu' il comporte :  said system being characterized in that it comprises:
- un calculateur destiné à être connecté à des capteurs de niveau, de température, et de masse volumique dont est munie ladite cuve, ledit calculateur étant apte à exécuter l'algorithme du procédé selon l'invention, - une interface IHM interagissant avec ledit calculateur, pour remonter à un opérateur la quantité d'énergie chimique résiduelle obtenue par l'algorithme du procédé selon l'invention, lorsqu'il est mis en œuvre au moyen d'un calculateur connecté à une interface IHM.  a computer intended to be connected to level, temperature, and density sensors of which said tank is equipped, said computer being able to execute the algorithm of the method according to the invention, an interface HMI interacting with said computer to trace back to an operator the amount of residual chemical energy obtained by the algorithm of the method according to the invention, when it is implemented by means of a computer connected to an interface HMI.
Par interface IHM, on entend, au sens de la présente invention, une interface Homme Machine permettant à un utilisateur de visualiser ou d'être notifié par un signal sonore ou mécanique quelconque l'information de la quantité d'énergie restante, en vue de prendre les décisions d'action appropriées. A titre d'interface IHM utilisables dans le cadre de la présente invention, on peut notamment citer les tableaux de bord de véhicules, les claviers d'ordinateur, les voyants LED, les écrans tactiles et les tablettes, les haut-parleurs, etc. For the purposes of the present invention, the term "HMI interface" is intended to mean a Human Machine interface allowing a user to view or be notified by any sound or mechanical signal of the information of the quantity of energy remaining, with a view to take appropriate action decisions. As HMI interface used in the context of the present invention, mention may be made of vehicle dashboards, computer keyboards, LED lights, touch screens and tablets, speakers, etc..
Selon un mode de réalisation avantageux du système selon l'invention, celui-ci peut être un système embarqué dans lequel :  According to an advantageous embodiment of the system according to the invention, it may be an embedded system in which:
• le calculateur peut être un calculateur embarqué connecté auxdits capteurs de niveau, de température et de masse volumique, le calculateur étant spécifiquement conçu pour exécuter l'algorithme du procédé selon l'invention, The computer may be an on-board computer connected to said level, temperature and density sensors, the computer being specifically designed to execute the algorithm of the method according to the invention,
• l'interface IHM peut être également embarquée ou alternativement déportée (si par exemple le véhicule est connecté à une centrale de contrôle, • the HMI interface can also be on-board or alternatively remote (if for example the vehicle is connected to a central control unit,
cette interface IHM, si elle est embarquée, peut être de type tableau de bord embarqué de véhicule, interagissant spécifiquement avec ledit calculateur embarqué pour remonter à l'opérateur (ici le conducteur) la durée d'autonomie calculée selon le procédé de l'invention.  this interface HMI, if it is embedded, can be of the onboard dashboard type of vehicle, interacting specifically with said onboard computer to go back to the operator (here the driver) the duration of autonomy calculated according to the method of the invention .
Par calculateur spécifiquement conçu pour exécuter l'algorithme du procédé selon l'invention, on entend, au sens de la présente invention, un ordinateur de bord comprenant un processeur associé à une mémoire de stockage dédiée et à une carte mère d'interfaces ; l'ensemble de ces éléments étant assemblés de manière à assurer la robustesse de l'ensemble « ordinateur de bord » en termes de résistance mécanique, thermodynamique et électromagnétique, et ainsi permettre son adaptation à une utilisation dans un véhicules GNL.  By computer specifically designed to execute the algorithm of the method according to the invention is meant, in the sense of the present invention, an onboard computer comprising a processor associated with a dedicated storage memory and an interface motherboard; all of these elements being assembled so as to ensure the robustness of the "on-board computer" assembly in terms of mechanical, thermodynamic and electromagnetic resistance, and thus allow its adaptation to use in an LNG vehicle.
Le système selon l'invention permet de rendre facilement accessible à un opérateur la valeur de la quantité d'énergie chimique résiduelle contenu dans la cuve, et ce, même si celui- ci n'a pas reçu de formation adaptée à la manipulation du GNL. Il permet aussi de fournir cette valeur à un système tiers, tel qu'un ordinateur de bord. Avantageusement, le système peut comprendre en outre une balance ou des jauges de contrainte afin de mesurer directement la masse totale du GNL contenu dans la cuve. The system according to the invention makes it easily accessible to an operator the value of the amount of residual chemical energy contained in the tank, and this, even if it has not received training adapted to the handling of LNG . It also provides this value to a third-party system, such as an on-board computer. Advantageously, the system may further comprise a balance or strain gauges to directly measure the total mass of LNG contained in the tank.
Enfin, la présente invention a encore pour objet un véhicule (terrestre, maritime ou aérien) comprenant une cuve pressurisée contenant une couche de gaz naturel à l'état liquide et étant munie de capteurs de niveau, de température, et de masse volumique, ledit véhicule étant caractérisé en ce qu'il comporte en outre un système selon l'invention.  Finally, the present invention also relates to a vehicle (land, sea or air) comprising a pressurized tank containing a natural gas layer in the liquid state and being provided with level, temperature, and density sensors, said vehicle being characterized in that it further comprises a system according to the invention.
Grâce au système selon l'invention, ce véhicule est facilement utilisable par un opérateur ne possédant pas de formation poussée sur la manipulation du GNL. En effet, ce système permet soit d'afficher la valeur de l'énergie restante dans la cuve soit de transmettre la valeur de l'énergie résiduelle à un ordinateur qui peut alors en déduire le nombre de kilomètre restant avant qu'un nouveau remplissage de la cuve ne soit nécessaire.  Thanks to the system according to the invention, this vehicle is easily used by an operator who does not have extensive training on handling LNG. Indeed, this system allows either to display the value of the energy remaining in the tank or to transmit the value of the residual energy to a computer which can then deduce the number of kilometers remaining before a new filling of the tank is necessary.
D'autres avantages et particularités de la présente invention résulteront de la description qui va suivre, donnée à titre d'exemple non limitatif et faite en référence aux figures annexées :  Other advantages and features of the present invention will result from the description which follows, given by way of nonlimiting example and with reference to the appended figures:
• La figure 1 montre le résultat de plusieurs mesures de pouvoir calorifique du GNL en fonction de la masse volumique du gaz naturel liquide pour une température et une composition donnée ;  • Figure 1 shows the result of several LNG calorific value measurements as a function of the density of liquid natural gas for a given temperature and composition;
• La figure 2 présente le schéma d'un mode de réalisation particulier du système de mesure selon 1 ' invention ;  FIG. 2 shows the diagram of a particular embodiment of the measuring system according to the invention;
• La figure 3 présente le schéma d'un exemple de cuve pressurisée et non réfrigérée utilisable dans le cadre de la présente invention (cas d'une cuve cylindrique et horizontale) , sur lequel sont représentés les différents paramètres permettant de déterminer la fonction g (h) permettant le calcul de la masse de GNL contenue dans cette cuve.FIG. 3 shows the diagram of an example of a pressurized and non-refrigerated tank that can be used in the context of the present invention (in the case of a cylindrical and horizontal tank), on which are represented the various parameters making it possible to determine the function g ( h) allowing the calculation of the mass of LNG contained in this tank.
• La figure 4 présente le schéma d'un exemple de cuve pressurisée et non réfrigérée utilisable dans le cadre de la présente invention (cas d'une cuve sphérique) , sur lequel sont représentés les différents paramètres permettant de déterminer la fonction g (h) permettant le calcul de la masse de GNL contenue dans cette cuve. FIG. 4 shows the diagram of an example of a pressurized and non-refrigerated tank that can be used in the context of the present invention (in the case of a spherical tank), on which are represented the various parameters making it possible to determine the function g (h) allowing the calculation of the mass of LNG contained in this tank.
• Les figures 5 à 7 sont des captures d'écrans de tableaux de bord d'un véhicule transportant chacun une cuve de GNL cylindrique et horizontale, montrant les données d'entrée servant au calcul de l'énergie chimique résiduelle E selon le procédé de l'invention, ainsi que le résultat de ce calcul. La figure 1 montre le résultat d'un ensemble de mesures de pouvoir calorifique supérieur faites pour différentes valeurs de masse volumique de GNL à une température donnée (-160°C) . Ces points de mesure peuvent être reliés de façon satisfaisante (avec un coefficient de corrélation R2=0.957) par une droite de régression qui, dans ce cas particulier à -160°C, a pour équation /(p) = 0.0283p— 0.7791. Cette équation f peut donc être utilisée comme fonction de corrélation pour déterminer le PC Smas s du GNL lorsque celui-ci est à la température de -160°C. FIGS. 5 to 7 are screenshots of vehicle dashboard screens, each carrying a cylindrical and horizontal LNG tank, showing the input data used to calculate the residual chemical energy E according to the method of FIG. the invention, as well as the result of this calculation. Figure 1 shows the result of a set of higher calorific value measurements made for different density values of LNG at a given temperature (-160 ° C). These measuring points can be satisfactorily connected (with a correlation coefficient R 2 = 0.957) by a regression line which, in this particular case at -160 ° C, has for equation / (p) = 0.0283p- 0.7791 . This equation f can therefore be used as a correlation function to determine the PC Smas s LNG when it is at the temperature of -160 ° C.
La figure 2 représente le schéma simplifié d'un mode de réalisation particulier de l'invention dans le cas où la cuve 1 est cylindrique et verticale. Lorsqu'une mesure est effectuée, ce qui peut être fait en continu, après qu'un intervalle de temps t se soit écoulé ou après un ordre de l'opérateur 7, les capteurs de masse volumique 4, de température 3 et de niveau 2 présents dans la cuve relèvent les valeurs de température du liquide, de masse volumique ainsi que le niveau de ce liquide dans la cuve. Ces informations sont ensuite envoyées au calculateur 5 dans lequel l'opérateur 7 a préalablement renseigné, via une interface homme machine (IHM) 6, la forme de la cuve 1 ainsi que ses dimensions caractéristiques, dans ce cas particulier son rayon. Cela permet au calculateur 5 de définir la fonction g (h) utilisée pour la détermination de la masse totale mt de GNL contenu dans la cuve. FIG. 2 represents the simplified diagram of a particular embodiment of the invention in the case where the tank 1 is cylindrical and vertical. When a measurement is made, which can be done continuously, after a time interval t has elapsed or after an order from the operator 7, the sensors of density 4, temperature 3 and level 2 present in the tank record the temperature values of the liquid, the density and the level of this liquid in the tank. This information is then sent to the computer 5 in which the operator 7 has previously informed, via a human machine interface (HMI) 6, the form of the tank 1 and its characteristic dimensions, in this particular case its radius. This allows the computer 5 to define the function g (h) used for the determination of the total mass m t of LNG contained in the tank.
La figure 3 présente le schéma d'une cuve cylindrique et placée horizontalement. Dans ce cas, le calcul du volume d'une couche de GNL dans cette cuve s'apparente à un calcul d'aire d'un segment de disque. La fonction g(h) est alors :  Figure 3 shows the diagram of a cylindrical tank and placed horizontally. In this case, calculating the volume of a layer of LNG in this tank is similar to an area calculation of a disk segment. The function g (h) is then:
R— h R- h
g(K) = (R2 x cos-^——) - (R - h) x J(R2 - (R - h)2) x L g (K) = (R 2 x cos - ^ -) - (R - h) x J (R 2 - (R - h) 2 ) x L
Si la cuve est placée verticalement, g (h) est alors simplement g î) = π x R2 x h If the vessel is placed vertically, g (h) is then simply g T) = π x R 2 xh
La figure 4 présente une cuve sphérique. Dans ce cas, le calcul du volume d'une couche de GNL dans cette cuve s'apparente à un calcul de calott sphérique. La fonction g (h) est alors : Figure 4 shows a spherical tank. In this case, the calculation of the volume of a layer of LNG in this vessel is similar to a calculation of spherical calot. The function g (h) is then:
A partir de ces informations, le calculateur 5 calcule alors la masse totale mt de GNL contenu dans la cuve 1 et la valeur du pouvoir calorifique supérieure PCMmass du GNL, ces valeurs permettant ensuite au calculateur d'obtenir la valeur de l'énergie résiduelle E contenue dans la cuve au moment de la mesure. La valeur de l'énergie résiduelle E peut ensuite être fournie à l'opérateur via l'IHM 6 ou être retraitée afin d'obtenir des informations facilement compréhensibles, telles que le kilométrage restant. From this information, the calculator 5 then calculates the total mass m t of LNG contained in the tank 1 and the value of the higher heat value PCM mass of the LNG, these values then allowing the calculator to obtain the value of the energy residual E contained in the tank at the time of measurement. The value of the residual energy E can then be supplied to the operator via the HMI 6 or reprocessed in order to obtain easily understandable information, such as the remaining mileage.
L'invention est illustrée plus en détails dans les exemples ci-après . EXEMPLES The invention is illustrated in more detail in the examples below. EXAMPLES
EXEMPLE 1 (COMPARATIF) Cet exemple illustre la variabilité de la masse volumique énerqétique volumique du GNL stocké dans un réservoir non réfrigéré . EXAMPLE 1 (COMPARATIVE) This example illustrates the variability of the volume density of LNG stored in a non-refrigerated tank.
Pour cela, on détermine, par calcul à partir de l'équation (1) de la norme ISO 6976 :1995, l'énergie chimique résiduelle E dans un réservoir contenant 600 L (soit 0,6 m3) de GNL dans le cas d'un GNL lourd et froid (cas a) : équilibre à 3 bars) et dans le cas d'un GNL de même composition mais léger et chaud (cas b) : équilibre à 14 bars) . Cas a) d'un GNL lourd et froid (équilibre à 3 bars) For this, we determine, by calculation from equation (1) of the ISO 6976: 1995 standard, the residual chemical energy E in a tank containing 600 L (ie 0.6 m 3 ) of LNG in the case a heavy and cold LNG (case a): equilibrium at 3 bars) and in the case of an LNG of the same composition but light and hot (case b): equilibrium at 14 bars). Case a) heavy and cold LNG (balance at 3 bar)
On part de l'hypothèse que le GNL a la composition suivante, indiquée ci-après dans le tableau 1. It is assumed that LNG has the following composition, shown below in Table 1.
Tableau 1 Table 1
Conditions de combustion : Burning conditions:
o Température de combustion Tc = 0°C o Combustion temperature T c = 0 ° C
o Pression : 1.01325 bar PCS massique (Tc) = 14,99 k h/kg, calculé selon l'équation norme ISO 6976 :1995 o Pressure: 1.01325 bar PCS mass (T c ) = 14.99 kh / kg, calculated according to the equation ISO 6976: 1995
Température du GNL T = -147,07°C  LNG temperature T = -147.07 ° C
Masse volumique = 443,7153 kg/m3 Density = 443.7153 kg / m 3
E = 0,6 * densité * PCSmassique = 3990kWh E = 0.6 * density * PCS mass = 3990kWh
Cas b) d'un GNL léger et chaud (équilibre à 14 bars) Le GNL a la même composition que celle donnée dans le tableau 2 ci-après. Case b) a light and hot LNG (equilibrium at 14 bar) The LNG has the same composition as that given in Table 2 below.
Tableau 2 Table 2
Conditions de combustion : Burning conditions:
o Température de combustion Tc = 0°C o Combustion temperature T c = 0 ° C
o Pression : 1.01325 bar  o Pressure: 1.01325 bar
PCS massique (Tc) = 15,37 kWh/kg calculé selon l'équation norme ISO 6976 :1995 Mass PCS (T c ) = 15.37 kWh / kg calculated according to equation ISO 6976: 1995
Température du GNL T = -112, 5°C  LNG temperature T = -112, 5 ° C
Masse volumique = 355.65 kg/m3 Density = 355.65 kg / m 3
E = 0.6 * densité * PCS^,,,, = 3279 kWh On constate donc une différence de plus de 17 % entre les valeurs d'énergie E calculées respectivement dans les cas a) et b) . En d'autres termes, pour un même volume initial de GNL de 600 litres, cette différence d'énergie peut conduire à une centaine de kilomètres parcourus en plus si le GNL introduit dans le réservoir est froid et lourd (cas a) , par rapport au kilométrage parcouru dans le cas b) . E = 0.6 * density * PCS ^ ,,,, = 3279 kWh There is thus a difference of more than 17% between the energy values E calculated respectively in the cases a) and b). In other words, for the same initial volume of LNG of 600 liters, this difference in energy can lead to a hundred kilometers more traveled if the LNG introduced into the tank is cold and heavy (case a), compared to the mileage traveled in case b).
EXEMPLE 2 (SELON L'INVENTION) EXAMPLE 2 (ACCORDING TO THE INVENTION)
Les figures 5 a 7 sont des captures d'écrans de tableaux de bord d'un véhicule transportant chacun une cuve de GNL cylindrique et horizontale, montrant les données d'entrée servant au calcul de l'énergie chimique résiduelle E selon le procédé de l'invention, ainsi que le résultat de ce calcul. FIGS. 5 to 7 are screenshots of dashboard screens of a vehicle each carrying a cylindrical and horizontal LNG tank, showing the input data used to calculate the residual chemical energy E according to the method of FIG. invention, as well as the result of this calculation.
En particulier, la figure 5 est une capture d'écran d'un tableau bord montrant les données d'entrée spécifiques à la cuve :  In particular, FIG. 5 is a screen shot of an onboard board showing the tank specific input data:
- Forme : cylindre, disposé horizontalement dans le véhicule le transportant ;  - Shape: cylinder, arranged horizontally in the vehicle carrying it;
- Dimensions :  - Dimensions:
o longueur (« length ») : 1,2 m ;  o length ("length"): 1.2 m;
o diamètre (« diameter ») : 0,7 m  o diameter (diameter): 0.7 m
La figure 6 est une capture d'écran d'un tableau bord montrant les données d'entrée spécifiques à la couche de GNL :  Fig. 6 is a screenshot of an onboard board showing the input data specific to the LNG layer:
- température T : -152, 2°C ;  temperature T: -152, 2 ° C;
- masse volumique p (« density ») : 420,2 kg/m3 ;density p (density): 420.2 kg / m 3 ;
- niveau h (« level ») : 0,501 m. - level h ("level"): 0.501 m.

Claims

REVENDICATIONS
1. Procédé pour calculer en temps réel l'énergie chimique résiduelle E contenue dans une cuve pressurisée (1) définie par sa forme et ses dimensions et contenant une couche de gaz naturel à l'état liquide (GNL) , ladite couche de GNL étant définie à un instant t donné, par sa température T, sa masse volumique p, et son niveau h dans ladite cuve ; A method for calculating in real time the residual chemical energy E contained in a pressurized tank (1) defined by its shape and dimensions and containing a layer of natural gas in the liquid state (LNG), said layer of LNG being defined at a given instant t, by its temperature T, its density p, and its level h in said tank;
ledit procédé consistant en un algorithme comportant, à un instant t donné, les étapes suivantes :  said method consisting of an algorithm comprising, at a given instant t, the following steps:
A. Acquisition des paramètres caractéristiques de la couche de GNL par mesure :  A. Acquisition of the characteristic parameters of the LNG layer by measurement:
- du niveau h de la couche de GNL dans la cuve, à l'aide d'un capteur de niveau (2) ;  - level h of the LNG layer in the tank, using a level sensor (2);
- de la température T à l'aide d'un capteur de température (3) ; et  - Temperature T using a temperature sensor (3); and
- de la masse volumique p à l'aide d'un capteur de masse volumique (4) ; et  - the density p with a density sensor (4); and
B. Détermination de la masse totale mt du GNL contenu dans la cuve (1) ; B. Determination of the total mass m t of LNG contained in the tank (1);
ledit procédé étant caractérisé en ce que ledit algorithme comporte en outre, pour chaque instant t, les étapes suivantes :  said method being characterized in that said algorithm further comprises, for each instant t, the following steps:
C. Calcul du pouvoir calorifique supérieur massique PCSmass du GNL à l'aide d'une fonction f prenant en paramètres la température et la masse volumique du liquide selon la formule : C. Calculation of the higher mass heating value PCS mass of the LNG by means of a function f taking into parameters the temperature and the density of the liquid according to the formula:
PCSmass = fÇT, p) PCS mass = fT, p)
D. Calcul de l'énergie chimique résiduelle E selon la formule : D. Calculation of residual chemical energy E according to the formula:
E = PCSma∑s * mt E = PCS maΣs * m t
2. Procédé selon la revendication 1, dans lequel : The method of claim 1, wherein:
• soit ledit algorithme est réitéré à la demande par un opérateur (7) utilisant ladite cuve (1) ;  Either said algorithm is reiterated on demand by an operator (7) using said vessel (1);
• soit ledit algorithme est réalisé de manière automatique, dès qu'un intervalle de temps At donné s'est écoulé.  Or said algorithm is performed automatically, as soon as a given time interval At has elapsed.
3. Procédé selon les revendications 1 ou 2, dans lequel la détermination de la masse totale mt de GNL contenu dans la cuve (1) est réalisée par mesure directe à l'aide d'une balance ou de jauges de contrainte. 3. Method according to claims 1 or 2, wherein the determination of the total mass m t of LNG contained in the vessel (1) is carried out by direct measurement using a balance or strain gauges.
4. Procédé selon les revendications 1 ou 2, dans lequel la détermination de la masse totale mt de GNL contenu dans la cuve (1) est réalisée par un calcul selon la formule : mt =p*g(h) où : 4. Method according to claim 1 or 2, wherein the determination of the total mass m t of LNG contained in the tank (1) is performed by a calculation according to the formula: m t = p * g (h) where:
h est le niveau de la couche de GNL dans la cuve, p la. masse volumique du GNL, et  h is the level of the LNG layer in the tank, p la. density of LNG, and
g est une fonction liée à la forme de la cuve.  g is a function related to the shape of the tank.
5. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel la fonction f reliant le pouvoir calorifique supérieur massique PCSmass aux paramètres T et p est de la forme : 5. Method according to any one of claims 1 to 4, wherein the function f connecting the higher mass calorific value PCS mass T and p parameters is of the form:
f(T,p)=A(T) + B*p  f (T, p) = A (T) + B * p
où :  or :
- A est une valeur constante pour une température donnée  - A is a constant value for a given temperature
- B est une constante indépendante de la composition. - B is a constant independent of the composition.
6. Système pour calculer en temps réel, selon le procédé tel que défini selon l'une quelconque des revendications 1 à 5, l'énerqie chimique résiduelle E contenue dans une cuve pressurisée (1) définie par sa forme et ses dimensions et contenant une couche de gaz naturel à l'état liquide (GNL) , ladite couche de GNL étant définie à un instant t donné, par sa température T, sa masse volumique p , et son niveau h dans ladite cuve ; 6. System for calculating in real time, according to the process as defined in any one of claims 1 to 5, the residual chemical energy E contained in a pressurized tank (1) defined by its shape and dimensions and containing a layer of natural gas in the liquid state (LNG), said LNG layer being defined at a given instant t, its temperature T, its density p, and its level h in said tank;
ledit système étant caractérisé en ce qu' il comporte : said system being characterized in that it comprises:
- un calculateur (5) destiné à être connecté a des capteurs de niveau (2) , de température (3) , et de masse volumiquea computer (5) intended to be connected to level (2), temperature (3) and density sensors (2)
(4) dont est munie ladite cuve (1), ledit calculateur(4) which is provided with said tank (1), said calculator
(5) étant apte à exécuter l'algorithme du procédé tel que défini selon l'une quelconque des revendications 1 à 5, (5) being able to execute the algorithm of the method as defined in any one of claims 1 to 5,
- une interface IHM (6) interagissant avec ledit calculateur (5) pour remonter à un opérateur, la quantité d'énergie chimique résiduelle obtenue par l'algorithme du procédé tel que défini selon l'une quelconque des revendications 1 à 5.  an HMI interface (6) interacting with said computer (5) to go back to an operator, the quantity of residual chemical energy obtained by the algorithm of the method as defined according to any one of claims 1 to 5.
7. Système selon la revendication 6, selon lequel il est système embarqué dans lequel : 7. System according to claim 6, wherein it is embedded system in which:
• le calculateur (5) est un calculateur embarqué connecté auxdits capteurs de niveau (2), de température (3) et de masse volumique (4), ledit calculateur (5) étant spécifiquement conçu pour exécuter l'algorithme du procédé selon 1 ' invention,  The computer (5) is an on-board computer connected to said level (2), temperature (3) and density (4) sensors, said computer (5) being specifically designed to execute the algorithm of the method according to the invention,
• l'interface IHM (6) est une interface embarquée de type tableau de bord embarqué de véhicule ou une interface déportée. • The HMI interface (6) is an on-board vehicle dashboard type interface or a remote interface.
8. Véhicule comprenant une cuve pressurisée (1) contenant une couche de gaz naturel à l'état liquide et étant munie de capteurs de niveau (2), de température (3) et de masse volumique (4), ledit véhicule étant caractérisé en ce qu'il comporte en outre un système tel que défini selon les revendications 6 ou 7. 8. Vehicle comprising a pressurized tank (1) containing a layer of natural gas in the liquid state and being provided with level (2), temperature (3) and density (4) sensors, said vehicle being characterized in it further comprises a system as defined in claims 6 or 7.
EP17740051.2A 2016-06-30 2017-06-14 Method and system for the real-time calculation of the amount of energy transported in a non-refrigerated, pressurised, liquefied natural gas tank Pending EP3479006A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1656241A FR3053432B1 (en) 2016-06-30 2016-06-30 METHOD AND SYSTEM FOR REAL-TIME CALCULATION OF THE QUANTITY OF ENERGY TRANSPORTED IN A LIQUEFIED AND UN-REFRIGERATED NATURAL GAS TANK.
PCT/FR2017/051541 WO2018002467A1 (en) 2016-06-30 2017-06-14 Method and system for the real-time calculation of the amount of energy transported in a non-refrigerated, pressurised, liquefied natural gas tank

Publications (1)

Publication Number Publication Date
EP3479006A1 true EP3479006A1 (en) 2019-05-08

Family

ID=57233595

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17740051.2A Pending EP3479006A1 (en) 2016-06-30 2017-06-14 Method and system for the real-time calculation of the amount of energy transported in a non-refrigerated, pressurised, liquefied natural gas tank

Country Status (8)

Country Link
US (1) US11293594B2 (en)
EP (1) EP3479006A1 (en)
JP (1) JP6861227B2 (en)
KR (1) KR102235002B1 (en)
AU (1) AU2017289548B2 (en)
FR (1) FR3053432B1 (en)
SG (1) SG11201811654TA (en)
WO (1) WO2018002467A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3127546B1 (en) * 2021-09-30 2023-08-25 Gaztransport Et Technigaz METHOD AND SYSTEM FOR CALCULATING A TRANSITION PARAMETER OF A STORAGE MEANS FOR A LIQUEFIED GAS
SE2151414A1 (en) * 2021-11-22 2023-05-23 Husqvarna Ab Methods for controlling a gas tank heating arrangement on a concrete surface processing machine

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2554230A1 (en) * 1983-10-26 1985-05-03 Air Liquide Method and apparatus for determining the weight or mass of a liquefied gas contained in a tank
GB9601535D0 (en) * 1996-01-26 1996-03-27 Smiths Industries Plc Fluid quantity measurement
US6157894A (en) * 1997-12-23 2000-12-05 Simmonds Precision Products, Inc. Liquid gauging using sensor fusion and data fusion
JP4225698B2 (en) * 2001-03-08 2009-02-18 大阪瓦斯株式会社 Combustion equipment
JP2006160287A (en) * 2004-12-03 2006-06-22 Nippon Sharyo Seizo Kaisha Ltd Tank truck and mass control system thereof
JP4918783B2 (en) * 2006-01-06 2012-04-18 中国電力株式会社 LNG receipt / payment quantity management apparatus and receipt / payment quantity management method
FR2922992B1 (en) * 2007-10-26 2010-04-30 Air Liquide METHOD FOR REAL-TIME DETERMINATION OF THE FILLING LEVEL OF A CRYOGENIC RESERVOIR
CA2728505C (en) * 2008-06-18 2016-08-09 Jp3 Manufacturing, Llc Optical determination and reporting of fluid properties
KR20100066816A (en) * 2008-12-10 2010-06-18 한국가스공사연구개발원 System and method for measuring live heating value of lng in the storage tank
CA2753588C (en) * 2011-09-27 2016-01-26 Westport Power Inc. Apparatus and method for volume and mass estimation of a multiphase fluid stored at cryogenic temperatures
US9604655B2 (en) * 2013-08-22 2017-03-28 General Electric Company Method and systems for storing fuel for reduced usage
FR3013672A1 (en) * 2013-11-26 2015-05-29 Gdf Suez METHOD OF SUPPORTING THE OPERATION OF A TRANSPORT VESSEL
KR101646550B1 (en) * 2014-12-15 2016-08-08 현대오트론 주식회사 Fuel level management apparatus and method of cng vehicle
FR3036159B1 (en) * 2015-05-12 2017-05-05 Air Liquide METHOD AND DEVICE FOR FILLING OR STUCKING A PRESSURE GAS TANK
FR3045775B1 (en) * 2015-12-18 2018-07-06 Engie METHOD AND SYSTEM FOR CALCULATING IN REAL-TIME THE PERIOD OF AUTONOMY OF AN UN-REFRIGERATED TANK CONTAINING LNG

Also Published As

Publication number Publication date
JP2019519740A (en) 2019-07-11
WO2018002467A1 (en) 2018-01-04
AU2017289548B2 (en) 2019-11-28
JP6861227B2 (en) 2021-04-21
KR20190027368A (en) 2019-03-14
SG11201811654TA (en) 2019-01-30
KR102235002B1 (en) 2021-04-02
US20190226640A1 (en) 2019-07-25
AU2017289548A1 (en) 2019-01-17
FR3053432B1 (en) 2019-05-10
FR3053432A1 (en) 2018-01-05
US11293594B2 (en) 2022-04-05

Similar Documents

Publication Publication Date Title
EP2824378B1 (en) Method for filling a gas tank
EP3390893B1 (en) Method and system for calculating, in real-time, the duration of autonomy of a non-refrigerated tank containing lng
WO2018002467A1 (en) Method and system for the real-time calculation of the amount of energy transported in a non-refrigerated, pressurised, liquefied natural gas tank
EP2205899A2 (en) Method for the real-time determination of the filling level of a cryogenic tank
CA2548900A1 (en) Process and system for checking the tightness of a device used to store gaseous fuel at high pressure
CA3024810A1 (en) Pressurized fluid container with constraint gauge and means for remote communications
EP1237000A1 (en) Method for detecting and controlling hydrate formation at every point along a pipe in which polyphasic petroleum fluids flow
EP2217890A1 (en) Method for estimating the characteristic parameters of a cryogenic tank, in particular the geometric parameters of the tank
EP3036591B1 (en) Detection of faults when determining concentrations of chemical components in a distillation column
WO2021233742A1 (en) Estimation of a tank sloshing response using a statistical model trained by machine learning
FR2888898A1 (en) Energy reserve accumulator`s e.g. metal bellows hydraulic accumulator, state controlling method for e.g. airplane, involves determining duration to pass from one preset pressure to another, and comparing duration with reference time
EP4160079B1 (en) Method and system for calculating a transition parameter of a liquefied gas storage medium.
FR3075669A1 (en) PROCESS FOR UNLOADING A CONDUCT INTENDED FOR TRANSPORTING HYDROCARBON FLUID OBTAINED BY HYDRATES
FR3060796B1 (en) PROCESS FOR THE REAL-TIME CALCULATION OF THE METHANE MN INDEX OF A LIQUEFIED NATURAL GAS
FR2800875A1 (en) METHOD AND DEVICE FOR DETERMINING THE THRESHOLD FOR DEPOSIT OF HEAVY FRACTIONS CONTAINED IN A LIQUID HYDROCARBON FLUID
FR2924788A1 (en) METHOD FOR DETERMINING THE FLUID MASS IN A CRYOGENIC RESERVOIR AND MASS FLUID FLOW CONSUMED.
FR2908511A3 (en) Tank&#39;s e.g. petrol tank, liquid volume determining device for vehicle, has calculator to calculate liquid volume based on preset relation by simulation or calibration according to characteristics of tank
EP3411624A1 (en) Cryogenic liquid delivery system
FR3042268A1 (en) SYSTEM AND METHOD FOR DETERMINING THE FLUID LEVEL IN A RESERVOIR
WO2020225353A1 (en) Method and device for determining sloshing
FR2935112A3 (en) Fuel e.g. diesel, quantity estimating system for motor vehicle, has estimation units estimating fuel volume in reservoir using flow values of fuels respectively injected in engine and aspirated from reservoir and temperature measurements
FR2948437A1 (en) Volume estimating method for hydrogen tank of motor vehicle in filling station, involves calculating initial quantity of gas according to formula expressing initial quantity according to variables such as determined gas pressure
WO2015036707A1 (en) Method for calculating static pressure during the transfer of a gas between a pressure source or vacuum source and at least one reservoir
FR3088406A1 (en) Method for controlling a cryogenic tank, corresponding cryogenic tank and underwater vessel
FR3075919A1 (en) METHOD FOR DETECTING THE PRESENCE OF GAS HYDRATE IN A CONDUCT INTENDED FOR TRANSPORTING HYDROCARBON FLUID

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190104

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MENARD, GABRIELLE

Inventor name: BEN BELGACEM-STREK, MICHEL

Inventor name: LEGRAND, FREDERIC

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220228

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20231206

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240424

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED