EP3471507B1 - Procédé de production un rayonnement dans une zone infrarouge - Google Patents

Procédé de production un rayonnement dans une zone infrarouge Download PDF

Info

Publication number
EP3471507B1
EP3471507B1 EP18191212.2A EP18191212A EP3471507B1 EP 3471507 B1 EP3471507 B1 EP 3471507B1 EP 18191212 A EP18191212 A EP 18191212A EP 3471507 B1 EP3471507 B1 EP 3471507B1
Authority
EP
European Patent Office
Prior art keywords
elements
embedded elements
embedded
fibre
phosphorus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18191212.2A
Other languages
German (de)
English (en)
Other versions
EP3471507C0 (fr
EP3471507A1 (fr
Inventor
Edgar Johannes VAN HATTUM
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Edd Innovations GmbH
Original Assignee
Edd Innovations GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Edd Innovations GmbH filed Critical Edd Innovations GmbH
Publication of EP3471507A1 publication Critical patent/EP3471507A1/fr
Application granted granted Critical
Publication of EP3471507C0 publication Critical patent/EP3471507C0/fr
Publication of EP3471507B1 publication Critical patent/EP3471507B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/34Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/146Conductive polymers, e.g. polyethylene, thermoplastics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/105Induction heating apparatus, other than furnaces, for specific applications using a susceptor
    • H05B6/109Induction heating apparatus, other than furnaces, for specific applications using a susceptor using magnets rotating with respect to a susceptor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/032Heaters specially adapted for heating by radiation heating

Definitions

  • the invention relates to a device for radiation absorption or radiation emission and a method for producing the device.
  • PET polyethylene terephthalate
  • PET has a polar basic structure and exhibits strong intermolecular forces. PET molecules are also linear, i.e. constructed without crosslinks. Due to its polar-linear structure, PET is characterized by semi-crystalline areas and fibers that provide high breaking strength and dimensional stability even in temperature ranges of over 80°C. PET is therefore generally suitable as a material for these temperature ranges.
  • PET materials are made from monomers such as terephthalic acid or benzenedicarboxylic acid and ethylene glycol or dihydroxyethane or ethanediol.
  • monomers such as terephthalic acid or benzenedicarboxylic acid and ethylene glycol or dihydroxyethane or ethanediol.
  • large-scale production is carried out by transesterification of dimethyl terephthalate with ethanediol.
  • an undesirable excess amount of ethanediol is produced, or it is necessary for the reaction that this substance is distilled off again during the reaction in order to favorably influence the equilibrium.
  • the alternative possible melt phase polycondensation is unsuitable for the production of large quantities because this form of production requires too long a period of time.
  • a solid phase polycondensation is carried out downstream depending on the desired purpose in order to achieve further condensation.
  • Another known production option for PET is the esterification of ethanediol with ter
  • PET molecules are long-chain structures that consist predominantly of carbon, hydrogen and a few other atoms.
  • the molecules have a spiral to ball-like arrangement. This means that there is a large number of free spaces in the atomic range between the molecules, especially in the amorphous state. Through an axial or biaxial orientation of the material, these free spaces can be reduced, which, for example, leads to greater strength of the material and reduced gas permeability.
  • PET In addition to the use of PET in its pure form, its material modification is also known from the prior art. Other elements can be added to the thermoplastic as the base material for composite materials. In its pure state, PET is essentially an electrical non-conductor. By incorporating, for example, metallic atoms into the free spaces between the molecules or by attaching, for example, metallic atoms to the PET molecules, the material can be given electrically conductive properties to a certain extent. Correspondingly metal-doped PET fibers therefore conduct an electrical current when a voltage is applied.
  • the magnetocaloric effect is strongly affected by hysteresis depending on the alloy.
  • alloys are sought that combine these physical effects and properties.
  • the skin effect also known as current displacement, is an effect in electrical conductors through which higher-frequency alternating current flows, which means that the current density inside a conductor is lower than in external areas. It occurs in conductors that are thick relative to the skin depth and also in electrically conductive shields and cable shields.
  • the skin effect favors the transfer impedance of shielded cables and the shielding attenuation of conductive shields, but increases the resistance of an electrical cable. This practically means that the skin depth, ie the thickness of the conductive layer, decreases depending on the material as the alternating current frequency increases. Due to high alternating current frequencies of more than 100 kHz, a skin depth of 0.21 mm is present within a copper cable.
  • EP 2 294 253 A2 discloses a method for producing fibers from a composite material based on a thermoplastic polymer and conductive or semiconducting particles. The process includes heat treatment.
  • US 5,820,805 A discloses an electrically conductive fiber consisting of a multicomponent filament with a suffusion component present at some or all edges of the filament and an impermeable component. Finely dispersed, electrically conductive particles are introduced into a surface of the suffusion component.
  • DE 20 2012 009 083 U1 discloses a sub-molecular surface heating system in which individual nano and pico metal particles are introduced into a surface structure of polyamide/polyester compounds.
  • DE 10 2011 109 578 A1 discloses a method for producing an electrically conductive material with a carbon fiber and a plastic fiber.
  • the object of the present invention is to improve a device of the type mentioned in the introduction in such a way that the generation of radiation is supported with high efficiency and within a narrow and precisely definable frequency band.
  • This object is achieved according to the invention by a device for radiation absorption or radiation emission, according to claim 1.
  • the doping elements can also give the PET material the ability to at least partially conduct electrical energy.
  • the doping elements on the one hand, generate properties as absorbers for radiant energy, and on the other hand, they can generate properties as electrical conductors.
  • the PET material can be given electrically conductive properties to a certain extent.
  • PET fibers therefore conduct an electrical current when a voltage is applied. Depending on the electrical resistance of this composite material Depending on the current applied, it generates or absorbs radiation. The effects are supported depending on the previously described skin effect and by additive absorption of radiant energy. This means that the PET composite material according to the invention represents a new material alternative for radiation absorption or radiation generation to the known metal-fiber materials.
  • the mechanical properties of PET in terms of its breaking strength and dimensional stability are also used in temperature ranges of over 80°C in order to open up areas of application for the absorber material with these increased mechanical requirements.
  • a further property of the absorber material according to the invention is its property, which depends on the respective doping elements, of being at least partially electrically conductive.
  • the PET composite material represents a base material for any type of heat source
  • the physical effects of the absorption capacity and the electrical conductivity can be combined to increase the amount of heat to be released and thus increased in that in addition to the emitted heat radiation due to the radiation absorption by means of a connected to the
  • the voltage applied to the PET composite material also generates heat energy electrically as a result of the electrical resistance of the material.
  • PET composite material Another interesting application of the PET composite material is its ability to realize the magnetocaloric effect and at the same time which PET has its own improved mechanical material properties. Suitable doping elements can also be used to imprint cooling properties on the material according to the invention.
  • the elements suitable for PET doping are in particular MnFe phosphorus compounds, MnFe (As, PwGexSiz)s; FeMn-phosphorus compounds with As,Si-phosphorus - substitution if necessary combined with La(FeMnP)AlCo; Compounds with Mn-Zn are.
  • a preferred application lies in the use of the doping structural formula MnFe(As,PwGexSiz)s.
  • This compound has high cooling capabilities at temperatures of 200 to 600 K, especially at 280 to 500 K.
  • This compound shows a very strong magnetocaloric effect.
  • the use of this compound is environmentally friendly due to the fact that the environmentally problematic substances, especially the Mn molecules, are bound in the PET base matrix.
  • the material is preferably realized in a hexagonal structure of the Fe2P-.
  • the various material compositions can be produced in a ball mill and under an inert gas atmosphere.
  • an alloy of 5g FeMnPO,7GeO,3 with a critical temperature of about 350 K can be prepared by mixing the pure elements having a quality of 3N in the following quantities: FeMnP0,7GeO,3.
  • these elements are ground under a protective atmosphere until an amorphous or microcrystalline product is obtained. Depending on the characteristics of the mill, such a product can be obtained within 20 minutes to a few hours.
  • the powder is then heated in a closed ampoule in a protected atmosphere until a temperature of around 800 to 1050 degrees C is reached. This is then tempered to a temperature of around 650 degrees C.
  • the alloy crystallizes in a hexagonal Fe2P structure.
  • these elements are ground under a protective atmosphere until an amorphous or microcrystalline product is obtained. Depending on the characteristics of the mill, such a product can be obtained within 20 minutes to a few hours.
  • the powder is then heated in a closed ampoule in a protected atmosphere until a temperature of around 800 to 1050 degrees C is reached. This is then tempered to a temperature of around 650 degrees C.
  • the alloy also crystallizes in a hexagonal Fe2P structure.
  • a closed ball mill These elements are ground under a protective atmosphere until an amorphous or microcrystalline product is obtained. Depending on the characteristics of the mill, such a product can be obtained within 20 minutes to a few hours.
  • the powder is then heated in a closed ampoule in a protected atmosphere until a temperature of around 800 to 1050 degrees C is reached. This is then tempered to a temperature of around 650 degrees C.
  • the alloy also crystallizes in a hexagonal Fe2P structure.
  • a closed ball mill these elements are ground under a protective atmosphere until an amorphous or microcrystalline product is obtained. Depending on the characteristics of the mill, such a product can be obtained within 20 minutes to a few hours.
  • the powder is then protected in a closed ampoule Atmosphere heated (sintered) until a temperature of around 800 to 1050 degrees C is reached. This is then tempered to a temperature of around 650 degrees C.
  • the present invention is not limited to the embodiment described by way of example. The amounts can vary in many ways.
  • Figure 1 shows the physical effect of current displacement in the near-surface edge layers of a current-carrying conductor using a diagram, ie the equivalent conductive layer thickness ⁇ in mm of various metals over the alternating current frequency f in kH.
  • Figure 2 illustrates the absorption behavior of various atmospheric gases depending on the wavelength in a compiled representation.
  • Figure 3 shows the well-known microstructure of FeMnP0.5Si0.5.
  • Figure 4 shows a schematic diagram of the structure of Mn(CO)5J anions.
  • the charges of the mononuclear ion complex [Mn(CO)5] are compensated by tetraphenylphosphonium cations.
  • the crystal complex consisting of a centrally located Mn particle, which has five connections to one C and one O particle, is arranged in a tetrahedral shape. Typical bond lengths and bond angles between the particles are summarized in the following table: Table 15.1B.
  • Mn(CO)5J anions The structural similarities between Mn(CO)5J anions and [HMn (CO)5] can be observed.
  • the synthesis and structural analysis of the Mn(CO)5J anions confirm that the energy barrier between square pyramidal and trigonalbipyramidal arrangements of the ligands in MLS complexesis are very low. This type of complex has a stereochemically non-rigid geometry, creating, for example, a different one Counterion present can cause a change in the arrangement of the ligands. It is therefore noteworthy that despite the low energy barrier, so far only the [Mn(CO)5] anions are the only example of the presence of two geometric isomers of the [M(CO)5] n-complex. The angles within the [Mn(CO)5] anion arrangement are also listed in the above table.
  • Figure 5 shows a perspective view of the structure of [Mn3Se2(CO)9].
  • the results of an X-ray structure analysis show that crystals of [Ph4P]2[Mn3Se(CO)9] contain THF molecules in the ratio: 2:1 in addition to the mixed-valent trinuclear [Mn3Se2(CO)9]2 ion in the complex.
  • the heavy atom structure of [Mn3Se2(CO)9] is a slightly distorted square pyramid with an alternating arrangement of Mn and Se atoms in the surface region and a third Mn atom at the top.
  • the environment for each of the Mn atoms is combined by the two Se atoms and three carbon ligands.
  • the Mn atom at the top of the pyramid has a special feature in the arrangement of the carbon groups.
  • Mn(1) and Mn(2) leads to the fact that an asymmetric carbon bridge C(7) is formed between Mn(2) and M(3).
  • the electronic disparity of Mn atoms is particularly evident when considering the corresponding Mn-Se bond lengths (Mn(1) 2.458(2) or 2439(2), Mn( 2): 2407(2) and 2.402(2) Angstroms ) taken into account. This can be explained due to the different oxidation states of manganese atoms, the common mean of which is 0.67.
  • Mn(2) and Mn(3) have the oxidation state 1 and are assigned, while results for Mn(1) give a value of ⁇ O.
  • the molecule exhibits point symmetry, with the manganese centers lying in the mirror plane. If the weak interaction of the asymmetric bridge (Mn(2)-C(7) 2726(7)) is neglected, this results in a square-pyramidal geometry of three carbon and two selenium ligands surrounding all three Mn atoms. In this view, Mn(2) has a distorted octahedral ligand environment.
  • the coordinations of Fe(3) are in a 6-trigonal bipyramidal shape.
  • Fe(3) The arrangement of the carbon ligands to form Fe(3) is such that Fe(1) and Fe(2) are surrounded. They are chemically equivalent and have approximately the same length of iron-selenium bonds (Fe(1): 2.351(1) 2.359(1), Fe(2): 2.354(1) 2.358(1) Angstroms).
  • the molecular symmetry Cs with the The mirror plane now runs through the two selenium atoms and Fe(3).
  • Fe(3) has the oxidation state +2, while Fe(1) and Fe(2) formally have +1.
  • the higher oxidized metal center is stabilized by the bridge, possibly through an interaction.
  • the transition is non-equivalent.
  • the higher oxidized metal center is possibly stabilized by the bridge through an interaction.
  • the transition from the non-bridged to the bridged form is associated with a 30 degree rotation of the apical M(CO)3 to its axis of symmetry and a subsequent tilting of 15 degrees towards M(2).
  • a change from trigonal-pyramidal to square-pyramidal coordination occurs.
  • Figure 6 shows the structure of the compound [Fe3Se2(CO)9] in a perspective view in the upper figure and the structure of the compound [Mn3Se2(CO)9]2 anion in the lower figure.
  • the CO groups were not shown.
  • the planes spanning the carbon atoms of each Mn atom are indicated by solid lines.
  • a related compound with mixed metal complex [MnFe25e2(CO)9]-/3e/ was synthesized and reported to be isostructural with [Fe35e2(CO)9]/Sb/ was used.
  • the structural analysis was carried out on the basis of a disordered model in which two of the three metal centers are statistically occupied by Mn and Fe.
  • the problem of Fe/Mn distribution in the complex anion [MnFe25e2(CO)9]- is the task to achieve the results described above. This compound should be isostructural with 6.
  • the structure can be better described if one assumes the presence of an asymmetric carbon bridge.
  • the [MnFe25e2(CO)9] anion carbon bridge is therefore not found as 6, but is built more like [Mn3Se2(CO)9].
  • Figure 7 shows a perspective view of part of an alternating chain of trinuclear [Fe352(CO)9] and dinuclear [Fe2 (52) (CO) 6].
  • trinuclear [Fe352 (CO) 9] and dinuclear [Fe2 (52) (CO) 6] molecularly alternate to 3.15 angstroms, intermolecular SS bridges form infinite one-dimensional compounds. It is probably due to the disulfide group of the dinuclear complex and the resulting electron deficiency [Fe352(CO)9] and is compensated by the asymmetric carbon bridge and transferred into an electron density in a thetrinuclear component. This explains why the simultaneously occurring Mössbauer spectrum of [Fe352(CO)9](Fe2(52)(CO)6] differs significantly from that of the isolated complexes.
  • Figure 8 shows a perspective view of the superposition of the structures of [Mn3Se2(CO)9]2- (shown in bold) and [Mn3Se2(SeMe3)(CO)9]2 - (shown as a dashed line) (9), which represents a complete 2 -my carbon bridge form and illustrate these differences.
  • the position of the carbon ligand to Mn(1) and Mn(2) changes only slightly, while Mn(3) has an octahedral coordination composed of two terminal CO ligands, the 2-my carbon bridge -SeMe3 bridges and the two my-3 selenide ligands.
  • Figure 9 shows in a diagram the 1H NMR absorption behavior of Ph protons in [Ph4P]2[Mn3Se2(CO)9] (in the left part of the figure A) and of [Ph4P]2[Mn3Se2(CO)9] (in the right part of the figure B ).
  • These Heusler alloys often go through one martensitic transition between the martensitic and austenitic phases, which generally occurs due to temperature induction and is first order.
  • Ni2MnGa assemblies are ferromagnetic with a Curie temperature of 376 K and a magnetic moment of 4.17 IIB, largely confined to the Mn atoms and with a small moment of about 0.3 ILB associated with the Ni atoms .
  • the martensitic transformation temperature is close to 220 K. This martensitic transformation temperature can be easily varied to about room temperature by changing the composition of the alloy to a stoichiometric alloy.
  • a martensite phase generally accommodates the trunk associated with the transformation (that is 6.56% of c for Ni2MnGa), through the formation of twin variants.
  • Fe2P-based compounds offer the possibility of preventing ionization processes; the binary intermetallic compound Fe2Ph can be considered as a base alloy for a practical mixture of materials. This compound crystallizes in the hexagonal, non-point-symmetrical FeMn-phosphorus compound, and has all the positive properties to be used as a transponder for home cooling systems.
  • Fe occupies the 3g and 3f sides and p the lb and 2c sides. This results in a stacking of alternating P-rich and P-poor P layers. Neutron diffraction reveals that the magnetic moment of Fe on the 3g side is about 2my-B, while the moment on the 3f side is about 1my-B.
  • the hexagonal shape has poor chances of being recovered as a magnetic source through aging.
  • a major reason for the electrically conductive properties of the PET fibers due to the doping is that although the metal particles are spatially separated from one another in the dielectric support structure of the polyester, the electron clouds of the metal particles overlap one another. Embedding the doping elements in the polyester prevents decomposition processes and prevents external influences.
  • the fibers can be produced using electro-spinning processes.
  • a typical diameter of the fibers is in the range 2 ⁇ m to 6 ⁇ m .
  • the doping with the metal particles preferably takes place in a gas plasma.
  • a typical fiber length is in the range of 2cm to 4cm.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Hard Magnetic Materials (AREA)
  • Glass Compositions (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Claims (11)

  1. Dispositif pour une absorption de rayonnement ou une émission de rayonnement, le dispositif présentant au moins une fibre en matière plastique avec conductivité électrique, la matière de la fibre étant formée par une matière de base en PET ou en aramide, dans laquelle des éléments sont encastrés et les éléments présentant une taille atomique et étant pourvus d'une distance telle que des nuages d'électrons se recouvrent au moins par zones, les éléments encastrés comprenant un ou plusieurs des éléments chimiques suivants, au choix à l'état pur ou sous forme d'alliage : métaux de terres rares, en particulier le lanthane ; fer, manganèse, phosphore, silicium, germanium, zinc, fluor, arsenic, aluminium, cuivre, nickel, métaux terrestres, notamment magnésium ou calcium, et/ou métaux alcalins, notamment sodium ou potassium, le dispositif étant caractérisé en ce que les éléments encastrés sont formés par des composés de phosphore MnFe, ou les éléments encastrés sont formés par des MnFe(As,PwGexSiz)s avec x = 0,3 - 0, 7 et w inférieur ou égal à 1 - x et z = 1 - x- w, ou dans lesquels les éléments encastrés sont formés par des composés de FeMn-phosphore avec substitution de As,Si-phosphore et combinés avec La(FeMnP)AlCo, ou dans lequel les éléments encastrés sont formés par des composés comprenant du Mn-Zn, ou dans lequel les éléments encastrés sont formés par un alliage comprenant du FeMnP0,7Ge0,3 ou du FeMnP0,5Ge0,5 ou du Fe0,86Mn1,14P0,5Si0,35Ge0,15.
  2. Dispositif selon la revendication 1, dans lequel un diamètre d'une fibre est de l'ordre de 2 µm à 6 µm et/ou une longueur d'une fibre est de l'ordre de 2 cm à 4 cm.
  3. Dispositif selon l'une quelconque des revendications précédentes, dans lequel les éléments encastrés ont été fabriqués dans un broyeur à billes et sous atmosphère protectrice.
  4. Dispositif selon l'une quelconque des revendications précédentes, dans lequel les éléments encastrés ont été dopés dans la matière fibreuse dans un plasma gazeux.
  5. Dispositif selon l'une quelconque des revendications précédentes, dans lequel les éléments encastrés ont été chauffés dans une ampoule fermée sous atmosphère protégée, notamment jusqu'à atteindre une température comprise entre 800 et 1050 degrés Celsius, les éléments encastrés ayant notamment ensuite été recuits à une température d'environ 650 degrés Celsius.
  6. Procédé de fabrication d'un générateur de rayonnement comprenant au moins une fibre en matière plastique a conductivité électrique, ledit procédé comprenant: la formation de la matière fibreuse par une matière de base en PET ou en aramide, l'intercalation d'éléments dans la matière fibreuse, les éléments intercalés ayant une taille atomique, et l'intercalation des éléments de telle sorte que les éléments intercalés soient espacés les uns des autres de telle sorte que des nuages d'électrons se recouvrent au moins par zones, les éléments intercalés comprenant un ou plusieurs des éléments chimiques suivants, au choix à l'état pur ou sous forme d'alliage : Métaux de terres rares, en particulier le lanthane ; fer, manganèse, phosphore, silicium, germanium, zinc, fluor, arsenic, aluminium, cuivre, nickel, métaux terrestres, notamment magnésium ou calcium et/ou métaux alcalins, notamment sodium ou potassium, le procédé étant caractérisé en ce que les éléments encastrés sont constitués par des composés de phosphore MnFe, ou en ce que les éléments encastrés sont constitués par des MnFe(As,PwGexSiz)s avec x = 0,3 - 0, 7 et w inférieur ou égal à 1 - x et z = 1 - x- w, ou dans lesquels les éléments encastrés sont formés par des composés de FeMn-phosphore avec substitution de As,Si-phosphore et combinés avec La(FeMnP)AlCo, ou dans lequel les éléments encastrés sont formés par des composés comprenant du Mn-Zn, ou dans lequel les éléments encastrés sont formés par un alliage comprenant du FeMnP0,7Ge0,3 ou du FeMnP0,5Ge0,5 ou du Fe0,86Mn1,14P0,5Si0,35Ge0,15.
  7. Procédé selon la revendication 6, dans lequel un diamètre d'une fibre est de l'ordre de 2 µm à 6 µm et/ou une longueur d'une fibre est de l'ordre de 2 cm à 4 cm.
  8. Procédé selon la revendication 6 ou 7, qui comprend: la fabrication des éléments encastrés dans un broyeur à billes et sous atmosphère protectrice.
  9. Procédé selon l'une quelconque des revendications 6 à 8, qui comprend: dopage des éléments encastrés dans la matière fibreuse dans un plasma gazeux.
  10. Procédé selon l'une quelconque des revendications 6 à 9, qui comprend: chauffer les éléments encastrés dans une ampoule fermée sous atmosphère protégée, notamment jusqu'à une température comprise entre 800 et 1050 degrés Celsius.
  11. Procédé selon la revendication 10, dans lequel les éléments encastrés sont recuits après chauffage à une température d'environ 650 degrés Celsius.
EP18191212.2A 2014-03-26 2015-03-26 Procédé de production un rayonnement dans une zone infrarouge Active EP3471507B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102014004595.1A DE102014004595A1 (de) 2014-03-26 2014-03-26 Verfahren zur Erzeugung einer Strahlung im Infrarot-Bereich
EP15731492.3A EP3123817B1 (fr) 2014-03-26 2015-03-26 Procede de production d'un rayonnement infrarouge
PCT/DE2015/000154 WO2015144122A1 (fr) 2014-03-26 2015-03-26 Procédé pour générer un rayonnement dans le domaine infrarouge

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP15731492.3A Division EP3123817B1 (fr) 2014-03-26 2015-03-26 Procede de production d'un rayonnement infrarouge

Publications (3)

Publication Number Publication Date
EP3471507A1 EP3471507A1 (fr) 2019-04-17
EP3471507C0 EP3471507C0 (fr) 2024-03-13
EP3471507B1 true EP3471507B1 (fr) 2024-03-13

Family

ID=53488085

Family Applications (2)

Application Number Title Priority Date Filing Date
EP15731492.3A Active EP3123817B1 (fr) 2014-03-26 2015-03-26 Procede de production d'un rayonnement infrarouge
EP18191212.2A Active EP3471507B1 (fr) 2014-03-26 2015-03-26 Procédé de production un rayonnement dans une zone infrarouge

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP15731492.3A Active EP3123817B1 (fr) 2014-03-26 2015-03-26 Procede de production d'un rayonnement infrarouge

Country Status (8)

Country Link
EP (2) EP3123817B1 (fr)
CY (1) CY1121013T1 (fr)
DE (1) DE102014004595A1 (fr)
DK (1) DK3123817T3 (fr)
PL (1) PL3123817T3 (fr)
RS (1) RS58209B1 (fr)
TR (1) TR201819084T4 (fr)
WO (1) WO2015144122A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060000823A1 (en) * 2003-11-19 2006-01-05 Surgrx, Inc. Polymer compositions exhibiting a PTC property and methods of fabrication
WO2008064215A2 (fr) * 2006-11-20 2008-05-29 Sabic Innovative Plastics Ip Bv Compositions électroconductrices
WO2009133048A1 (fr) * 2008-04-28 2009-11-05 Basf Se Corps moulé poreux à cellules ouvertes pour échangeurs thermiques
EP2294253B1 (fr) * 2008-07-03 2011-11-02 Arkema France Procede de fabrication de fibres conductrices composites, fibres obtenues par le procede et utilisation de telles fibres

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5840425A (en) * 1996-12-06 1998-11-24 Basf Corp Multicomponent suffused antistatic fibers and processes for making them
DE102011109578B4 (de) * 2011-08-05 2015-05-28 Heraeus Noblelight Gmbh Verfahren zur Herstellung eines elektrisch leitenden Materials, elektrisch leitendes Material sowie Strahler mit elektrisch leitendem Material
DE202012009083U1 (de) * 2012-09-21 2013-01-30 Anke Hestermann de Boer Sub-molekularen Flächenheizungssystem, basierend auf einen Ferro magnetischer Kalorischer Gedächtnis Legierung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060000823A1 (en) * 2003-11-19 2006-01-05 Surgrx, Inc. Polymer compositions exhibiting a PTC property and methods of fabrication
WO2008064215A2 (fr) * 2006-11-20 2008-05-29 Sabic Innovative Plastics Ip Bv Compositions électroconductrices
WO2009133048A1 (fr) * 2008-04-28 2009-11-05 Basf Se Corps moulé poreux à cellules ouvertes pour échangeurs thermiques
EP2294253B1 (fr) * 2008-07-03 2011-11-02 Arkema France Procede de fabrication de fibres conductrices composites, fibres obtenues par le procede et utilisation de telles fibres

Also Published As

Publication number Publication date
WO2015144122A1 (fr) 2015-10-01
DE102014004595A1 (de) 2015-10-01
EP3471507C0 (fr) 2024-03-13
DK3123817T3 (en) 2019-01-07
EP3123817A1 (fr) 2017-02-01
TR201819084T4 (tr) 2019-01-21
RS58209B1 (sr) 2019-03-29
PL3123817T3 (pl) 2019-03-29
EP3471507A1 (fr) 2019-04-17
EP3123817B1 (fr) 2018-09-12
CY1121013T1 (el) 2019-12-11

Similar Documents

Publication Publication Date Title
DE2851388C2 (fr)
DE60036586T2 (de) Hartmagnetisches interstitielles Material mit mehreren Elementen und Herstellungsverfahren eines magnetischen Pulvers und Magnet daraus
EP3008221B1 (fr) Matériau magnétique, son utilisation et procédé pour le produire
DE102013103896A1 (de) Verfahren zum Herstellen eines thermoelektrischen Gegenstands für eine thermoelektrische Umwandlungsvorrichtung
WO2011020826A1 (fr) Matériaux magnétocaloriques polycristallins
EP2457239A1 (fr) Utilisation de matériaux diamagnétiques pour concentrer des lignes de champ magnétiques
EP3123483A2 (fr) Fibre en plastique présentant une conductivité électrique
DE102012207308A1 (de) Magnetisches Material, seine Verwendung und Verfahren zu dessen Herstellung
DE2507105C2 (de) Verfahren zur Herstellung von permanentmagnetischem Material, enthaltend Samarium, Kobalt, Kupfer und gegebenenfalls Eisen
DE112019006226T5 (de) Thermoelektrisches material und verfahren zu seiner herstellung
EP3471507B1 (fr) Procédé de production un rayonnement dans une zone infrarouge
DE2365178C2 (de) Verfahren zur Herstellung von magnetischen Materialien mit Austauschanisotropieverhalten
DE69600811T2 (de) Einkristall auf Manganoxidbasis mit laminarer Struktur und Verfahren zu seiner Herstellung.
DE4126893A1 (de) Magnetmaterial auf basis von sm-fe-n und verfahren zu dessen herstellung
DE102015206326A1 (de) Weichmagnetischer Verbundwerkstoff und entsprechende Verfahren zum Herstellen eines weichmagnetischen Verbundwerkstoffs
EP0304647B1 (fr) Procédé de fabrication de bandes et de feuilles supraconductrices ductiles d'alliage céramique
DE2121452B2 (de) Verfahren zur Herstellung einer gesinterten Dauermagnetlegierung
DE102015015255A1 (de) Faser mit elektrischer Leitfähigkeit
DE102015015254A1 (de) Vorrichtung zur Kühlung
DE102015015240A1 (de) Vorrichtung zur Kühlung
DE102015015252A1 (de) Vorrichtung zur Erzeugung von Wärmestrahlung
DE102014004594A1 (de) Vorrichtung zur Erzeugung von Wärmestrahlung
DE1533206C (de) Verwendung von Verbindungen vom Typ Mn tief 3 GaC als ferromagnetisches Arbeitsmittel zur Energieumwandlung
DE102022108790A1 (de) Elektromagnetische Wellen dämpfende Dispersion, Halbzeug, Herstellverfahren und Verwendung
DE102012220306A1 (de) Werkstoff mit einer Halb-Heusler-Legierung und Verfahren zum Herstellen eines solchen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180828

AC Divisional application: reference to earlier application

Ref document number: 3123817

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EDD INNOVATIONS GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210204

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231018

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AC Divisional application: reference to earlier application

Ref document number: 3123817

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015016793

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

U01 Request for unitary effect filed

Effective date: 20240406

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20240411

U20 Renewal fee paid [unitary effect]

Year of fee payment: 10

Effective date: 20240527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240313

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240613