EP3454572B1 - Procédé de reconnaissance d'un défaut dans un appareil auditif - Google Patents

Procédé de reconnaissance d'un défaut dans un appareil auditif Download PDF

Info

Publication number
EP3454572B1
EP3454572B1 EP18188624.3A EP18188624A EP3454572B1 EP 3454572 B1 EP3454572 B1 EP 3454572B1 EP 18188624 A EP18188624 A EP 18188624A EP 3454572 B1 EP3454572 B1 EP 3454572B1
Authority
EP
European Patent Office
Prior art keywords
transfer function
transducer
function
determined
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18188624.3A
Other languages
German (de)
English (en)
Other versions
EP3454572A1 (fr
Inventor
Tobias Wurzbacher
Tobias Daniel Rosenkranz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sivantos Pte Ltd
Original Assignee
Sivantos Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sivantos Pte Ltd filed Critical Sivantos Pte Ltd
Publication of EP3454572A1 publication Critical patent/EP3454572A1/fr
Application granted granted Critical
Publication of EP3454572B1 publication Critical patent/EP3454572B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/30Monitoring or testing of hearing aids, e.g. functioning, settings, battery power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R29/00Monitoring arrangements; Testing arrangements
    • H04R29/001Monitoring arrangements; Testing arrangements for loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/30Monitoring or testing of hearing aids, e.g. functioning, settings, battery power
    • H04R25/305Self-monitoring or self-testing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/40Arrangements for obtaining a desired directivity characteristic
    • H04R25/405Arrangements for obtaining a desired directivity characteristic by combining a plurality of transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/50Customised settings for obtaining desired overall acoustical characteristics
    • H04R25/505Customised settings for obtaining desired overall acoustical characteristics using digital signal processing

Definitions

  • the invention relates to a method for detecting a defect in a hearing instrument which has at least one first input transducer and at least one output transducer.
  • a hearing aid In a hearing aid, sound signals from the environment are converted into electrical signals by one or more input transducers, which are further processed by a signal processor or the like, and then converted back into an output sound signal by an output transducer.
  • the output sound signal is fed to the hearing of a user who usually has a hearing impairment.
  • the processing of the electrical signals in the signal processor is therefore carried out with the proviso that this impairment is compensated as far as possible by appropriate processing.
  • the functionality of the electroacoustic hardware components that is to say the input transducer and the output transducer, must be as faultless as possible.
  • These components in hearing aids can usually lose some of their performance with increasing operating time, that is, at comparable sound pressure levels, the input transducers generate electrical signals of increasingly lower amplitude, while the output transducer generates an increasingly lower sound pressure from a standardized test signal over time.
  • This loss of performance which is primarily caused by wear and tear of the electroacoustic components, is further intensified by the fact that the components in the hearing aid are exposed to the effects of moisture or sebum when worn in the ear. A malfunction of the The hearing aid is therefore often caused by a corresponding damage or impairment to one of the electroacoustic hardware components.
  • the US 2003/0 007 647 A1 calls a hearing aid which is set up to detect a defect by placing the hearing aid in a chamber with hard walls is deposited so that a test signal generated by an output transducer of the hearing aid is received as completely as possible by an input transducer of the hearing aid, and a defect can be deduced from a signal parameter of the input signal.
  • a similar procedure is used in the US 2005/0 259 829 A1 disclosed: This calls a test system for checking the functionality of a hearing aid.
  • the test system comprises a housing in which the hearing aid is arranged so that a closed sound path from an output transducer to an input transducer of the hearing aid is present in the housing.
  • a system for independent error detection in a hearing aid is also in the EP 1 467 595 A2 disclosed.
  • the WO 2018/129 242 A1 discloses to determine an acoustic output resistance for an acoustic system in order to change the electrical signal with which an output transducer of the system is controlled in the event of a deviation from the expected behavior so that the deviation is compensated as far as possible by the change.
  • the invention therefore lies the object is to specify a method for detecting a defect in a hearing instrument, which is as easy to carry out as possible with high reliability, and does not impose any additional conditions on the hearing instrument for the operation itself, and in particular does not require any further devices.
  • the stated object is achieved according to the invention by a method for detecting a defect in a hearing instrument, which has at least one first input transducer and at least one output transducer, a first transfer function of a first acoustic system comprising the output transducer and the first input transducer being determined, wherein at least one first reference function is determined for the first transfer function of the first acoustic system, the first transfer function of the first acoustic system being compared with the first reference function, and a defect in the hearing instrument being recognized on the basis of the comparison.
  • a second transfer function of a second acoustic system which comprises the output transducer and a second input transducer of the hearing instrument, is determined, at least one second reference function is determined for the second transfer function, the second transfer function is compared with the second reference function, and on the basis of the comparison of the first transfer function with the first reference function and on the basis of the comparison of the second transfer function with the second reference function, a defect in the first input transducer and / or the output transducer is detected.
  • a first limit value, a second limit value and a third limit value are specified, a first difference being formed from the first transfer function and the first reference function, a second difference being formed from the second transfer function and the second reference function, a third Difference is formed from the first transfer function and the second transfer function.
  • a defect in the first input transducer is recognized when the first difference exceeds the first limit value in at least one frequency range without the second difference exceeding the second limit value, and / or a defect in the output transducer is recognized if the first difference and the second Difference frequency ranges exist in which the first limit value or the second limit value is exceeded without the third difference exceeding the third limit value.
  • the first limit value and the second limit value are identical here.
  • a first polynomial which approximates the first transfer function, a first reference polynomial which approximates the first reference function, a second polynomial which approximates the second transfer function, and a second reference polynomial which approximates the second reference function are determined , wherein the defect is recognized on the basis of a coefficient comparison of the first polynomial and the first reference polynomial and on the basis of a coefficient comparison of the second polynomial and the second reference polynomial.
  • a threshold value for the deviation of the polynomial coefficients from one another is specified above which is based on a defect in the hearing instrument.
  • the threshold value can be selected differently for the different orders of the polynomial coefficients.
  • the aforementioned measure for the correlation of the aforementioned transfer functions can also be used.
  • a comparison of the first transfer function with the second transfer function is also used to identify a defect in the hearing instrument.
  • this comparison also allows easier localization of the defect.
  • the two input transducers and the output transducer relate either to an input transducer and the output transducer, or to both input transducers, since the contribution of the output transducer can be eliminated in a comparison of the first and second transfer function, for example by simply forming the difference.
  • a hearing instrument is generally understood to mean any device in which a sound signal from the environment is converted to an internal electrical signal by an electroacoustic input transducer, and in which an output sound signal is generated from an electrical output signal of the device by an electroacoustic output transducer, i.e. in particular an output sound signal Hearing aid and a mobile phone.
  • the hearing instrument preferably also has a signal processing unit, with the first input transducer generating a first input signal from a sound signal from the surroundings during operation, which is fed to the signal processing unit, and during operation the signal processing unit outputs an output signal which is converted into an output sound signal by the output transducer .
  • the output signal can be based on the input signal, as is the case in a hearing aid, or on a signal received by an antenna, as is the case in a mobile phone.
  • the signal processing unit can in particular be set up to process the input signal for transmission by a transmission antenna - e.g. by appropriate coding in a transmission protocol - and to decode a signal received at a reception antenna and convert it into an output signal.
  • the first reference function and / or the second reference function can in particular be determined before the current first transfer function is determined.
  • the first or second reference function can in particular also be “trivial”, that is to say given by a frequency-independent limit value for the first transfer function or for the absolute value of the first transfer function.
  • the first and the second reference functions are preferably non-trivial, that is to say they are frequency-dependent.
  • the first transfer function is preferably determined without using an external sound generator to stimulate or check the first input transducer or an additional external microphone to check the output transducer. This can be achieved by a suitable choice of the first acoustic system.
  • the first reference function is to be determined here in such a way that it can serve as a reference for the first transfer function when the hearing instrument is fully functional, that is to say without defects.
  • a defect in the output transducer can result in an impulse response of the first transfer function that is significantly weakened compared to the values of the first reference function, while a defect in the input transducer can, inter alia, have an impulse response of the first transfer function that is time-shifted compared to the values of the first reference function.
  • the transfer function of the open signal loop is advantageously determined as the first transfer function of the first acoustic system, the open signal loop being formed from the output transducer, an acoustic feedback path from the output transducer to the first input transducer, and from the first input transducer.
  • the transfer function of the open signal loop can be determined in a particularly simple manner, for example by means of a suitable test signal, which is converted into a test sound signal by the output transducer, and an analysis of the signal component of the test signal in a first input signal generated by the first input transducer, in order to use this to determine the signal at the first input transducer estimate the incoming portion of the test sound signal.
  • Another advantage of using the open signal loop as the first acoustic system and thus using the transfer function of the open signal loop as the first transfer function is that the first input transducer and the output transducer are completely covered by this system, so that no additional sound generators and no additional ones Measuring equipment is required.
  • a further transfer function of a closed signal loop is preferably determined here, and from this the transfer function of the open signal loop is determined as the first transfer function, the closed signal loop being formed from the output transducer, an acoustic feedback path from the output transducer to the first input transducer, the first input transducer and a signal processing path from first input transducer to output transducer.
  • the closed signal loop is thus formed by the open signal loop, which is closed by the signal processing path from the input transducer to the output transducer.
  • the transfer function of the closed signal loop is preferably determined by an adaptive filter, the open signal loop being determined on the basis of the closed signal loop, taking into account signal processing taking place along the signal processing path. This can be achieved in particular by correcting the transfer function of the closed signal loop determined by the adaptive filter by a corresponding transfer function of the internal signal processing processes that take place along the signal processing path of the hearing instrument, since these signal processing processes are assumed to be completely known.
  • the adaptive filter is advantageously used in the hearing instrument to suppress acoustic feedback via the acoustic feedback path from the output transducer to the first input transducer.
  • the adaptive filter is provided and set up to suppress feedback as required during the intended use of the hearing instrument, and that the adaptive filter can be used in connection with the detection of a defect in the hearing instrument by accessing the transfer function of the closed signal loop which was determined for the purpose of suppressing the feedback.
  • the adaptive filter can also be operated in a specially provided mode for detecting a defect in the hearing instrument.
  • a test signal is fed to the output transducer, the output transducer generates a test sound signal from the test signal, the first input transducer generates a first input signal from an input sound comprising the test sound signal, and the transfer function of the open signal loop is determined as the first transfer function from the input signal and the test signal .
  • the transfer function of the open signal loop is determined by a direct measurement.
  • the spectral power density of the test signal is constant over the frequency, so the test signal is a "white noise".
  • a direct measurement of the transfer function of the open signal loop can thus be implemented particularly easily. This also applies in the event that the hearing instrument is provided by a mobile phone, since the loudspeaker only has to generate the test sound signal for this purpose, and only the portion of it arriving has to be measured on the microphone.
  • the first transfer function is determined at predetermined intervals, that is to say either regularly or as a function of the respective duration of the operating phases.
  • the first transfer function can also be determined by a user input.
  • the user information can activate the complete method for recognizing a defect if, for example, the user has the subjective impression of an existing malfunction in the hearing instrument and would like to obtain objective clarity about this.
  • the complete method for detecting a defect can also be carried out regularly or as a function of the respective duration of the operating phases, for example as part of a maintenance program or the like.
  • a cross-correlation is used to compare the first transfer function with the first reference function.
  • the cross-correlation can in particular be formed from the first transfer function and the first reference function in the frequency domain and / or from the first transfer function and the first reference function in the time domain, in which the impulse response of the first acoustic system is given.
  • the cross-correlation is used here in particular as an additional criterion for checking deviations between the first transfer function and the first reference function.
  • the corresponding correlation coefficient can be used here. This has the advantage that in the case of a frequency band-wise deviation between the first transfer function and the first reference function, the degree of deviation is difficult to quantify and, in particular, more difficult to relate it to other scenarios.
  • the correlation coefficient provides a single value that establishes such comparability.
  • the first reference function is expediently determined from a measurement of the first transfer function under standardized conditions. In particular, this can be done for a hearing aid by a hearing aid acoustician. Such a measurement can be implemented particularly easily in the fitting that is taking place anyway. In the case of a mobile phone, such a measurement is possible at the manufacturer's or through a qualified distributor.
  • the first reference function can be determined from a time averaging of a multiplicity of values of the first transfer function at different times.
  • the values at a large number of points in time can in particular be determined by regularly determining the values in a predetermined operating interval after commissioning, for example in the first few days. This is based on the assumption that the hearing instrument is still fully functional when it is put into operation, and therefore the values of the first transfer function determined in this way are suitable as a basis for the first reference function respective value has been determined, averaging over several values is advantageous. This procedure is particularly advantageous when a direct measurement of the first transfer function is not possible under standardized conditions - for example, when no fitting is provided by a hearing aid acoustician when a hearing aid is put into operation.
  • the first transfer function is advantageously determined from a time averaging of a plurality of values of the transfer function of the open signal loop. This enables short-term fluctuations to be compensated for.
  • the averaging over time preferably comprises primarily those values which reproduce the current status of the hearing instrument as accurately as possible, which can be done in particular by significantly weighting the latest values.
  • the determination of the values of the transfer function of the open signal loop can take place in the background over a longer period of time, and the determination of the first transfer function from these values can then take place via a weighting of the values in the averaging that decreases in the past.
  • the invention also mentions a hearing instrument with at least one first input transducer and one output transducer, which is set up to carry out the method described above.
  • the advantages specified for the method and its developments can be applied analogously to the hearing instrument.
  • the hearing instrument preferably comprises a correspondingly configured control unit for carrying out the method. This can also be implemented, for example, by appropriate command blocks within a signal processing unit of the hearing instrument.
  • the hearing instrument is designed as a hearing aid.
  • the method mentioned is particularly practical in order to be able to detect a defect without a complex measurement by a hearing aid acoustician.
  • a hearing instrument 1 which is designed as a hearing aid 2, is shown schematically in a block diagram.
  • the hearing aid 2 comprises a first input transducer 4 and a second input transducer 6, which are each formed by a microphone, and an output transducer 8, which is provided by a loudspeaker.
  • the first input transducer 4 and the second input transducer 6 are set up to convert a sound signal (not shown in more detail) into a first input signal 10 and a second input signal 12, respectively.
  • the first input signal 10 and the second input signal 12 are each fed to a signal processing unit 14 in which the hearing aid-specific processing takes place, i.e.
  • the signal processing unit 14 generates an output signal 16 which is converted by the output converter 8 into an output sound signal, not shown in detail.
  • the signal processing unit 14 In order to detect a defect on the first input transducer 4, on the second input transducer 6 or on the output transducer 8 during the operation of the hearing aid 2, the signal processing unit 14 outputs a test signal 18 as the output signal 16, which is converted by the output transducer 8 into a test sound signal 20.
  • the test sound signal 20 is essentially given by white noise, that is to say has an essentially flat frequency spectrum.
  • other types of signals e.g. sine tones of different frequencies, chirps, so-called "perfect sweeps" or the like, which allow statements about the widest possible frequency spectrum, are also conceivable.
  • the first input transducer 4 and the second input transducer 6 now each convert the corresponding sound signals into the input signals 10 and 12, and thus also the one at the respective input transducer 4, 6 via the corresponding one acoustic feedback path 22 or 24 from the output transducer 8 to the input transducer 4, 6 incoming portion of the test sound signal 20.
  • a first transfer function T1 is determined for a first acoustic system 26, which is formed by the open signal loop from the output transducer 8 via the acoustic feedback path 22 to the first input transducer 4. This can be done on the one hand by a direct measurement of the portion of the test signal 18 in the first input signal 4, or on the other hand by an estimate based on the closed signal loop, which is formed from the first acoustic system 26, i.e. the open signal loop, and from the signal processing unit 14.
  • the closed signal loop or its transfer function is often available in hearing aids anyway, since it is determined via the acoustic feedback path 22 to suppress acoustic feedback.
  • a second transfer function T2 is determined on the basis of the second input signal 12 and the output signal 8 for a second acoustic system 28, which is formed by the open signal loop from the output transducer 8 via the acoustic feedback path 24 to the second input transducer 6.
  • a first reference function and a second reference function are now stored in each case for the first transfer function T1 and the second transfer function T2. This can be done on the one hand by measurements of the first transfer function T1 and the second transfer function T2 under standardized conditions at a hearing aid acoustician, or on the other hand by averaging the respective values of the first transfer function T1 and T2 during the first few days after commissioning, since this is assumed May that the hardware components to be checked are still fully functional at this time.
  • the currently determined first or second transfer function T1, T2 is now compared with the corresponding reference functions in order to arrive at a to be able to close possible defects of the hardware components. This is done using the Figures 2 to 4 explained.
  • FIGs 2a-2c the first transfer function T1 and the first reference function ( Fig. 2a ), the second transfer function T2 and the second reference function R2 ( Figure 2b ) as well as the difference between the first transfer function T1 and the second transfer function T2 ( Figure 2c ) shown.
  • the first transfer function T1 remains within a corridor over the entire frequency range shown, which is predetermined by the first limit value g1 of 10 dB.
  • the first transfer function T1 also shows no noteworthy deviations from the first reference function R1, which represents the undisturbed operation of the hearing aid 2.
  • the in Figure 2b The second transfer function T2 shown lies over the entire frequency range shown within the corridor which is predetermined by the second limit value g2 of 10 dB.
  • Figures 3a-3c are the same sizes as shown in Figures 2a-2c .
  • the first transfer function lies outside the corridor defined by the first limit value above +/- g1.
  • the first reference function is also slightly negative for this area, so that the difference T1-R1 (not shown) is again within the corridor and there is still no seriously conspicuous behavior.
  • the second transfer function T2 has a continuously increasing deviation from the second reference value R2 from approx. 2.5 kHz and above approx. 4.5 kHz also lies outside the corridor defined by the second limit value g2.
  • the first acoustic system 26, consisting of the output transducer 8, the corresponding acoustic feedback path 22 and the first input transducer 4 works largely without interference, but in the second acoustic system 28, formed from the output transducer 8, the acoustic feedback path 24 and the second input transducer 6, there must be a significant defect. The defect is therefore to be assigned to the second input transducer 6.
  • first transfer function T1 in Fig. 3a can also be interpreted as an indication that the functionality is already slightly impaired in the first input transducer 4, but here - due to the corresponding course of the first reference function - there is still no critical behavior.
  • the difference between the first transfer function T1 and the second transfer function T2 essentially gives the differences between the two acoustic feedback paths 22, 24 from the output transducer 8 to the first and second input transducers 4 and 6, and the differences between the two input transducers 4, 6 itself again.
  • the differences in the acoustic feedback paths 22, 24, at least compared to the contributions of the output transducer 8 in the first and second transfer function can be neglected in the present case due to the considerable deviation from the respective reference function R1 and R2.
  • the relatively small difference T1-T2 of the two transfer functions in relation to the deviations of the two transfer functions from the respective reference function T1-R1 or T2-R2 can be used to conclude that the two input transducers 4, 6 are functioning largely without interference , and thus the defect is in the output transducer 8.
  • Another way of checking the transfer function of the open signal loop from the output transducer 8 via the respective acoustic feedback path 22 or 24 to the corresponding input transducer 4 or 6 with regard to defective hardware is to use the cross-correlation of the respective transfer function T1 or T2 with their corresponding reference function R1 and R2 in the frequency and time domains.
  • Fig. 5 a case is shown, which is based on the Figures 2a to 2c described scenario is comparable.
  • the first input transducer 4, the second input transducer 6 and the output transducer 8 operate without interference.
  • the deviations of the two transfer functions T1, T2 from the respective reference function R1, R2 in the frequency space and in the Fourier space are correspondingly small.
  • the correlation coefficient is 1.0 in each case with the exception of the cross-correlation between of the second transfer function T2 and the second reference function R2 in the time domain, there the correlation is 0.9.
  • Fig. 6 a case is shown, which is based on the Figures 3a to 3c described scenario is comparable.
  • the first input transducer 4 and the output transducer 8 work largely without interference, even if the functionality is already slightly impaired; the second input transducer 6 has a significant defect.
  • the deviations of the second transfer function T2 from the second reference function are correspondingly clear in both diagrams in the right-hand column.
  • the correlation coefficient is only 0.3, in the time domain (diagram below right) there is even an anti-correlation of -0.7.
  • the correlation coefficient of the first transfer function T1 with the first reference function R1 is 0.8 for both diagrams in the left-hand column, which suggests only a slight impairment.
  • the in Fig. 7 The illustrated case is based on the Figures 4a to 4c described scenario comparable.
  • the first input transducer 4 and the second input transducer 6 operate essentially without interference; here the output transducer 8 has a significant defect.
  • a broadband attenuation of the output power is visible here on the basis of the deviations from the respective reference function R1, R2 both for the first and for the second transfer function T1 and T2 in the frequency domain (upper diagrams). Due to the low frequency dependence of the attenuation of the reproduction in the output transducer 8, the correlation coefficient for the two transfer functions T1, T2 in the frequency domain is 0.8 and 0.7, respectively. From this alone it would not be possible to infer a significant impairment of a hardware function.
  • Fig. 8 is shown schematically in a block diagram of a hearing aid 1 designed as a hearing aid 2, which in its essential features according to the hearing aid Fig. 1 equals.
  • Fig. 8 To look in the hearing aid Fig. 8 To be able to detect a defect on the first input transducer 4, on the second input transducer 6 or on the output transducer 8, no test sound signal 20 is output by the output transducer 8. Rather, adaptive filters 30, 32 are provided here for suppressing acoustic feedback along the acoustic feedback paths 22 and 24, respectively.
  • each of these adaptive filters 30, 32 a transfer function of the closed signal loops is estimated, which are formed by the first acoustic system 26 or the second acoustic system 28 and the corresponding signal processing in the hearing aid 2, which include the respective adaptive filter 30 or 32 and the signal processing unit 14 comprises. Knowing the internal transfer function of the signal processing unit 14, the transfer functions of the first acoustic system 26 and of the second acoustic system 28 can be determined using the adaptive filters 30, 32.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Neurosurgery (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Claims (12)

  1. Procédé pour la détection d'un défaut dans un appareil auditif (1) comprenant au moins un premier transducteur d'entrée (4), un deuxième transducteur d'entrée (6) et au moins un transducteur de sortie (8),
    dans lequel une première fonction de transfert (T1) d'un premier système acoustique (26) comprenant let transducteur de sortie (8) et le premier transducteur d'entrée (4) est déterminée,
    dans lequel au moins une première fonction de référence (R1) pour la première fonction de transfert (T1) est déterminée,
    dans lequel une deuxième fonction de transfert (T2) d'un deuxième système acoustique (28) comprenant le transducteur de sortie (8) et le deuxième transducteur d'entrée (6) est déterminée,
    dans lequel au moins une deuxième fonction de référence (R2) pour la deuxième fonction de transfert (T2) est déterminée,
    dans lequel la première fonction de transfert (T1) est comparée à la première fonction de référence (R1),
    dans lequel la deuxième fonction de transfert (T2) est comparée à la deuxième fonction de référence (R2), et
    dans lequel un défaut dans le premier transducteur d'entrée (4) et/ou le transducteur de sortie (8) est détecté sur la base de la comparaison de la première fonction de transfert (T1) avec la première fonction de référence (R1) et sur la base de la comparaison de la deuxième fonction de transfert (T2) avec la deuxième fonction de référence (R1),
    caractérisé en ce
    qu'une première valeur limite (g1), une deuxième valeur limite (g2) et une troisième valeur limite (g3) sont prédéterminées,
    une première différence est formée entre la première fonction de transfert (T1) et la première fonction de référence (R1),
    une deuxième différence est formée à partir de la deuxième fonction de transfert (T1) et de la deuxième fonction de référence (R2),
    une troisième différence est formée à partir de la première fonction de transfert (T1) et de la deuxième fonction de transfert (T2),
    un défaut est détecté dans le premier transducteur d'entrée (4) si la première différence dépasse la première valeur limite (g1) au moins dans une gamme de fréquences sans que la deuxième différence ne dépasse la deuxième valeur limite (g2), et/ou
    dans lequel un défaut du transformateur de sortie (8) est détecté si des gammes de fréquence existent pour la première différence et la deuxième différence dans chaque cas où la première valeur limite (g1) ou la deuxième valeur limite (g2) est dépassée sans que la troisième différence ne dépasse la troisième valeur limite (g3).
  2. Procédé pour la détection d'un défaut dans appareil auditif (1) comprenant au moins un premier transducteur d'entrée (4), un deuxième transducteur d'entrée (6) et au moins un transducteur de sortie (8),
    dans lequel une première fonction de transfert (T1) d'un premier système acoustique (26) comprenant le transducteur de sortie (8) et le premier transducteur d'entrée (4) est déterminée,
    dans lequel au moins une première fonction de référence (R1) pour la première fonction de transfert (T1) est déterminée,
    dans lequel une deuxième fonction de transfert (T2) d'un deuxième système acoustique (28) comprenant le transducteur de sortie (8) et le deuxième transducteur d'entrée (6) est déterminée,
    dans lequel au moins une deuxième fonction de référence (R2) pour la deuxième fonction de transfert (T2) est déterminée,
    dans lequel la première fonction de transfert (T1) est comparée à la première fonction de référence (R1),
    dans lequel la deuxième fonction de transfert (T2) est comparée à la deuxième fonction de référence (R2), et
    dans lequel un défaut dans le premier transducteur d'entrée (4) et/ou le transducteur de sortie (8) est détecté sur la base de la comparaison de la première fonction de transfert (T1) avec la première fonction de référence (R1) et sur la base de la comparaison de la deuxième fonction de transfert (T2) avec la deuxième fonction de référence (R1),
    caractérisé en ce
    qu'un premier polynôme, qui se rapproche de la première fonction de transfert (T1), est déterminé,
    qu'un premier polynôme de référence, qui se rapproche de la première fonction de référence (R1), est déterminé,
    qu'un deuxième polynôme, qui se rapproche de la deuxième fonction de transfert (T2), est déterminé, et
    qu'un deuxième polynôme de référence, qui se rapproche de la deuxième fonction de référence (R2), est déterminé,
    dans lequel le défaut est détecté sur la base d'une comparaison des coefficients du premier polynôme et du premier polynôme de référence et sur la base d'une comparaison des coefficients du deuxième polynôme et du deuxième polynôme de référence en déterminant une valeur seuil pour l'écart des coefficients des polynômes entre eux est prédéterminée, au-dessus de laquelle un défaut de l'appareil auditif est conclu.
  3. Procédé selon la revendication 1 ou selon la revendication 2,
    dans lequel, en tant que première fonction de transfert (T1) du premier système acoustique (26), la fonction de transfert de la boucle de signal ouverte est déterminée, dans lequel la boucle de signal ouverte est formée à partir du transducteur de sortie (8), d'un chemin de rétroaction acoustique (22) du transducteur de sortie (8) au premier transducteur d'entrée (4), et du premier transducteur d'entrée (4).
  4. Procédé selon la revendication 3,
    dans lequel une autre fonction de transfert d'une boucle de signal fermée formée du transducteur de sortie (8), d'un chemin de rétroaction acoustique (22) du transducteur de sortie (8) au premier transducteur d'entrée (4), du premier transducteur d'entrée (4) et d'un chemin de traitement de signal (10, 14, 16) du premier transducteur d'entrée (4) au transducteur de sortie (8),
    et à partir de cela la fonction de transfert de la boucle de signal ouverte est déterminée comme la première fonction de transfert (T1).
  5. Procédé selon la revendication 4,
    dans lequel la fonction de transfert de la boucle de signal fermée est déterminée par un filtre adaptatif (30, 32), et
    dans lequel la boucle de signal ouverte est déterminée sur la base de la boucle de signal fermée en tenant compte du traitement du signal se produisant le long du chemin de traitement du signal (10, 14, 16).
  6. Procédé selon la revendication 5,
    dans lequel le filtre adaptatif (30, 32) de l'appareil auditif (1) est utilisé pour supprimer le rétroaction acoustique le long du chemin de rétroaction acoustique (22) du transducteur de sortie (8) au premier transducteur d'entrée (4).
  7. Procédé selon la revendication 3,
    dans lequel un signal de test (18) est appliqué au transducteur de sortie (8), dans lequel à partir du signal de test (18) un signal sonore de test (20) est généré par le transducteur de sortie (8),
    dans lequel un premier signal d'entrée (10) est généré par le premier transducteur d'entrée (4) à partir d'un son d'entrée comprenant le signal sonore de test (20),
    et dans lequel la fonction de transfert de la boucle de signal ouverte est déterminée comme la première fonction de transfert (T1) à partir du premier signal d'entrée (10) et du signal de test (18).
  8. Procédé selon l'une des revendications précédentes,
    dans lequel la première fonction de référence (R1) est déterminée à partir d'une mesure de la première fonction de transfert (T1) dans des conditions normalisées.
  9. Procédé selon l'une des revendications 1 à 7,
    dans lequel la première fonction de référence (R1) est déterminée à partir d'une moyenne temporelle d'une pluralité de valeurs de la première fonction de transfert (T1) à différents moments.
  10. Procédé selon l'une des revendications 3 à 9,
    dans lequel la première fonction de transfert (T1) est déterminée à partir d'une moyenne temporelle d'une pluralité de valeurs de la fonction de transfert de la boucle de signal ouverte.
  11. Appareil auditif (1) avec au moins un premier transducteur d'entrée (4) et un transducteur de sortie (8), ledit appareil auditif (1) étant configuré pour exécuter le procédé selon l'une des revendications précédentes.
  12. Appareil auditif (1) selon la revendication 11, qui est conçu comme une aide auditive (2).
EP18188624.3A 2017-09-07 2018-08-13 Procédé de reconnaissance d'un défaut dans un appareil auditif Active EP3454572B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017215825.5A DE102017215825B3 (de) 2017-09-07 2017-09-07 Verfahren zum Erkennen eines Defektes in einem Hörinstrument

Publications (2)

Publication Number Publication Date
EP3454572A1 EP3454572A1 (fr) 2019-03-13
EP3454572B1 true EP3454572B1 (fr) 2021-05-19

Family

ID=63797523

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18188624.3A Active EP3454572B1 (fr) 2017-09-07 2018-08-13 Procédé de reconnaissance d'un défaut dans un appareil auditif

Country Status (5)

Country Link
US (1) US10462581B2 (fr)
EP (1) EP3454572B1 (fr)
CN (1) CN109474877B (fr)
DE (1) DE102017215825B3 (fr)
DK (1) DK3454572T3 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3675524A1 (fr) * 2018-12-28 2020-07-01 GN Hearing A/S Procédé de détermination d'un état d'un trajet de rétroaction acoustique d'un dispositif auditif portable sur la tête et dispositif auditif portable sur la tête
US10748521B1 (en) * 2019-06-19 2020-08-18 Bose Corporation Real-time detection of conditions in acoustic devices
US11115766B1 (en) * 2020-05-28 2021-09-07 Zebra Technologies Corporation Automated audio assembly performance assessment
CN115334437A (zh) * 2020-08-29 2022-11-11 深圳市韶音科技有限公司 一种振动传递函数确定***
JP2023524868A (ja) * 2020-08-29 2023-06-13 シェンツェン・ショックス・カンパニー・リミテッド 骨導聴覚装置の状態を検出する方法及びシステム

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6879692B2 (en) * 2001-07-09 2005-04-12 Widex A/S Hearing aid with a self-test capability
ATE276635T1 (de) * 2001-07-09 2004-10-15 Widex As Hörgerät mit selbstprüffähigkeit
US7242778B2 (en) 2003-04-08 2007-07-10 Gennum Corporation Hearing instrument with self-diagnostics
US8144884B2 (en) * 2004-05-24 2012-03-27 Cochlear Limited Stand-alone microphone test system for a hearing device
US8600067B2 (en) * 2008-09-19 2013-12-03 Personics Holdings Inc. Acoustic sealing analysis system
US8243939B2 (en) * 2008-12-30 2012-08-14 Gn Resound A/S Hearing instrument with improved initialisation of parameters of digital feedback suppression circuitry
US8953818B2 (en) * 2009-02-06 2015-02-10 Oticon A/S Spectral band substitution to avoid howls and sub-oscillation
EP2217007B1 (fr) * 2009-02-06 2014-06-11 Oticon A/S Prothèse auditive avec suppression adaptative de la rétroaction
US9161126B2 (en) * 2013-03-08 2015-10-13 Cirrus Logic, Inc. Systems and methods for protecting a speaker
US20150124977A1 (en) * 2013-11-07 2015-05-07 Qualcomm Incorporated Headset in-use detector
US9486823B2 (en) * 2014-04-23 2016-11-08 Apple Inc. Off-ear detector for personal listening device with active noise control
DK3139637T3 (da) * 2015-09-07 2020-01-20 Oticon As Mikrofontilpasningsenhed og høreapparat
KR102498095B1 (ko) * 2016-10-24 2023-02-08 아브네라 코포레이션 헤드폰 오프-이어 검출
WO2018129242A1 (fr) * 2017-01-05 2018-07-12 Knowles Electronics, Llc Diagnostics de changement de charge pour dispositifs et procédés acoustiques

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US10462581B2 (en) 2019-10-29
DK3454572T3 (da) 2021-08-09
CN109474877A (zh) 2019-03-15
EP3454572A1 (fr) 2019-03-13
CN109474877B (zh) 2021-08-17
DE102017215825B3 (de) 2018-10-31
US20190075403A1 (en) 2019-03-07

Similar Documents

Publication Publication Date Title
EP3454572B1 (fr) Procédé de reconnaissance d'un défaut dans un appareil auditif
EP2180726B1 (fr) Localisation du son avec des prothèses auditives binaurales
EP1251493B1 (fr) Procédé pour la réduction du bruit avec fréquence parasite auto-adaptative
EP1453194B1 (fr) Méthode de l'ajustement automatique d'un amplificateur dans une prothèse auditive et prothèse auditive
EP1143416B1 (fr) Suppression de bruit dans le domaine temporel
DE60024815T2 (de) System und verfahren zur erkennung eines nahen sprechers durch spektrumanalyse
DE69634841T2 (de) Verfahren und Vorrichtung zur Echokompensation
DE4430189A1 (de) Verfahren zur adaptiven Echokompensation
DE102016225205A1 (de) Verfahren zum Bestimmen einer Richtung einer Nutzsignalquelle
EP3490270B1 (fr) Procédé de fonctionnement d'un dispositif de correction auditive
DE102016225204A1 (de) Verfahren zum Betrieb eines Hörgerätes
DE102016200637B3 (de) Verfahren zur Reduktion der Latenzzeit einer Filterbank zur Filterung eines Audiosignals sowie Verfahren zum latenzarmen Betrieb eines Hörsystems
DE102008046040B4 (de) Verfahren zum Betrieb einer Hörvorrichtung mit Richtwirkung und zugehörige Hörvorrichtung
EP2981099A2 (fr) Procede et dispositif de suppression de l'effet larsen
EP2822300B1 (fr) Reconnaissance de situations d'écoute à l'aide de différentes sources de signal
EP2129167B1 (fr) Procédé de fonctionnement d'un appareil auditif et système de microphone pour un appareil auditif
EP1351550B1 (fr) Procédé d'adaptation d'une amplification de signal dans une prothèse auditive et prothèse auditive
EP3132282A1 (fr) Dispositif et procédé de détection sonore d'un environnement
DE102013207161A1 (de) Verfahren zur Nutzsignalanpassung in binauralen Hörhilfesystemen
EP0965179A2 (fr) Procede destine a mesurer les effets diaphoniques dans des systemes de telecommunication electriques
DE102019105458A1 (de) Zeitverzögerungsschätzung
EP1282297A2 (fr) Procede et dispositif pour la suppression du bruit et d'echo
DE102020202206A1 (de) Verfahren zur Unterdrückung eines Eigenrauschens einer Mikrofonanordnung
EP1501190B1 (fr) Procédé et dispositif pour égaliser un signal audio comprenant un signal de bruit externe
DE102015201073A1 (de) Verfahren und Vorrichtung zur Rauschunterdrückung basierend auf Inter-Subband-Korrelation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190912

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200325

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201210

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WURZBACHER, TOBIAS

Inventor name: ROSENKRANZ, TOBIAS DANIEL

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018005295

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1395166

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20210802

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210920

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210819

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210820

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018005295

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210831

26N No opposition filed

Effective date: 20220222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210919

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210813

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210813

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180813

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230824

Year of fee payment: 6

Ref country code: CH

Payment date: 20230902

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230821

Year of fee payment: 6

Ref country code: DK

Payment date: 20230823

Year of fee payment: 6

Ref country code: DE

Payment date: 20230822

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519