EP3465056A1 - Heat exchanger tube - Google Patents

Heat exchanger tube

Info

Publication number
EP3465056A1
EP3465056A1 EP17725859.7A EP17725859A EP3465056A1 EP 3465056 A1 EP3465056 A1 EP 3465056A1 EP 17725859 A EP17725859 A EP 17725859A EP 3465056 A1 EP3465056 A1 EP 3465056A1
Authority
EP
European Patent Office
Prior art keywords
rib
tube
heat exchanger
ribs
projections
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP17725859.7A
Other languages
German (de)
French (fr)
Other versions
EP3465056B1 (en
Inventor
Achim Gotterbarm
Ronald Lutz
Jean El Hajal
Manfred Knab
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wieland Werke AG
Original Assignee
Wieland Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wieland Werke AG filed Critical Wieland Werke AG
Publication of EP3465056A1 publication Critical patent/EP3465056A1/en
Application granted granted Critical
Publication of EP3465056B1 publication Critical patent/EP3465056B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • F28F1/16Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means being integral with the element, e.g. formed by extrusion
    • F28F1/18Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means being integral with the element, e.g. formed by extrusion the element being built-up from finned sections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/34Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely
    • F28F1/36Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely the means being helically wound fins or wire spirals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • F28F1/422Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element with outside means integral with the tubular element and inside means integral with the tubular element

Definitions

  • Heat transfer tube The present invention relates to a heat transfer tube according to the preamble of claim 1.
  • Heat transfer occurs in many areas of refrigeration and air conditioning technology as well as in process and energy technology.
  • tube bundle heat exchangers are often used in these areas.
  • a liquid flows on the inner side of the pipe, which is cooled or heated depending on the direction of the heat flow.
  • the heat is released or withdrawn from the medium located on the tube outside.
  • structured tubes are used instead of smooth tubes.
  • the structures improve the heat transfer.
  • the heat flow density is thereby increased and the heat exchanger can be made more compact.
  • the heat flux density can be maintained and the driving temperature difference lowered, allowing more energy efficient heat transfer.
  • One or both sides structured heat exchanger tubes for tube bundle heat exchangers usually have at least one structured area and smooth end pieces and possibly smooth spacers.
  • the smooth end or intermediate pieces limit the structured areas.
  • the outer diameter of the structured regions should not be greater than the outer diameter of the smooth end and intermediate pieces.
  • integrally rolled finned tubes are often used. Integrally rolled finned tubes are understood to mean finned tubes in which the fins have been formed from the material of the wall of a smooth tube.
  • finned tubes on the inside of the tube have a multiplicity of axially parallel or helically encircling ribs which increase the internal surface and improve the heat transfer coefficient on the inside of the tube.
  • the finned tubes On the outside, the finned tubes have annular or helical circumferential ribs.
  • many possibilities have been developed, depending on the application to further increase the heat transfer on the outside of integrally rolled finned tubes by providing the ribs on the outside of the tube with further structural features.
  • the heat transfer coefficient is significantly increased in the case of condensation of refrigerants on the outside of the pipe when the rib flanks are provided with additional convex edges.
  • the axially parallel or helically encircling inner ribs can be provided with grooves, as described in the document DE 101 56 374 C1 and DE 10 2006 008 083 B4. It is important that the dimensions of the inner and outer structures of the finned tube can be adjusted independently of one another by the use of profiled mandrels disclosed therein to produce the inner fins and grooves. This allows the structures on the outside and inside to be adapted to the respective requirements and thus the tube can be designed.
  • the object of the present invention is to develop inner or outer structures of heat exchanger tubes of the aforementioned type so that a comparison with already known pipes, a further increase in performance is achieved.
  • the invention includes a heat exchanger tube having a tube longitudinal axis, a tube wall, a tube outside and a tube inside, wherein formed on the tube outside and / or inside tube from the tube wall continuously extending, axially parallel or helically encircling ribs and continuously formed between each adjacent ribs extending primary grooves ,
  • the ribs along the rib run are subdivided into periodically repeating rib sections which are divided into a plurality of projections having a protrusion height, the protrusions being formed by cutting the ribs with a cutting depth transverse to the rib run are formed by rib segments and by raising the rib segments with a main orientation along the rib course between primary grooves.
  • the structured region can, in principle, be formed on the outside of the pipe or on the inside of the pipe.
  • the rib sections according to the invention inside the tube.
  • the structures described can be used for both evaporator and condenser tubes.
  • the protrusion height is expediently defined as the dimension of a protrusion in the radial direction.
  • the projection height is then in the radial direction, the distance from the pipe wall to the farthest from the pipe wall point of the projection.
  • the cutting depth also called notch depth, is the distance measured in the radial direction, starting from the original rib tip to the lowest point of the notch.
  • the notch depth is the difference between the original rib height and the residual rib height remaining at the lowest point of a notch.
  • the invention is based on the consideration that the rib sections can in principle be formed on the outside of the pipe or the pipe inside. However, it is preferred to arrange the rib sections according to the invention inside the tube.
  • the structures described can be used for both evaporator and condenser tubes.
  • the rib sections according to the invention are particularly suitable for internal structures.
  • the inner surface of the tube is enlarged with a plurality of projections, which are divided into rib sections.
  • the tube-side heat transfer resistance is significantly reduced and the heat transfer coefficient is increased.
  • the projections create additional Routes for fluid flow within the tube and thereby increase the turbulence of the heat transfer medium flowing within the tube. This measure reduces the boundary layer built up from the fluid near the inner surface of the tube.
  • the protrusions provide a multiple of additional surface area for additional heat exchange.
  • Experiments show that the performance of tubes with the specially designed rib sections of this invention is significantly increased.
  • the process-side structuring of the heat exchanger tube according to the invention can be produced using a tool which has already been described in DE 603 17 506 T2.
  • the disclosure of this document DE 603 17 506 12 is fully incorporated into the present documents.
  • the projection height and the distance can be made variable and individually adapted to the requirements, for example, the viscosity of the liquid or the flow rate.
  • the tool used has a cutting edge for cutting through the ribs on the inner surface of the tube to provide rib segments and a lifting edge for raising the rib segments to form the protrusions.
  • the projections are formed without removal of metal from the inner surface of the tube.
  • the protrusions on the inner surface of the tube may be formed in the same or different processing as the formation of the ribs.
  • the solution according to the invention in which the ribs are divided into rib portions which are divided into a plurality of protrusions with a protrusion height, causes the protrusions to deviate from the controlled order.
  • This results in an optimized heat transfer at the lowest possible pressure loss, since the fluid boundary layer, which is a hindrance to a good heat transfer, is interrupted by additionally generated turbulence.
  • An interruption due to the fragmentation of the projections additionally leads to an increase in the turbulence and to a fluid exchange over the course of the primary rib, which likewise causes an interruption of the boundary layer.
  • the structured region can, in principle, be formed on the outside of the pipe or on the inside of the pipe.
  • the structures described can be used for both evaporator and condenser tubes.
  • a homogeneous arrangement of the projections can afford this targeted interruption of the boundary layer only conditionally.
  • the shapes, heights and arrangement of the distances can be adjusted and optimized by adjusting the cutting blades or cutting geometries and by individually adapted primary rib shapes and geometries.
  • the shape of the projections can be adapted individually and thus the interruption of the boundary layer can be carried out efficiently.
  • the rib portions of the ribs measured at a pitch angle ß secondary grooves measured against the tube longitudinal axis may be formed from the ribs.
  • the secondary grooves with respect to the inner ribs at a pitch angle of at least 10 ° and at most 80 ° extend.
  • the depth of the secondary grooves may vary and be at least 20% of the original rib height of the inner ribs.
  • rib sections spaced apart from each other on the inner side of the tube form structural elements which are similar to truncated pyramids.
  • the projections have alternately changing cutting depths through a rib.
  • the height of the individual projections can be adapted and vary with each other, thus immersing the laminar flow through different rib heights into the different boundary layers of the flow up to the flow core and dissipating the heat to the pipe wall.
  • the cutting or notching depth can extend through the entire original rib into the core wall.
  • An alternating notch or cutting depth is synonymous with the fact that the respective lowest point of the notches alternates and consequently changes the distance to the pipe wall. It is also synonymous that the lowest point of the Notches - here called Kerbground - alternately at intervals from the tube longitudinal axis via successive notches in the rib direction.
  • the notches adjacent to at least one projection in the notch depth can vary by at least 10%. More preferably, the variation of the notch depth can be at least 20% or even 50%.
  • At least one projection can protrude from the main alignment along the rib course over the primary groove.
  • the rib portions of the ribs along the rib course may be formed elongated.
  • the ribs are divided into rib portions which are divided into a sufficient plurality of protrusions with a protrusion height.
  • a rib section comprises at least 3, preferably at least 4 protrusions.
  • the rib portions may be spaced from each other, thereby forming passage points for the fluid. This in turn results in an optimized heat transfer at the lowest possible pressure loss, since the fluid boundary layer, which is a hindrance to a good heat transfer, is interrupted by additionally generated turbulence. An interruption additionally leads to an increase in the turbulence and to a fluid exchange over the course of the primary rib, which likewise causes an interruption of the boundary layer.
  • a plurality of projections at the remote from the pipe wall location have a parallel to the tube longitudinal axis surface.
  • the projections in Projecting height, shape and orientation vary with each other to selectively adjust the height of the individual projections and to each other to dive so particularly in laminar flow through different rib heights in the different boundary layers of the flow up to the flow core and derive the heat to the pipe wall.
  • a projection on the side facing away from the tube wall side have a pointed tip. This leads to condenser tubes with the use of two-phase fluids for an optimized condensation at the tip of the projection.
  • a projection on the side facing away from the tube wall side have a curved tip whose local radius of curvature is reduced starting from the pipe wall with increasing distance.
  • the projections may have a different shape and / or height of a pipe beginning along the pipe longitudinal axis towards the opposite pipe end.
  • the advantage here is a targeted adjustment of the heat transfer from the pipe beginning to pipe end.
  • the tips of at least two projections along touching or crossing each other over the course of the rib which is especially advantageous in reversible operation during phase change, since the projections for the liquefaction project far out of the condensate and form a kind of cavity for the evaporation.
  • the tips of at least two projections over the primary groove can touch or cross one another. This is particularly advantageous in reversible operation during phase change, since the projections for the liquefaction project far out of the condensate and form a type of cavity for the evaporation.
  • At least one of the projections may be deformed in such a way that its tip touches the tube inner side or the tube outer side. This is advantageous in particular in reversible operation during phase change, since the projections for liquefaction form a type of cavity and thus nucleation sites for the evaporation.
  • the protrusions may be formed of ribs, wherein at least one of the ribs in at least one of rib height, fin distance, fin tip, fin clearance, fin opening angle, and twist varies from each other.
  • FIG. 1 shows schematically an oblique view of a pipe section with the structure according to the invention on the inside of the pipe;
  • FIG. 2 schematically shows a further oblique view of a pipe cutout with the inner structure according to the invention with secondary groove;
  • FIG. 3 shows schematically a rib section with different notch depth;
  • Fig. 4 shows schematically a rib portion with a collar over the primary groove
  • Fig. 5 shows schematically a rib portion with a rib direction at the
  • Fig. 6 shows schematically a rib portion with a projection with a parallel
  • FIG. 7 shows schematically a rib section with two projections which contact one another along the rib course
  • FIG. 8 shows schematically a rib section with two projections which cross each other along the course of the rib
  • Fig. 10 shows schematically a rib section with two mutually crossing over the primary groove over projections.
  • Fig. 1 shows schematically an oblique view of a pipe section of the heat exchanger tube 1 with the structure according to the invention on the tube inside 22.
  • the heat exchanger tube 1 has a tube wall 2, a tube outside 21 and a tube inside 22.
  • On the tube inside 22 are from the tube wall 2 continuously extending, helical encircling ribs 3 shaped.
  • the tube longitudinal axis A runs opposite the ribs at a certain angle. Between each adjacent ribs 3 continuously extending primary grooves 4 are formed.
  • the ribs 3 are divided along the rib course into periodically repeating rib sections 31, which are divided into a plurality of projections 6.
  • the projections 6 are formed by cutting the ribs 3 with a cutting depth transverse to the rib run to form rib segments and lifting the rib segments with a primary orientation along the rib run between primary grooves 4.
  • rib portions 31 of the ribs 3 along the rib course are formed elongated.
  • a rib section 31 is delimited by an uncut portion of a rib 3 with respect to the following.
  • the original height of the primary rib 3 may be partially preserved.
  • FIG. 2 shows schematically a further oblique view of a tubular section of the heat exchanger tube 1 with the structure according to the invention on the inside of the tube 22 with secondary groove 5.
  • the ribs 3 are in turn subdivided along the rib course into periodically repeating rib sections 31, which are divided into a plurality of projections 6 ,
  • rib portions 31 of the ribs 3 are again elongated along the rib course.
  • a rib portion 31 is opposite to the following by a running at a pitch angle ß secondary groove 5 measured against the pipe axis A from.
  • the secondary groove 5 may have a low notch depth or, as in the exemplary embodiment shown, come close to the primary notch with a large notch depth.
  • Fig. 3 shows schematically a rib portion 31 with different cutting or notch depth t- ⁇ , t 2 , t 3rd In the context of the invention, the terms “cutting depth” and "notching depth” represent the same terminology.
  • the projections 6 have alternating cutting depths ti, t 2 , t 3 through a rib 3.
  • the protrusion height h is shown in FIG. 2 as the dimension of a protrusion in the radial direction.
  • the projection height h is then in the radial direction, the distance from the pipe wall to the farthest from the pipe wall point of the projection.
  • the notch depth ti, t 2] t 3 is the distance measured in the radial direction, starting from the original rib tip to the lowest point of the notch. In other words.
  • the notch depth is the difference between the original rib height and the residual rib height remaining at the lowest point of a notch.
  • FIG. 4 schematically shows a rib section 31 with a structural element 6 projecting over the primary groove 4. This is a projection 6 which extends over the primary groove 4 from the main alignment with the tip 62 along the rib course. The further the protrusion is formed, the more intensively the formed boundary layer of the fluid in the rib space is disturbed, which causes an improved heat transfer.
  • FIG. 5 schematically shows a rib portion 31 with a projection 6 which is curved in the rib direction at the tip 62.
  • the projection 6 has a changing curvature profile at the curved tip 62.
  • the local radius of curvature decreases starting from the pipe wall with increasing distance.
  • the radius of curvature decreases along the line indicated by the points P1, P2, P3 to the tip 62.
  • This has the advantage that the condensate formed at the tip 62 is transported faster in two-phase fluids by the increasing convex curvature towards the rib foot. This optimizes the heat transfer during liquefaction.
  • FIG. 6 schematically shows a rib section 31 with a projection 6 with a parallel surface 61 at the point furthest away from the tube wall in the region of the tip 62.
  • Fig. 7 shows schematically a rib section 31 with two projections 6 touching each other along the rib run. Furthermore, Fig. 8 shows schematically a rib section 31 with two projections 6 crossing each other along the course of the ribs. Fig. 9 also schematically shows a rib section 31 with two over the primary groove 4 of time mutually touching projections. FIG. 10 schematically shows a rib section 31 with two projections 6 which mutually cross over the primary groove 4.
  • FIGS. 7 to 10 it is particularly advantageous in reversible operation in the case of two-phase fluids that they form a type of cavity for the evaporation.
  • the cavities of this special type form the starting points for bubble nuclei of an evaporating fluid.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

The invention relates to heat exchanger tube (1) having a longitudinal tube axis (A), a tube wall (2), an outer tube face (21) and an inner tube face (22); axially parallel or helically circumferential continuous fins (3) are formed from the tube wall on the outer tube face (21) and/or inner tube face (22), and continuous primary grooves (4) are formed between adjacent fins (3). According to the invention, the fins (3) are subdivided into periodically repeated fin sections (31) along the extension of the fins, and said fin sections (31) are subdivided into a plurality of projections (6) which have a certain height; said projections (6) are formed between primary grooves (4) by making cuts into the fins (3) at a cutting depth transversely to the extension of the fins such that fin segments are created, and by raising the fin segments in a main direction along the extension of the ribs.

Description

Beschreibung  description
Wärmeübertragerrohr Die vorliegende Erfindung betrifft ein Wärmeübertragerrohr gemäß dem Oberbegriff des Anspruchs 1 . Heat transfer tube The present invention relates to a heat transfer tube according to the preamble of claim 1.
Wärmeübertragung tritt in vielen Bereichen der Kälte- und Klimatechnik sowie in der Prozess- und Energietechnik auf. Zur Wärmeübertragung werden in diesen Gebieten häufig Rohrbündelwärmeaustauscher eingesetzt. In vielen Anwendungen strömt hierbei auf der Rohrinnenseite eine Flüssigkeit, die abhängig von der Richtung des Wärmestroms abgekühlt oder erwärmt wird. Die Wärme wird an das sich auf der Rohraußenseite befindende Medium abgegeben oder diesem entzogen. Es ist allgemein bekannt, dass in Rohrbündelwärmeaustauschern anstelle von Glattrohren strukturierte Rohre eingesetzt werden. Durch die Strukturen wird der Wärmedurchgang verbessert. Die Wärmestromdichte wird dadurch erhöht und der Wärmeaustauscher kann kompakter gebaut werden. Alternativ kann die Wärmestromdichte beibehalten und die treibende Temperaturdifferenz erniedrigt werden, wodurch eine energieeffizientere Wärmeübertragung möglich ist. Heat transfer occurs in many areas of refrigeration and air conditioning technology as well as in process and energy technology. For heat transfer tube bundle heat exchangers are often used in these areas. In many applications, a liquid flows on the inner side of the pipe, which is cooled or heated depending on the direction of the heat flow. The heat is released or withdrawn from the medium located on the tube outside. It is well known that in tube bundle heat exchangers structured tubes are used instead of smooth tubes. The structures improve the heat transfer. The heat flow density is thereby increased and the heat exchanger can be made more compact. Alternatively, the heat flux density can be maintained and the driving temperature difference lowered, allowing more energy efficient heat transfer.
Ein- oder beidseitig strukturierte Wärmeübertragerrohre für Rohrbündelwärmeaustauscher besitzen üblicherweise mindestens einen strukturierten Bereich sowie glatte Endstücke und eventuell glatte Zwischenstücke. Die glatten End- oder Zwischenstücke begrenzen die strukturierten Bereiche. Damit das Rohr problemlos in den Rohrbündelwärmeaustauscher eingebaut werden kann, sollte der äußere Durchmesser der strukturierten Bereiche nicht größer sein als der äußere Durchmesser der glatten End- und Zwischenstücke. Als strukturierte Wärmeübertragerrohre werden häufig integral gewalzte Rippenrohre verwendet. Unter integral gewalzten Rippenrohren werden berippte Rohre verstanden, bei denen die Rippen aus dem Material der Wandung eines Glattrohres geformt wurden. In vielen Fällen besitzen Rippenrohre auf der Rohrinnenseite eine Vielzahl von achsparallelen oder schraubenlinienförmig umlaufenden Rippen, die die innere Oberfläche vergrößern und den Wärmeübergangskoeffizient auf der Rohrinnenseite verbessern. Auf ihrer Außenseite besitzen die Rippenrohre ring- oder schraubenförmig umlaufende Rippen. In der Vergangenheit wurden viele Möglichkeiten entwickelt, je nach Anwendung den Wärmeübergang auf der Außenseite von integral gewalzten Rippenrohren weiter zu steigern, indem die Rippen auf der Rohraußenseite mit weiteren Strukturmerkmalen versehen werden. Wie beispielsweise aus der Druckschrift US 5,775,41 1 bekannt, wird bei Kondensation von Kältemitteln auf der Rohraußenseite der Wärmeüber- gangskoeffizient deutlich erhöht, wenn die Rippenflanken mit zusätzlichen konvexen Kanten versehen werden. Bei Verdampfung von Kältemitteln auf der Rohraußenseite hat es sich als leistungssteigernd erwiesen, die zwischen den Rippen befindlichen Kanäle teilweise zu verschließen, so dass Hohlräume entstehen, die durch Poren oder Schlitze mit der Umgebung verbunden sind. Wie aus zahlreichen Druckschriften bereits bekannt, werden derartige, im Wesentlichen geschlossene Kanäle durch Umbiegen oder Umlegen der Rippe (US 3,696,861 , US 5,054,548), durch Spalten und Stauchen der Rippe (DE 2 758 526 C2, US 4,577,381 ) und durch ein Kerben und Stauchen der Rippe (US 4,660,630, EP 0 713 072 B1 , US 4,216,826) erzeugt. Die vorstehend genannten Leistungsverbesserungen auf der Rohraußenseite haben zur Folge, dass der Hauptanteil des gesamten Wärmeübergangswiderstands auf die Rohrinnenseite verschoben wird. Dieser Effekt tritt insbesondere bei kleinen Strömungsgeschwindigkeiten auf der Rohrinnenseite, wie beispielsweise beim Teillastbetrieb, auf. Um den gesamten Wärmeübergangswiderstand signifikant zu reduzieren, ist es notwendig, den Wärmeübergangskoeffizient auf der Rohrinnen- seite weiter zu erhöhen. One or both sides structured heat exchanger tubes for tube bundle heat exchangers usually have at least one structured area and smooth end pieces and possibly smooth spacers. The smooth end or intermediate pieces limit the structured areas. In order for the tube to be easily installed in the shell and tube heat exchanger, the outer diameter of the structured regions should not be greater than the outer diameter of the smooth end and intermediate pieces. As a structured heat exchanger tubes integrally rolled finned tubes are often used. Integrally rolled finned tubes are understood to mean finned tubes in which the fins have been formed from the material of the wall of a smooth tube. In many cases, finned tubes on the inside of the tube have a multiplicity of axially parallel or helically encircling ribs which increase the internal surface and improve the heat transfer coefficient on the inside of the tube. On the outside, the finned tubes have annular or helical circumferential ribs. In the past, many possibilities have been developed, depending on the application to further increase the heat transfer on the outside of integrally rolled finned tubes by providing the ribs on the outside of the tube with further structural features. As is known, for example, from the document US Pat. No. 5,775,411, the heat transfer coefficient is significantly increased in the case of condensation of refrigerants on the outside of the pipe when the rib flanks are provided with additional convex edges. When evaporating refrigerants on the outside of the pipe, it has proven to be performance-enhancing to partially close the channels located between the ribs so that cavities are created which are connected to the environment through pores or slots. As already known from numerous publications, such substantially closed channels are formed by bending or flipping the rib (US 3,696,861, US 5,054,548), by splitting and upsetting the rib (DE 2 758 526 C2, US 4,577,381) and by notching and upsetting rib (US 4,660,630, EP 0 713 072 B1, US 4,216,826). The above-mentioned performance improvements on the tube outside have the consequence that the majority of the total heat transfer resistance is shifted to the tube inside. This effect occurs in particular at low flow velocities on the inside of the pipe, such as during partial load operation, on. In order to significantly reduce the overall heat transfer resistance, it is necessary to increase the heat transfer coefficient on the inner tube continue to increase page.
Um den Wärmeübergang der Rohrinnenseite zu erhöhen, können die achsparallelen oder schraubenlinienförmig umlaufenden Innenrippen mit Nuten versehen werden, wie es in der Druckschrift DE 101 56 374 C1 und DE 10 2006 008 083 B4 beschrieben ist. Hierbei ist von Bedeutung, dass durch die dort offen gelegte Verwendung von profilierten Walzdornen zur Erzeugung der Innenrippen und Nuten die Abmessungen der Innen- und der Außenstruktur des Rippenrohres voneinander unabhängig eingestellt werden können. Dadurch können die Strukturen auf der Außen- und Innenseite auf die jeweiligen Anforderungen angepasst und so das Rohr gestaltet werden. In order to increase the heat transfer of the pipe inside, the axially parallel or helically encircling inner ribs can be provided with grooves, as described in the document DE 101 56 374 C1 and DE 10 2006 008 083 B4. It is important that the dimensions of the inner and outer structures of the finned tube can be adjusted independently of one another by the use of profiled mandrels disclosed therein to produce the inner fins and grooves. This allows the structures on the outside and inside to be adapted to the respective requirements and thus the tube can be designed.
Vor diesem Hintergrund besteht die Aufgabe der vorliegenden Erfindung darin, Innen- bzw. Außenstrukturen von Wärmeübertragerrohren der vorgenannten Art so weiterzubilden, dass eine gegenüber bereits bekannten Rohre eine weitere Leistungssteigerung erzielt wird. Against this background, the object of the present invention is to develop inner or outer structures of heat exchanger tubes of the aforementioned type so that a comparison with already known pipes, a further increase in performance is achieved.
Die Erfindung wird durch die Merkmale des Anspruchs 1 wiedergegeben. Die weiteren rückbezogenen Ansprüche betreffen vorteilhafte Aus- und Weiterbildungen der Erfindung. The invention is represented by the features of claim 1. The other dependent claims relate to advantageous embodiments and further developments of the invention.
Die Erfindung schließt ein Wärmeübertragerrohr mit einer Rohrlängsachse, einer Rohrwand, einer Rohraußenseite und einer Rohrinnenseite ein, wobei auf der Rohraußenseite und/oder Rohrinnenseite aus der Rohrwand kontinuierlich verlaufende, achsparallele oder helixförmig umlaufende Rippen geformt und zwischen jeweils benachbarten Rippen sich kontinuierlich erstreckende Primärnuten gebildet sind. Erfindungsgemäß sind die Rippen entlang dem Rippenverlauf in sich periodisch wiederholende Rippenabschnitte unterteilt, die in eine Vielzahl von Vorsprüngen mit einer Vorsprungshöhe zerteilt sind, wobei die Vorsprünge durch Schneiden der Rippen mit einer Schneidtiefe quer zum Rippenverlauf zur Bildung von Rippensegmenten und durch Anheben der Rippensegmente mit einer Hauptausrichtung entlang dem Rippenverlauf zwischen Primärnuten ausgeformt sind. Hierbei kann der strukturierte Bereich prinzipiell auf der Rohraußenseite bzw. der Rohrinnenseite ausgeformt sein. Bevorzugt ist allerdings, die erfindungsgemäßen Rippenabschnitte im Rohrinneren anzuordnen. Die beschriebenen Strukturen lassen sich sowohl für Verdampfer- als auch für Kondensatorrohre einsetzen. Die Vorsprungshöhe wird zweckmäßigerweise als die Abmessung eines Vorsprungs in radialer Richtung definiert. Die Vorsprungshöhe ist dann in radialer Richtung die Strecke ausgehend von der Rohrwand bis zur von der Rohrwand entferntesten Stelle des Vorsprungs. Die Schneidtiefe, auch Kerbtiefe genannt, ist die in radialer Richtung gemessene Strecke ausgehend von der originären Rippenspitze bis zur tiefsten Stelle der Kerbe. Mit anderen Worten: Die Kerbtiefe ist die Differenz der originären Rippenhöhe und der an der tiefsten Stelle einer Kerbe verbleibenden Restrippenhöhe. Die Erfindung geht dabei von der Überlegung aus, dass die Rippenabschnitte prinzipiell auf der Rohraußenseite bzw. der Rohrinnenseite ausgeformt sein können. Bevorzugt ist allerdings, die erfindungsgemäßen Rippenabschnitte im Rohrinneren anzuordnen. Die beschriebenen Strukturen lassen sich sowohl für Verdampfer- als auch für Kondensatorrohre einsetzen. The invention includes a heat exchanger tube having a tube longitudinal axis, a tube wall, a tube outside and a tube inside, wherein formed on the tube outside and / or inside tube from the tube wall continuously extending, axially parallel or helically encircling ribs and continuously formed between each adjacent ribs extending primary grooves , According to the invention, the ribs along the rib run are subdivided into periodically repeating rib sections which are divided into a plurality of projections having a protrusion height, the protrusions being formed by cutting the ribs with a cutting depth transverse to the rib run are formed by rib segments and by raising the rib segments with a main orientation along the rib course between primary grooves. In this case, the structured region can, in principle, be formed on the outside of the pipe or on the inside of the pipe. However, it is preferred to arrange the rib sections according to the invention inside the tube. The structures described can be used for both evaporator and condenser tubes. The protrusion height is expediently defined as the dimension of a protrusion in the radial direction. The projection height is then in the radial direction, the distance from the pipe wall to the farthest from the pipe wall point of the projection. The cutting depth, also called notch depth, is the distance measured in the radial direction, starting from the original rib tip to the lowest point of the notch. In other words, the notch depth is the difference between the original rib height and the residual rib height remaining at the lowest point of a notch. The invention is based on the consideration that the rib sections can in principle be formed on the outside of the pipe or the pipe inside. However, it is preferred to arrange the rib sections according to the invention inside the tube. The structures described can be used for both evaporator and condenser tubes.
Ganz besonders eignen sich die erfindungsgemäßen Rippenabschnitte für Innenstrukturen. Hierbei ist die innere Fläche des Rohrs mit einer Mehrzahl von Vorsprüngen vergrößert, die in Rippenabschnitte untergliedert sind. Hierdurch verringert sich in erheblicher Weise der rohrseitige Wärmedurchgangswiderstand und der Wärmeübergangskoeffizient wird gesteigert. Die Vorsprünge schaffen zusätzliche Wege für einen Fluidfluß innerhalb des Rohres und erhöhen dadurch die Turbulenz des Wärmeübertragungsmediums, das innerhalb des Rohres fließt. Diese Maßnahme verringert die aus dem Fluid nahe der inneren Fläche des Rohres aufgebauten Grenzschicht. The rib sections according to the invention are particularly suitable for internal structures. Here, the inner surface of the tube is enlarged with a plurality of projections, which are divided into rib sections. As a result, the tube-side heat transfer resistance is significantly reduced and the heat transfer coefficient is increased. The projections create additional Routes for fluid flow within the tube and thereby increase the turbulence of the heat transfer medium flowing within the tube. This measure reduces the boundary layer built up from the fluid near the inner surface of the tube.
Gegenüber glatten Oberflächen liefern die Vorsprünge ein Vielfaches an zusätzlichem Oberflächenanteil für einen zusätzlichen Wärmeaustausch. Versuche zeigen, dass die Leistungsfähigkeit von Rohren mit den in besonderer Weise gestalteten Rippenabschnitten dieser Erfindung in erheblicher Weise erhöht ist. Compared to smooth surfaces, the protrusions provide a multiple of additional surface area for additional heat exchange. Experiments show that the performance of tubes with the specially designed rib sections of this invention is significantly increased.
Die verfahrensseitige Strukturierung des erfindungsgemäßen Wärmeübertragerrohrs kann unter Verwendung eines Werkzeugs hergestellt werden, welches in der DE 603 17 506 T2 bereits beschrieben ist. Die Offenbarung dieser Druckschrift DE 603 17 506 12 wird vollumfänglich in die vorliegenden Unterlagen einbezogen. Hierdurch lässt sich die Vorsprungshöhe und der Abstand variabel gestalten und individuell auf die Anforderungen, beispielsweise der Viskosität der Flüssigkeit oder der Strömungsgeschwindigkeit, anpassen. The process-side structuring of the heat exchanger tube according to the invention can be produced using a tool which has already been described in DE 603 17 506 T2. The disclosure of this document DE 603 17 506 12 is fully incorporated into the present documents. As a result, the projection height and the distance can be made variable and individually adapted to the requirements, for example, the viscosity of the liquid or the flow rate.
Das verwendete Werkzeug weist eine Schneidkante zum Schneiden durch die Rippen an der inneren Fläche des Rohres auf zur Schaffung von Rippensegmenten und eine Anhebekante zum Anheben der Rippensegmente zur Bildung der Vorsprünge. Auf diese Weise werden die Vorsprünge ohne Entfernung von Metall von der inneren Fläche des Rohrs gebildet. Die Vorsprünge an der inneren Fläche des Rohrs können in der gleichen oder einer unterschiedlichen Bearbeitung wie die Bildung der Rippen gebildet werden. The tool used has a cutting edge for cutting through the ribs on the inner surface of the tube to provide rib segments and a lifting edge for raising the rib segments to form the protrusions. In this way, the projections are formed without removal of metal from the inner surface of the tube. The protrusions on the inner surface of the tube may be formed in the same or different processing as the formation of the ribs.
Die Strukturierung der aus der Rohrwand kontinuierlich verlaufenden, achsparallelen oder helixförmig umlaufenden Rippen mit den zwischen jeweils benachbarten Rippen sich kontinuierlich erstreckende Primärnuten können mit den in der DE 101 56 374 C1 beschriebenen Verfahrensmaßnahmen hergestellt werden. Die Offenbarung dieser Druckschrift DE 101 56 374 C1 wird vollumfänglich in die vorliegenden Unterlagen einbezogen. The structuring of the continuously extending from the tube wall, axially parallel or helically encircling ribs with the between each adjacent ribs continuously extending primary grooves can be prepared with the process described in DE 101 56 374 C1. The Revelation of this document DE 101 56 374 C1 is fully incorporated into the present documents.
Die erfindungsgemäße Lösung, bei der die Rippen in Rippenabschnitte unterteilt sind, die in eine Vielzahl von Vorsprüngen mit einer Vorsprungshöhe zerteilt sind, führt dazu, dass die Vorsprünge von der geregelten Ordnung abweichen. Daraus resultiert wiederum ein optimierter Wärmeübergang bei möglichst geringem Druckverlust, da die Fluidgrenzschicht, welche hinderlich für einen guten Wärmeübergang ist, durch zusätzlich erzeugte Turbulenzen unterbrochen wird. Eine Unterbrechung durch die Zerteilung der Vorsprünge führt dabei zusätzlich zu einer Erhöhung der Turbulenz sowie zu einem Fluidaustausch über den Verlauf der Primärrippe hinweg, was ebenfalls eine Unterbrechung der Grenzschicht bedingt. The solution according to the invention, in which the ribs are divided into rib portions which are divided into a plurality of protrusions with a protrusion height, causes the protrusions to deviate from the controlled order. This in turn results in an optimized heat transfer at the lowest possible pressure loss, since the fluid boundary layer, which is a hindrance to a good heat transfer, is interrupted by additionally generated turbulence. An interruption due to the fragmentation of the projections additionally leads to an increase in the turbulence and to a fluid exchange over the course of the primary rib, which likewise causes an interruption of the boundary layer.
Hierbei kann der strukturierte Bereich prinzipiell auf der Rohraußenseite bzw. der Rohrinnenseite ausgeformt sein. Bevorzugt ist allerdings, die erfindungsgemäßen Rippenabschnitte im Rohrinneren anzuordnen. Die beschriebenen Strukturen lassen sich sowohl für Verdampfer- als auch für Kondensatorrohre einsetzen. In this case, the structured region can, in principle, be formed on the outside of the pipe or on the inside of the pipe. However, it is preferred to arrange the rib sections according to the invention inside the tube. The structures described can be used for both evaporator and condenser tubes.
Eine homogene Anordnung der Vorsprünge kann diese gezielte Unterbrechung der Grenzschicht nur bedingt leisten. Die Formen, Höhen und Anordnung der Abstände kann durch das Einstellen der Schneidmesser bzw. Schneidgeometrien sowie durch individuell angepasste Primärrippenformen und Geometrien angepasst und optimiert werden. Zur Optimierung der Fluidströmung kann der die Form der Vorsprünge individuell angepasst und damit die Unterbrechung der Grenzschicht effizient durchgeführt werden. Diese Optimierungen für die turbulente bzw. laminare Strömungsform werden durch unterschiedlichen Vorsprungshöhen realisiert. A homogeneous arrangement of the projections can afford this targeted interruption of the boundary layer only conditionally. The shapes, heights and arrangement of the distances can be adjusted and optimized by adjusting the cutting blades or cutting geometries and by individually adapted primary rib shapes and geometries. In order to optimize the fluid flow, the shape of the projections can be adapted individually and thus the interruption of the boundary layer can be carried out efficiently. These optimizations for the turbulent or laminar flow shape are realized by different projection heights.
In bevorzugter Ausgestaltung der Erfindung können die Rippenabschnitte der Rippen von unter einem Steigungswinkel ß verlaufenden Sekundärnuten gemessen gegen die Rohrlängsachse aus den Rippen gebildet sein. Hierbei können die Sekundärnuten gegenüber den Innenrippen unter einem Steigungswinkel von mindestens 10° und höchstens 80° verlaufen. Die Tiefe der Sekundärnuten kann variieren und mindestens 20% der ursprünglichen Rippenhöhe der Innenrippen betragen. Durch das Einbringen der Sekundärnuten besitzen die Innenrippen nun keinen konstanten Querschnitt mehr. Folgt man dem Verlauf der Innenrippen, dann ändert sich die Querschnittsform der Innenrippen an den Stellen der Sekundärnuten. Durch die Sekundärnuten entstehen im rohrseitig strömenden Medium zusätzliche Wirbel und axiale Durchtrittsstellen im wandnahen Bereich, wodurch der Wärmeübergangskoeffizient weiter gesteigert wird. In a preferred embodiment of the invention, the rib portions of the ribs measured at a pitch angle ß secondary grooves measured against the tube longitudinal axis may be formed from the ribs. Here, the secondary grooves with respect to the inner ribs at a pitch angle of at least 10 ° and at most 80 ° extend. The depth of the secondary grooves may vary and be at least 20% of the original rib height of the inner ribs. By introducing the secondary grooves, the inner ribs no longer have a constant cross section. Following the course of the inner ribs, the cross-sectional shape of the inner ribs changes at the locations of the secondary grooves. Due to the secondary grooves in the pipe-side flowing medium additional vortexes and axial passage points in the near-wall region, whereby the heat transfer coefficient is further increased.
Wenn die Tiefe der Sekundärnuten gleich der Höhe der ursprünglichen Innenrippen ist, dann entstehen auf der Rohrinnenseite voneinander beabstandete Rippenabschnitte als Strukturelemente, die Pyramidenstümpfen ähnlich sind. Durch das Aufbringen von Sekundärnuten ist eine gezielte Einstellung möglich, da die Vorsprünge nur in dem Bereich ausgebildet werden, in dem die Primärrippe noch ausgebildet ist. If the depth of the secondary grooves is equal to the height of the original inner ribs, rib sections spaced apart from each other on the inner side of the tube form structural elements which are similar to truncated pyramids. By the application of secondary grooves targeted adjustment is possible, since the projections are formed only in the region in which the primary rib is still formed.
Demgegenüber ist es auch möglich, dass die Vorsprünge alternierend wechselnde Schneidtiefen durch eine Rippe aufweisen. Bei einer derartigen Ausbildung lässt sich die Höhe der einzelnen Vorsprünge gezielt anpassen sowie zueinander variieren um somit besonders bei laminarer Strömung durch unterschiedliche Rippenhöhen in die unterschiedlichen Grenzschichten der Strömung bis hin zum Strömungskern eintauchen und die Wärme an die Rohrwand ableiten. Hierbei kann sich die Schneid- oder Kerbtiefe auch durch die gesamte ursprüngliche Rippe bis in die Kernwandung erstrecken. In contrast, it is also possible that the projections have alternately changing cutting depths through a rib. With such a design, the height of the individual projections can be adapted and vary with each other, thus immersing the laminar flow through different rib heights into the different boundary layers of the flow up to the flow core and dissipating the heat to the pipe wall. Here, the cutting or notching depth can extend through the entire original rib into the core wall.
Eine wechselnde Kerb- oder Schneidtiefe ist auch damit gleichbedeutend, dass die jeweils tiefste Stelle der Kerben alterniert und folglich den Abstand zur Rohrwand verändert. Hierzu gleichbedeutend ist zudem, dass die jeweils tiefste Stelle der Kerben - hier mit Kerbgrund bezeichnet - im Abstand von der Rohrlängsachse über in Rippenrichtung aufeinanderfolgende Kerben alterniert. An alternating notch or cutting depth is synonymous with the fact that the respective lowest point of the notches alternates and consequently changes the distance to the pipe wall. It is also synonymous that the lowest point of the Notches - here called Kerbgrund - alternately at intervals from the tube longitudinal axis via successive notches in the rib direction.
Hierbei können die zumindest um einen Vorsprung benachbarten Einkerbungen in der Kerbtiefe um mindestens 10 % variieren. Weiter bevorzugt kann die Variation der Kerbtiefe mindestens 20 % oder sogar 50 % betragen. In this case, the notches adjacent to at least one projection in the notch depth can vary by at least 10%. More preferably, the variation of the notch depth can be at least 20% or even 50%.
Bei einer vorteilhaften Ausführungsform der Erfindung kann mindestens ein Vorsprung aus der Hauptausrichtung entlang dem Rippenverlauf über die Primärnut auskragen. Dies bringt den Vorteil mit sich, dass die ausgebildete Grenzschicht im Rippenzwischenraum durch diesen in die Primärnut ragenden Vorsprung unterbrochen wird, was einen verbesserten Wärmeübergang bedingt. In an advantageous embodiment of the invention, at least one projection can protrude from the main alignment along the rib course over the primary groove. This has the advantage that the formed boundary layer is interrupted in the rib space by this projecting into the primary groove projection, which causes an improved heat transfer.
In vorteilhafter Ausgestaltung der Erfindung können die Rippenabschnitte der Rippen entlang dem Rippenverlauf langgestreckt ausgebildet sein. Hierbei sind die Rippen in Rippenabschnitte unterteilt, die in eine ausreichende Vielzahl von Vorsprüngen mit einer Vorsprungshöhe zerteilt sind. Beispielsweise umfasst ein Rippenabschnitt zumindest 3, bevorzugt zumindest 4 Vorsprünge. Die Rippenabschnitte können dabei gegeneinander beabstandet sein, wodurch sich Durchtrittsstellen für das Fluid bilden. Daraus resultiert wiederum ein optimierter Wärmeübergang bei möglichst geringem Druckverlust, da die Fluidgrenzschicht, welche hinderlich für einen guten Wärmeübergang ist, durch zusätzlich erzeugte Turbulenzen unterbrochen wird. Eine Unterbrechung führt dabei zusätzlich zu einer Erhöhung der Turbulenz sowie zu einem Fluidaustausch über den Verlauf der Primärrippe hinweg, wodurch ebenfalls eine Unterbrechung der Grenzschicht bedingt wird. In an advantageous embodiment of the invention, the rib portions of the ribs along the rib course may be formed elongated. Here, the ribs are divided into rib portions which are divided into a sufficient plurality of protrusions with a protrusion height. For example, a rib section comprises at least 3, preferably at least 4 protrusions. The rib portions may be spaced from each other, thereby forming passage points for the fluid. This in turn results in an optimized heat transfer at the lowest possible pressure loss, since the fluid boundary layer, which is a hindrance to a good heat transfer, is interrupted by additionally generated turbulence. An interruption additionally leads to an increase in the turbulence and to a fluid exchange over the course of the primary rib, which likewise causes an interruption of the boundary layer.
Vorteilhafterweise können mehrere Vorsprünge an der von der Rohrwand entferntesten Stelle eine zur Rohrlängsachse parallele Fläche aufweisen. In bevorzugter Ausführungsform der Erfindung können die Vorsprünge in Vorsprungshöhe, Form und Ausrichtung untereinander variieren, um die Höhe der einzelnen Vorsprünge gezielt anzupassen sowie zueinander zu variieren um somit besonders bei laminarer Strömung durch unterschiedliche Rippenhöhen in die unterschiedlichen Grenzschichten der Strömung bis hin zum Strömungskern eintauchen und die Wärme an die Rohrwand ableiten. Advantageously, a plurality of projections at the remote from the pipe wall location have a parallel to the tube longitudinal axis surface. In a preferred embodiment of the invention, the projections in Projecting height, shape and orientation vary with each other to selectively adjust the height of the individual projections and to each other to dive so particularly in laminar flow through different rib heights in the different boundary layers of the flow up to the flow core and derive the heat to the pipe wall.
In besonders bevorzugter Ausführungsform kann ein Vorsprung an der von der Rohrwand abgewandten Seite eine spitz zulaufende Spitze aufweisen. Dies führt bei Kondensatorrohren mit einer Verwendung von zweiphasigen Fluiden zu einer optimierten Kondensation an der Vorsprungsspitze. In a particularly preferred embodiment, a projection on the side facing away from the tube wall side have a pointed tip. This leads to condenser tubes with the use of two-phase fluids for an optimized condensation at the tip of the projection.
In weiterer vorteilhafter Ausgestaltung der Erfindung kann ein Vorsprung an der von der Rohrwand abgewandten Seite eine gekrümmte Spitze aufweisen, deren lokaler Krümmungsradius ausgehend von der Rohrwand mit zunehmender Entfernung verkleinert ist. Dies hat zum Vorteil, dass das an der Spitze eines Vorsprungs entstandene Kondensat durch die konvexe Krümmung schneller hin zum Rippenfuß transportiert und somit der Wärmeübergang bei der Verflüssigung optimiert wird. Beim Phasenwechsel, hier im speziellen bei der Verflüssigung liegt das Hauptaugenmerk auf der Verflüssigung des Dampfes und das Abführen des Kondensats weg von der Spitze hin zum Rippenfuß. Dafür bildet eine konvex gekrümmter Vorsprung eine ideale Grundlage zur effektiven Wärmeübertragung. Die Basis des Vorsprungs steht dabei im Wesentlichen radial von der Rohrwand ab. In a further advantageous embodiment of the invention, a projection on the side facing away from the tube wall side have a curved tip whose local radius of curvature is reduced starting from the pipe wall with increasing distance. This has the advantage that the condensate formed at the tip of a projection is transported by the convex curvature more quickly towards the ribbed foot and thus the heat transfer during the liquefaction is optimized. During the phase change, in particular during the liquefaction, the main focus is on the liquefaction of the vapor and the removal of the condensate away from the tip to the fin base. For a convex curved projection forms an ideal basis for effective heat transfer. The base of the projection is substantially radially from the pipe wall.
In vorteilhafter Ausgestaltung der Erfindung können die Vorsprünge eine unterschiedliche Form und/oder Höhe von einem Rohranfang entlang der Rohrlängsachse hin zum gegenüber liegenden Rohrende aufweisen. Der Vorteil dabei ist eine gezielte Einstellung des Wärmeübergangs von Rohranfang bis Rohrende. Vorteilhafterweise können sich die Spitzen von zumindest zwei Vorsprüngen entlang dem Rippenverlauf gegenseitig berühren oder überkreuzen; was speziell im reversiblen Betrieb beim Phasenwechsel von Vorteil ist, da die Vorsprünge für die Verflüssigung weit aus dem Kondensat ragen und für die Verdampfung eine Art Kavität ausbilden. In an advantageous embodiment of the invention, the projections may have a different shape and / or height of a pipe beginning along the pipe longitudinal axis towards the opposite pipe end. The advantage here is a targeted adjustment of the heat transfer from the pipe beginning to pipe end. Advantageously, the tips of at least two projections along touching or crossing each other over the course of the rib; which is especially advantageous in reversible operation during phase change, since the projections for the liquefaction project far out of the condensate and form a kind of cavity for the evaporation.
In bevorzugter Ausführungsform der Erfindung können sich die Spitzen von zumindest zwei Vorsprüngen über die Primärnut hinweg gegenseitig berühren oder überkreuzen. Dies ist speziell im reversiblen Betrieb beim Phasenwechsel von Vorteil, da die Vorsprünge für die Verflüssigung weit aus dem Kondensat ragen und für die Verdampfung eine Art Kavität ausbilden. In a preferred embodiment of the invention, the tips of at least two projections over the primary groove can touch or cross one another. This is particularly advantageous in reversible operation during phase change, since the projections for the liquefaction project far out of the condensate and form a type of cavity for the evaporation.
In besonders bevorzugter Ausführungsform kann mindestens einer der Vorsprünge derartig verformt sein, dass dessen Spitze die Rohrinnenseite bzw. die Rohraußenseite berührt. Insbesondere im reversiblen Betrieb beim Phasenwechsel ist dies von Vorteil, da die Vorsprünge für die Verflüssigung für die Verdampfung eine Art Kavität und damit Blasenkeimstellen ausbilden. In a particularly preferred embodiment, at least one of the projections may be deformed in such a way that its tip touches the tube inner side or the tube outer side. This is advantageous in particular in reversible operation during phase change, since the projections for liquefaction form a type of cavity and thus nucleation sites for the evaporation.
Vorteilhafterweise können die Vorsprünge aus Rippen gebildet werden, wobei mindestens eine der Rippen in mindestens einem der Merkmale Rippenhöhe, Rippenabstand, Rippenspitze, Rippenzwischenraum, Rippenöffnungswinkel und Drall voneinander variiert. Advantageously, the protrusions may be formed of ribs, wherein at least one of the ribs in at least one of rib height, fin distance, fin tip, fin clearance, fin opening angle, and twist varies from each other.
Ausführungsbeispiele der Erfindung werden anhand der schematischen Zeichnungen näher erläutert. Embodiments of the invention will be explained in more detail with reference to the schematic drawings.
Darin zeigen: Show:
Fig. 1 schematisch eine Schrägansicht eines Rohrausschnitts mit der erfindungsgemäßen Struktur auf der Rohrinnenseite;  1 shows schematically an oblique view of a pipe section with the structure according to the invention on the inside of the pipe;
Fig. 2 schematisch eine weitere Schrägansicht eines Rohrausschnitts mit der erfindungsgemäßen Innenstruktur mit Sekundärnut; Fig. 3 schematisch einen Rippenabschnitt mit unterschiedlicher Kerbtiefe; FIG. 2 schematically shows a further oblique view of a pipe cutout with the inner structure according to the invention with secondary groove; FIG. 3 shows schematically a rib section with different notch depth;
Fig. 4 schematisch einen Rippenabschnitt mit einem über die Primärnut kragenden Fig. 4 shows schematically a rib portion with a collar over the primary groove
Strukturelement;  Structural element;
Fig. 5 schematisch einen Rippenabschnitt mit einem in Rippenrichtung an der  Fig. 5 shows schematically a rib portion with a rib direction at the
Spitze gekrümmten Vorsprung;  Pointed curved ledge;
Fig. 6 schematisch einen Rippenabschnitt mit einem Vorsprung mit einer parallelen  Fig. 6 shows schematically a rib portion with a projection with a parallel
Fläche an der von der Rohrwand entferntesten Stelle;  Surface at the furthest from the pipe wall;
Fig. 7 schematisch einen Rippenabschnitt mit zwei sich entlang dem Rippenverlauf sich gegenseitig berührenden Vorsprüngen; 7 shows schematically a rib section with two projections which contact one another along the rib course;
Fig. 8 schematisch einen Rippenabschnitt mit zwei sich entlang dem Rippenverlauf sich gegenseitig überkreuzenden Vorsprüngen; 8 shows schematically a rib section with two projections which cross each other along the course of the rib;
Fig. 9 schematisch einen Rippenabschnitt mit zwei sich über die Primärnut hinweg gegenseitig berührenden Vorsprüngen; und 9 shows schematically a rib section with two projections mutually contacting each other over the primary groove; and
Fig. 10 schematisch einen Rippenabschnitt mit zwei sich über die Primärnut hinweg gegenseitig überkreuzenden Vorsprüngen. Fig. 10 shows schematically a rib section with two mutually crossing over the primary groove over projections.
Einander entsprechende Teile sind in allen Figuren mit denselben Bezugszeichen versehen. Fig. 1 zeigt schematisch eine Schrägansicht eines Rohrausschnitts des Wärmeübertragerrohrs 1 mit der erfindungsgemäßen Struktur auf der Rohrinnenseite 22. Das Wärmeübertragerrohr 1 besitzt eine Rohrwand 2, eine Rohraußenseite 21 und eine Rohrinnenseite 22. Auf der Rohrinnenseite 22 sind aus der Rohrwand 2 kontinuierlich verlaufende, helixförmig umlaufende Rippen 3 geformt. Die Rohrlängsachse A verläuft gegenüber den Rippen unter einem gewissen Winkel. Zwischen jeweils benachbarten Rippen 3 sind sich kontinuierlich erstreckende Primärnuten 4 gebildet. Corresponding parts are provided in all figures with the same reference numerals. Fig. 1 shows schematically an oblique view of a pipe section of the heat exchanger tube 1 with the structure according to the invention on the tube inside 22. The heat exchanger tube 1 has a tube wall 2, a tube outside 21 and a tube inside 22. On the tube inside 22 are from the tube wall 2 continuously extending, helical encircling ribs 3 shaped. The tube longitudinal axis A runs opposite the ribs at a certain angle. Between each adjacent ribs 3 continuously extending primary grooves 4 are formed.
Die Rippen 3 sind entlang dem Rippenverlauf in sich periodisch wiederholende Rippenabschnitte 31 unterteilt, die in eine Vielzahl von Vorsprüngen 6 zerteilt sind. Die Vorsprünge 6 sind durch Schneiden der Rippen 3 mit einer Schneidtiefe quer zum Rippenverlauf zur Bildung von Rippensegmenten und durch Anheben der Rippensegmente mit einer Hauptausrichtung entlang dem Rippenverlauf zwischen Primärnuten 4 ausgeformt. The ribs 3 are divided along the rib course into periodically repeating rib sections 31, which are divided into a plurality of projections 6. The projections 6 are formed by cutting the ribs 3 with a cutting depth transverse to the rib run to form rib segments and lifting the rib segments with a primary orientation along the rib run between primary grooves 4.
In Fig. 1 sind die Rippenabschnitte 31 der Rippen 3 entlang dem Rippenverlauf langgestreckt ausgebildet. Ein Rippenabschnitt 31 grenzt sich in diesem Fall durch einen nicht geschnittenen Teilbereich einer Rippe 3 gegenüber dem nachfolgenden ab. Dort kann auch die originären Höhe der primären Rippe 3 partiell noch erhalten sein. In Fig. 1, the rib portions 31 of the ribs 3 along the rib course are formed elongated. In this case, a rib section 31 is delimited by an uncut portion of a rib 3 with respect to the following. There, the original height of the primary rib 3 may be partially preserved.
Fig. 2 zeigt schematisch eine weitere Schrägansicht eines Rohrausschnitts des Wärmeübertragerrohrs 1 mit der erfindungsgemäßen Struktur auf der Rohrinnenseite 22 mit Sekundärnut 5. Die Rippen 3 sind wiederum entlang dem Rippenverlauf in sich periodisch wiederholende Rippenabschnitte 31 unterteilt, die in eine Vielzahl von Vorsprüngen 6 zerteilt sind. 2 shows schematically a further oblique view of a tubular section of the heat exchanger tube 1 with the structure according to the invention on the inside of the tube 22 with secondary groove 5. The ribs 3 are in turn subdivided along the rib course into periodically repeating rib sections 31, which are divided into a plurality of projections 6 ,
In Fig. 2 sind die Rippenabschnitte 31 der Rippen 3 entlang dem Rippenverlauf wiederum langgestreckt ausgebildet. Ein Rippenabschnitt 31 grenzt sich gegenüber dem nachfolgenden durch eine unter einem Steigungswinkel ß verlaufenden Sekundärnut 5 gemessen gegen die Rohrlängsachse A ab. Die Sekundärnut 5 kann eine geringe Kerbtiefe aufweisen oder, wie im gezeigten Ausführungsbeispiel, mit großer Kerbtiefe nahe an die Primärnut heranreichen. Fig. 3 zeigt schematisch einen Rippenabschnitt 31 mit unterschiedlicher Schneidoder Kerbtiefe t-ι, t2, t3. Die Bezeichnungen Schneidtiefe bzw. Kerbtiefe stellen im Rahmen der Erfindung dieselbe Begrifflichkeit dar. Die Vorsprünge 6 weisen alternierend wechselnde Schneidtiefen t-i , t2, t3 durch eine Rippe 3 auf. Gestrichelt angedeutet ist in der Fig. 3 die originäre geformte helixförmig umlaufende Rippe 3. Aus dieser sind die Vorsprünge 6 durch Schneiden der Rippe 3 mit einer Schneidtiefe ti , t2, t3 quer zum Rippenverlauf zur Bildung von Rippensegmenten und durch Anheben der Rippensegmente mit einer Hauptausrichtung entlang dem Rippenverlauf ausgeformt. Die unterschiedlichen Schneidtiefen ti , t2, t3 bemessen sich folglich an der Einkerbtiefe der originären Rippe in radialer Richtung. In Fig. 2, the rib portions 31 of the ribs 3 are again elongated along the rib course. A rib portion 31 is opposite to the following by a running at a pitch angle ß secondary groove 5 measured against the pipe axis A from. The secondary groove 5 may have a low notch depth or, as in the exemplary embodiment shown, come close to the primary notch with a large notch depth. Fig. 3 shows schematically a rib portion 31 with different cutting or notch depth t-ι, t 2 , t 3rd In the context of the invention, the terms "cutting depth" and "notching depth" represent the same terminology. The projections 6 have alternating cutting depths ti, t 2 , t 3 through a rib 3. Dashed lines indicated in Fig. 3, the original shaped helically encircling rib 3. From this are the projections 6 by cutting the rib 3 with a Cutting depth ti, t 2 , t 3 formed transversely to the rib course to form rib segments and by lifting the rib segments with a main orientation along the rib course. The different cutting depths ti, t 2 , t 3 are therefore dimensioned at the notch depth of the original rib in the radial direction.
Die Vorsprungshöhe h ist in Fig. 2 als die Abmessung eines Vorsprungs in radialer Richtung eingezeichnet. Die Vorsprungshöhe h ist dann in radialer Richtung die Strecke ausgehend von der Rohrwand bis zur von der Rohrwand entferntesten Stelle des Vorsprungs. The protrusion height h is shown in FIG. 2 as the dimension of a protrusion in the radial direction. The projection height h is then in the radial direction, the distance from the pipe wall to the farthest from the pipe wall point of the projection.
Die Kerbtiefe ti , t2] t3 ist die in radialer Richtung gemessene Strecke ausgehend von der originären Rippenspitze bis zur tiefsten Stelle der Kerbe. Mit anderen Worten. Die Kerbtiefe ist die Differenz der originären Rippenhöhe und der an der tiefsten Stelle einer Kerbe verbleibenden Restrippenhöhe. The notch depth ti, t 2] t 3 is the distance measured in the radial direction, starting from the original rib tip to the lowest point of the notch. In other words. The notch depth is the difference between the original rib height and the residual rib height remaining at the lowest point of a notch.
Fig. 4 zeigt schematisch einen Rippenabschnitt 31 mit einem über die Primärnut 4 kragenden Strukturelement 6. Es handelt sich dabei um einen Vorsprung 6, der aus der Hauptausrichtung mit der Spitze 62 entlang dem Rippenverlauf über die Primärnut 4 hinwegreicht. Je weiter die Auskragung ausgebildet ist, desto intensiver wird die ausgebildete Grenzschicht des Fluids im Rippenzwischenraum gestört, was einen verbesserten Wärmeübergang bedingt. FIG. 4 schematically shows a rib section 31 with a structural element 6 projecting over the primary groove 4. This is a projection 6 which extends over the primary groove 4 from the main alignment with the tip 62 along the rib course. The further the protrusion is formed, the more intensively the formed boundary layer of the fluid in the rib space is disturbed, which causes an improved heat transfer.
Fig. 5 zeigt schematisch einen Rippenabschnitt 31 mit einem in Rippenrichtung an der Spitze 62 gekrümmten Vorsprung 6. Der Vorsprung 6 hat an der gekrümmten Spitze 62 einen sich verändernden Krümmungsverlauf. Hierbei nimmt der lokale Krümmungsradius ausgehend von der Rohrwand mit zunehmender Entfernung ab. Mit anderen Worten: Der Krümmungsradius verkleinert sich entlang der durch die Punkte P1 , P2, P3 angedeuteten Linie zur Spitze 62 hin. Dies hat zum Vorteil, dass das an der Spitze 62 entstehende Kondensat bei zweiphasigen Fluiden durch die zunehmende konvexe Krümmung schneller hin zum Rippenfuß transportiert wird. Hierdurch wird der Wärmeübergang bei der Verflüssigung optimiert. FIG. 5 schematically shows a rib portion 31 with a projection 6 which is curved in the rib direction at the tip 62. The projection 6 has a changing curvature profile at the curved tip 62. Here, the local radius of curvature decreases starting from the pipe wall with increasing distance. In other words, the radius of curvature decreases along the line indicated by the points P1, P2, P3 to the tip 62. This has the advantage that the condensate formed at the tip 62 is transported faster in two-phase fluids by the increasing convex curvature towards the rib foot. This optimizes the heat transfer during liquefaction.
Fig. 6 zeigt schematisch einen Rippenabschnitt 31 mit einem Vorsprung 6 mit einer parallelen Fläche 61 an der von der Rohrwand entferntesten Stelle im Bereich der Spitze 62. 6 schematically shows a rib section 31 with a projection 6 with a parallel surface 61 at the point furthest away from the tube wall in the region of the tip 62.
Fig. 7 zeigt schematisch einen Rippenabschnitt 31 mit zwei sich entlang dem Rippenverlauf sich gegenseitig berührenden Vorsprüngen 6. Des Weiteren zeigt Fig. 8 schematisch einen Rippenabschnitt 31 mit zwei sich entlang dem Rippenverlauf sich gegenseitig überkreuzenden Vorsprüngen 6. Auch Fig. 9 zeigt schematisch einen Rippenabschnitt 31 mit zwei sich über die Primärnut 4 hinweg gegenseitig berührenden Vorsprüngen. Fig. 10 zeigt schematisch einen Rippenabschnitt 31 mit zwei sich über die Primärnut 4 hinweg gegenseitig überkreuzenden Vorsprüngen 6. Fig. 7 shows schematically a rib section 31 with two projections 6 touching each other along the rib run. Furthermore, Fig. 8 shows schematically a rib section 31 with two projections 6 crossing each other along the course of the ribs. Fig. 9 also schematically shows a rib section 31 with two over the primary groove 4 of time mutually touching projections. FIG. 10 schematically shows a rib section 31 with two projections 6 which mutually cross over the primary groove 4.
Bei den in den Fig. 7 bis 10 dargestellten Strukturelementen ist speziell im reversiblen Betrieb bei zweiphasigen Fluiden von Vorteil, dass die für die Verdampfung eine Art Kavität ausbilden. Die Kavitäten dieser besonderen Art bilden die Ausgangsstellen für Blasenkeime eines verdampfenden Fluids. In the structural elements shown in FIGS. 7 to 10, it is particularly advantageous in reversible operation in the case of two-phase fluids that they form a type of cavity for the evaporation. The cavities of this special type form the starting points for bubble nuclei of an evaporating fluid.
Bezugszeichenliste LIST OF REFERENCE NUMBERS
1 Wärmeübertragerrohr 1 heat exchanger tube
2 Rohrwand  2 pipe wall
21 Rohraußenseite  21 outside of the tube
22 Rohrinnenseite  22 pipe inside
3 Rippe  3 rib
31 Rippenabschnitt 31 rib section
4 Primärnut  4 primary groove
5 Sekundärnut  5 secondary groove
6 Vorsprung  6 lead
61 parallele Fläche  61 parallel surface
62 Spitze 62 tip
A Rohrlängsachse A pipe longitudinal axis
ß Steigungswinkel ß pitch angle
ti erste Schneidtiefe ti first cutting depth
t2 zweite Schneidtiefe t 2 second cutting depth
t.3 dritte Schneidtiefe t.3 third cutting depth
h Vorsprungshöhe h protrusion height

Claims

Patentansprüche claims
1. Wärmeübertragerrohr (1 ) mit einer Rohrlängsachse (A), einer 1. heat exchanger tube (1) with a tube longitudinal axis (A), a
Rohrwand (2), einer Rohraußenseite (21) und einer Rohrinnenseite (22), wobei  Pipe wall (2), a pipe outer side (21) and a tube inner side (22), wherein
- auf der Rohraußenseite (21) und/oder Rohrinnenseite (22) aus der Rohrwand (2) kontinuierlich verlaufende, achsparallele oder helixförmig umlaufende Rippen (3) geformt sind,  - on the pipe outer side (21) and / or pipe inside (22) from the pipe wall (2) continuously extending, axially parallel or helically encircling ribs (3) are formed,
- zwischen jeweils benachbarten Rippen (3) sich kontinuierlich  - Between each adjacent ribs (3) is continuous
erstreckende Primärnuten (4) gebildet sind,  extending primary grooves (4) are formed,
dadurch gekennzeichnet,  characterized,
dass die Rippen (3) entlang dem Rippenverlauf in sich periodisch wiederholende Rippenabschnitte (31) unterteilt sind, die in eine Vielzahl von Vorsprüngen (6) mit einer Vorsprungshöhe (h) zerteilt sind, und dass die Vorsprünge (6) durch Schneiden der Rippen (3) mit einer Schneidtiefe (t-i , t2, t3) quer zum Rippenverlauf zur Bildung von the ribs (3) are subdivided along the course of the ribs into periodically repeating rib sections (31) which are divided into a plurality of protrusions (6) with a protrusion height (h), and in that the protrusions (6) are formed by cutting the ribs (FIG. 3) with a cutting depth (ti, t 2 , t3) transverse to the rib shape to form
Rippensegmenten und durch Anheben der Rippensegmente mit einer Hauptausrichtung entlang dem Rippenverlauf zwischen Primärnuten (4) ausgeformt sind.  Rib segments and by raising the rib segments are formed with a main orientation along the rib course between primary grooves (4).
2. Wärmeübertragerrohr (1) nach Anspruch 1 , dadurch gekennzeichnet, dass die Rippenabschnitte (31) der Rippen (3) von unter einem 2. heat exchanger tube (1) according to claim 1, characterized in that the rib portions (31) of the ribs (3) from under a
Steigungswinkel ß verlaufenden Sekundärnuten (5) gemessen gegen die Rohrlängsachse (A) aus den Rippen (3) gebildet sind.  Slope angle ß extending secondary grooves (5) measured against the tube longitudinal axis (A) from the ribs (3) are formed.
3. Wärmeübertragerrohr (1) nach Anspruch 1 oder 2, dadurch 3. heat exchanger tube (1) according to claim 1 or 2, characterized
gekennzeichnet, dass die Vorsprünge (6) alternierend wechselnde Schneidtiefen (t-i , Ϊ2, t.3) durch eine Rippe (3) aufweisen. characterized in that the projections (6) alternately changing cutting depths (ti, Ϊ2, t.3) by a rib (3).
4. Wärmeübertragerrohr (1 ) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass mindestens ein Vorsprung (6) aus der 4. heat exchanger tube (1) according to one of claims 1 to 3, characterized in that at least one projection (6) from the
Hauptausrichtung entlang dem Rippenverlauf über die Primärnut (4) auskragt.  Main orientation along the rib course over the primary groove (4) protrudes.
5. Wärmeübertragerrohr (1) nach einem der Ansprüche 2 bis 4, dadurch 5. heat exchanger tube (1) according to one of claims 2 to 4, characterized
gekennzeichnet, dass die Rippenabschnitte (31) der Rippen (3) entlang dem Rippenverlauf langgestreckt ausgebildet sind.  in that the rib portions (31) of the ribs (3) are elongated along the rib run.
6. Wärmeübertragerrohr (1) nach einem der Ansprüche 1 bis 5, dadurch 6. heat exchanger tube (1) according to one of claims 1 to 5, characterized
gekennzeichnet, dass mehrere Vorsprünge (6) an der von der  characterized in that a plurality of projections (6) on the of the
Rohrwand (2) entferntesten Stelle eine zur Rohrlängsachse (A) parallele Fläche (61 ) aufweist.  Pipe wall (2) most distant point to the tube longitudinal axis (A) parallel surface (61).
7. Wärmeübertragerrohr (1) nach einem der Ansprüche 1 bis 6, dadurch 7. heat exchanger tube (1) according to one of claims 1 to 6, characterized
gekennzeichnet, dass die Vorsprünge (6) in Vorsprungshöhe (h), Form und Ausrichtung untereinander variieren.  in that the projections (6) vary in projection height (h), shape and alignment with one another.
8. Wärmeübertragerrohr (1) nach einem der Ansprüche 1 bis 7, dadurch 8. heat exchanger tube (1) according to one of claims 1 to 7, characterized
gekennzeichnet, dass ein Vorsprung (6) an der von der Rohrwand (2) abgewandten Seite eine spitz zulaufende Spitze (62) aufweist.  characterized in that a projection (6) on the side facing away from the pipe wall (2) side has a tapered tip (62).
9. Wärmeübertragerrohr (1 ) nach einem der Ansprüche 1 bis 8, dadurch 9. heat exchanger tube (1) according to one of claims 1 to 8, characterized
gekennzeichnet, dass ein Vorsprung (6) an der von der Rohrwand (2) abgewandten Seite eine gekrümmte Spitze (62) aufweist, deren lokaler Krümmungsradius ausgehend von der Rohrwand (2) mit zunehmender Entfernung verkleinert ist.  in that a projection (6) on the side remote from the pipe wall (2) has a curved tip (62) whose local radius of curvature, starting from the pipe wall (2), is reduced with increasing distance.
10. Wärmeübertragerrohr (1) nach einem der Ansprüche 1 bis 9, dadurch 10. heat exchanger tube (1) according to one of claims 1 to 9, characterized
gekennzeichnet, dass die Vorsprünge (6) eine unterschiedliche Form und/oder Höhe von einem Rohranfang entlang der Rohrlängsachse (A) hin zum gegenüber liegenden Rohrende aufweisen. in that the projections (6) have a different shape and / or height of a pipe beginning along the tube longitudinal axis (A) towards the opposite end of the tube.
1 . Wärmeübertragerrohr ( ) nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass sich die Spitzen (62) von zumindest zwei 1 . Wärmeübertragerrohr () according to one of claims 1 to 10, characterized in that the tips (62) of at least two
Vorsprüngen (6) entlang dem Rippenverlauf gegenseitig berühren oder überkreuzen.  Contact projections (6) along the rib course or cross each other.
12. Wärmeübertragerrohr (1) nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass sich die Spitzen (62) von zumindest zwei 12. heat exchanger tube (1) according to one of claims 1 to 10, characterized in that the tips (62) of at least two
Vorsprüngen (6) über die Primärnut (4) hinweg gegenseitig berühren oder überkreuzen.  Protrusions (6) over the primary groove (4) across touch or cross over.
13. Wärmeübertragerrohr (1) nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass mindestens einer der Vorsprünge (6) derartig verformt ist, dass dessen Spitze (62) die Rohrinnenseite (22) bzw. die Rohraußenseite berührt. 13. Heat exchanger tube (1) according to one of claims 1 to 12, characterized in that at least one of the projections (6) is deformed such that its tip (62) touches the tube inner side (22) or the tube outer side.
14. Wärmeübertragerrohr (1) nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass die Vorsprünge (6) aus Rippen (3) gebildet werden, wobei mindestens eine der Rippen (3) in mindestens einem der Merkmale Rippenhöhe, Rippenabstand, Rippenspitze, Rippenzwischenraum, Rippenöffnungswinkel und Drall voneinander variiert. 14. heat exchanger tube (1) according to one of claims 1 to 13, characterized in that the projections (6) are formed from ribs (3), wherein at least one of the ribs (3) in at least one of the features rib height, rib distance, rib tip, Rib spacing, rib opening angle and twist from each other varies.
EP17725859.7A 2016-06-01 2017-05-17 Heat exchanger tube Active EP3465056B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016006913.9A DE102016006913B4 (en) 2016-06-01 2016-06-01 heat exchanger tube
PCT/EP2017/000597 WO2017207091A1 (en) 2016-06-01 2017-05-17 Heat exchanger tube

Publications (2)

Publication Number Publication Date
EP3465056A1 true EP3465056A1 (en) 2019-04-10
EP3465056B1 EP3465056B1 (en) 2022-07-06

Family

ID=58772829

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17725859.7A Active EP3465056B1 (en) 2016-06-01 2017-05-17 Heat exchanger tube

Country Status (10)

Country Link
US (1) US10948245B2 (en)
EP (1) EP3465056B1 (en)
JP (1) JP6907232B2 (en)
KR (1) KR102367602B1 (en)
CN (1) CN109312992A (en)
DE (1) DE102016006913B4 (en)
MX (1) MX2018014689A (en)
PL (1) PL3465056T3 (en)
PT (1) PT3465056T (en)
WO (1) WO2017207091A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190293364A1 (en) * 2018-03-22 2019-09-26 Johnson Controls Technology Company Varied geometry heat exchanger systems and methods
CN109631623B (en) * 2018-12-22 2020-12-08 大连尼维斯冷暖技术有限公司 Fin heat exchanger manufactured by using string pipe jig

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3696861A (en) 1970-05-18 1972-10-10 Trane Co Heat transfer surface having a high boiling heat transfer coefficient
US3776018A (en) * 1972-02-29 1973-12-04 Noranda Metal Ind Tubing with inner baffle fins and method of producing it
DE2808080C2 (en) 1977-02-25 1982-12-30 Furukawa Metals Co., Ltd., Tokyo Heat transfer tube for boiling heat exchangers and process for its manufacture
DE2758526C2 (en) 1977-12-28 1986-03-06 Wieland-Werke Ag, 7900 Ulm Method and device for manufacturing a finned tube
US4179911A (en) 1977-08-09 1979-12-25 Wieland-Werke Aktiengesellschaft Y and T-finned tubes and methods and apparatus for their making
US4577381A (en) 1983-04-01 1986-03-25 Kabushiki Kaisha Kobe Seiko Sho Boiling heat transfer pipes
US4660630A (en) 1985-06-12 1987-04-28 Wolverine Tube, Inc. Heat transfer tube having internal ridges, and method of making same
US4733698A (en) * 1985-09-13 1988-03-29 Kabushiki Kaisha Kobe Seiko Sho Heat transfer pipe
US5054548A (en) 1990-10-24 1991-10-08 Carrier Corporation High performance heat transfer surface for high pressure refrigerants
US5332034A (en) * 1992-12-16 1994-07-26 Carrier Corporation Heat exchanger tube
DE4404357C2 (en) 1994-02-11 1998-05-20 Wieland Werke Ag Heat exchange tube for condensing steam
US5458191A (en) * 1994-07-11 1995-10-17 Carrier Corporation Heat transfer tube
CN1084876C (en) * 1994-08-08 2002-05-15 运载器有限公司 Heat transfer tube
EP0713072B1 (en) 1994-11-17 2002-02-27 Carrier Corporation Heat transfer tube
JP3323682B2 (en) * 1994-12-28 2002-09-09 株式会社日立製作所 Heat transfer tube with internal cross groove for mixed refrigerant
US6182743B1 (en) * 1998-11-02 2001-02-06 Outokumpu Cooper Franklin Inc. Polyhedral array heat transfer tube
US6336501B1 (en) * 1998-12-25 2002-01-08 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Tube having grooved inner surface and its production method
DE19963353B4 (en) * 1999-12-28 2004-05-27 Wieland-Werke Ag Heat exchanger tube structured on both sides and method for its production
US6883597B2 (en) * 2001-04-17 2005-04-26 Wolverine Tube, Inc. Heat transfer tube with grooved inner surface
DE10156374C1 (en) 2001-11-16 2003-02-27 Wieland Werke Ag Heat exchange tube structured on both sides has inner fins crossed by secondary grooves at specified rise angle
US7311137B2 (en) * 2002-06-10 2007-12-25 Wolverine Tube, Inc. Heat transfer tube including enhanced heat transfer surfaces
PT1845327E (en) * 2002-06-10 2008-12-22 Wolverine Tube Inc Method of manufacturing a heat transfer tube
US8573022B2 (en) * 2002-06-10 2013-11-05 Wieland-Werke Ag Method for making enhanced heat transfer surfaces
US20060112535A1 (en) * 2004-05-13 2006-06-01 Petur Thors Retractable finning tool and method of using
WO2005043062A2 (en) * 2003-10-23 2005-05-12 Wolverine Tube, Inc. Method and tool for making enhanced heat transfer surfaces
CA2601112C (en) 2005-03-25 2011-12-13 Wolverine Tube, Inc. Tool for making enhanced heat transfer surfaces
DE102006008083B4 (en) 2006-02-22 2012-04-26 Wieland-Werke Ag Structured heat exchanger tube and method for its production
WO2009051037A1 (en) * 2007-10-17 2009-04-23 Sumitomo Metal Industries, Ltd. Production method of steel pipe with inner rib and steel pipe with inner rib
US20090178432A1 (en) * 2008-01-15 2009-07-16 Scot Reagen Ice maker evaporator
DE102009007446B4 (en) * 2009-02-04 2012-03-29 Wieland-Werke Ag Heat exchanger tube and method for its production
US20110036553A1 (en) * 2009-08-12 2011-02-17 Brian John Christen Integral evaporator and defrost heater system
DE102009060395A1 (en) * 2009-12-22 2011-06-30 Wieland-Werke AG, 89079 Heat exchanger tube and method for producing a heat exchanger tube
DE102010007570A1 (en) * 2010-02-10 2011-08-11 ThyssenKrupp Nirosta GmbH, 47807 Product for fluidic applications, process for its preparation and use of such a product
CN202630743U (en) * 2012-06-11 2012-12-26 柳州展维热工科技有限公司 High-efficiency energy-saving heat exchanger
US10551130B2 (en) * 2014-10-06 2020-02-04 Brazeway, Inc. Heat transfer tube with multiple enhancements
US10508325B2 (en) * 2015-06-18 2019-12-17 Brazeway, Inc. Corrosion-resistant aluminum alloy for heat exchanger
CN204830966U (en) * 2015-08-26 2015-12-02 航天海鹰(哈尔滨)钛业有限公司 High -efficient condenser pipe is used to thermal power condenser

Also Published As

Publication number Publication date
DE102016006913A1 (en) 2017-12-07
JP6907232B2 (en) 2021-07-21
US20190145718A1 (en) 2019-05-16
WO2017207091A1 (en) 2017-12-07
KR20190013719A (en) 2019-02-11
DE102016006913B4 (en) 2019-01-03
MX2018014689A (en) 2019-02-28
EP3465056B1 (en) 2022-07-06
US10948245B2 (en) 2021-03-16
PT3465056T (en) 2022-08-22
KR102367602B1 (en) 2022-02-25
JP2019517650A (en) 2019-06-24
CN109312992A (en) 2019-02-05
PL3465056T3 (en) 2022-11-14

Similar Documents

Publication Publication Date Title
EP1830151B1 (en) Structured heat exchanger and method for its production
DE10101589C1 (en) Heat exchanger tube and process for its production
EP2339283B1 (en) Heat transfer pipe and method for manufacturing same
EP2253922B1 (en) Metallic heat exchange pipe
DE2431162A1 (en) FIBER TUBE
DE19510124A1 (en) Exchanger tube for a heat exchanger
EP2795233B1 (en) Evaporator pipe with optimised external structure
EP1221579A1 (en) Heat exchanger tube for liquid and gaseous media
DE102010008175B4 (en) Heat exchanger
EP3111153B1 (en) Metal heat exchanger tube
DE102016006913B4 (en) heat exchanger tube
EP3465055B1 (en) Heat exchanger tube
EP2791609B1 (en) Condenser tubes with additional flank structure
EP3465057B1 (en) Heat exchanger tube
EP0745813A2 (en) Heat exchanger, especially for a boiler
EP1314947B1 (en) Heat exchanger, more particularly for heating unit
EP0268831A1 (en) Plate fin
EP3581871B1 (en) Metallic heat exchange pipe
EP4237782A1 (en) Metal heat exchanger tube
DE19616034C2 (en) Heat exchanger for weather cooling in mining and tunneling work areas
WO2022089772A1 (en) Metal heat exchanger tube
DE102016112515A1 (en) laboratory cooler

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181026

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220218

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1503125

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220715

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017013429

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3465056

Country of ref document: PT

Date of ref document: 20220822

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20220812

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221006

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221106

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221007

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017013429

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

26N No opposition filed

Effective date: 20230411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20230517

Year of fee payment: 7

Ref country code: IT

Payment date: 20230412

Year of fee payment: 7

Ref country code: DE

Payment date: 20230531

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230515

Year of fee payment: 7

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230517

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230517

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230531

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230517

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20240312

Year of fee payment: 8

Ref country code: FR

Payment date: 20240308

Year of fee payment: 8