EP3478024B1 - Switching on of a heating load - Google Patents

Switching on of a heating load Download PDF

Info

Publication number
EP3478024B1
EP3478024B1 EP17198495.8A EP17198495A EP3478024B1 EP 3478024 B1 EP3478024 B1 EP 3478024B1 EP 17198495 A EP17198495 A EP 17198495A EP 3478024 B1 EP3478024 B1 EP 3478024B1
Authority
EP
European Patent Office
Prior art keywords
load
phase control
current
switch
fuse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17198495.8A
Other languages
German (de)
French (fr)
Other versions
EP3478024A1 (en
Inventor
Axel Haase
Philipp Zinn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP17198495.8A priority Critical patent/EP3478024B1/en
Priority to CN201811072676.6A priority patent/CN109709398B/en
Priority to US16/162,702 priority patent/US20190132912A1/en
Publication of EP3478024A1 publication Critical patent/EP3478024A1/en
Application granted granted Critical
Publication of EP3478024B1 publication Critical patent/EP3478024B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B7/00Heating by electric discharge
    • H05B7/02Details
    • H05B7/144Power supplies specially adapted for heating by electric discharge; Automatic control of power, e.g. by positioning of electrodes
    • H05B7/148Automatic control of power
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0227Applications
    • H05B1/023Industrial applications
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/12Regulating voltage or current wherein the variable actually regulated by the final control device is ac
    • G05F1/40Regulating voltage or current wherein the variable actually regulated by the final control device is ac using discharge tubes or semiconductor devices as final control devices
    • G05F1/44Regulating voltage or current wherein the variable actually regulated by the final control device is ac using discharge tubes or semiconductor devices as final control devices semiconductor devices only
    • G05F1/45Regulating voltage or current wherein the variable actually regulated by the final control device is ac using discharge tubes or semiconductor devices as final control devices semiconductor devices only being controlled rectifiers in series with the load
    • G05F1/455Regulating voltage or current wherein the variable actually regulated by the final control device is ac using discharge tubes or semiconductor devices as final control devices semiconductor devices only being controlled rectifiers in series with the load with phase control
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0227Applications
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/0019Circuit arrangements

Definitions

  • the invention relates to a method for switching on a heating load, the heating load being controllable by means of a phase control method.
  • the leading edge is characterized by a leading angle.
  • the invention also relates to a heating control system for carrying out the method according to the invention.
  • Such a method is used in particular in industrial heating processes, e.g. for curing paints and tempering workpieces, in the automotive industry or in the plastics processing industry.
  • radiant heaters are used there, the cold start characteristics of which result in very high currents.
  • radiant heaters with PTC thermistor characteristics can be mentioned, e.g. tungsten-halogen lamps.
  • PTC thermistor characteristics can be mentioned, e.g. tungsten-halogen lamps.
  • the lead angle is the angle that describes the portion of a half-wave with a duration of 180 ° that hits a load.
  • the lead angle is also referred to as the firing angle, especially with thyristors or triacs.
  • phase control method which could be used in the same way as the phase control method, with the difference that the half-wave is cut off at the end and not at the beginning.
  • the U.S. 4,011,430 A shows an electric multi-zone oven in which several heating elements are each controlled by a thyrister circuit.
  • the object of the present invention is to enable an efficient cold start with any heating loads.
  • the definable initial lead angle should be selected so that conclusions can be drawn about the current resistance of the heating load on the basis of the current resulting therefrom.
  • the resistance of the heating load does not have to be calculated yourself, but the current can be used as a substitute.
  • This current it is possible to determine and / or calculate the load that is possible for the following lead angles in order to enable the most effective and quick switch-on process possible without overloading the system or any fuses. It is advisable to choose the largest possible initial lead angle, as this avoids an excessive current.
  • An effective current can be, for example, the RMS value of the current over a half-wave or over several half-waves.
  • I. N + 1 I. setN + 1 2 ⁇ t N + t N + 1 - I. N 2 ⁇ t N t N + 1
  • the equation is to be seen as a possible embodiment and can be simplified by empirical values or stored entirely as a lookup table, e.g. for various fuses or general heating load types.
  • the predefinable switch-on current profile specifies a current profile that results in increasing effective currents that can be determined based on boundary conditions.
  • boundary conditions The cold start characteristics of a heater and a maximum load capacity of a fuse come into question here as boundary conditions.
  • the present method can thus be carried out particularly advantageously, since the heating load is often present, for example, as a tungsten-halogen radiator and therefore shows a pronounced PTC resistor behavior. This means that when the heater or the heating load is switched on for the first time, very large currents can arise, the present method enabling the heating load to be started as quickly as possible without further configuration.
  • the initial lead angle is at least 60 °, 90 ° or 120 °.
  • the larger the lead angle the lower the proportion of the half-wave that hits the heating load. In other words, the larger the lead angle, the lower the resulting current.
  • This particularly conservative design prevents the maximum load capacity of a fuse or the entire system from being exceeded when the heating load is switched on for the first time becomes. The chamfer angles that follow can thus be determined from the first determined approximation of the behavior of the heating load.
  • the following lead angles can be calculated and / or determined from the determined effective current, but this can also be done, for example, by means of a look-up table using measured values.
  • the initial lead angle is selected as a function of a temperature of the heating load. This has the advantage that already preheated heating loads can be started even faster. Switching on a somewhat cooled down heating load is also made easier. In the case of a PTC thermistor, the warmer it is, the more current can be initially given directly to the PTC thermistor. A less conservative choice of the first initial lead angle is therefore necessary.
  • the predefinable inrush current curve does not exceed a characteristic of a fuse.
  • the aim of the fastest possible switch-on process is to provide the maximum current while maintaining the integrity of the system. If the predeterminable inrush current curve is now adjusted based on the characteristic curve of the fuse, it is ensured that the fuse survives the switch-on process undamaged, and thus the integrity of the system is ensured.
  • the fuse can be a single fuse in a power output, but it is also conceivable that the fuse is a higher-level fuse.
  • predefinable inrush current curve does not fall below a predefinable minimum distance from a characteristic curve of a fuse. This ensures that the fuse remains intact and a reserve can be provided for special cases, e.g. overload cases.
  • the switch-on that is to say the switch-on process, is ended when a cutting angle of 50 ° or less has been reached. If a full wave or almost a full wave can be switched, it can be assumed that the operating temperature of the heating element has been reached and can now be used with a different control method, e.g. half-wave control.
  • switching on is ended when a lead angle has been reached that is smaller than an angle specified by the control for operation after the switching on process. If phase-angle control continues to be used after switching on, the method for switching on a heating load can be terminated when the method can already provide higher currents than would be required by the control. This is expressed, for example, by falling below a target value for a required lead angle.
  • the heating load is controlled by means of a half-wave control after switching on.
  • Other common alternative control types are also conceivable.
  • the method for switching on a heating load is carried out again when a definable cooling time is exceeded. This makes it possible to always activate or switch on the heating load optimally and quickly, even with only sporadically used heating loads.
  • the method is carried out again each time the heating load is switched on. Since the method according to the invention can be carried out extremely efficiently and quickly, every switch-on process of the heating load can be carried out with the method. This further increases the reliability and security of the system.
  • a heating control system having a power section and a controller, the power section being designed to control a heating load by means of a phase angle, the phase angle being characterized by the angle of the chamfer, and the controller controlling the power element in such a way that the heating load is controlled by a definable initial Lead angle is switched on and the following lead angle is determined taking into account a determined effective current and a predefinable switch-on current curve.
  • FIG 1 shows a schematic circuit diagram of a power channel, as it could be used with the method according to the invention.
  • the central component is a switch T1, which is designed here as a triac, for example, thyristors or other power semiconductors are also conceivable.
  • a switch T2 can also be seen, which is designed here as an opto-triac and is used for galvanic decoupling of the power channel from a controller CTRL.
  • the input voltage U IN is shown, which can be measured by means of a first voltage measuring device MU1, and then a fuse FUSE, which protects the power channel.
  • the current flowing through the first switch T1 is measured in the current measuring device MI.
  • An output of the power channel OUT is provided with a second voltage measuring device MU2, with a heating load LOAD being applied to the output OUT of the power channel is connected.
  • the voltage measuring devices MU1, MU2 are not necessary for the method according to the invention. These have been shown for the sake of completeness and can, for example, be used for an additional plausibility check of the method and for further functionalities.
  • the opto-triac T2 ignites and the triac T1 is also ignited.
  • the load OUT is then subjected to the input voltage U IN and a current that is established according to the current resistance of the load LOAD flows.
  • the current measuring device MI can be designed as a Hall sensor and provide current measured values.
  • the first voltage measuring device MU1 is used to measure the input voltage U IN
  • the voltage measuring device MU2 is used to measure the voltage across the load.
  • the control CTRL can perform a phase control or phase control, as well as other known methods, for example PWM or modifications.
  • the fuse FUSE can be, for example, a fuse that has a corresponding fuse characteristic, as in FIG 3 has shown. Fuse manufacturers often specify so-called time-current characteristics, from which it can be read off how long a certain current rms value can flow on average before the fuse trips.
  • FIG 2 shows the relationship between the lead angle ⁇ and the effective value I EFF of the current over a half-wave HW.
  • a normalized power in percent% is plotted on the vertical axis, both diagrams extend over half a period from 0 ° to 180 °.
  • the amplitude AMP is plotted, which here also ranges from 0 to 1, standardized.
  • the actual current I EFF and the corresponding power P can be seen in the upper diagram.
  • a corresponding half-wave for example the voltage half-wave HW, can be seen in the lower diagram.
  • a lead angle ⁇ of 120 ° is chosen as an example. One goes assuming that the current follows an ideal sinusoidal shape over time, an effective value of approximately 44% of the effective value I EFF results for the selected ignition angle.
  • FIG 3 shows on the basis of a section of a tripping characteristic FUSE max of a fuse FUSE how a given starting current profile I start is to be approximated and tracked as quickly as possible with the aid of the cutting angles determined by the method.
  • the tripping characteristic shown is a characteristic that plots an effective current I EFF against the melting time T MELT .
  • the inrush current curve Istart has a predetermined distance DIST from the maximum current-time characteristic curve FUSE- max .
  • the distance DIST could be further reduced here by means of a parallel shift in order to achieve an even faster switch-on process. However, this would result in reduced reserves and would therefore have to be taken into account when designing the system.
  • the initial ignition angle ⁇ INIT leads to a low first effective current I EFF so that it can be determined directly after the first ignition which subsequent load is permissible.
  • the current is already brought to the specified inrush current curve with the first lead angle ⁇ 1.
  • the inrush current curve Istart is followed up accordingly and an effective and quick start process is made possible without endangering the fuse FUSE or the power channel or even the entire heating system.
  • the RMS current I rms approaches to each of the other lead angle ⁇ 2 to ⁇ 5 successively to the inrush current I start at. Due to the PTC thermistor characteristics, the resistance of the heating load decreases as the temperature rises and the chamfer angles ⁇ 2 to ⁇ 5 can be adjusted accordingly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Plasma & Fusion (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Control Of Resistance Heating (AREA)
  • Control Of Electrical Variables (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Einschalten einer Heizlast, wobei die Heizlast mittels eines Phasenanschnittverfahrens ansteuerbar ist. Der Phasenanschnitt ist dabei durch einen Anschnittwinkel charakterisiert. Die Erfindung betrifft weiterhin ein Heizungssteuerungssystem zur Durchführung des erfindungsgemäßen Verfahrens.The invention relates to a method for switching on a heating load, the heating load being controllable by means of a phase control method. The leading edge is characterized by a leading angle. The invention also relates to a heating control system for carrying out the method according to the invention.

Ein derartiges Verfahren kommt insbesondere bei industriellen Heizprozessen, z.B. zum Aushärten von Lacken und Temperieren von Werkstücken, in der Automobilindustrie oder auch in der kunststoffverarbeitenden Industrie zum Einsatz.Such a method is used in particular in industrial heating processes, e.g. for curing paints and tempering workpieces, in the automotive industry or in the plastics processing industry.

Oftmals kommen dort Heizstrahler zum Einsatz, deren Kaltstartcharakteristik sehr hohe Ströme zur Folge haben. Beispielsweise sind Heizstrahler mit Kaltleitercharakteristik zu nennen, z.B. Wolfram-Halogenstrahler. Um nun beim Starten derartiger Heizstrahler oder anderer Heizapplikationen mit derartig ungünstigen Kaltstarteigenschaften einen sicheren und möglichst schnellen Start zu ermöglichen muss gewährleistet werden, dass vorhandene Sicherungen nicht überlastet und/oder maximale Ströme bzw. Leistungen nicht überschritten werden. Bisher wurde unabhängig von der eingesetzten Heizlast eine Phasenanschnittsteuerung eingesetzt, die eine sehr konservative und festgelegte Reihenfolge von Anschnittwinkeln verwendet.Often radiant heaters are used there, the cold start characteristics of which result in very high currents. For example, radiant heaters with PTC thermistor characteristics can be mentioned, e.g. tungsten-halogen lamps. In order to enable a safe and as quick start as possible when starting such radiant heaters or other heating applications with such unfavorable cold start properties, it must be ensured that existing fuses are not overloaded and / or maximum currents or powers are not exceeded. So far, a phase control has been used regardless of the heating load used, which uses a very conservative and fixed sequence of cutting angles.

Der Anschnittwinkel ist dabei der Winkel, der den Anteil einer Halbwelle mit einer Dauer von 180° beschreibt der auf eine Last trifft. Der Anschnittwinkel wird auch als Zündwinkel bezeichnet, insb. bei Thyristoren oder Triacs. Es gibt auch ein so genanntes Phasenabschnittverfahren, das analog zum Phasenanschnittverfahren eingesetzt werden könnte, mit dem Unterschied, dass die Halbwelle am Ende und nicht am Anfang abgeschnitten wird.The lead angle is the angle that describes the portion of a half-wave with a duration of 180 ° that hits a load. The lead angle is also referred to as the firing angle, especially with thyristors or triacs. There is also what is known as a phase control method, which could be used in the same way as the phase control method, with the difference that the half-wave is cut off at the end and not at the beginning.

Da verschiedene Strahler mit verschiedenen Startcharakteristika zum Einsatz kommen, muss bei den bisherigen Verfahren entweder die festgelegte Winkelreihenfolge sehr konservativ gewählt werden oder jedes Mal anhand der Strahler neu festgelegt werden.Since different emitters with different starting characteristics are used, with the previous methods either the specified angle sequence has to be chosen very conservatively or it has to be redefined each time based on the emitters.

In der Offenbarung von ERNST L M ET AL: "VOL TAGE REGULATOR INCORPORATING SOFT-START CONTROL WITH BOOST", IBM TECHNICAL DISCLOSURE BULLETIN", Bd. 15, Nr. 3, 1. August 1972 (1972-08-01), Seite 735, XP001406741 , wird ein Regler gezeigt, welcher einen Zündwinkel bzw. Anschnittwinkel für eine Last steuert, wobei der Regler versucht, mittels einer Strombalance zwischen einem Strom, der proportional zur durchschnittlichen Lastspannung ist, und einem Standardstrom, einen Sanftanlauf zu ermöglichen, dabei wird nur ein Ausgleichsstrom oder Ungleichgewichtsstrom zum Laden oder Entladen benutzt.In the revelation of ERNST LM ET AL: "VOL TAGE REGULATOR INCORPORATING SOFT-START CONTROL WITH BOOST", IBM TECHNICAL DISCLOSURE BULLETIN ", Vol. 15, No. 3, August 1, 1972 (1972-08-01), page 735, XP001406741 , a controller is shown which controls an ignition angle or lead angle for a load, the controller trying to enable a soft start by means of a current balance between a current that is proportional to the average load voltage and a standard current, with only an equalizing current or imbalance current is used for charging or discharging.

Die US 4 011 430 A zeigt einen elektrischen Mehrzonenofen, bei welchen mehrere Heizelemente jeweils von einem Thyrister-Schaltkreis angesteuert werden.The U.S. 4,011,430 A shows an electric multi-zone oven in which several heating elements are each controlled by a thyrister circuit.

Aufgabe der vorliegenden Erfindung ist es, einen effizienten Kaltstart mit beliebigen Heizlasten zu ermöglichen.The object of the present invention is to enable an efficient cold start with any heating loads.

Gelöst wird die Aufgabe durch ein:

  • Einschalten der Heizlast mittels eines festlegbaren initialen Anschnittwinkels, welches zu einem ersten Effektivstrom führt,
  • Ermitteln der folgenden Anschnittwinkel unter Berücksichtigung des ermittelten ersten Effektivstroms und eines vorgebbaren Einschalt-Stromverlaufs, wobei der vorgebbare Einschalt-Stromverlauf eine Kennlinie einer Sicherung nicht überschreitet, wobei die auf den initialen Anschnittwinkel folgenden Anschnittwinkel aus dem ermittelten Effektivstrom berechnet und/oder ermittelt werden, wobei sich der Efektivstrom mit jedem der weiteren Anschnittwinkel sukzessive an den Einschaltstrom annähert.
The task is solved by:
  • Switching on the heating load by means of a definable initial lead angle, which leads to a first effective current,
  • Determination of the following lead angle taking into account the determined first effective current and a predefinable switch-on current profile, the predeterminable switch-on current profile not exceeding a characteristic of a fuse, the lead angles following the initial lead angle being calculated and / or determined from the determined effective current, whereby the effective current with each of the further Lead angle gradually approaches the inrush current.

Der festlegbare initiale Anschnittwinkel soll dabei so gewählt werden, dass anhand des sich daraus ergebenen Stroms Rückschlüsse auf den aktuellen Widerstand der Heizlast geschlossen werden können. Der Widerstand der Heizlast muss dabei aber nicht selbst berechnet werden, sondern der Strom kann stellvertretend verwendet werden. Unter Anwendung dieses Stroms kann für die folgenden Anschnittwinkel ermittelt und/oder berechnet werden, welche Belastung möglich ist um einen möglichst effektiven, schnellen Einschaltvorgang zu ermöglichen ohne das System oder etwaige Sicherungen zu überlasten. Es bietet sich an, möglichst große initiale Anschnittwinkel zu wählen, da so ein zu großer Strom vermieden wird. Ein Effektivstrom kann dabei bspw. der RMS-Wert des Stromes über eine Halbwelle oder über mehrere Halbwellen sein. Es können ebenso nur einzelne Messwerte bzw. Momentanwerte in der Halbwelle als Grundlage für den Effektivstrom und damit als Grundlage zur Berechnung/Ermittlung gemäß dem vorgestellten Verfahren verwendet werden. Das Verfahren ermöglicht es somit, unabhängig von der verwendeten Heizlast, automatisiert die bestmöglichste Reihenfolge von Zündwinkeln beim Kaltstart zu erreichen.The definable initial lead angle should be selected so that conclusions can be drawn about the current resistance of the heating load on the basis of the current resulting therefrom. The resistance of the heating load does not have to be calculated yourself, but the current can be used as a substitute. Using this current, it is possible to determine and / or calculate the load that is possible for the following lead angles in order to enable the most effective and quick switch-on process possible without overloading the system or any fuses. It is advisable to choose the largest possible initial lead angle, as this avoids an excessive current. An effective current can be, for example, the RMS value of the current over a half-wave or over several half-waves. Likewise, only individual measured values or instantaneous values in the half-wave can be used as the basis for the effective current and thus as the basis for calculation / determination according to the method presented. The method thus makes it possible, regardless of the heating load used, to automatically achieve the best possible sequence of ignition angles during a cold start.

Im Folgenden wird beispielhaft erläutert, wie der zu berücksichtigende Effektivstrom in die Berechnung eines zu stellenden folgenden Effektivstroms mit einfließen kann. I N + 1 = I setN + 1 2 t N + t N + 1 I N 2 t N t N + 1

Figure imgb0001
In the following it is explained by way of example how the effective current to be taken into account can be included in the calculation of a subsequent effective current to be set. I. N + 1 = I. setN + 1 2 t N + t N + 1 - I. N 2 t N t N + 1
Figure imgb0001

Dabei beschreibt:

IN+1
den zu stellenden folgenden Effektivstrom, also der gemäß des Einschalt-Stromverlaufs zulässige folgende Halbwellen-Effektivwert, aus dem der folgende zu stellende Anschnittwinkel/Zündwinkel ermittelt werden kann,
IsetN+1
den Sollwert zum folgenden Nulldurchgangszeitpunkt gemäß des Einschalt-Stromverlaufs,
IN
den zu berücksichtigenden Effektivstrom (z.B. ein mittels Hall-Sensor gemessener Gesamt-Effektivstrom seit Beginn des Einschaltvorgangs),
tN
die bisherige Gesamtdauer des Einschaltvorgangs und
tN+1
die Dauer der folgenden Halbwelle.
It describes:
I N + 1
the following effective current to be set, i.e. the following half-wave effective value permissible according to the switch-on current curve, from which the following is applied setting lead angle / ignition angle can be determined,
I setN + 1
the setpoint at the next zero crossing time according to the switch-on current curve,
I N
the effective current to be taken into account (e.g. a total effective current measured by means of a Hall sensor since the start of the switch-on process),
t N
the total duration of the switch-on process so far and
t N + 1
the duration of the following half-wave.

Die Gleichung ist dabei als eine mögliche Ausführungsform anzusehen und kann durch Erfahrungswerte vereinfacht werden oder ganz als Lookup Tabelle, z.B. für verschiedene Sicherungen oder allgemeine Heizlast-Typen, hinterlegt werden.The equation is to be seen as a possible embodiment and can be simplified by empirical values or stored entirely as a lookup table, e.g. for various fuses or general heating load types.

Der vorgebbare Einschalt-Stromverlauf gibt dabei einen Stromverlauf vor, der anhand von Randbedingungen festlegbare und ansteigende Effektivströme zur Folge hat. Als Randbedingungen kommen hier z.B. die Kaltstartcharakteristik eines Strahlers und eine maximale Belastbarkeit einer Sicherung in Frage.The predefinable switch-on current profile specifies a current profile that results in increasing effective currents that can be determined based on boundary conditions. The cold start characteristics of a heater and a maximum load capacity of a fuse come into question here as boundary conditions.

Das vorliegende Verfahren ist so besonders vorteilhaft durchführbar, da die Heizlast oftmals beispielsweise als Wolfram-Halogenstrahler vorliegt und deshalb ein ausgeprägtes Kaltleiterverhalten zeigt. Dies bedeutet, dass beim erstmaligen kalten Anschalten des Strahlers bzw. der Heizlast sehr große Ströme entstehen können, wobei das vorliegende Verfahren ohne weitere Konfiguration einen schnellstmöglichen Startvorgang der Heizlast ermöglicht.The present method can thus be carried out particularly advantageously, since the heating load is often present, for example, as a tungsten-halogen radiator and therefore shows a pronounced PTC resistor behavior. This means that when the heater or the heating load is switched on for the first time, very large currents can arise, the present method enabling the heating load to be started as quickly as possible without further configuration.

In einer vorteilhaften Ausführungsform ist der initiale Anschnittwinkel zumindest 60°, 90° oder 120°. Je größer der Anschnittwinkel, desto geringer ist der Anteil der Halbwelle, der auf die Heizlast trifft. D.h. je größer der Anschnittwinkel ist, desto geringer ist der entstehende Strom. Mit dieser besonders konservativen Auslegung wird verhindert, dass bereits beim ersten Einschalten der Heizlast die maximale Belastbarkeit einer Sicherung oder des Gesamtsystems überschritten wird. Die darauf folgenden Anschnittwinkel können somit aus der ersten ermittelten Näherung des Verhaltens der Heizlast ermittelt werden.In an advantageous embodiment, the initial lead angle is at least 60 °, 90 ° or 120 °. The larger the lead angle, the lower the proportion of the half-wave that hits the heating load. In other words, the larger the lead angle, the lower the resulting current. This particularly conservative design prevents the maximum load capacity of a fuse or the entire system from being exceeded when the heating load is switched on for the first time becomes. The chamfer angles that follow can thus be determined from the first determined approximation of the behavior of the heating load.

Die folgenden Anschnittwinkel aus dem ermittelten Effektivstrom berechnet und/oder ermittelt werden, aber auch kann dies beispielsweise mittels einer look-up-Tabelle unter Verwendung von Messerwerten geschehen.The following lead angles can be calculated and / or determined from the determined effective current, but this can also be done, for example, by means of a look-up table using measured values.

In einer weiteren vorteilhaften Ausführungsform wird der initiale Anschnittwinkel abhängig von einer Temperatur der Heizlast gewählt. Dies hat den Vorteil, dass bereits vorgewärmte Heizlasten noch schneller gestartet werden können. Auch ein Wiedereinschalten einer etwas abgekühlten Heizlast wird so erleichtert. Im Falle eines Kaltleiters gilt, je wärmer dieser ist, desto mehr Strom kann direkt initial auf den Kaltleiter gegeben werden. Es ist also eine weniger konservative Wahl des ersten initialen Anschnittwinkels notwendig.In a further advantageous embodiment, the initial lead angle is selected as a function of a temperature of the heating load. This has the advantage that already preheated heating loads can be started even faster. Switching on a somewhat cooled down heating load is also made easier. In the case of a PTC thermistor, the warmer it is, the more current can be initially given directly to the PTC thermistor. A less conservative choice of the first initial lead angle is therefore necessary.

Der vorgebbare Einschaltstromverlauf überschreitet eine Kennlinie einer Sicherung nicht. Ziel eines möglichst schnellen Einschaltvorgangs ist es, den maximalen Strom unter Wahrung der Systemintegrität zu stellen. Wird nun der vorgebbare Einschaltstromverlauf anhand der Kennlinie der Sicherung angepasst, so ist sichergestellt, dass die Sicherung den Einschaltvorgang unbeschadet übersteht, und damit die Integrität des Systems sichergestellt ist. Die Sicherung kann dabei eine einzelne Sicherung in einem Leistungsausgang sein, es ist aber ebenso denkbar, dass die Sicherung eine übergeordnete Sicherung ist.The predefinable inrush current curve does not exceed a characteristic of a fuse. The aim of the fastest possible switch-on process is to provide the maximum current while maintaining the integrity of the system. If the predeterminable inrush current curve is now adjusted based on the characteristic curve of the fuse, it is ensured that the fuse survives the switch-on process undamaged, and thus the integrity of the system is ensured. The fuse can be a single fuse in a power output, but it is also conceivable that the fuse is a higher-level fuse.

Besonders vorteilhaft ist es, wenn der vorgebbare Einschaltstromverlauf einen vorgebbaren Mindestabstand von einer Kennlinie einer Sicherung nicht unterschreitet. Dadurch ist sichergestellt, dass die Sicherung intakt bleibt und es ist eine Reserve für spezielle Fälle, z.B. Überlastfälle, vorsehbar.It is particularly advantageous if the predefinable inrush current curve does not fall below a predefinable minimum distance from a characteristic curve of a fuse. This ensures that the fuse remains intact and a reserve can be provided for special cases, e.g. overload cases.

In einer weiteren vorteilhaften Ausführungsform wird das Einschalten, also der Einschaltvorgang, beendet, wenn ein Anschnittwinkel von 50° oder kleiner erreicht wurde. Kann also eine Vollwelle oder annähernd eine Vollwelle geschaltet werden, so ist davon auszugehen, dass die Betriebstemperatur des Heizelements erreicht ist und nun mit einem anderen Ansteuerverfahren, z.B. Halbwellensteuerung, angewendet werden kann.In a further advantageous embodiment, the switch-on, that is to say the switch-on process, is ended when a cutting angle of 50 ° or less has been reached. If a full wave or almost a full wave can be switched, it can be assumed that the operating temperature of the heating element has been reached and can now be used with a different control method, e.g. half-wave control.

In einer weiteren vorteilhaften Ausführungsform wird das Einschalten beendet, wenn ein Anschnittwinkel erreicht wurde, der kleiner ist, als ein von der Steuerung vorgegebener Winkel für den Betrieb nach dem Einschaltvorgang. Kommt nach dem Einschalten weiterhin eine Phasenanschnittsteuerung zum Einsatz, so kann das Verfahren zum Einschalten einer Heizlast beendet werden, wenn durch das Verfahren bereits größere Ströme gestellt werden können als von der Steuerung gefordert wäre. Dies drückt sich bspw. durch Unterschreiten eines Sollwerts für einen geforderten Anschnittwinkel aus.In a further advantageous embodiment, switching on is ended when a lead angle has been reached that is smaller than an angle specified by the control for operation after the switching on process. If phase-angle control continues to be used after switching on, the method for switching on a heating load can be terminated when the method can already provide higher currents than would be required by the control. This is expressed, for example, by falling below a target value for a required lead angle.

In einer weiteren vorteilhaften Ausführungsform wird die Heizlast nach dem Einschalten mittels einer Halbwellensteuerung angesteuert. Es sind ebenso weitere gängige alternative Ansteuerarten denkbar.In a further advantageous embodiment, the heating load is controlled by means of a half-wave control after switching on. Other common alternative control types are also conceivable.

In einer weiteren vorteilhaften Ausführungsform wird das Verfahren zum Einschalten einer Heizlast bei Überschreiten einer definierbaren Abkühlzeit erneut durchgeführt. Dies ermöglicht es auch bei nur sporadisch verwendeten Heizlasten immer ein optimales und schnelles Aktivieren bzw. Einschalten der Heizlast durchzuführen.In a further advantageous embodiment, the method for switching on a heating load is carried out again when a definable cooling time is exceeded. This makes it possible to always activate or switch on the heating load optimally and quickly, even with only sporadically used heating loads.

In einer weiteren vorteilhaften Ausführungsform wird das Verfahren bei jedem Einschalten der Heizlast erneut durchgeführt. Da das erfindungsgemäße verfahren äußerst effizient und schnell durchführbar ist, kann jeder Einschaltvorgang der Heizlast mit dem Verfahren durchgeführt werden. Die erhöht die Zuverlässigkeit und Sicherheit des Systems weiter.In a further advantageous embodiment, the method is carried out again each time the heating load is switched on. Since the method according to the invention can be carried out extremely efficiently and quickly, every switch-on process of the heating load can be carried out with the method. This further increases the reliability and security of the system.

Die Aufgabe wird weiterhin durch ein Heizungssteuerungssystem aufweisend ein Leistungsteil und eine Steuerung gelöst, wobei das Leistungsteil zur Ansteuerung einer Heizlast mittels Phasenanschnitt ausgebildet ist, wobei der Phasenanschnitt durch Anschnittwinkel charakterisiert ist und wobei die Steuerung das Leistungsteil derart ansteuert, dass die Heizlast mittels eines festlegbaren initialen Anschnittwinkels eingeschaltet wird und die folgenden Anschnittwinkel unter Berücksichtigung eines ermittelten Effektivstroms und eines vorgebbaren Einschalt-Stromverlaufs ermittelt werden.The object is also achieved by a heating control system having a power section and a controller, the power section being designed to control a heating load by means of a phase angle, the phase angle being characterized by the angle of the chamfer, and the controller controlling the power element in such a way that the heating load is controlled by a definable initial Lead angle is switched on and the following lead angle is determined taking into account a determined effective current and a predefinable switch-on current curve.

Im Folgenden wird die Erfindung anhand der in den Figuren dargestellten Ausführungsbeispiele näher beschrieben und erläutert. Es zeigen:

FIG 1
einen schematischen Stromlaufplan eines Leistungskanals,
FIG 2
zeigt den Zusammenhang von Anschnittwinkel und Effektivwert des Stroms über eine Halbwelle und
FIG 3
eine Auslösekennlinie einer Sicherung sowie einen Einschaltstromverlauf gemäß des vorliegenden Verfahrens.
The invention is described and explained in more detail below using the exemplary embodiments shown in the figures. Show it:
FIG 1
a schematic circuit diagram of a power channel,
FIG 2
shows the relationship between the lead angle and the effective value of the current over a half-wave and
FIG 3
a tripping characteristic of a fuse and an inrush current curve according to the present method.

FIG 1 zeigt einen schematischen Stromlaufplan eines Leistungskanals, wie er mit dem erfindungsgemäßen Verfahren zum Einsatz kommen könnte. Zentrales Bauteil ist ein Schalter T1, der hier bspw. als Triac ausgeführt ist, Thyristoren oder weitere Leistungshalbleiter sind ebenso denkbar. Weiterhin zu sehen ist ein Schalter T2, der hier als Opto-Triac ausgeführt ist und zur galvanischen Entkopplung des Leistungskanals von einer Steuerung CTRL zum Einsatz kommt. Des Weiteren ist die Eingangsspannung UIN dargestellt, die mittels einer ersten Spannungsmesseinrichtung MU1 gemessen werden kann sowie darauf folgend eine Sicherung FUSE, die den Leistungskanal absichert. Der durch den ersten Schalter T1 fließende Strom wird in der Strommesseinrichtung MI gemessen. Ein Ausgang des Leistungskanals OUT ist mit einer zweiten Spannungsmesseinrichtung MU2 versehen, wobei eine Heizlast LOAD an den Ausgang OUT des Leistungskanals angeschlossen ist. Besonders Vorteilhaft ist, dass für das erfindungsgemäße Verfahren die Spannungsmesseinrichtungen MU1, MU2 nicht notwendig sind. Diese wurden der Vollständigkeit wegen gezeigt und können beispielsweise zu einer zusätzlichen Plausibilisierung des Verfahrens und für weitere Funktionalitäten herangezogen werden. FIG 1 shows a schematic circuit diagram of a power channel, as it could be used with the method according to the invention. The central component is a switch T1, which is designed here as a triac, for example, thyristors or other power semiconductors are also conceivable. A switch T2 can also be seen, which is designed here as an opto-triac and is used for galvanic decoupling of the power channel from a controller CTRL. Furthermore, the input voltage U IN is shown, which can be measured by means of a first voltage measuring device MU1, and then a fuse FUSE, which protects the power channel. The current flowing through the first switch T1 is measured in the current measuring device MI. An output of the power channel OUT is provided with a second voltage measuring device MU2, with a heating load LOAD being applied to the output OUT of the power channel is connected. It is particularly advantageous that the voltage measuring devices MU1, MU2 are not necessary for the method according to the invention. These have been shown for the sake of completeness and can, for example, be used for an additional plausibility check of the method and for further functionalities.

Kommt von der Steuerung CTRL ein dementsprechendes Signal, so zündet der Opto-Triac T2 und der Triac T1 wird dadurch ebenfalls gezündet. Die Last OUT wird dann mit der Eingangsspannung UIN beaufschlagt und ein sich gemäß des aktuellen Widerstandes der Last LOAD einstellender Strom fließt. Die Strommesseinrichtung MI kann dabei als Hall-Sensor ausgeführt sein und Strommesswerte zur Verfügung stellen. Die erste Spannungsmesseinrichtung MU1 dient zur Messung der Eingangsspannung UIN, die Spannungsmesseinrichtung MU2 dient zur Messung der Spannung über die Last. Die Steuerung CTRL kann dabei eine Phasenanschnitt- oder Phasenabschnittsteuerung, sowie weitere bekannte Verfahren, z.B. PWM oder Abwandlungen, durchführen. Die Sicherung FUSE kann beispielsweise eine Schmelzsicherung sein, die eine entsprechende Sicherungskennlinie, wie in FIG 3 gezeigt, aufweist. Sicherungshersteller geben dabei oft sogenannte Zeit-Strom-Kennlinien an, aus denen abzulesen ist, wie lange ein bestimmter Stromeffektivwert im Durchschnitt fließen kann, ehe die Sicherung auslöst.If a corresponding signal comes from the controller CTRL, the opto-triac T2 ignites and the triac T1 is also ignited. The load OUT is then subjected to the input voltage U IN and a current that is established according to the current resistance of the load LOAD flows. The current measuring device MI can be designed as a Hall sensor and provide current measured values. The first voltage measuring device MU1 is used to measure the input voltage U IN , the voltage measuring device MU2 is used to measure the voltage across the load. The control CTRL can perform a phase control or phase control, as well as other known methods, for example PWM or modifications. The fuse FUSE can be, for example, a fuse that has a corresponding fuse characteristic, as in FIG 3 has shown. Fuse manufacturers often specify so-called time-current characteristics, from which it can be read off how long a certain current rms value can flow on average before the fuse trips.

FIG 2 zeigt den Zusammenhang von Anschnittwinkel ϕ und Effektivwert IEFF des Stroms über eine Halbwelle HW. Im oberen Diagramm ist eine normierte Leistung in Prozent % auf der Hochachse angetragen, beide Diagramme erstrecken sich über eine halbe Periode von 0° bis 180°. Im unteren Diagramm ist die Amplitude AMP angetragen, die hier ebenfalls normiert von 0 bis 1 reicht. Im oberen Diagramm ist der sich einstellende Effektivstrom IEFF sowie die entsprechende Leistung P zu sehen. Im unteren Diagramm ist eine entsprechende Halbwelle, beispielsweise die Spannungshalbwelle HW, zu sehen. Exemplarisch sei ein Anschnittwinkel ϕ von 120° gewählt. Geht man davon aus, dass der Strom über die Zeit einer idealen Sinusform folgt, so ergibt sich für den gewählten Zündwinkel ein Effektivwert von etwa 44 % des Effektivwerts IEFF. FIG 2 shows the relationship between the lead angle ϕ and the effective value I EFF of the current over a half-wave HW. In the upper diagram, a normalized power in percent% is plotted on the vertical axis, both diagrams extend over half a period from 0 ° to 180 °. In the lower diagram, the amplitude AMP is plotted, which here also ranges from 0 to 1, standardized. The actual current I EFF and the corresponding power P can be seen in the upper diagram. A corresponding half-wave, for example the voltage half-wave HW, can be seen in the lower diagram. A lead angle ϕ of 120 ° is chosen as an example. One goes assuming that the current follows an ideal sinusoidal shape over time, an effective value of approximately 44% of the effective value I EFF results for the selected ignition angle.

FIG 3 zeigt anhand eines Ausschnittes einer Auslösekennlinie FUSEmax einer Sicherung FUSE, wie mit Hilfe von durch das Verfahren ermittelten Anschnittwinkeln ein vorgegebener Einschalt-Stromverlauf Istart möglichst schnell angenähert und verfolgt werden soll. FIG 3 shows on the basis of a section of a tripping characteristic FUSE max of a fuse FUSE how a given starting current profile I start is to be approximated and tracked as quickly as possible with the aid of the cutting angles determined by the method.

Die gezeigte Auslösekennlinie ist eine Kennlinie, die einen Effektivstrom IEFF gegenüber der Schmelzzeit TMELT aufträgt. Der Einschaltstromverlauf Istart weist dabei einen vorgegebenen Abstand DIST von der maximalen Strom-Zeit-Kennlinie FUSE-max auf. Durch eine Parallelverschiebung könnte hier der Abstand DIST weiter verringert werden, um einen noch schnelleren Einschaltvorgang zu erreichen. Dies hätte aber verringerte Reserven zur Folge und müsste dementsprechend bei der Auslegung des Systems berücksichtigt werden. Der initiale Zündwinkel ϕINIT führt zu einem niedrigen ersten Effektivstrom IEFF, damit direkt nach dem ersten Zünden ermittelt werden kann, welche folgende Belastung zulässig ist. Bereits mit dem ersten Anschnittwinkel ϕ1 wird der Strom auf den vorgegebenen Einschaltstromverlauf gebracht. Mit den weiteren Anschnittwinkeln ϕ2 bis ϕ5 wird der Einschaltstromverlauf Istart dementsprechend weiterverfolgt und ein effektiver und schneller Startvorgang ermöglicht, ohne die Sicherung FUSE bzw. den Leistungskanal oder gar das ganze Heizungssystem zu gefährden. Dabei nähert sich der Effektivstrom IEFF mit jedem der weiteren Anschnittwinkel ϕ2 bis ϕ5 sukzessive an den Einschaltstromverlauf Istart an. Durch die Kaltleiter-Charakteristik sinkt der Widerstand der Heizlast mit steigender Temperatur und die Anschnittwinkel ϕ2 bis ϕ5 können dementsprechend angepasst werden.The tripping characteristic shown is a characteristic that plots an effective current I EFF against the melting time T MELT . The inrush current curve Istart has a predetermined distance DIST from the maximum current-time characteristic curve FUSE- max . The distance DIST could be further reduced here by means of a parallel shift in order to achieve an even faster switch-on process. However, this would result in reduced reserves and would therefore have to be taken into account when designing the system. The initial ignition angle ϕINIT leads to a low first effective current I EFF so that it can be determined directly after the first ignition which subsequent load is permissible. The current is already brought to the specified inrush current curve with the first lead angle ϕ1. With the further chamfer angles ϕ2 to ϕ5, the inrush current curve Istart is followed up accordingly and an effective and quick start process is made possible without endangering the fuse FUSE or the power channel or even the entire heating system. Here, the RMS current I rms approaches to each of the other lead angle φ2 to φ5 successively to the inrush current I start at. Due to the PTC thermistor characteristics, the resistance of the heating load decreases as the temperature rises and the chamfer angles ϕ2 to ϕ5 can be adjusted accordingly.

Zusammenfassend betrifft die Erfindung ein Verfahren zum Einschalten einer Heizlast LOAD, wobei die Heizlast LOAD mittels Phasenanschnitt ansteuerbar ist und wobei der jeweils aktuelle Phasenanschnitt durch einen Anschnittwinkel ϕ1,..., ϕn charakterisiert ist. Um einen effizienten Kaltstart mit beliebigen Heizlasten zu ermöglichen werden folgende Schritte vorgeschlagen:

  • Einschalten der Heizlast LOAD mittels eines festlegbaren initialen Anschnittwinkels ϕINIT,
  • Ermitteln der folgenden Anschnittwinkel ϕ1,..., ϕn unter Berücksichtigung eines ermittelten Effektivstroms IEFF und eines vorgebbaren Einschalt-Stromverlaufs Istart. Die Erfindung betrifft weiterhin ein Heizungssteuerungssystem zur Durchführung des erfindungsgemäßen Verfahrens.
In summary, the invention relates to a method for switching on a heating load LOAD, wherein the heating load LOAD can be controlled by means of phase control and wherein the respective current Phase gating is characterized by a gating angle ϕ1, ..., ϕn. The following steps are suggested to enable an efficient cold start with any heating load:
  • Switching on the heating load LOAD by means of a definable initial cutting angle ϕINIT,
  • Determine the following lead angle ϕ1, ..., ϕn taking into account a determined effective current I EFF and a predefinable switch-on current curve Istart. The invention also relates to a heating control system for carrying out the method according to the invention.

Claims (11)

  1. Method for switching on a heating load (LOAD), wherein the heating load (LOAD) can be controlled by means of forward-phase control, wherein the forward-phase control at a particular instant is characterized by a phase control angle (ϕ1,..., ϕn) , comprising the steps:
    • switching on the heating load (LOAD) by means of a specifiable initial phase control angle (ϕINIT) which results in a first effective current (IEFF);
    • determining the subsequent phase control angles (ϕ1,..., ϕn) taking into account the ascertained first effective current (IEFF) and a definable switch-on current curve (IStart), wherein the definable switch-on current curve (IStart) does not exceed a characteristic curve (FUSEmax) of a protective device (FUSE), wherein the phase control angles (ϕ1,..., ϕn) that follow the initial phase control angle (ϕINIT) are calculated and/or determined from the ascertained effective current (IEFF), wherein the effective current (IEFF) converges successively on the switch-on current (IStart) with each of the further phase control angles (ϕ1,..., ϕn).
  2. Method according to claim 1, wherein the initial phase control angle (ϕINIT) is at least 90° or preferably at least 120°.
  3. Method according to one of the preceding claims, wherein the initial phase control angle (ϕINIT) is selected according to a temperature of the heating load (LOAD).
  4. Method according to one of the preceding claims, wherein the definable switch-on current curve (IStart) does not exceed a definable minimum distance (DIST) from a characteristic curve (FUSEmax) of a protective device (FUSE).
  5. Method according to one of the preceding claims, wherein the switch-on is concluded when a phase control angle (ϕ1,..., ϕn) of 50° or less has been reached.
  6. Method according to one of the preceding claims, wherein the switch-on is concluded when a phase control angle (ϕ1,..., ϕn) has been reached that is less than an angle defined by the controller (CTRL) for operation after the switch-on process.
  7. Method according to one of the preceding claims, wherein the heating load (LOAD) is controlled by means of half-wave control after the switch-on.
  8. Method according to one of the preceding claims, wherein the method is repeated when a definable cooling time of the heating load (LOAD) is exceeded.
  9. Method according to one of the preceding claims, wherein the method is repeated whenever the heating load (LOAD) is switched on.
  10. Heating control system having a power section and a controller,
    wherein the power section is designed to control a heating load (LOAD) by means of forward-phase control,
    wherein the forward-phase control is characterized by phase control angles (ϕ1,..., ϕn), and
    wherein the controller controls the power section such that the heating load (LOAD) is switched on using a specifiable initial phase control angle (ϕINIT), and
    the subsequent phase control angles (ϕ1,..., ϕn) are determined taking into account an ascertained effective current (IEFF) and a definable switch-on current curve (IStart), wherein the definable switch-on current curve (IStart) does not exceed a characteristic curve (FUSEmax) of a protective device (FUSE).
  11. Heating control system according to claim 10 for implementing a method according to one of claims 1 to 9.
EP17198495.8A 2017-10-26 2017-10-26 Switching on of a heating load Active EP3478024B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17198495.8A EP3478024B1 (en) 2017-10-26 2017-10-26 Switching on of a heating load
CN201811072676.6A CN109709398B (en) 2017-10-26 2018-09-14 Switching on of heating load
US16/162,702 US20190132912A1 (en) 2017-10-26 2018-10-17 Heating Control System and Method for Switching on a Heating Load

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP17198495.8A EP3478024B1 (en) 2017-10-26 2017-10-26 Switching on of a heating load

Publications (2)

Publication Number Publication Date
EP3478024A1 EP3478024A1 (en) 2019-05-01
EP3478024B1 true EP3478024B1 (en) 2021-01-27

Family

ID=60301772

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17198495.8A Active EP3478024B1 (en) 2017-10-26 2017-10-26 Switching on of a heating load

Country Status (3)

Country Link
US (1) US20190132912A1 (en)
EP (1) EP3478024B1 (en)
CN (1) CN109709398B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112084673B (en) * 2020-09-17 2023-01-31 广西交控智维科技发展有限公司 Automatic setting method and device for switch friction current
EE05857B1 (en) * 2021-04-22 2023-06-15 Soynt Oü Method and device of controlling a load with positive temperature dependence of resistance

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE794139A (en) * 1972-01-17 1973-07-17 Siemens Ag ELECTRICAL HEATING DEVICE FOR A SEMICONDUCTOR BAR
US4011430A (en) * 1975-05-06 1977-03-08 National Forge Company Multizone electrical furnace methods and apparatus
JPH07229757A (en) * 1994-02-18 1995-08-29 Canon Inc Signal processing device, position detecting device and driving device
US7301291B1 (en) * 2006-10-02 2007-11-27 Osram Sylvania Inc. Power controller having current limited RMS regulated output
CN101212847B (en) * 2006-12-31 2011-03-30 海尔集团公司 Heating control circuit and heating electrical appliance
KR101129389B1 (en) * 2007-05-28 2012-03-26 삼성전자주식회사 Controlling method and apparatus for phase alternating current power, controlling method for heating unit of fixing unit
MY166616A (en) * 2010-12-30 2018-07-17 Clipsal Australia Pty Ltd Device and Method for Controllably Dimming the Output of a Load

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20190132912A1 (en) 2019-05-02
EP3478024A1 (en) 2019-05-01
CN109709398A (en) 2019-05-03
CN109709398B (en) 2021-08-20

Similar Documents

Publication Publication Date Title
EP1915806B1 (en) Method and device for detecting an overload in hand tools
DE102018119678A1 (en) Battery charging, battery charger and charging kit
EP3360219B1 (en) Electronic circuit breaker
EP3478024B1 (en) Switching on of a heating load
DE102017218429A1 (en) Safety discharge of a DC link capacitor
WO2019206964A1 (en) Method for reducing a temperature increase in a controllable switching element
DE102007018829A1 (en) Method and device for controlling a circuit breaker unit
DE1964924B2 (en) Device for protecting an electrical consumer against excessive temperatures
DE102010009523B4 (en) Device for controlling the temperature of an electric heating wire when cutting bodies to be separated by heat
DE102016201923B4 (en) Robust current limitation for an electric drive
DE102004043059A1 (en) Method and protection circuit for temperature monitoring of refrigerant-cooled electric motors
DE4331250C1 (en) Device for limiting the inrush current in a load circuit
EP1986316A1 (en) Relief of bypass-system of soft-starters from over-currents
DE102007017581B4 (en) Method for controlling a cold-conducting electrical load element, switching unit for a cold-conducting electrical load element, light bulb control and vehicle
DE10138821B4 (en) Method for determining a heated air outlet temperature of an air heater
DE2822010C3 (en) Circuit arrangement for overload protection for electrical systems
DE3144742A1 (en) Speed safety circuit for controlled-speed series-wound electric motors in hand tools
EP1994620A1 (en) Protective device and method for monitoring the appliance temperature of an appliance
EP1251718B1 (en) Electrical, explosion protected heater, particularly for the heating of the inner space of a protected cupboard containing instruments
EP3224949A1 (en) Method and device for operating power semiconductor switches connected in parallel
WO2004082334A1 (en) Heating device comprising a flexible heating part
EP3490132A1 (en) Intermediate circuit converter with targeted coupling with at least one other intermediate circuit converter
DE10017372C2 (en) Protection method for an electrical line
EP3093982B1 (en) Device and method for starting an engine for alternating current
DE2053795A1 (en) Protection circuit for a transformer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191004

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201008

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1359481

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017009215

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210127

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210427

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210527

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210527

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017009215

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20211028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210527

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211031

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211026

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211026

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211026

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20221017

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20221024

Year of fee payment: 6

Ref country code: DE

Payment date: 20220620

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210127

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20171026

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1359481

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502017009215

Country of ref document: DE