EP3453228B1 - Beleuchtungsvorrichtung - Google Patents

Beleuchtungsvorrichtung Download PDF

Info

Publication number
EP3453228B1
EP3453228B1 EP17720434.4A EP17720434A EP3453228B1 EP 3453228 B1 EP3453228 B1 EP 3453228B1 EP 17720434 A EP17720434 A EP 17720434A EP 3453228 B1 EP3453228 B1 EP 3453228B1
Authority
EP
European Patent Office
Prior art keywords
colour
colour led
led unit
illumination device
microcontroller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17720434.4A
Other languages
English (en)
French (fr)
Other versions
EP3453228A1 (de
Inventor
Robert Isele
Florian Altinger
Juergen Bruegl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayerische Motoren Werke AG
Original Assignee
Bayerische Motoren Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke AG filed Critical Bayerische Motoren Werke AG
Publication of EP3453228A1 publication Critical patent/EP3453228A1/de
Application granted granted Critical
Publication of EP3453228B1 publication Critical patent/EP3453228B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • H05B45/28Controlling the colour of the light using temperature feedback

Definitions

  • the invention relates to a lighting device, in particular for a motor vehicle.
  • LIN bus Local Interconnect Network
  • Novel multi-color LED units which have an integrated circuit are also known from the prior art. With these LED units, the single-color LEDs and the integrated circuit are housed in a common housing, which enables a high packing density to be achieved. The individual LED units are controlled via a data stream.
  • WO 2014/067830 A1 discloses a method and an arrangement for temperature-corrected control of LEDs using look-up tables.
  • a look-up table is provided in an LED module consisting of several LED channels for each target color location that can be reached by the LED module, in which the operating current for each LED channel is stored as a function of temperature. The current temperature is measured via a thermistor outside the LED module.
  • the publication US 2010/0259198 A1 discloses a method for setting a color location in a lighting module as a function of a determined temperature. As part of this setting, calibration data is also used.
  • WO 2004/086822 A1 discloses a motor vehicle lamp module which comprises individual LEDs as lamps and sensors for detecting external and / or internal influences during the operation of the LEDs and / or production-related properties of the LEDs.
  • the LEDs are controlled depending on the detected influences or properties via a microcontroller circuit.
  • the object of the invention is to provide a lighting device comprising a plurality of multi-color LED units with an improved temperature-dependent operating control.
  • the lighting device according to the invention is preferably provided for a motor vehicle, such as a car and possibly also a truck.
  • the lighting device comprises a plurality of multi-color LED units, each with an adjustable color locus and adjustable brightness (i.e. light intensity).
  • the term color location is well known to the person skilled in the art and describes the mixed color which is generated by the respective multicolor LED unit.
  • the color location can be specified, for example, as a location in a color diagram, in particular in a color diagram of the CIE standard valence system.
  • each multicolor LED unit is an individual semiconductor component with several and preferably at least three single-color LEDs of different colors.
  • the individual semiconductor component also includes a microcontroller.
  • the single-color LEDs and the microcontroller of each multi-color LED unit are surrounded by a corresponding housing of the semiconductor component, ie they are accommodated in a common housing of the semiconductor component.
  • a temperature sensor is integrated in the semiconductor component of a respective multi-color LED unit, which has a current (ie currently present) temperature value measures the respective multicolor LED unit and makes it available to the microcontroller.
  • the microcontroller is set up to control a respective multicolor LED unit as a function of the current temperature value of the respective multicolor LED unit.
  • the lighting device has the advantage that by directly integrating a temperature sensor in the respective multicolor LED unit, its temperature can be recorded with high precision and thus a temperature-dependent operating control can be better adapted to the current environmental conditions of the respective multicolor LED unit.
  • the temperature measurement of the temperature sensor can be based on technologies known per se. For example, the temperature sensor measure the temperature using a resistance measurement or infrared or a diode.
  • the microcontroller of a respective multi-color LED unit is set up to control each single-color LED of the respective multi-color LED unit in dependence on the current temperature value of the respective multi-color LED unit in such a way that a set color location and a set brightness can be kept constant during operation of the respective multi-color LED unit.
  • a desired brightness or a desired color location can be set individually and with high precision, taking into account local temperatures of the individual multi-color LED units, as a result of which the lighting device has a uniform appearance.
  • the microcontroller of at least some of the multi-color LED units is set up to control each single-color LED based on the control of the operating current of the respective single-color LED, for example via pulse width modulation.
  • the microcontroller of at least some of the multicolor LED units is designed such that, in the event that the current temperature value exceeds a predefined threshold, the brightness of the respective multicolor LED unit (ie the multicolor -LED unit to which the microcontroller belongs). This ensures that the multi-color LED unit is damaged due to excessive temperatures.
  • a relationship can preferably be predetermined, according to which the brightness of the multicolor LED unit is reduced the more, the more the predetermined threshold is exceeded. If necessary, the brightness of the multicolor LED unit can also be reduced to zero, i.e. the corresponding multi-color LED unit can be switched off. This can be achieved, for example, by a second threshold that is higher than the predetermined threshold. If the current temperature exceeds this second threshold, the multi-color LED unit is switched off.
  • the lighting device comprises a plurality of multicolor LED units which are connected to an internal data bus (ie a data bus within the lighting device) are connected.
  • This internal data bus is in turn coupled to a processing module, the processing module being set up to issue internal control commands for setting the brightness and the color location of the individual multi-color LED units on the internal data bus.
  • the above processing module is preferably set up to receive external control commands from a motor vehicle data bus and to convert them into the above internal control commands.
  • SPI Serial Protocol Interface
  • another data bus e.g. a differential data bus that encodes digital data via a voltage difference between two lines.
  • the multicolor LED units comprise one or more RGB LED units and / or RGBW LED units.
  • An RGB LED unit comprises a red, green and blue single-color LED in a manner known per se, and an RGBW LED unit also comprises a white light LED in addition to a red, green and blue LED.
  • the lighting device is interior lighting in a motor vehicle or possibly also external lighting on the outside of the motor vehicle. In this way, attractive lighting effects with a homogeneous appearance can be generated.
  • the invention relates to a motor vehicle, in particular a car or possibly also a truck, which comprises one or more of the lighting devices according to the invention or of preferred variants of these lighting devices.
  • a lighting device which is installed in a motor vehicle as interior lighting and which comprises a plurality of multicolor LED units 3 arranged on a band as the illuminant.
  • These multi-color LED units which are also referred to simply as LED units below, each represent a single semiconductor component with a plurality of single-color LEDs 301 to 304 and a microcontroller 4.
  • the single-color LEDs and the microcontroller and the temperature sensor described below are integrated in a common housing of the semiconductor component.
  • the single-color LED 301 is a red LED
  • the single-color LED 302 is a green LED
  • the single-color LED 303 is a blue LED
  • the single-color LED 304 is a white LED.
  • a very high packing density can be achieved with the band-shaped LED units (depending on the housing shape from 144 to 367 LEDs / m).
  • the individual LED units 3 are controlled via a digital data stream in the form of a bit stream, which is fed to the individual LED units by means of an internal data bus 2 (i.e. a data bus provided internally in the lighting device).
  • the internal data bus comprises a line CL for the clock and a line DL for the bit stream.
  • the signals on the internal data bus 2 originate from a processing module 1 which is coupled to a LIN bus 6 of the motor vehicle.
  • the processing module comprises a LIN transceiver 101, which taps the corresponding digital signals for controlling the LED units 3 from the LIN bus 6, and a microprocessor 102, which converts the tapped signals into corresponding data signals on the data line DL.
  • the signals transmitted on the LIN bus 6 include signals which are intended for the lighting device and a light pattern to be set for the lighting device establish. These signals in turn come from a control unit of the motor vehicle, which, for example, determines the light pattern to be generated based on an input from the driver and outputs it as a corresponding signal to the LIN bus.
  • the processing module 1 detects whether the light pattern corresponding to the current signal is provided on the LIN bus 6 for the lighting device. If this is the case, this signal is converted into a corresponding signal for the internal data bus 2 by means of the microprocessor 102.
  • the internal data bus 2 can e.g. be an SPI bus.
  • the signals for the SPI bus are preferably generated by the microprocessor 102 by means of software SPI.
  • Software SPI is known per se from the prior art and represents a program library with which any free pins of the microprocessor 102 can be used for signaling on the SPI bus.
  • hardware SPI can also be used.
  • Special SPI pins are provided for signaling on the SPI bus.
  • the use of software SPI has the advantage that a plurality of lines DL and CL can be provided in the internal data bus 2 to control a larger number of LED units 3.
  • the internal data bus can also be designed as a differential data bus or as any other data bus.
  • a differential data bus is characterized by the fact that it encodes digital data via a voltage difference between two lines.
  • two power lines L1 and L2 are provided, which are connected to a DC voltage supply 5. Based on the bit stream received via the data line DL, the current supplied to the individual LEDs 301 to 304 is PWM modulated in order to thereby drive the LEDs in accordance with the bit stream on the data line DL.
  • a single LED unit 3 from Fig. 1 is in detail in Fig. 2 shown. All of the components of the LED unit shown are integrated in a single semiconductor component.
  • the signals of the data bus 2 are received via a communication interface COM of the LED unit 3.
  • the clock signal of the clock line CL is forwarded to the microprocessor 401 described below, whereas the data stream of the data line DL is given to 8-bit shift registers SR0, SR1, SR2, SR3 and SR4 after decoding in the communication interface COM.
  • the shift register value SR0 shows the desired overall brightness of the LED unit, whereas the values of the shift registers SR1 to SR4 are used to output the color components of the individual single-color LEDs to produce the desired mixed color.
  • the color component of the red LED 301 is output via the shift register SR1
  • the color component of the green LED 302 is output via the shift register SR2
  • the color component of the blue LED 303 is transferred via the shift register 303
  • the color component of the white LED 304 is output via the shift register 304.
  • the values of the individual shift registers are supplied to the microcontroller 4, which consists of a logic or a microprocessor 401 and an assigned non-volatile EEPROM memory 402.
  • This memory contains, among other things, calibration data that originate from a calibration process of the LED unit and, for a given standard temperature value of the LED unit, stipulate how the operating currents of the individual single-color LEDs are to be set, so that the overall brightness value coming from the shift register SR0 and the color mixing (ie the relevant color location) can be achieved according to the values from the shift registers SR1 to SR4.
  • the microprocessor 401 accesses the values stored in the memory 402 and also receives the current temperature value of a temperature sensor TS, which is integrated in the semiconductor component of the LED unit.
  • a temperature algorithm is stored in the microprocessor which, with access to the memory 402, determines the corresponding operating currents for the above-mentioned standard temperature value and corrects these operating currents appropriately if the current temperature value coming from the temperature sensor TS deviates from the standard temperature value.
  • the correction is designed in such a way that the desired brightness and the desired color location are correctly set in accordance with the values from the shift registers even in the event of temperature fluctuations.
  • the temperature algorithm of the microprocessor 401 thus takes into account the fact that the temperature of the LED unit 3 has an effect on its operation, so that a temperature-dependent correction must be carried out in order to achieve a desired brightness and a desired color location.
  • This correction is based on a temperature value that is determined directly in the LED unit via a temperature sensor integrated in it. This makes a particularly precise temperature measurement guaranteed at the location of the LED unit.
  • the algorithm for temperature compensation is stored in a microcontroller, which is part of the semiconductor component of an LED unit. In this way, the operation of the individual multi-color LED units in a lighting device can be individually and very precisely adapted to the current temperature.
  • the operating currents for the individual LEDs 301 to 304 are provided via a voltage regulator RE, which consists of the in Fig. 1 shown voltage supply 5 receives the positive voltage VDD and the negative voltage VSS.
  • the microprocessor 401 also generates a clock for a corresponding oscillator OS, which is fed to PWM generators G1, G2, G3 and G4.
  • the operating currents of the individual LEDs 301 to 304 are generated in the generators G1 to G4 via pulse width modulation.
  • the values of the operating currents originating from the algorithm for temperature compensation are passed from the microprocessor 401 to the individual generators G1 to G4.
  • the generator G1 uses pulse width modulation to generate the current for the red LED 301, the generator G2 the current for the green LED 302, the generator G3 the current for the blue LED 303 and the generator G4 the current for the white LED 304 the individual generators generated PWM signals, which reach the single-color LEDs via the current output CO, the appropriate light with the desired brightness and the desired color location is then set for the LED unit 3 in accordance with the signal sent via the internal data bus 2 the LED unit arrives.
  • the embodiments of the invention described above have a number of advantages.
  • the current temperature value required for this is determined very precisely via a temperature sensor which is integrated in the semiconductor component of a respective multi-color LED unit.
  • the temperature value is thus determined very precisely at the location of the respective multi-color LED unit.
  • the algorithm for temperature compensation is integrated in the semiconductor component of the respective multi-color LED unit.
  • integrated logic is used in a multi-color LED module in order to implement temperature compensation.
  • the desired brightness and the desired color location can be set individually and with high precision for each LED unit depending on the temperature at the installation location of the respective LED unit. To this In this way, a uniform appearance of the LED unit or an LED strip comprising many LED units can be guaranteed over the entire service life.

Landscapes

  • Arrangements Of Lighting Devices For Vehicle Interiors, Mounting And Supporting Thereof, Circuits Therefore (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Description

  • Die Erfindung betrifft eine Beleuchtungsvorrichtung, insbesondere für ein Kraftfahrzeug.
  • Aus dem Stand der Technik ist es bekannt, für Beleuchtungsvorrichtungen in Kraftfahrzeugen Mehrfarb-LED-Einheiten zu verwenden. Diese LED-Einheiten umfassen mehrere Einfarb-LEDs und werden in der Regel mit LED-Treibern angesteuert, um die Helligkeit und den Farbort (d.h. die Mischfarbe) zu variieren. Hierzu wird ein Modul mit einem Mikroprozessor verwendet, der zum einen eine Kommunikation mit einem Kraftfahrzeug-Datenbus übernimmt und zum anderen die LED-Einheiten treibt, üblicherweise über PWM-Ausgänge. Als Kraftfahrzeug-Datenbus kommt dabei häufig der sog. LIN-Bus (LIN = Local Interconnect Network) zum Einsatz.
  • Aus dem Stand der Technik sind ferner neuartige Mehrfarb-LED-Einheiten bekannt, die über eine integrierte Schaltung verfügen. Bei diesen LED-Einheiten sind die Einfarb-LEDs und die integrierte Schaltung in einem gemeinsamen Gehäuse untergebracht, wodurch eine hohe Packungsdichte erreicht werden kann. Die einzelnen LED-Einheiten werden über einen Datenstrom gesteuert.
  • Bis dato werden Parametrisierungen, die in Beleuchtungsvorrichtungen mit Mehrfarb-LED-Einheiten zum Betrieb der einzelnen LED-Einheiten benötigt werden, in einem zentralen Verarbeitungsmodul hinterlegt. Dies hat den Nachteil, dass lokal unterschiedliche Betriebsbedingungen der einzelnen LED-Einheiten nur unzureichend kompensiert werden, was zu einem uneinheitlichen Erscheinungsbild der Beleuchtungsvorrichtung führen kann.
  • Die Druckschrift WO 2014/067830 A1 offenbart ein Verfahren und eine Anordnung zur temperaturkorrigierten Steuerung von LEDs mittels Look-up-Tabellen. Dabei ist in einem LED-Modul aus mehreren LED-Kanälen für jeden Zielfarbort, der durch das LED-Modul erreichbar ist, eine Look-up-Tabelle vorgesehen, in welcher der Betriebsstrom für jeden LED-Kanal in Abhängigkeit von Temperatur abgelegt ist. Die aktuelle Temperatur wird über einen Thermistor außerhalb des LED-Moduls gemessen.
  • Die Druckschrift US 2010/0259198 A1 offenbart ein Verfahren zur Einstellung eines Farborts in einem Leuchtmodul in Abhängigkeit von einer ermittelten Temperatur. Im Rahmen dieser Einstellung wird auch auf Kalibrierdaten zurückgegriffen.
  • In der Druckschrift WO 2004/086822 A1 ist ein Kraftfahrzeugleuchtenmodul offenbart, das einzelne LEDs als Leuchtmittel und Sensoren zur Erfassung äußeren und/oder innerer Einflüsse beim Betrieb des LEDs und/oder fertigungsbedingter Eigenschaften der LEDs umfasst. Die LEDs werden in Abhängigkeit von den erfassten Einflüssen bzw. Eigenschaften über eine Mikrocontroller-Schaltung gesteuert.
  • Aufgabe der Erfindung ist es, eine Beleuchtungsvorrichtung aus mehreren Mehrfarb-LED-Einheit mit einer verbesserten temperaturabhängigen Betriebssteuerung zu schaffen.
  • Diese Aufgabe wird durch die Beleuchtungsvorrichtung gemäß Patentanspruch 1 gelöst. Weiterbildungen der Erfindung sind in den abhängigen Ansprüchen definiert.
  • Die erfindungsgemäße Beleuchtungsvorrichtung ist vorzugsweise für ein Kraftfahrzeug vorgesehen, wie z.B. einen PKW und gegebenenfalls auch einen LKW. Die Beleuchtungsvorrichtung umfasst mehrere Mehrfarb-LED-Einheiten mit jeweils einstellbarem Farbort und einstellbarer Helligkeit (d.h. Lichtintensität). Der Begriff des Farborts ist dem Fachmann hinlänglich bekannt und beschreibt die Mischfarbe, welche durch die jeweilige Mehrfarb-LED-Einheit erzeugt wird. Der Farbort kann beispielsweise als Ort in einem Farbdiagramm, insbesondere in einem Farbdiagramm des CIE-Normenvalenzsystems, angegeben werden.
  • In der erfindungsgemäßen Beleuchtungsvorrichtung ist jede Mehrfarb-LED-Einheit ein einzelnes Halbleiterbauelement mit mehreren und vorzugsweise mindestens drei Einfarb-LEDs unterschiedlicher Farbe. Das einzelne Halbleiterbauelement umfasst ferner einen Mikrocontroller. Die Einfarb-LEDs und der Mikrocontroller jeder Mehrfarb-LED-Einheit sind von einem entsprechenden Gehäuse des Halbleiterbauelements umgeben, d.h. sie sind in einem gemeinsamen Gehäuse des Halbleiterbauelements untergebracht. Erfindungsgemäß ist in dem Halbleiterbauelement einer jeweiligen Mehrfarb-LED-Einheit ein Temperatursensor integriert, der einen aktuellen (d.h. gerade vorliegenden) Temperaturwert der jeweiligen Mehrfarb-LED-Einheit misst und dem Mikrocontroller bereitstellt. Der Mikrocontroller ist dazu eingerichtet, eine jeweilige Mehrfarb-LED-Einheit in Abhängigkeit von dem aktuellen Temperaturwert der jeweiligen Mehrfarb-LED-Einheit anzusteuern.
  • Die erfindungsgemäße Beleuchtungsvorrichtung weist den Vorteil auf, dass durch die direkte Integration eines Temperatursensors in der jeweiligen Mehrfarb-LED-Einheit deren Temperatur hochgenau erfasst werden kann und somit eine temperaturabhängige Betriebssteuerung besser an die aktuellen Umgebungsbedingungen der jeweiligen Mehrfarb-LED-Einheit angepasst werden kann. Die Temperaturmessung des Temperatursensors kann dabei auf an sich bekannten Technologien beruhen. Zum Beispiel kann der Temperatursensor die Temperatur über eine Widerstandsmessung oder über Infrarot oder über eine Diode erfassen.
  • In einer besonders bevorzugten Ausführungsform ist der Mikrocontroller einer jeweiligen Mehrfarb-LED-Einheit dazu eingerichtet, jede Einfarb-LED der jeweiligen Mehrfarb-LED-Einheit derart in Abhängigkeit von dem aktuellen Temperaturwert der jeweiligen Mehrfarb-LED-Einheit anzusteuern, dass ein eingestellter Farbort und eine eingestellte Helligkeit im Betrieb der jeweiligen Mehrfarb-LED-Einheit konstant gehalten werden. Auf diese Weise kann individuell und hochgenau unter Berücksichtigung von lokalen Temperaturen der einzelnen Mehrfarb-LED-Einheiten eine erwünschte Helligkeit bzw. ein erwünschter Farbort eingestellt werden, wodurch ein gleichbleibendes Erscheinungsbild der Beleuchtungsvorrichtung erreicht wird.
  • In einer bevorzugten Variante ist der Mikrocontroller zumindest eines Teils der Mehrfarb-LED-Einheiten dazu eingerichtet, jede Einfarb-LED basierend auf der Steuerung des Betriebsstroms der jeweiligen Einfarb-LED anzusteuern, beispielsweise über Pulsweitenmodulation.
  • In einer weiteren bevorzugten Variante der erfindungsgemäßen Beleuchtungsvorrichtung ist der Mikrocontroller zumindest eines Teils der Mehrfarb-LED-Einheiten derart ausgestaltet, dass er im Falle, dass der aktuelle Temperaturwert eine vorgegebene Schwelle überschreitet, die Helligkeit der jeweiligen Mehrfarb-LED-Einheit (d.h. der Mehrfarb-LED-Einheit, zu der der Mikrocontroller gehört) verringert. Hierdurch wird sichergestellt, dass die Mehrfarb-LED-Einheit aufgrund zu hoher Temperaturen beschädigt wird. Vorzugsweise kann dabei ein Zusammenhang vorgegeben sein, gemäß dem die Helligkeit der Mehrfarb-LED-Einheit umso stärker vermindert wird, je mehr die vorgegebene Schwelle überschritten wird. Gegebenenfalls kann die Helligkeit der Mehrfarb-LED-Einheit auch auf null herabgesetzt werden, d.h. die entsprechende Mehrfarb-LED-Einheit ausgeschaltet werden. Dies kann beispielsweise durch eine zweite Schwelle erreicht werden, die höher als die vorgegebene Schwelle ist. Sollte die aktuelle Temperatur diese zweite Schwelle überschreiten, wird die Mehrfarb-LED-Einheit abgeschaltet.
  • In einer besonders bevorzugten Ausführungsform umfasst die erfindungsgemäße Beleuchtungsvorrichtung mehrere Mehrfarb-LED-Einheiten, welche an einen internen Datenbus (d.h. einen Datenbus innerhalb der Beleuchtungsvorrichtung) angeschlossen sind. Dieser interne Datenbus ist wiederum an ein Verarbeitungsmodul gekoppelt, wobei das Verarbeitungsmodul dazu eingerichtet ist, interne Steuerbefehle zur Einstellung der Helligkeit und des Farborts der einzelnen Mehrfarb-LED-Einheiten auf den internen Datenbus zu geben. Vorzugsweise ist das obige Verarbeitungsmodul dazu eingerichtet, externe Steuerbefehle von einem Kraftfahrzeug-Datenbus zu empfangen und in die obigen internen Steuerbefehle zu wandeln.
  • In der soeben beschriebenen Ausführungsform wird eine einfache Ansteuerung der einzelnen Mehrfarb-LED-Einheiten über einen internen Datenbus erreicht. Der interne Datenbus kann z.B. ein SPI-Datenbus (SPI = Serial Protocol Interface) sein oder gegebenenfalls auch ein anderer Datenbus, wie z.B. ein differentieller Datenbus, der digitale Daten über eine Spannungsdifferenz zwischen zwei Leitungen codiert. Der obige Kraftfahrzeug-Datenbus kann beispielsweise ein LIN-Bus (LIN = Local Interconnect Network) oder auch ein CAN-Bus (CAN = Controller Area Network) sein.
  • In einer weiteren bevorzugten Ausführungsform umfasst zumindest ein Teil der Mehrfarb-LED-Einheiten eine oder mehrere RGB-LED-Einheiten und/oder RGBW-LED-Einheiten. Eine RGB-LED-Einheit umfasst in an sich bekannter Weise eine rote, grüne und blaue Einfarb-LED und eine RGBW-LED-Einheit umfasst zusätzlich zu einer roten, grünen und blauen LED auch eine Weißlicht-LED.
  • In einer besonders bevorzugten Ausführungsform ist die Beleuchtungsvorrichtung eine Innenraumbeleuchtung in einem Kraftfahrzeug oder gegebenenfalls auch eine Außenbeleuchtung an der Außenseite des Kraftfahrzeugs. Hierdurch können ansprechende Lichteffekte mit einem homogenen Erscheinungsbild generiert werden.
  • Neben der oben beschriebenen Beleuchtungsvorrichtung betrifft die Erfindung ein Kraftfahrzeug, insbesondere einen PKW oder gegebenenfalls auch einen LKW, das eine oder mehrere der erfindungsgemäßen Beleuchtungsvorrichtungen bzw. von bevorzugten Varianten dieser Beleuchtungsvorrichtungen umfasst.
  • Ein Ausführungsbeispiel der Erfindung wird nachfolgend anhand der beigefügten Figuren detailliert beschrieben.
  • Es zeigen:
  • Fig. 1
    eine schematische Darstellung einer Ausführungsform einer erfindungsgemäßen Beleuchtungsvorrichtung; und
    Fig. 2
    eine Detailansicht einer LED-Einheit aus Fig. 1.
  • Im Folgenden wird eine Ausführungsform der Erfindung anhand einer Beleuchtungsvorrichtung beschrieben, welche in einem Kraftfahrzeug als Innenbeleuchtung verbaut ist und als Leuchtmittel eine Vielzahl von auf einem Band angeordneten Mehrfarb-LED-Einheiten 3 umfasst. Diese Mehrfarb-LED-Einheiten, welche nachfolgend auch einfach als LED-Einheiten bezeichnet werden, stellen jeweils ein einzelnes Halbleiterbauelement mit mehreren Einfarb-LEDs 301 bis 304 und einem Mikrocontroller 4 dar. Die Einfarb-LEDs und der Mikrocontroller sowie der weiter unten beschriebene Temperatursensor sind in einem gemeinsamen Gehäuse des Halbleiterbauelements integriert. Die Einfarb-LED 301 ist eine rote LED, die Einfarb-LED 302 eine grüne LED, die Einfarb-LED 303 eine blaue LED und die Einfarb-LED 304 eine weiße LED. Mit den bandförmig angeordneten LED-Einheiten kann eine sehr hohe Packungsdichte erreicht werden (je nach Gehäuseform von 144 bis 367 LEDs/m).
  • Die einzelnen LED-Einheiten 3 werden über einen digitalen Datenstrom in der Form eines Bitstroms angesteuert, der mittels eines internen Datenbusses 2 (d.h. eines intern in der Beleuchtungsvorrichtung vorgesehenen Datenbusses) den einzelnen LED-Einheiten zugeführt wird. Der interne Datenbus umfasst eine Leitung CL für den Takt und einer Leitung DL für den Bitstrom.
  • Die Signale auf dem internen Datenbus 2 stammen von einem Verarbeitungsmodul 1, das an einen LIN-Bus 6 des Kraftfahrzeugs gekoppelt ist. Das Verarbeitungsmodul umfasst einen LIN-Transceiver 101, der entsprechende digitale Signale zur Ansteuerung der LED-Einheiten 3 vom LIN-Bus 6 abgreift, sowie ein Mikroprozessor 102, der die abgegriffenen Signale in entsprechende Datensignale auf der Datenleitung DL wandelt. Die auf dem LIN-Bus 6 übertragenen Signale umfassen dabei Signale, welche für die Beleuchtungsvorrichtung bestimmt sind und ein für die Beleuchtungsvorrichtung einzustellendes Lichtmuster festlegen. Diese Signale stammen wiederum von einem Steuergerät des Kraftfahrzeugs, welches beispielsweise basierend auf einer Eingabe des Fahrers das zu generierende Lichtmuster festlegt und als entsprechendes Signal auf den LIN-Bus gibt. Über das Verarbeitungsmodul 1 wird erkannt, ob das Lichtmuster entsprechend dem aktuellen Signal auf dem LIN-Bus 6 für die Beleuchtungsvorrichtung vorgesehen ist. Ist dies der Fall, wird dieses Signal mittels des Mikroprozessors 102 in ein entsprechendes Signal für den internen Datenbus 2 umgesetzt.
  • Der interne Datenbus 2 kann z.B. ein SPI-Bus sein. Vorzugsweise werden dabei die Signale für den SPI-Bus von dem Mikroprozessor 102 mittels Software-SPI erzeugt. Software-SPI ist an sich aus dem Stand der Technik bekannt und stellt eine Programmbibliothek dar, mit der beliebige freie Pins des Mikroprozessors 102 zur Signalabgabe auf den SPI-Bus genutzt werden können. Alternativ kann jedoch auch Hardware-SPI eingesetzt werden. Dabei sind spezielle SPI-Pins zur Signalabgabe auf den SPI-Bus vorgesehen. Die Verwendung von Software-SPI hat den Vorteil, dass in dem internen Datenbus 2 mehrere Leitungen DL und CL zur Ansteuerung einer größeren Anzahl von LED-Einheiten 3 vorgesehen sein können. Der interne Datenbus kann als Alternative zu einem SPI-Bus auch als differentieller Datenbus oder als beliebig anderer Datenbus ausgestaltet sein. Ein differentieller Datenbus zeichnet sich dadurch aus, dass er digitale Daten über eine Spannungsdifferenz zwischen zwei Leitungen codiert.
  • In der Ausführungsform der Fig. 1 sind neben den Leitungen CL und DL zwei Stromleitungen L1 und L2 vorgesehen, welche an eine Gleichspannungsversorgung 5 angeschlossen sind. Basierend auf dem über die Datenleitung DL empfangenen Bitstrom erfolgt eine PWM-Modulation des den einzelnen LEDs 301 bis 304 zugeführten Stroms, um hierdurch die LEDs entsprechend dem Bitstrom auf der Datenleitung DL anzusteuern.
  • Der Aufbau einer einzelnen LED-Einheit 3 aus Fig. 1 ist im Detail in Fig. 2 gezeigt. Alle dargestellten Komponenten der LED-Einheit sind dabei in einem einzelnen Halbleiterbauelement integriert. Die Signale des Datenbusses 2 werden über eine Kommunikationsschnittstelle COM der LED-Einheit 3 empfangen. Das Taktsignal der Taktleitung CL wird an den weiter unten beschriebenen Mikroprozessor 401 weitergeleitet, wohingegen der Datenstrom der Datenleitung DL nach Decodierung in der Kommunikationsschnittstelle COM auf 8-Bit-Schieberegister SR0, SR1, SR2, SR3 und SR4 gegeben wird. Der vom Schieberegister SR0 ausgegebene Wert zeigt dabei die gewünschte Gesamthelligkeit der LED-Einheit an, wohingegen über die Werte der Schieberegister SR1 bis SR4 die Farbanteile der einzelnen Einfarb-LEDs zur Erzeugung der gewünschten Mischfarbe ausgegeben werden. Insbesondere wird über das Schieberegister SR1 der Farbanteil der roten LED 301, über das Schieberegister SR2 der Farbanteil der grünen LED 302, über das Schieberegister 303 der Farbanteil der blauen LED 303 und über das Schieberegister 304 der Farbanteil der weißen LED 304 ausgegeben.
  • Die Werte der einzelnen Schieberegister werden dem Mikrocontroller 4 zugeführt, der aus einer Logik bzw. einem Mikroprozessor 401 sowie einem zugeordneten nichtflüchtigen EEPROM-Speicher 402 besteht. In diesem Speicher sind unter anderem Kalibrierungsdaten hinterlegt, die aus einem Kalibriervorgang der LED-Einheit stammen und für einen vorgegebenen Standard-Temperaturwert der LED-Einheit festlegen, wie die Betriebsströme der einzelnen Einfarb-LEDs einzustellen sind, damit der aus dem Schieberegister SR0 stammende Gesamthelligkeitswert sowie die Farbmischung (d.h. der diesbezügliche Farbort) entsprechend den Werten aus den Schieberegistern SR1 bis SR4 erreicht werden.
  • Der Mikroprozessor 401 greift auf die im Speicher 402 hinterlegten Werte zurück und empfängt ferner den aktuellen Temperaturwert eines Temperatursensors TS, der im Halbleiterbauelement der LED-Einheit integriert ist. Im Mikroprozessor ist dabei ein Temperatur-Algorithmus hinterlegt, der unter Zugriff auf den Speicher 402 die entsprechenden Betriebsströme für den oben genannten Standard-Temperaturwert bestimmt und diese Betriebsströme bei Abweichung des vom Temperatursensor TS stammenden aktuellen Temperaturwerts von dem Standard-Temperaturwert geeignet korrigiert. Die Korrektur ist dabei derart ausgestaltet, dass die erwünschte Helligkeit und der erwünschte Farbort entsprechend den Werten aus den Schieberegistern auch bei Temperaturschwankungen richtig eingestellt werden.
  • In dem Temperatur-Algorithmus des Mikroprozessors 401 wird somit die Tatsache berücksichtigt, dass die Temperatur der LED-Einheit 3 Auswirkungen auf deren Betrieb hat, so dass zur Erreichung einer erwünschten Helligkeit und eines erwünschten Farborts eine temperaturabhängige Korrektur durchgeführt werden muss. Diese Korrektur erfolgt basierend auf einem Temperaturwert, der direkt in die LED-Einheit über einen darin integrierten Temperatursensor bestimmt wird. Hierdurch wird eine besonders exakte Temperaturmessung am Ort der LED-Einheit gewährleistet. Darüber hinaus ist der Algorithmus zur Temperaturkompensation in einem Mikrocontroller hinterlegt, der Bestandteil des Halbleiterbauelements einer LED-Einheit ist. Auf diese Weise kann der Betrieb der einzelnen Mehrfarb-LED-Einheiten in einer Beleuchtungsvorrichtung individuell und sehr genau an die aktuelle Temperatur angepasst werden.
  • Die Betriebsströme für die einzelnen LEDs 301 bis 304 werden über einen Spannungsregler RE bereitgestellt, der aus der in Fig. 1 gezeigten Spannungsversorgung 5 die positive Spannung VDD und die negative Spannung VSS erhält. Der Mikroprozessor 401 erzeugt ferner einen Takt für einen entsprechenden Oszillator OS, der PWM-Generatoren G1, G2, G3 und G4 zugeführt wird. Die Betriebsströme der einzelnen LEDs 301 bis 304 werden in den Generatoren G1 bis G4 über Pulsweitenmodulation erzeugt. Die aus dem Algorithmus zur Temperaturkompensation stammenden Werte der Betriebsströme werden von dem Mikroprozessor 401 an die einzelnen Generatoren G1 bis G4 gegeben. Der Generator G1 erzeugt mittels Pulsweitenmodulation den Strom für die rote LED 301, der Generator G2 den Strom für die grüne LED 302, der Generator G3 den Strom für die blaue LED 303 und der Generator G4 den Strom für die weiße LED 304. Über die von den einzelnen Generatoren erzeugten PWM-Signale, die über den Stromausgang CO zu den Einfarb-LEDs gelangen, wird dann für LED-Einheit 3 das entsprechende Licht mit der gewünschten Helligkeit und dem gewünschten Farbort gemäß dem Signal eingestellt, das über den internen Datenbus 2 zu der LED-Einheit gelangt.
  • Die im Vorangegangenen beschriebenen Ausführungsformen der Erfindung weisen eine Reihe von Vorteilen auf. Insbesondere wird im Rahmen einer Temperaturkompensation der hierfür benötigte aktuelle Temperaturwert sehr exakt über einen Temperatursensor ermittelt, der im Halbleiterbauelement einer jeweiligen Mehrfarb-LED-Einheit integriert ist. Der Temperaturwert wird somit hochgenau am Ort der jeweiligen Mehrfarb-LED-Einheit bestimmt. Darüber hinaus ist der Algorithmus zur Temperaturkompensation in dem Halbleiterbauelement der jeweiligen Mehrfarb-LED-Einheit integriert. Mit anderen Worten wird eine integrierte Logik in einem Mehrfarb-LED-Modul genutzt, um hierüber eine Temperaturkompensation zu implementieren. Hierdurch können die gewünschte Helligkeit und der gewünschte Farbort individuell und hochgenau für jede LED-Einheit in Abhängigkeit von der Temperatur am Installationsort der jeweiligen LED-Einheit eingestellt werden. Auf diese Weise kann ein einheitliches Erscheinungsbild der LED-Einheit bzw. eines LED-Bands aus vielen LED-Einheiten über die gesamte Lebensdauer gewährleistet werden.
  • Bezugszeichenliste
  • 1
    Verarbeitungsmodul
    101
    LIN-Transceiver
    102
    Mikroprozessor
    2
    interner Datenbus
    3
    Mehrfarb-LED-Einheiten
    301, 302, 303, 304
    Einfarb-LEDs
    4
    Mikrocontroller
    401
    Mikroprozessor
    402
    EEPROM
    5
    Spannungsversorgung
    6
    Kraftfahrzeug-Datenbus
    CL
    Leitung für Taktsignal
    DL
    Datenleitung
    L1, L2
    Stromleitungen
    COM
    Kommunikationsschnittstelle
    SR0, SR1, SR2, SR3, SR4
    Schieberegister
    TS
    Temperatursensor
    G1, G2, G3, G4
    PWM-Generatoren
    OS
    Oszillator
    RE
    Spannungsregler
    VDD, VSS
    Spannungen
    CO
    Stromausgang

Claims (9)

  1. Beleuchtungsvorrichtung, insbesondere für ein Kraftfahrzeug, umfassend mehrere Mehrfarb-LED-Einheiten (3) mit jeweils einstellbarer Helligkeit und einstellbarem Farbort, wobei jede Mehrfarb-LED-Einheit (3) ein einzelnes Halbleiterbauelement mit mehreren Einfarb-LEDs (301, 302, 303, 304) unterschiedlicher Farbe und einem Mikrocontroller (4) ist, dadurch gekennzeichnet, dass die Einfarb-LEDs (301, 302, 303, 304) und der Mikrocontroller (4) jeder Mehrfarb-LED-Einheit (3) von einem entsprechenden Gehäuse des Halbleiterbauelements umgeben sind, wobei in dem Halbleiterbauelement ein Temperatursensor (TS) integriert ist, der einen aktuellen Temperaturwert der jeweiligen Mehrfarb-LED-Einheit (3) misst und dem Mikrocontroller (4) bereitstellt, wobei der Mikrocontroller (4) dazu eingerichtet ist, eine jeweilige Mehrfarb-LED-Einheit (3) in Abhängigkeit von dem aktuellen Temperaturwert der jeweiligen Mehrfarb-LED-Einheit (3) anzusteuern.
  2. Beleuchtungsvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Mikrocontroller (4) einer jeweiligen Mehrfarb-LED-Einheit (3) dazu eingerichtet ist, jede Einfarb-LED (301, 302, 303, 304) der jeweiligen Mehrfarb-LED-Einheit (3) derart in Abhängigkeit von dem aktuellen Temperaturwert der jeweiligen Mehrfarb-LED-Einheit (3) anzusteuern, dass ein eingestellter Farbort und eine eingestellte Helligkeit im Betrieb der jeweiligen Mehrfarb-LED-Einheit (3) konstant gehalten werden.
  3. Beleuchtungsvorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Mikrocontroller (4) zumindest eines Teils der Mehrfarb-LED-Einheiten (3) dazu eingerichtet ist, jede Einfarb-LED (301, 302, 303, 304) basierend auf der Steuerung des Betriebsstroms der jeweiligen Einfarb-LED (301, 302, 303, 304) anzusteuern.
  4. Beleuchtungsvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Mikrocontroller (4) zumindest eines Teils der Mehrfarb-LED-Einheiten (3) derart ausgestaltet ist, dass er im Falle, dass der aktuelle Temperaturwert eine vorgegebene Schwelle überschreitet, die Helligkeit der Mehrfarb-LED-Einheit (3) verringert.
  5. Beleuchtungsvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Beleuchtungsvorrichtung mehrere Mehrfarb-LED-Einheiten (3) umfasst, welche an einen internen Datenbus (2) angeschlossen sind, der an ein Verarbeitungsmodul (1) gekoppelt ist, wobei das Verarbeitungsmodul (1) dazu eingerichtet ist, interne Steuerbefehle zur Einstellung der Helligkeit und des Farborts der einzelnen Mehrfarb-LED-Einheiten (3) auf den internen Datenbus (2) zu geben.
  6. Beleuchtungsvorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass das Verarbeitungsmodul (1) dazu eingerichtet ist, externe Steuerbefehle von einem Kraftfahrzeug- Datenbus (6) zu empfangen und in die internen Steuerbefehle zu wandeln.
  7. Beleuchtungsvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zumindest ein Teil der Mehrfarb-LED-Einheiten (3) eine oder mehrere RGB-LED-Einheiten und/oder RGBW-LED-Einheiten umfasst.
  8. Beleuchtungsvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Beleuchtungsvorrichtung eine Innenraumbeleuchtung zur Anbringung in einem Kraftfahrzeug oder eine Außenbeleuchtung zur Anbringung an der Außenseite des Kraftfahrzeugs ist.
  9. Kraftfahrzeug, umfassend eine oder mehrere Beleuchtungsvorrichtungen nach einem der vorhergehenden Ansprüche.
EP17720434.4A 2016-05-04 2017-04-25 Beleuchtungsvorrichtung Active EP3453228B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016207728.7A DE102016207728A1 (de) 2016-05-04 2016-05-04 Beleuchtungsvorrichtung
PCT/EP2017/059750 WO2017190980A1 (de) 2016-05-04 2017-04-25 Beleuchtungsvorrichtung

Publications (2)

Publication Number Publication Date
EP3453228A1 EP3453228A1 (de) 2019-03-13
EP3453228B1 true EP3453228B1 (de) 2020-07-29

Family

ID=58645044

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17720434.4A Active EP3453228B1 (de) 2016-05-04 2017-04-25 Beleuchtungsvorrichtung

Country Status (5)

Country Link
US (1) US20190075627A1 (de)
EP (1) EP3453228B1 (de)
CN (1) CN108702824A (de)
DE (1) DE102016207728A1 (de)
WO (1) WO2017190980A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019128523B4 (de) * 2019-10-22 2021-12-23 SBF Spezialleuchten GmbH System und verfahren zur überwachung, steuerung und regelung mehrerer leuchten
CN115489465A (zh) * 2022-08-29 2022-12-20 重庆长安汽车股份有限公司 一种车内交互显示控制***

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10313246A1 (de) * 2003-03-25 2004-10-21 Sitronic Gesellschaft für elektrotechnische Ausrüstung mbH. & Co. KG Kraftfahrzeugleuchtenmodul
CN101569237B (zh) * 2006-12-20 2011-04-27 皇家飞利浦电子股份有限公司 调整固态照明装置的驱动信号
DE102007059130A1 (de) * 2007-12-07 2009-06-10 Osram Gesellschaft mit beschränkter Haftung Verfahren und Anordnung zur Einstellung eines Farborts sowie Leuchtsystem
DE102009008084B4 (de) * 2009-02-09 2018-04-05 Airbus Operations Gmbh Bilderzeugende Beleuchtung für Flugzeuginnenflächen
US8624527B1 (en) * 2009-03-27 2014-01-07 Oree, Inc. Independently controllable illumination device
US8319433B2 (en) * 2009-10-08 2012-11-27 I/O Controls Corporation LED-based lighting system for retrofitting fluorescent lighting fixtures in a transit vehicle
US10098197B2 (en) * 2011-06-03 2018-10-09 Cree, Inc. Lighting devices with individually compensating multi-color clusters
DE102013201915A1 (de) 2012-10-31 2014-05-15 Tridonic Jennersdorf Gmbh Verfahren und Anordnung zur Steuerung von LEDs
WO2014119313A1 (ja) * 2013-01-31 2014-08-07 株式会社 東芝 発光装置及びled電球
US9164001B2 (en) * 2013-06-28 2015-10-20 Bridgelux, Inc. Using an LED die to measure temperature inside silicone that encapsulates an LED array
DE102013011188A1 (de) * 2013-07-04 2014-02-27 Daimler Ag Kraftfahrzeug und Verfahren zur Einstellung einer Lichtfarbe und/oder -intensität einer Ambiente-Beleuchtung eines Kraftfahrzeuges
DE102013216572A1 (de) * 2013-08-21 2015-02-26 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Betrieb eines Scheinwerfers mit Laserlichtquelle in einem Kraftfahrzeug

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102016207728A1 (de) 2017-11-09
EP3453228A1 (de) 2019-03-13
WO2017190980A1 (de) 2017-11-09
US20190075627A1 (en) 2019-03-07
CN108702824A (zh) 2018-10-23

Similar Documents

Publication Publication Date Title
EP3453229B1 (de) Beleuchtungsvorrichtung
EP2030484B1 (de) Dimmbares betriebsgerät mit interner dimmkennlinie
DE102005024449A1 (de) Leuchte
DE202005020801U1 (de) Leuchte
EP3378281B1 (de) Beleuchtungsvorrichtung für ein kraftfahrzeug
EP3536130B1 (de) Beleuchtungsvorrichtung und beleuchtungssystem für ein kraftfahrzeug sowie verfahren zum betreiben eines beleuchtungssystems für ein kraftfahrzeug
EP3536127B1 (de) Beleuchtungsvorrichtung und beleuchtungssystem für ein kraftfahrzeug sowie verfahren zum betreiben eines beleuchtungssystems für ein kraftfahrzeug
DE102009002072A1 (de) System und Verfahren für ein mehrkanaliges Steuersystem
DE102008030365A1 (de) Einrichtung zur Ansteuerung von in einem Array angeordneten Einzellichtquellen
EP2450237A1 (de) Schaltungsanordnung zum Betreiben einer Leuchtdiode
EP3453228B1 (de) Beleuchtungsvorrichtung
EP3453227B1 (de) Beleuchtungsvorrichtung
DE102015009736A1 (de) Leuchtmodul und Leuchtsystem
EP3453226B1 (de) Beleuchtungsvorrichtung
DE102017116647A1 (de) Kalibrierung der Versorgungsspannung für Beleuchtungssysteme
DE102016221770A1 (de) Beleuchtungsvorrichtung und Beleuchtungssystem für ein Kraftfahrzeug sowie Verfahren zum Betreiben eines Beleuchtungssystems für ein Kraftfahrzeug
DE102020117908B4 (de) Leuchtmittelvorrichtung, zur Abgabe von Licht einer kontinuierlich einstellbaren Farbe, insbesondere zur Individualisierung und/oder Beleuchtung eines Innenraums
DE102016207733A1 (de) Beleuchtungsvorrichtung
DE102016207725A1 (de) Beleuchtungsvorrichtung
WO2020156883A1 (de) Beleuchtungsvorrichtung für ein kraftfahrzeug
DE102016207732A1 (de) Beleuchtungsvorrichtung
DE102009007500B4 (de) Verfahren zum Betreiben einer Beleuchtungsanlage
EP2844035A1 (de) Vorrichtung zur Versorgung mindestens eines Verbrauchers mit elektrischer Energie bzw. zur Bereitstellung elektrischer Leistung für mindestens einen Verbraucher

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180924

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20191206

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502017006425

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H05B0033080000

Ipc: H05B0045200000

RIC1 Information provided on ipc code assigned before grant

Ipc: H05B 45/20 20200101AFI20200304BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200420

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1297359

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017006425

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201029

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201030

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201130

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017006425

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

26N No opposition filed

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210425

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230503

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1297359

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170425

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220425

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230417

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240423

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240416

Year of fee payment: 8