EP3445976B1 - Method for operating a valve device, valve device and data carrier with a computer program - Google Patents

Method for operating a valve device, valve device and data carrier with a computer program Download PDF

Info

Publication number
EP3445976B1
EP3445976B1 EP17715710.4A EP17715710A EP3445976B1 EP 3445976 B1 EP3445976 B1 EP 3445976B1 EP 17715710 A EP17715710 A EP 17715710A EP 3445976 B1 EP3445976 B1 EP 3445976B1
Authority
EP
European Patent Office
Prior art keywords
fluid
valve
compressed air
flow rate
processing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17715710.4A
Other languages
German (de)
French (fr)
Other versions
EP3445976A1 (en
Inventor
Rüdiger Neumann
Matthias Doll
David Rager
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Festo SE and Co KG
Original Assignee
Festo SE and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Festo SE and Co KG filed Critical Festo SE and Co KG
Publication of EP3445976A1 publication Critical patent/EP3445976A1/en
Application granted granted Critical
Publication of EP3445976B1 publication Critical patent/EP3445976B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/02Servomotor systems with programme control derived from a store or timing device; Control devices therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • F15B1/027Installations or systems with accumulators having accumulator charging devices
    • F15B1/033Installations or systems with accumulators having accumulator charging devices with electrical control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/006Hydraulic "Wheatstone bridge" circuits, i.e. with four nodes, P-A-T-B, and on-off or proportional valves in each link
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • F15B11/046Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed depending on the position of the working member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/06Servomotor systems without provision for follow-up action; Circuits therefor involving features specific to the use of a compressible medium, e.g. air, steam
    • F15B11/064Servomotor systems without provision for follow-up action; Circuits therefor involving features specific to the use of a compressible medium, e.g. air, steam with devices for saving the compressible medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/021Valves for interconnecting the fluid chambers of an actuator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/20Other details, e.g. assembly with regulating devices
    • F15B15/22Other details, e.g. assembly with regulating devices for accelerating or decelerating the stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/20Other details, e.g. assembly with regulating devices
    • F15B15/28Means for indicating the position, e.g. end of stroke
    • F15B15/2815Position sensing, i.e. means for continuous measurement of position, e.g. LVDT
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/20Other details, e.g. assembly with regulating devices
    • F15B15/28Means for indicating the position, e.g. end of stroke
    • F15B15/2815Position sensing, i.e. means for continuous measurement of position, e.g. LVDT
    • F15B15/2838Position sensing, i.e. means for continuous measurement of position, e.g. LVDT with out using position sensors, e.g. by volume flow measurement or pump speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/08Servomotor systems incorporating electrically operated control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B19/00Testing; Calibrating; Fault detection or monitoring; Simulation or modelling of fluid-pressure systems or apparatus not otherwise provided for
    • F15B19/002Calibrating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • F15B2211/30565Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve
    • F15B2211/30575Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve in a Wheatstone Bridge arrangement (also half bridges)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/42Flow control characterised by the type of actuation
    • F15B2211/426Flow control characterised by the type of actuation electrically or electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6309Electronic controllers using input signals representing a pressure the pressure being a pressure source supply pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6313Electronic controllers using input signals representing a pressure the pressure being a load pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/885Control specific to the type of fluid, e.g. specific to magnetorheological fluid
    • F15B2211/8855Compressible fluids, e.g. specific to pneumatics

Definitions

  • the invention relates to a method for operating a valve device for supplying compressed air to a compressed air consumer.
  • the invention also relates to a valve device for operating a compressed air consumer and a data carrier with a computer program for storage in a processing device of a valve device.
  • a position of a movable component of the compressed air consumer is determined along a movement path with the aid of a displacement measuring system and a position provided by the displacement measuring system Provide position signal to a processing device in which the position signal is processed in order to obtain at least one piece of information about a movement of the movable component of the compressed air consumer, for example from an absolute amount of the position signal and / or a change in the position signal over time.
  • a valve arrangement assigned to the processing device is then controlled in order to influence a fluid flow into a working space or from a working space of the compressed air consumer in such a way that that the movable component of the compressed air consumer can be moved to a predetermined position along the movement path and / or at a predetermined speed along the movement path.
  • a valve position of the valve arrangement can thus be controlled or regulated on the basis of the position signal of the position measuring system.
  • the change in the valve position depending on the pressure conditions at the compressed air consumer and a compressed air source leads to different fluid volume flows to the compressed air consumer, which are detected indirectly by the processing device via the position signal of the displacement measuring system and lead to a renewed adjustment of the valve position.
  • the object of the invention is to provide a method for operating a valve device, a valve device and a data carrier with a computer program for storage in a processing device of a valve device, with which an improved provision of compressed air for a compressed air consumer is made possible.
  • This object is achieved for a method of the type mentioned with the following steps: determining a first fluid pressure in a first section of a fluid channel of the valve arrangement, which extends between an inlet connection for a fluidically communicating connection with a fluid source or fluid sink and a valve element, Determining a second fluid pressure in a second section of the fluid channel of the valve arrangement, which extends between the valve element and an output connection for a fluidically communicating connection with a compressed air consumer, determining a flow rate value for the valve element from the two fluid pressures and one Flow function, linking the flow value with a predeterminable fluid volume flow or fluid mass flow for the pressurized fluid, which is provided for flowing through the fluid channel, to a conductance and determination of a required actuation energy for an
  • the objective of the method is to be able to set a fluid volume flow or fluid mass flow for the compressed air consumer to a predeterminable fluid volume flow based on the determined pressure values and with knowledge of the fluid properties of the valve element used and thus directly influence a movement behavior of the compressed air consumer, which is, for example, to be able to take a compressed air drive, in particular a pneumatic cylinder or pneumatic swivel drive.
  • the fluid volume flow describes the fluid volume flowing per unit of time. With the fluid mass flow, the density of the fluid is also taken into account, which can reduce the calculation effort. In addition, the metrological effort for the control or regulation of the compressed air supply for the compressed air consumer can be kept low.
  • pressure sensors are required for carrying out the method, which are designed to determine fluid pressures in the respective sections of the fluid channel of the valve arrangement.
  • a processing device can be arranged, which is designed for evaluating the pressure signals of the pressure sensors and for controlling the actuating device.
  • an electrical connection between the pressure sensors and the processing device can be realized with short electrical lines.
  • valve channel sections being fluidically separated from one another or connected to one another in a fluidically communicating manner, depending on a functional position of the valve element. It is preferably provided that the valve element is free depending on the provision of energy, in particular electrical or fluidic energy, to an actuating device, in particular proportional to the amount of energy provided, between a closed position with separate connection of the two fluid channel sections and an open position with free communicating connection between the two Fluid channel sections, can be moved.
  • a flow value is determined in a subsequent step using the fluid pressures and a flow function.
  • the flow function is, for example, a family of curves or a map in which the flow properties of the valve element for a fluid that flows through the valve element are dependent on the pressure conditions before and after the valve element and further dependent on a valve position of the valve element are deposited.
  • the determined flow rate is then combined with a specifiable fluid volume flow or fluid mass flow for the pressurized fluid is linked to form a conductance. This conductance is required to determine an actuation energy for the actuation device, which is designed to actuate the valve element.
  • the determined actuation energy is then made available to the actuation device for setting the specifiable fluid volume flow or fluid mass flow.
  • valve device is operated in the manner of a flow control valve, in which case, in contrast to a flow control valve, a complex and cost-intensive mass flow sensor can be dispensed with, since the entire determination of the fluid volume flow or fluid mass flow is carried out by the valve device on the basis of the pressure values obtained from the pressure sensors are provided on or in the fluid channel.
  • the flow value is determined from the flow function, which is related to a quotient of the first fluid pressure and the second fluid pressure.
  • the actuation energy prefferably be determined on the basis of the conductance value and a valve characteristic curve, in particular determined experimentally.
  • the pressure ratio across the valve element, expressed as the quotient of the first fluid pressure and the second fluid pressure can be determined is that Size, on the basis of which, independently of a level of the fluid pressure in the fluid channel, a precise assignment to the flow properties of the valve element for a fluid flowing through the valve element can be created.
  • the valve characteristic creates a relationship between the provision of energy, in particular electrical or fluid energy, to the valve element and a functional position for the valve element resulting therefrom. Provision is preferably made for the valve characteristic to be related to the determined conductance value in order to be able to determine from this the energy required for the actuating device to achieve a desired functional position of the valve element.
  • two independently controllable valve assemblies are provided whose respective second sections of the respective fluid channels are connected to a common output connection and whose input connections are connected to different fluid sources or fluid sinks, with an optional activation of one of the two valve assemblies depending on a pressure difference takes place between the respective input connection and the common output connection and the specifiable fluid volume flow or fluid mass flow.
  • the fluid volume flow or fluid mass flow can, for example, be constant over a predefinable period of time or follow a predefined profile in order to, for example, achieve a constant movement of a compressed air consumer or compressed air actuator bring about a predetermined variable movement of the compressed air consumer.
  • the compressed air source can be designed as a local compressed air compressor or a central compressed air network.
  • the compressed air sink can, for example, be a compressed air outlet in the vicinity of the valve arrangement, which is in particular equipped with a silencer.
  • the compressed air consumer has two fluidically separate, kinematically coupled working spaces and two independently controllable valve arrangements are assigned to each of the working spaces, whose respective second sections of the respective fluid channels are connected to a common output connection and their respective input connections are different Fluid sources or fluid sinks are connected, with a synchronous supply of compressed air to the two working spaces with predeterminable fluid volume flows by optionally controlling the respective valve arrangements.
  • a compressed air consumer which can in particular be designed as a pneumatic cylinder or pneumatic swivel drive, two working spaces are separated from one another in a fluidic sealing manner by a movable wall, in particular a working piston, and are variable in size due to the mobility of the wall.
  • a synchronous compressed air supply is carried out in both work spaces, with the term compressed air supply both an influx of compressed air in the work space as well as an outflow of compressed air from the work space is understood.
  • synchronous fluid volume flows are provided for both working spaces of the compressed air consumer. For example, an inflow of compressed air takes place in one of the two work spaces, while an outflow of compressed air is provided in the other work space. As a result, the movable wall between the two work spaces is moved at a predetermined movement speed.
  • a first fluid volume flow or fluid mass flow is specified for a first working space of the compressed air consumer and a second fluid volume flow or fluid mass flow for a second working space of the compressed air consumer to achieve a movement profile for the connected compressed air consumer and / or that a first pressure profile for the first working space and a second pressure profile for the second working space is specified.
  • valve device of the type mentioned at the outset, which is designed to operate a compressed air consumer.
  • the valve device in which a fluid channel is formed between an input connection for a fluidically communicating connection with a fluid source or fluid sink and an output connection for a fluidically communicating connection with a compressed air consumer, as well as a valve element which is moveable in order to influence a cross section of the fluid channel Fluid channel is arranged and to which an actuating device for changing a functional position is assigned, and a processing device for providing actuation energy to the actuating device, a first pressure sensor being assigned to a first section of the fluid channel between the input connection and the valve element and a second section of the fluid channel a second pressure sensor is assigned between the valve element and the output connection, the processing device for carrying out a method according to claim 1 od he 2 is trained.
  • valve device it is provided that two independently controllable valve arrangements are provided, the respective second sections of the respective fluid channels are connected to a common output connection and the input connections are connected to different fluid sources or fluid sinks, and that the processing device is used to carry out a method according to claim 3 is formed.
  • the processing device is equipped with two pairs of each two independently controllable valve assemblies is connected, the second sections of the respective fluid channels being connected in pairs to form a common output connection and with a first input connection of each pair being connected to a fluid source and a second input connection of each pair being connected to a fluid sink, characterized in that the processing device is designed for a synchronous supply of compressed air to the two working spaces with predeterminable fluid volume flows by selectively controlling the respective valve arrangements.
  • the valve arrangement is preferably designed as a proportional valve, in particular as a fluidically pilot-controlled proportional valve.
  • the object of the invention is achieved by a data carrier with a computer program which is designed for storage in a processing device of a valve device, the computer program causing a method according to one of claims 1 to 5 when processed in a processor of the processing device.
  • the data carrier can be a portable carrier medium such as a CD, a DVD or a USB memory.
  • the data carrier can be designed as a drive or solid-state memory of a data server, in which a large number of different data are stored that can be accessed remotely by the processing device, in particular a data cloud.
  • the fluidic system 1 shown is designed purely by way of example to provide a linear movement and for this purpose comprises a valve device 2 and a compressed air consumer 3.
  • the valve device 2 is a pneumatic full-bridge circuit with a total of four valve elements 4, 5, 6, each designed as 2/2-way proportional valves 7 and 7, each of the valve elements 4, 5, 6 and 7 being designed purely by way of example as a solenoid valve with a solenoid drive 8, 9, 10 and 11 as the actuating device.
  • the actuation device can also be designed as a piezo drive or magnetostrictive or otherwise suitable drive.
  • Each of the valve elements 4, 5, 6 and 7 can, if the associated magnetic drives 8, 9, 10 and 11 can be switched with electrical energy between two functional positions, in particular a locked position and an open position.
  • the magnetic drives 8, 9, 10 and 11 are electrically connected via control lines 15, 16, 17 and 18 to a processing device 19, which forms part of the valve device 2 and comprises, for example, a microprocessor or microcontroller.
  • Each of the valve elements 4, 5, 6 and 7 is connected to fluidic nodes 28 to 31 via assigned fluid lines 20 to 27 and forms with the fluid lines 20 to 27 which are assigned in pairs in each case a valve arrangement (not shown in detail).
  • the fluid lines 20 to 23 are each referred to as the first section of a fluid channel of the respective valve element 4, 5, 6 and 7.
  • the fluid lines 24 to 27 are referred to as second sections of a fluid channel of the respective valve element 4, 5, 6 and 7.
  • the fluid lines 20 and 21 open out together at a fluidic junction 28, the fluid lines 22 and 23 open out together at the fluidic junction 30, the fluid lines 24 and 25 open together at the fluidic junction 29 and the fluid lines 26 and 27 open together at the fluidic node 31.
  • the fluidic node 28 is connected to a fluid source 32 via a supply line 36, while the fluidic node 30 is connected via an exhaust air line 37 to a fluid outlet to which a silencer 33 is assigned.
  • the fluidic junction 29 forms a first working connection of the valve device 2 and is connected to a fluid connection 39 of the compressed air consumer 3 via a first connection line 38, while the fluidic junction 31 is a second working connection of the valve device 2 and is connected to a fluid connection 41 of the compressed air consumer 3 via a second connection line 40.
  • the supply line 36, the exhaust air line 37, the first connection line 38 and the second connection line 40 are each assigned a pressure sensor 42 to 45, which is used to detect the respective fluid pressure in the assigned line 36, 37, 38 and 40 as well as for providing a pressure-dependent sensor signal via a respectively assigned sensor line 46 to 49 to the processing device 19.
  • at least one of the pressure sensors is arranged in a housing for the valve device or outside of such a housing.
  • the compressed air consumer 3 is designed purely by way of example as a double-acting pneumatic cylinder, in which a working piston 50, also referred to as a movable wall, is accommodated in a cylinder recess 51 of a cylinder housing 52 so as to be linearly movable and thereby separates a first variable-size working space 53 from a second variable-size working space 54.
  • the working piston 50 is connected to a piston rod 55, which passes through the cylinder housing 52 at the end and can be displaced together with the working piston 50 along a straight movement path 56 relative to the cylinder housing 52.
  • the following is intended to describe which steps are to be carried out in the fluidic system 1 in order to bring about a movement of the working piston 50 with the coupled piston rod 55 according to a predeterminable movement profile.
  • the working piston 50 should proceed from the position as shown in FIG Figure 1 be moved so that one end face of the working piston 50 comes into contact with an oppositely arranged inner surface 58 of the cylinder housing 52.
  • the predeterminable movement profile is designed in such a way that first uniform acceleration of working piston 50 up to a predeterminable target speed, then uniform movement of working piston while maintaining the target speed, and finally braking of working piston 50 down to a zero speed.
  • a control of the valve element 4 and the valve element 6 is to be provided by way of example, with a fluidically communicating connection between the fluid source 32, the fluidic node 29 and the second fluid connection 39 being established via the valve element 4 and with a fluidically communicating connection between the valve element 6 the first fluid connection 41, the fluidic node 31 and the fluid outlet with associated silencer 33 is established.
  • the processing device 19 first determines the sensor signals of the pressure sensors 42 to 45 in order to be able to calculate pressure conditions across the two valve elements 4 and 6. On the basis of these pressure conditions, in a subsequent step in the processing device 19 for each of the valve elements 4 and 6, a flow value for the respective valve element 4, 6 can be determined from the two fluid pressures and a flow function. The flow value determined in each case is then linked to a predefinable fluid volume flow or fluid mass flow that is to be made available to the respective working space 53, 54 in order to achieve the desired movement of working piston 50 according to the movement profile.
  • the result of this combination is referred to as the master value and is required to determine the actuation energy required for the respective magnetic drive 8, 10.
  • the actuation energy is determined for each of the magnetic drives 8, 10 by linking the conductance value with a valve characteristic curve, in particular an experimentally determined one.
  • the actuation energy is then provided to the respective magnetic drives 8, 10 and leads there to a movement of the respective, unspecified valve slides of the respective valve elements 4, 6 and thus to the release of a fluidically communicating connection between the respective fluidic nodes 28 and 29 or 31 and 30.
  • a fluid volume flow or fluid mass flow is established between the fluid source 32 and the working chamber 54 and between the working chamber 53 and the silencer 33, which is accompanied by a change in the pressures in the respective fluid lines 20 to 27 .
  • the processing device 19 can set the fluid volume flows for the two working spaces 53, 54 of the compressed air consumer 3 so that the desired movement profile for the working piston 50 is maintained.
  • the illustrated embodiments of fluidic systems 61 and 91 differ from the fluidic system 1 according to FIG Figure 1 in that the compressed air consumer 63 is designed purely by way of example as a single-acting pneumatic cylinder, so that only one working space 65 is formed in the respective cylinder housing 64.
  • valve device 62 is designed as a proportional 3/3-way valve, in which in the illustrated switching position, which can also be referred to as the rest position or neutral position, fluidically communicating connections between a fluid source 66, a working connection 67 and a fluid outlet 68 with a silencer are blocked .
  • the valve slide 69 of the valve device 62 can be brought into two different functional positions with the aid of the associated magnetic drives 70, 71. In the first functional position, a fluidically communicating connection is established between the fluid source 66 and the working space 65. In the second functional position, a fluidically communicating connection is established between the working chamber 65 and the fluid outlet 68.
  • the processing device 72 is designed in the same way as the processing device 19 according to FIG. 1 and thus enables a provision of on the basis of sensor signals from the pressure sensors 73, 74, 75 specifiable fluid volume flows into the working space 65 and out of the working space 65.
  • valve devices 92 are each designed as proportional 2/2-way valves 100, 101 with valve spools 99 as valve elements and can be controlled individually by the associated processing device 102 in order to selectively provide pressurized fluid from the fluid source 66 into the working chamber 65 or from the To ensure working space 65 to fluid outlet 68.
  • the processing device 102 is in the same way as the processing device 19 according to FIG Figure 1 and thus enables predefinable fluid flows into the working space 65 and out of the working space 65 to be provided on the basis of sensor signals from the pressure sensors 103, 104, 105.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Fluid-Driven Valves (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Betreiben einer Ventileinrichtung zur Druckluftversorgung eines Druckluftverbrauchers. Ferner betrifft die Erfindung eine Ventileinrichtung zum Betreiben eines Druckluftverbrauchers und einen Datenträger mit einem Computerprogramm zur Speicherung in einer Verarbeitungseinrichtung einer Ventileinrichtung.The invention relates to a method for operating a valve device for supplying compressed air to a compressed air consumer. The invention also relates to a valve device for operating a compressed air consumer and a data carrier with a computer program for storage in a processing device of a valve device.

Gemäß einem der Anmelderin bekannten, druckschriftlich nicht niedergelegten Stand der Technik ist bei einem Verfahren zur Druckluftversorgung eines Druckluftverbrauchers vorgesehen, eine Position einer beweglichen Komponente des Druckluftverbrauchers, beispielsweise eines Arbeitskolbens eines Pneumatikzylinders, längs eines Bewegungswegs mit Hilfe eines Wegmesssystems zu ermitteln und ein vom Wegmesssystem bereitgestelltes Positionssignal an eine Verarbeitungseinrichtung bereitzustellen, in der eine Verarbeitung des Positionssignals erfolgt, um beispielsweise aus einem absoluten Betrag des Positionssignals und/oder einer zeitlichen Veränderung des Positionssignals wenigstens eine Information über eine Bewegung der beweglichen Komponente des Druckluftverbrauchers zu erhalten. Mit dieser Information wird anschließend eine der Verarbeitungseinrichtung zugeordnete Ventilanordnung angesteuert, um einen Fluidstrom in einen Arbeitsraum oder aus einem Arbeitsraum des Druckluftverbrauchers derart zu beeinflussen, dass die bewegliche Komponente des Druckluftverbrauchers an eine vorgegebene Position längs des Bewegungswegs und/oder mit einer vorgegebenen Geschwindigkeiten längs des Bewegungswegs bewegt werden kann. Auf Basis des Positionssignals des Wegmesssystems kann somit eine Steuerung oder Regelung einer Ventilstellung der Ventilanordnung erfolgen. Dabei führt die Veränderung der Ventilstellung in Abhängigkeit von den Druckverhältnissen am Druckluftverbraucher und einer Druckluftquelle zu unterschiedlichen Fluidvolumenströmen zum Druckluftverbraucher, die von der Verarbeitungseinrichtung mittelbar über das Positionssignal des Wegmesssystems erfasst werden und zu einer neuerlichen Anpassung der Ventilstellung führen.According to one of the prior art known to the applicant but not laid down in print, in a method for supplying compressed air to a compressed air consumer, a position of a movable component of the compressed air consumer, for example a working piston of a pneumatic cylinder, is determined along a movement path with the aid of a displacement measuring system and a position provided by the displacement measuring system Provide position signal to a processing device in which the position signal is processed in order to obtain at least one piece of information about a movement of the movable component of the compressed air consumer, for example from an absolute amount of the position signal and / or a change in the position signal over time. With this information, a valve arrangement assigned to the processing device is then controlled in order to influence a fluid flow into a working space or from a working space of the compressed air consumer in such a way that that the movable component of the compressed air consumer can be moved to a predetermined position along the movement path and / or at a predetermined speed along the movement path. A valve position of the valve arrangement can thus be controlled or regulated on the basis of the position signal of the position measuring system. The change in the valve position depending on the pressure conditions at the compressed air consumer and a compressed air source leads to different fluid volume flows to the compressed air consumer, which are detected indirectly by the processing device via the position signal of the displacement measuring system and lead to a renewed adjustment of the valve position.

Bekannte Verfahren zum Betreiben einer Ventileinrichtung zur Druckluftversorgung eines Druckluftverbrauchers sind noch aus der DE 10 2005 013823 A1 und DE 10 2014 004877 B3 bekannt.Known methods for operating a valve device for supplying compressed air to a compressed air consumer are still from DE 10 2005 013823 A1 and DE 10 2014 004877 B3 known.

Die Aufgabe der Erfindung besteht darin, ein Verfahren zum Betreiben einer Ventileinrichtung, eine Ventileinrichtung und einen Datenträger mit einem Computerprogramm zur Speicherung in einer Verarbeitungseinrichtung einer Ventileinrichtung bereitzustellen, mit denen eine verbesserte Bereitstellung von Druckluft für einen Druckluftverbraucher ermöglicht wird. Diese Aufgabe wird für ein Verfahren der eingangs genannten Art mit den nachfolgend angeführten Schritten gelöst: Ermitteln eines ersten Fluiddrucks in einem ersten Abschnitt eines Fluidkanals der Ventilanordnung, der sich zwischen einem Eingangsanschluss für eine fluidisch kommunizierende Verbindung mit einer Fluidquelle oder Fluidsenke und einem Ventilelement erstreckt, Ermitteln eines zweiten Fluiddrucks in einem zweiten Abschnitt des Fluidkanals der Ventilanordnung, der sich zwischen dem Ventilelement und einem Ausgangsanschluss für eine fluidisch kommunizierende Verbindung mit einem Druckluftverbraucher erstreckt, Ermitteln eines Durchflusswerts für das Ventilelement aus den beiden Fluiddrücken und einer Durchflussfunktion, Verknüpfen des Durchflusswerts mit einem vorgebbaren Fluidvolumenstrom oder Fluidmassenstrom für das druckbeaufschlagte Fluid, der zur Durchströmung des Fluidkanals vorgesehen ist, zu einem Leitwert und Ermittlung einer benötigten Betätigungsenergie für eine Betätigungseinrichtung, die für eine Betätigung des Ventilelements ausgebildet ist, und Bereitstellen der Betätigungsenergie an die Betätigungseinrichtung zur Einstellung des vorgebbaren Fluidvolumenstroms oder Fluidmassenstroms.The object of the invention is to provide a method for operating a valve device, a valve device and a data carrier with a computer program for storage in a processing device of a valve device, with which an improved provision of compressed air for a compressed air consumer is made possible. This object is achieved for a method of the type mentioned with the following steps: determining a first fluid pressure in a first section of a fluid channel of the valve arrangement, which extends between an inlet connection for a fluidically communicating connection with a fluid source or fluid sink and a valve element, Determining a second fluid pressure in a second section of the fluid channel of the valve arrangement, which extends between the valve element and an output connection for a fluidically communicating connection with a compressed air consumer, determining a flow rate value for the valve element from the two fluid pressures and one Flow function, linking the flow value with a predeterminable fluid volume flow or fluid mass flow for the pressurized fluid, which is provided for flowing through the fluid channel, to a conductance and determination of a required actuation energy for an actuation device, which is designed for actuation of the valve element, and providing the actuation energy the actuating device for setting the predeterminable fluid volume flow or fluid mass flow.

Die Zielsetzung des Verfahrens besteht darin, anhand der ermittelten Druckwerte und in Kenntnis der fluidtechnischen Eigenschaften des verwendeten Ventilelements einen Fluidvolumenstrom oder Fluidmassenstrom für den Druckluftverbraucher auf einen vorgebbaren Fluidvolumenstrom einstellen zu können und damit unmittelbar Einfluss auf ein Bewegungsverhalten des Druckluftverbrauchers, bei dem es sich beispielsweise um einen Druckluftantrieb, insbesondere um einen Pneumatikzylinder oder pneumatischen Schwenkantrieb handelt, nehmen zu können. Der Fluidvolumenstrom beschreibt das strömende Fluidvolumen pro Zeiteinheit. Beim Fluidmassenstrom wird zusätzlich die Dichte des Fluids mit berücksichtigt, wodurch der Berechnungsaufwand reduziert werden kann. Zudem kann auch der messtechnische Aufwand für die Steuerung oder Regelung der Druckluftversorgung für den Druckluftverbraucher gering gehalten werden. Dies wird insbesondere dadurch erreicht, dass für die Durchführung des Verfahrens lediglich Drucksensoren erforderlich sind, die zur Ermittlung von Fluiddrücken in den jeweiligen Abschnitten des Fluidkanals der Ventilanordnung ausgebildet sind. Abgesehen davon, dass hierdurch auf ein typischerweise recht kostenintensives Wegmesssystem verzichtet werden kann, ergeben sich weitere Vorteile dadurch, dass die Drucksensoren in unmittelbarer Nähe des Ventilelements sowie einer Verarbeitungseinrichtung angeordnet werden können, die für eine Auswertung der Drucksignale der Drucksensoren sowie für eine Ansteuerung der Betätigungseinrichtung ausgebildet ist. Somit kann eine elektrische Verbindung zwischen den Drucksensoren und der Verarbeitungseinrichtung mit kurzen elektrischen Leitungen verwirklicht werden.The objective of the method is to be able to set a fluid volume flow or fluid mass flow for the compressed air consumer to a predeterminable fluid volume flow based on the determined pressure values and with knowledge of the fluid properties of the valve element used and thus directly influence a movement behavior of the compressed air consumer, which is, for example, to be able to take a compressed air drive, in particular a pneumatic cylinder or pneumatic swivel drive. The fluid volume flow describes the fluid volume flowing per unit of time. With the fluid mass flow, the density of the fluid is also taken into account, which can reduce the calculation effort. In addition, the metrological effort for the control or regulation of the compressed air supply for the compressed air consumer can be kept low. This is achieved in particular in that only pressure sensors are required for carrying out the method, which are designed to determine fluid pressures in the respective sections of the fluid channel of the valve arrangement. Apart from the fact that this means that a typically very cost-intensive path measuring system can be dispensed with, further advantages result from the fact that the pressure sensors are in the immediate vicinity of the valve element as well a processing device can be arranged, which is designed for evaluating the pressure signals of the pressure sensors and for controlling the actuating device. Thus, an electrical connection between the pressure sensors and the processing device can be realized with short electrical lines.

Für die Durchführung des Verfahrens ist vorgesehen, sowohl den Druck in dem ersten Fluidkanalabschnitt als auch in dem zweiten Fluidkanalabschnitt zu ermitteln, wobei die Ventilkanalabschnitte in Abhängigkeit von einer Funktionsstellung des Ventilelements fluidisch getrennt voneinander oder fluidisch kommunizierend miteinander verbunden sind. Vorzugsweise ist vorgesehen, dass das Ventilelement in Abhängigkeit von einer Bereitstellung von Energie, insbesondere elektrischer oder fluidischer Energie, an eine Betätigungseinrichtung frei, insbesondere proportional zur bereitgestellten Energiemenge, zwischen einer Schließstellung mit getrennter Verbindung der beiden Fluidkanalabschnitte und einer Öffnungsstellung mit freier kommunizierender Verbindung der beiden Fluidkanalabschnitte, bewegt werden kann.To carry out the method, provision is made to determine both the pressure in the first fluid channel section and in the second fluid channel section, the valve channel sections being fluidically separated from one another or connected to one another in a fluidically communicating manner, depending on a functional position of the valve element. It is preferably provided that the valve element is free depending on the provision of energy, in particular electrical or fluidic energy, to an actuating device, in particular proportional to the amount of energy provided, between a closed position with separate connection of the two fluid channel sections and an open position with free communicating connection between the two Fluid channel sections, can be moved.

Nachdem eine Ermittlung des ersten Fluiddrucks und des zweiten Fluiddrucks erfolgt ist, wird in einem nachfolgenden Schritt anhand der Fluiddrücke und einer Durchflussfunktion ein Durchflusswert ermittelt. Bei der Durchflussfunktion handelt es sich beispielsweise um eine Kurvenschar oder ein Kennfeld, in der/in dem Strömungseigenschaften des Ventilelements für ein Fluid, das das Ventilelement durchströmt, in Abhängigkeit von den Druckbedingungen vor und nach dem Ventilelement und in weiterer Abhängigkeit von einer Ventilstellung des Ventilelements hinterlegt sind. Der ermittelte Durchflusswert wird anschließend mit einem vorgebbaren Fluidvolumenstrom oder Fluidmassenstrom für das druckbeaufschlagte Fluids verknüpft, um einen Leitwert zu bilden. Dieser Leitwert wird dazu benötigt, eine Betätigungsenergie für die Betätigungseinrichtung, die für die Betätigung des Ventilelements ausgebildet ist, zu ermitteln. Anschließend erfolgt die Bereitstellung der ermittelten Betätigungsenergie an die Betätigungseinrichtung zur Einstellung des vorgebbaren Fluidvolumenstroms oder Fluidmassenstroms.After the first fluid pressure and the second fluid pressure have been determined, a flow value is determined in a subsequent step using the fluid pressures and a flow function. The flow function is, for example, a family of curves or a map in which the flow properties of the valve element for a fluid that flows through the valve element are dependent on the pressure conditions before and after the valve element and further dependent on a valve position of the valve element are deposited. The determined flow rate is then combined with a specifiable fluid volume flow or fluid mass flow for the pressurized fluid is linked to form a conductance. This conductance is required to determine an actuation energy for the actuation device, which is designed to actuate the valve element. The determined actuation energy is then made available to the actuation device for setting the specifiable fluid volume flow or fluid mass flow.

Vorzugsweise ist vorgesehen, das vorstehend näher beschriebenen Verfahren zyklisch zu wiederholen, um hierüber zu einer Regelung des Fluidvolumenstroms oder Fluidmassenstroms für den Druckluftverbraucher zu gelangen.Provision is preferably made for the method described in more detail above to be repeated cyclically in order to achieve a regulation of the fluid volume flow or fluid mass flow for the compressed air consumer.

Bei dieser Vorgehensweise wird die Ventileinrichtung in der Art eines Durchflussregelventils betrieben, wobei im Unterschied zu einem Durchflussregelventil auf einen aufwändigen und kostenintensiven Massenstromsensor verzichtet werden kann, da die gesamte Ermittlung des Fluidvolumenstroms oder Fluidmassenstroms durch die Ventileinrichtung auf Basis der Druckwerte erfolgt, die von den Drucksensoren am oder im Fluidkanal bereitgestellt werden.In this procedure, the valve device is operated in the manner of a flow control valve, in which case, in contrast to a flow control valve, a complex and cost-intensive mass flow sensor can be dispensed with, since the entire determination of the fluid volume flow or fluid mass flow is carried out by the valve device on the basis of the pressure values obtained from the pressure sensors are provided on or in the fluid channel.

Erfindungsgemäß ist es vorgesehen, wenn der Durchflusswert aus der Durchflussfunktion ermittelt wird, die in Beziehung zu einem Quotienten des ersten Fluiddrucks und des zweiten Fluiddrucks gesetzt wird.According to the invention, it is provided that the flow value is determined from the flow function, which is related to a quotient of the first fluid pressure and the second fluid pressure.

Vorteilhafte Weiterbildungen der Erfindung sind Gegenstand der Unteransprüche. 1Advantageous further developments of the invention are the subject of the subclaims. 1

Zweckmäßig ist es, dass die Betätigungsenergie anhand des Leitwerts und einer, insbesondere experimentell ermittelten, Ventilkennlinie ermittelt wird. Das Druckverhältnis über dem Ventilelement, das als Quotient des ersten Fluiddrucks und des zweiten Fluiddrucks ermittelt werden kann, ist diejenige Größe, anhand derer unabhängig von einem Niveau des Fluiddrucks im Fluidkanal eine präzise Zuordnung zu Strömungseigenschaften des Ventilelements für ein Fluid, das das Ventilelement durchströmt, geschaffen werden kann. Die Ventilkennlinie stellt einen Zusammenhang zwischen einer Bereitstellung von Energie, insbesondere elektrischer oder fluidischer Energie, an das Ventilelement und einer daraus resultierenden Funktionsstellung für das Ventilelement her. Bevorzugt ist vorgesehen, die Ventilkennlinie in Beziehung zu dem ermittelten Leitwert zu setzen, um daraus die zur Erzielung einer angestrebten Funktionsstellung des Ventilelements notwendige Energie für die Betätigungseinrichtung ermitteln zu können.It is expedient for the actuation energy to be determined on the basis of the conductance value and a valve characteristic curve, in particular determined experimentally. The pressure ratio across the valve element, expressed as the quotient of the first fluid pressure and the second fluid pressure can be determined is that Size, on the basis of which, independently of a level of the fluid pressure in the fluid channel, a precise assignment to the flow properties of the valve element for a fluid flowing through the valve element can be created. The valve characteristic creates a relationship between the provision of energy, in particular electrical or fluid energy, to the valve element and a functional position for the valve element resulting therefrom. Provision is preferably made for the valve characteristic to be related to the determined conductance value in order to be able to determine from this the energy required for the actuating device to achieve a desired functional position of the valve element.

Bevorzugt ist vorgesehen, dass zwei unabhängig voneinander ansteuerbare Ventilanordnungen vorgesehen sind, deren jeweilige zweite Abschnitte der jeweiligen Fluidkanäle zu einem gemeinsamen Ausgangsanschluss verbunden sind und deren Eingangsanschlüsse mit unterschiedlichen Fluidquellen oder Fluidsenken verbunden sind, wobei eine wahlweise Ansteuerung einer der beiden Ventilanordnungen in Abhängigkeit von einer Druckdifferenz zwischen dem jeweiligen Eingangsanschluss und dem gemeinsamen Ausgangsanschluss und dem vorgebbaren Fluidvolumenstrom oder Fluidmassenstrom erfolgt. Mit einer derartigen Vorgehensweise kann ein Druckluftverbraucher wechselweise mit unterschiedlichen Fluidquellen oder Fluidsenken verbunden werden, wobei stets ein Fluidvolumenstrom oder Fluidmassenstrom vorgegebenen werden kann, der im Zuge der Verfahrensdurchführung durch geeignete Ansteuerung jeweils einer der beiden Ventilanordnungen beibehalten wird. Dabei kann der Fluidvolumenstrom oder Fluidmassenstrom beispielhaft über eine vorgebbare Zeitdauer konstant sein oder einem vorgegebenen Profil folgen, um beispielhaft eine konstante Bewegung eines als Druckluftaktor ausgebildeten Druckluftverbrauchers oder eine vorgegebene variable Bewegung des Druckluftverbrauchers herbeizuführen. Beispielhaft kann die Druckluftquelle als lokaler Druckluftkompressor oder zentrales Druckluftnetz ausgebildet sein. Bei der Druckluftsenke kann es sich beispielsweise um einen Druckluftauslass in eine Umgebung der Ventilanordnung handeln, der insbesondere mit einem Schalldämpfer ausgerüstet ist.It is preferably provided that two independently controllable valve assemblies are provided whose respective second sections of the respective fluid channels are connected to a common output connection and whose input connections are connected to different fluid sources or fluid sinks, with an optional activation of one of the two valve assemblies depending on a pressure difference takes place between the respective input connection and the common output connection and the specifiable fluid volume flow or fluid mass flow. With such a procedure, a compressed air consumer can alternately be connected to different fluid sources or fluid sinks, whereby a fluid volume flow or fluid mass flow can always be specified, which is maintained in the course of the process by appropriate control of one of the two valve arrangements. The fluid volume flow or fluid mass flow can, for example, be constant over a predefinable period of time or follow a predefined profile in order to, for example, achieve a constant movement of a compressed air consumer or compressed air actuator bring about a predetermined variable movement of the compressed air consumer. For example, the compressed air source can be designed as a local compressed air compressor or a central compressed air network. The compressed air sink can, for example, be a compressed air outlet in the vicinity of the valve arrangement, which is in particular equipped with a silencer.

Bei einer Weiterbildung der Erfindung ist vorgesehen, dass der Druckluftverbraucher zwei fluidisch getrennte, kinematisch gekoppelte Arbeitsräume aufweist und jedem der Arbeitsräume zwei unabhängig voneinander ansteuerbare Ventilanordnungen zugeordnet sind, deren jeweilige zweite Abschnitte der jeweiligen Fluidkanäle zu einem gemeinsamen Ausgangsanschluss verbunden sind und deren jeweilige Eingangsanschlüsse mit unterschiedlichen Fluidquellen oder Fluidsenken verbunden sind, wobei eine synchrone Druckluftversorgung der beiden Arbeitsräume mit vorgebbaren Fluidvolumenströmen durch wahlweise Ansteuerung der jeweiligen Ventilanordnungen erfolgt. Bei einem derartigen Druckluftverbraucher, der insbesondere als Pneumatikzylinder oder pneumatischer Schwenkantrieb ausgebildet sein kann, werden zwei Arbeitsräume von einer beweglichen Wand, insbesondere einem Arbeitskolben, fluidisch abdichtend voneinander getrennt und sind aufgrund der Beweglichkeit der Wand größenvariabel. Da eine Bewegung der Wand zeitgleich zu einer Vergrößerung des einen Arbeitsraums und zu einer Verkleinerung des anderen Arbeitsraums führt, kann auch von einer kinematischen Kopplung der beiden Arbeitsräume gesprochen werden, wobei die bewegliche Wand das kinematische Koppelglied bildet. Für eine Vielzahl von Bewegungsaufgaben ist es vorteilhaft, wenn in beiden Arbeitsräumen eine synchrone Druckluftversorgung vorgenommen wird, wobei unter dem Begriff der Druckluftversorgung sowohl ein Zustrom von Druckluft in den Arbeitsraum als auch ein Abstrom von Druckluft aus dem Arbeitsraum verstanden wird. Bei der Durchführung des erfindungsgemäßen Verfahrens sind synchrone Fluidvolumenströme für beide Arbeitsräume des Druckluftverbrauchers vorgesehen. Beispielhaft findet in einem der beiden Arbeitsräume ein Zustrom von Druckluft statt, während im anderen Arbeitsraum ein Abstrom von Druckluft vorgesehen ist. Hierdurch wird die bewegliche Wand zwischen den beiden Arbeitsräumen mit einer vorgebbaren Bewegungsgeschwindigkeit bewegt.In a further development of the invention it is provided that the compressed air consumer has two fluidically separate, kinematically coupled working spaces and two independently controllable valve arrangements are assigned to each of the working spaces, whose respective second sections of the respective fluid channels are connected to a common output connection and their respective input connections are different Fluid sources or fluid sinks are connected, with a synchronous supply of compressed air to the two working spaces with predeterminable fluid volume flows by optionally controlling the respective valve arrangements. In such a compressed air consumer, which can in particular be designed as a pneumatic cylinder or pneumatic swivel drive, two working spaces are separated from one another in a fluidic sealing manner by a movable wall, in particular a working piston, and are variable in size due to the mobility of the wall. Since a movement of the wall leads to an enlargement of one work space and a reduction in the other work space at the same time, one can also speak of a kinematic coupling of the two work spaces, with the movable wall forming the kinematic coupling element. For a large number of movement tasks, it is advantageous if a synchronous compressed air supply is carried out in both work spaces, with the term compressed air supply both an influx of compressed air in the work space as well as an outflow of compressed air from the work space is understood. When carrying out the method according to the invention, synchronous fluid volume flows are provided for both working spaces of the compressed air consumer. For example, an inflow of compressed air takes place in one of the two work spaces, while an outflow of compressed air is provided in the other work space. As a result, the movable wall between the two work spaces is moved at a predetermined movement speed.

In vorteilhafter Ausgestaltung der Erfindung ist vorgesehen, dass ein erster Fluidvolumenstrom oder Fluidmassenstrom für einen ersten Arbeitsraum des Druckluftverbrauchers und ein zweiter Fluidvolumenstrom oder Fluidmassenstrom für einen zweiten Arbeitsraum des Druckluftverbrauchers zur Erzielung eines Bewegungsprofils für den angeschlossenen Druckluftverbraucher vorgegeben wird und/oder dass ein erstes Druckverlaufsprofil für den ersten Arbeitsraum und ein zweites Druckverlaufsprofil für den zweiten Arbeitsraum vorgegeben wird. Durch Vorgabe der beiden Fluidvolumenströme für die beiden Arbeitsräume des Druckluftverbrauchers können präzise Vorgaben für die Bewegung der Wand zwischen den beiden Arbeitsräumen gemacht werden. Dies gilt insbesondere dann, wenn während der Bewegung der Wand stets ein konstantes Verhältnis zwischen dem ersten Fluidvolumenstrom oder Fluidmassenstrom und dem zweiten Fluidvolumenstrom oder Fluidmassenstrom vorliegt. Besonders vorteilhaft ist es, wenn die Bewegung der Wand anhand eines vorgegebenen Druckverlaufsprofils beeinflusst wird, wobei sich die Drücke in den beiden Arbeitsräumen aus den bereitgestellten Fluidvolumenströmen und der Bewegung der Wand ergeben.In an advantageous embodiment of the invention it is provided that a first fluid volume flow or fluid mass flow is specified for a first working space of the compressed air consumer and a second fluid volume flow or fluid mass flow for a second working space of the compressed air consumer to achieve a movement profile for the connected compressed air consumer and / or that a first pressure profile for the first working space and a second pressure profile for the second working space is specified. By specifying the two fluid volume flows for the two work spaces of the compressed air consumer, precise specifications can be made for the movement of the wall between the two work spaces. This applies in particular if, during the movement of the wall, there is always a constant ratio between the first fluid volume flow or fluid mass flow and the second fluid volume flow or fluid mass flow. It is particularly advantageous if the movement of the wall is influenced on the basis of a predetermined pressure profile, the pressures in the two working spaces resulting from the fluid volume flows provided and the movement of the wall.

Die Aufgabe der Erfindung wird für eine Ventileinrichtung der eingangs genannten Art, die zum Betreiben eines Druckluftverbrauchers ausgebildet ist, mit den Merkmalen des Anspruchs 6 gelöst. Hierbei umfasst die Ventileinrichtung, bei der ein Fluidkanal zwischen einem Eingangsanschluss für eine fluidisch kommunizierende Verbindung mit einer Fluidquelle oder Fluidsenke und einem Ausganganschluss für eine fluidisch kommunizierende Verbindung mit einem Druckluftverbraucher ausgebildet ist, sowie ein Ventilelement, das für eine Beeinflussung eines Querschnitts des Fluidkanals beweglich im Fluidkanal angeordnet ist und dem eine Betätigungseinrichtung zur Veränderung einer Funktionsposition zugeordnet ist, und eine Verarbeitungseinrichtung für eine Bereitstellung von Betätigungsenergie an die Betätigungseinrichtung, wobei einem ersten Abschnitt des Fluidkanals zwischen dem Eingangsanschluss und dem Ventilelement ein erster Drucksensor zugeordnet ist und wobei einem zweiten Abschnitt des Fluidkanals zwischen dem Ventilelement und dem Ausganganschluss ein zweiter Drucksensor zugeordnet ist, wobei die Verarbeitungseinrichtung für eine Durchführung eines Verfahrens nach Anspruch 1 oder 2 ausgebildet ist.The object of the invention is achieved with the features of claim 6 for a valve device of the type mentioned at the outset, which is designed to operate a compressed air consumer. In this case, the valve device in which a fluid channel is formed between an input connection for a fluidically communicating connection with a fluid source or fluid sink and an output connection for a fluidically communicating connection with a compressed air consumer, as well as a valve element which is moveable in order to influence a cross section of the fluid channel Fluid channel is arranged and to which an actuating device for changing a functional position is assigned, and a processing device for providing actuation energy to the actuating device, a first pressure sensor being assigned to a first section of the fluid channel between the input connection and the valve element and a second section of the fluid channel a second pressure sensor is assigned between the valve element and the output connection, the processing device for carrying out a method according to claim 1 od he 2 is trained.

Bei einer Weiterbildung der Ventileinrichtung ist vorgesehen, dass zwei unabhängig voneinander ansteuerbare Ventilanordnungen vorgesehen sind, deren jeweilige zweite Abschnitte der jeweiligen Fluidkanäle zu einem gemeinsamen Ausgangsanschluss verbunden sind und deren Eingangsanschlüsse mit unterschiedlichen Fluidquellen oder Fluidsenken verbunden sind, und dass die Verarbeitungseinrichtung für eine Durchführung eines Verfahrens nach Anspruch 3 ausgebildet ist.In a further development of the valve device it is provided that two independently controllable valve arrangements are provided, the respective second sections of the respective fluid channels are connected to a common output connection and the input connections are connected to different fluid sources or fluid sinks, and that the processing device is used to carry out a method according to claim 3 is formed.

In weiterer Ausgestaltung der Ventileinrichtung ist vorgesehen, dass die Verarbeitungseinrichtung mit zwei Paaren von jeweils zwei unabhängig voneinander ansteuerbaren Ventilanordnungen verbunden ist, wobei die zweiten Abschnitte der jeweiligen Fluidkanäle jeweils paarweise zu einem gemeinsamen Ausgangsanschluss verbunden sind und wobei ein erster Eingangsanschluss jedes Paars mit einer Fluidquelle und ein zweiter Eingangsanschluss jedes Paars mit einer Fluidsenke verbunden ist, dadurch gekennzeichnet, dass die Verarbeitungseinrichtung für eine synchrone Druckluftversorgung der beiden Arbeitsräume mit vorgebbaren Fluidvolumenströmen durch wahlweise Ansteuerung der jeweiligen Ventilanordnungen ausgebildet ist.In a further embodiment of the valve device, it is provided that the processing device is equipped with two pairs of each two independently controllable valve assemblies is connected, the second sections of the respective fluid channels being connected in pairs to form a common output connection and with a first input connection of each pair being connected to a fluid source and a second input connection of each pair being connected to a fluid sink, characterized in that the processing device is designed for a synchronous supply of compressed air to the two working spaces with predeterminable fluid volume flows by selectively controlling the respective valve arrangements.

Vorzugsweise ist die Ventilanordnung als Proportionalventil, insbesondere als fluidisch vorgesteuertes Proportionalventil, ausgebildet.The valve arrangement is preferably designed as a proportional valve, in particular as a fluidically pilot-controlled proportional valve.

Die Aufgabe der Erfindung wird durch einen Datenträger mit einem Computerprogramm, das zur Speicherung in einer Verarbeitungseinrichtung einer Ventileinrichtung ausgebildet ist, gelöst, wobei das Computerprogramm bei Verarbeitung in einem Prozessor der Verarbeitungseinrichtung ein Verfahren nach einem der Ansprüche 1 bis 5 bewirkt. Dabei kann es sich bei dem Datenträger portables Trägermedium wie beispielsweise eine CD, eine DVD oder einen USB-Speicher handeln. Alternativ kann der Datenträger als Laufwerk oder Festkörperspeicher eines Datenservers ausgebildet sein, in dem eine Vielzahl von unterschiedlichen Daten abgespeichert sind, auf die über einen Fernzugriff von der Verarbeitungseinrichtung zugegriffen werden kann, insbesondere auf eine Datenwolke/Cloud.The object of the invention is achieved by a data carrier with a computer program which is designed for storage in a processing device of a valve device, the computer program causing a method according to one of claims 1 to 5 when processed in a processor of the processing device. The data carrier can be a portable carrier medium such as a CD, a DVD or a USB memory. Alternatively, the data carrier can be designed as a drive or solid-state memory of a data server, in which a large number of different data are stored that can be accessed remotely by the processing device, in particular a data cloud.

Vorteilhafte Ausführungsformen der Erfindung sind in der Zeichnung dargestellt. Hierbei zeigt:

Figur 1
eine schematische Darstellung einer ersten Ausführungsform eines fluidischen Systems mit einer Ventileinrichtung und einem Druckluftverbraucher, der zwei kinematisch miteinander gekoppelte Arbeitsräume aufweist,
Figur 2
eine schematische Darstellung einer zweiten Ausführungsform eines fluidischen Systems mit einer Ventileinrichtung, die ein Ventilelement umfasst, und einem Druckluftverbraucher, der einen Arbeitsraum aufweist, und
Figur 3
eine schematische Darstellung einer dritten Ausführungsform eines fluidischen Systems mit einer Ventileinrichtung, die zwei Ventilelemente umfasst, und einem Druckluftverbraucher, der einen Arbeitsraum aufweist.
Advantageous embodiments of the invention are shown in the drawing. Here shows:
Figure 1
a schematic representation of a first embodiment of a fluidic system with a valve device and a compressed air consumer, which has two kinematically coupled working spaces,
Figure 2
a schematic representation of a second embodiment of a fluidic system with a valve device, which comprises a valve element, and a compressed air consumer, which has a working space, and
Figure 3
a schematic representation of a third embodiment of a fluidic system with a valve device, which comprises two valve elements, and a compressed air consumer, which has a working space.

Ein in der Figur 1 gezeigtes fluidisches System 1 ist rein exemplarisch zur Bereitstellung einer Linearbewegung ausgebildet und umfasst hierzu eine Ventileinrichtung 2 und einen Druckluftverbraucher 3. Beispielhaft ist die Ventileinrichtung 2 als pneumatische Vollbrückenschaltung mit insgesamt vier jeweils als 2/2-Wege-Proportionalventile ausgebildeten Ventilelementen 4, 5, 6 und 7 verwirklicht, wobei jedes der Ventilelemente 4, 5, 6 und 7 rein exemplarisch als Magnetventil mit einem Magnetantrieb 8, 9, 10 und 11 als Betätigungseinrichtung ausgebildet ist. Bei einer alternativen, nicht näher dargestellten Ausführungsform kann die Betätigungseinrichtung auch als Piezoantrieb oder magnetostriktiver oder anderweitig geeigneter Antrieb ausgebildet sein.An Indian Figure 1 The fluidic system 1 shown is designed purely by way of example to provide a linear movement and for this purpose comprises a valve device 2 and a compressed air consumer 3. The valve device 2 is a pneumatic full-bridge circuit with a total of four valve elements 4, 5, 6, each designed as 2/2-way proportional valves 7 and 7, each of the valve elements 4, 5, 6 and 7 being designed purely by way of example as a solenoid valve with a solenoid drive 8, 9, 10 and 11 as the actuating device. In an alternative, not shown embodiment, the actuation device can also be designed as a piezo drive or magnetostrictive or otherwise suitable drive.

Jedes der Ventilelemente 4, 5, 6 und 7 kann bei geeigneter Beaufschlagung der zugeordneten Magnetantriebe 8, 9, 10 und 11 mit elektrischer Energie zwischen zwei Funktionsstellungen, insbesondere einer Sperrstellung und einer Öffnungsstellung, umgeschaltet werden. Hierzu sind die Magnetantriebe 8, 9, 10 und 11 über Steuerleitungen 15, 16, 17 und 18 mit einer Verarbeitungseinrichtung 19 elektrisch verbunden, die einen Bestandteil der Ventileinrichtung 2 bildet und beispielhaft einen Mikroprozessor oder Mikrocontroller umfasst.Each of the valve elements 4, 5, 6 and 7 can, if the associated magnetic drives 8, 9, 10 and 11 can be switched with electrical energy between two functional positions, in particular a locked position and an open position. For this purpose, the magnetic drives 8, 9, 10 and 11 are electrically connected via control lines 15, 16, 17 and 18 to a processing device 19, which forms part of the valve device 2 and comprises, for example, a microprocessor or microcontroller.

Jedes der Ventilelemente 4, 5, 6 und 7 ist über zugeordnete Fluidleitungen 20 bis 27 mit fluidischen Knotenpunkten 28 bis 31 verbunden und bildet mit den jeweils paarweise zugeordneten Fluidleitungen 20 bis 27 jeweils eine nicht näher bezeichnete Ventilanordnung. Dabei werden die Fluidleitungen 20 bis 23 jeweils als erster Abschnitt eines Fluidkanals des jeweiligen Ventilelements 4, 5, 6 und 7 bezeichnet. Die Fluidleitungen 24 bis 27 werden hingegen als zweite Abschnitte eines Fluidkanals des jeweiligen Ventilelements 4, 5, 6 und 7 bezeichnet. Dabei münden die Fluidleitungen 20 und 21 gemeinsam an einem fluidischen Knotenpunkt 28 aus, die Fluidleitungen 22 und 23 münden gemeinsam an dem fluidischen Knotenpunkt 30 aus, die Fluidleitungen 24 und 25 münden gemeinsam an dem fluidischen Knotenpunkt 29 aus und die Fluidleitungen 26 und 27 münden gemeinsam an dem fluidischen Knotenpunkt 31 aus.Each of the valve elements 4, 5, 6 and 7 is connected to fluidic nodes 28 to 31 via assigned fluid lines 20 to 27 and forms with the fluid lines 20 to 27 which are assigned in pairs in each case a valve arrangement (not shown in detail). The fluid lines 20 to 23 are each referred to as the first section of a fluid channel of the respective valve element 4, 5, 6 and 7. In contrast, the fluid lines 24 to 27 are referred to as second sections of a fluid channel of the respective valve element 4, 5, 6 and 7. The fluid lines 20 and 21 open out together at a fluidic junction 28, the fluid lines 22 and 23 open out together at the fluidic junction 30, the fluid lines 24 and 25 open together at the fluidic junction 29 and the fluid lines 26 and 27 open together at the fluidic node 31.

Rein exemplarisch ist der fluidische Knotenpunkt 28 über eine Versorgungsleitung 36 mit einer Fluidquelle 32 verbunden, während der fluidische Knotenpunkt 30 über eine Abluftleitung 37 mit einem Fluidauslass verbunden ist, dem ein Schalldämpfer 33 zugeordnet ist. Der fluidische Knotenpunkt 29 bildet einen ersten Arbeitsanschluss der Ventileinrichtung 2 und ist über eine erste Anschlussleitung 38 mit einem Fluidanschluss 39 des Druckluftverbrauchers 3 verbunden, während der fluidische Knotenpunkt 31 einen zweiten Arbeitsanschluss der Ventileinrichtung 2 bildet und über eine zweite Anschlussleitung 40 mit einem Fluidanschluss 41 des Druckluftverbrauchers 3 verbunden ist.Purely by way of example, the fluidic node 28 is connected to a fluid source 32 via a supply line 36, while the fluidic node 30 is connected via an exhaust air line 37 to a fluid outlet to which a silencer 33 is assigned. The fluidic junction 29 forms a first working connection of the valve device 2 and is connected to a fluid connection 39 of the compressed air consumer 3 via a first connection line 38, while the fluidic junction 31 is a second working connection of the valve device 2 and is connected to a fluid connection 41 of the compressed air consumer 3 via a second connection line 40.

Rein exemplarisch ist vorgesehen, dass der Versorgungsleitung 36, der Abluftleitung 37, der ersten Anschlussleitung 38 sowie der zweiten Anschlussleitung 40 jeweils ein Drucksensor 42 bis 45 zugeordnet ist, der jeweils für eine Erfassung des jeweiligen Fluiddrucks in der zugeordneten Leitung 36, 37, 38 und 40 sowie für eine Bereitstellung eines druckabhängigen Sensorsignals über eine jeweils zugeordnete Sensorleitung 46 bis 49 an die Verarbeitungseinrichtung 19 ausgebildet ist. Bei einer nicht näher dargestellten Ausführungsform ist wenigstens einer der Drucksensoren in einem Gehäuse für die Ventileinrichtung oder außerhalb eines solchen Gehäuses angeordnet.Purely by way of example, it is provided that the supply line 36, the exhaust air line 37, the first connection line 38 and the second connection line 40 are each assigned a pressure sensor 42 to 45, which is used to detect the respective fluid pressure in the assigned line 36, 37, 38 and 40 as well as for providing a pressure-dependent sensor signal via a respectively assigned sensor line 46 to 49 to the processing device 19. In an embodiment not shown in more detail, at least one of the pressure sensors is arranged in a housing for the valve device or outside of such a housing.

Der Druckluftverbraucher 3 ist rein exemplarisch als doppeltwirkender Pneumatikzylinder ausgebildet, bei dem ein auch als bewegliche Wand bezeichneter Arbeitskolben 50 linearbeweglich in einer Zylinderausnehmung 51 eines Zylindergehäuses 52 aufgenommen ist und dadurch einen ersten größenvariablen Arbeitsraum 53 von einem zweiten größenvariable Arbeitsraum 54 trennt. Beispielhaft ist der Arbeitskolben 50 mit einer Kolbenstange 55 verbunden, die das Zylindergehäuse 52 stirnseitig durchsetzt und zusammen mit dem Arbeitskolben 50 längs eines geradlinigen Bewegungswegs 56 relativ zum Zylindergehäuse 52 verschoben werden kann.The compressed air consumer 3 is designed purely by way of example as a double-acting pneumatic cylinder, in which a working piston 50, also referred to as a movable wall, is accommodated in a cylinder recess 51 of a cylinder housing 52 so as to be linearly movable and thereby separates a first variable-size working space 53 from a second variable-size working space 54. By way of example, the working piston 50 is connected to a piston rod 55, which passes through the cylinder housing 52 at the end and can be displaced together with the working piston 50 along a straight movement path 56 relative to the cylinder housing 52.

Rein exemplarisch soll nachstehend beschrieben werden, welche Schritte in dem fluidischen System 1 durchzuführen sind, um eine Bewegung des Arbeitskolbens 50 mit der gekoppelten Kolbenstange 55 gemäß einem vorgebbaren Bewegungsprofil zu bewirken. Beispielhaft soll der Arbeitskolben 50 ausgehend von der Position gemäß der Darstellung der Figur 1 so bewegt werden, dass eine Stirnseite des Arbeitskolbens 50 in Anlage zu einer gegenüberliegend angeordneten Innenoberfläche 58 des Zylindergehäuses 52 kommt. Beispielhaft ist das vorgebbare Bewegungsprofil derart ausgebildet, das zunächst eine gleichförmige Beschleunigung des Arbeitskolbens 50 bis auf eine vorgebbare Zielgeschwindigkeit, anschließend eine gleichförmige Bewegung des Arbeitskolbens unter Beibehaltung der Zielgeschwindigkeit und zum Schluss eine Abbremsung des Arbeitskolbens 50 bis auf eine verschwindende Geschwindigkeit erfolgt.Purely by way of example, the following is intended to describe which steps are to be carried out in the fluidic system 1 in order to bring about a movement of the working piston 50 with the coupled piston rod 55 according to a predeterminable movement profile. By way of example, the working piston 50 should proceed from the position as shown in FIG Figure 1 be moved so that one end face of the working piston 50 comes into contact with an oppositely arranged inner surface 58 of the cylinder housing 52. By way of example, the predeterminable movement profile is designed in such a way that first uniform acceleration of working piston 50 up to a predeterminable target speed, then uniform movement of working piston while maintaining the target speed, and finally braking of working piston 50 down to a zero speed.

Für die geplante Bewegung des Arbeitskolbens 50 ist eine Zufuhr von druckbeaufschlagtem Fluid an den Arbeitsraum 54 erforderlich, während eine Abfuhr von Fluid aus dem Arbeitsraum 53 vorgesehen werden muss. Um das gewünschte Bewegungsprofil erzielen zu können, ist die Bereitstellung von vorgebbaren Fluidvolumenströmen zweckmäßig, da hierüber die Bewegungsgeschwindigkeit für den Arbeitskolben präzise eingestellt werden kann. Dementsprechend ist beispielhaft eine Ansteuerung des Ventilelements 4 sowie des Ventilelements 6 vorzusehen, wobei über das Ventilelement 4 eine fluidisch kommunizierende Verbindung zwischen der Fluidquelle 32, dem fluidischen Knotenpunkt 29 und dem zweiten Fluidanschluss 39 hergestellt wird und wobei über das Ventilelement 6 eine fluidisch kommunizierende Verbindung zwischen dem ersten Fluidanschluss 41, dem fluidischen Knotenpunkt 31 und dem Fluidauslass mit zugeordneten Schalldämpfer 33 hergestellt wird.For the planned movement of the working piston 50, a supply of pressurized fluid to the working space 54 is required, while a discharge of fluid from the working space 53 must be provided. In order to be able to achieve the desired movement profile, the provision of predefinable fluid volume flows is expedient, since the movement speed for the working piston can be precisely adjusted in this way. Accordingly, a control of the valve element 4 and the valve element 6 is to be provided by way of example, with a fluidically communicating connection between the fluid source 32, the fluidic node 29 and the second fluid connection 39 being established via the valve element 4 and with a fluidically communicating connection between the valve element 6 the first fluid connection 41, the fluidic node 31 and the fluid outlet with associated silencer 33 is established.

Um die Bewegung des Arbeitskolbens 50 gemäß dem vorstehend geschilderten Bewegungsprofil durchführen zu können, ermittelt die Verarbeitungseinrichtung 19 zunächst die Sensorsignale der Drucksensoren 42 bis 45, um Druckverhältnisse über den beiden Ventilelementen 4 und 6 berechnen zu können. Anhand dieser Druckverhältnisse kann in einem nachfolgenden Schritt in der Verarbeitungseinrichtung 19 für jedes der Ventilelemente 4 und 6 ein Durchflusswert für das jeweilige Ventilelement 4, 6 aus den beiden Fluiddrücken und einer Durchflussfunktion ermittelt werden. Anschließend erfolgt eine Verknüpfung des jeweils ermittelten Durchflusswerts mit einem vorgebbaren Fluidvolumenstrom oder Fluidmassenstrom, der dem jeweiligen Arbeitsraum 53, 54 zur Verfügung gestellt werden soll, um die gewünschte Bewegung des Arbeitskolbens 50 gemäß dem Bewegungsprofil zu erzielen. Das Ergebnis dieser Verknüpfung wird als Leitwert bezeichnet und wird zur Ermittlung einer benötigten Betätigungsenergie für den jeweiligen Magnetantrieb 8, 10 benötigt. Die Betätigungsenergie wird für jeden der Magnetantriebe 8, 10 durch Verknüpfung des Leitwerts mit einer, insbesondere experimentell ermittelten, Ventilkennlinie ermittelt. Anschließend wird die Betätigungsenergie an die jeweiligen Magnetantriebe 8, 10 bereitgestellt und führt dort zu einer Bewegung der jeweiligen, nicht näher bezeichneten Ventilschieber der jeweiligen Ventilelemente 4, 6 und somit zur einer Freigabe einer fluidisch kommunizierenden Verbindung zwischen den jeweiligen fluidischen Knotenpunkten 28 und 29 bzw. 31 und 30.In order to be able to perform the movement of the working piston 50 in accordance with the movement profile described above, the processing device 19 first determines the sensor signals of the pressure sensors 42 to 45 in order to be able to calculate pressure conditions across the two valve elements 4 and 6. On the basis of these pressure conditions, in a subsequent step in the processing device 19 for each of the valve elements 4 and 6, a flow value for the respective valve element 4, 6 can be determined from the two fluid pressures and a flow function. The flow value determined in each case is then linked to a predefinable fluid volume flow or fluid mass flow that is to be made available to the respective working space 53, 54 in order to achieve the desired movement of working piston 50 according to the movement profile. The result of this combination is referred to as the master value and is required to determine the actuation energy required for the respective magnetic drive 8, 10. The actuation energy is determined for each of the magnetic drives 8, 10 by linking the conductance value with a valve characteristic curve, in particular an experimentally determined one. The actuation energy is then provided to the respective magnetic drives 8, 10 and leads there to a movement of the respective, unspecified valve slides of the respective valve elements 4, 6 and thus to the release of a fluidically communicating connection between the respective fluidic nodes 28 and 29 or 31 and 30.

Durch die Ansteuerung der jeweiligen Ventilelemente der 4, 6 stellt sich jeweils ein Fluidvolumenstrom oder Fluidmassenstrom zwischen der Fluidquelle 32 und dem Arbeitsraum 54 sowie zwischen dem Arbeitsraum 53 und dem Schalldämpfer 33 ein, der mit einer Änderung der Drücke in den jeweiligen Fluidleitungen 20 bis 27 einhergeht. Durch zyklisch wiederkehrende Bestimmung der Sensorsignale der Drucksensoren 42 bis 45 sowie die nachfolgende Verarbeitung der Druckverhältnisse gemäß der vorstehenden Vorgehensweise kann die Verarbeitungseinrichtung 19 die Fluidvolumenströme für die beiden Arbeitsräume 53, 54 des Druckluftverbrauchers 3 so einstellen, dass das gewünschte Bewegungsprofil für den Arbeitskolben 50 eingehalten wird.By activating the respective valve elements in FIGS. 4, 6, a fluid volume flow or fluid mass flow is established between the fluid source 32 and the working chamber 54 and between the working chamber 53 and the silencer 33, which is accompanied by a change in the pressures in the respective fluid lines 20 to 27 . By cyclically recurring determination of the sensor signals of the pressure sensors 42 to 45 as well as the subsequent processing of the pressure conditions according to FIG Using the above procedure, the processing device 19 can set the fluid volume flows for the two working spaces 53, 54 of the compressed air consumer 3 so that the desired movement profile for the working piston 50 is maintained.

Die in den Figuren 2 und 3 dargestellten Ausführungsformen von fluidischen Systemen 61 und 91 unterscheiden sich von dem fluidischen System 1 gemäß der Figur 1 dadurch, dass der Druckluftverbraucher 63 rein exemplarisch als einfachwirkender Pneumatikzylinder ausgebildet ist, so dass in dem jeweiligen Zylindergehäuse 64 jeweils nur ein Arbeitsraum 65 ausgebildet ist.The ones in the Figures 2 and 3 The illustrated embodiments of fluidic systems 61 and 91 differ from the fluidic system 1 according to FIG Figure 1 in that the compressed air consumer 63 is designed purely by way of example as a single-acting pneumatic cylinder, so that only one working space 65 is formed in the respective cylinder housing 64.

Bei der Ausführungsform gemäß der Figur 2 ist die Ventileinrichtung 62 beispielhaft als proportionales 3/3-Wegeventil ausgebildet, bei dem in der dargestellten Schaltstellung, die auch als Ruhestellung oder Neutralstellung bezeichnet werden kann, fluidisch kommunizierende Verbindungen zwischen einer Fluidquelle 66, einem Arbeitsanschluss 67 sowie einem Fluidauslass 68 mit Schalldämpfer gesperrt sind. Der Ventilschieber 69 der Ventileinrichtung 62 kann mit Hilfe der zugeordneten Magnetantriebe 70, 71 in zwei unterschiedliche Funktionsstellungen gebracht werden. In der ersten Funktionsstellung wird eine fluidisch kommunizierende Verbindung zwischen der Fluidquelle 66 und dem Arbeitsraum 65 hergestellt. In der zweiten Funktionsstellung wird eine fluidisch kommunizierende Verbindung zwischen dem Arbeitsraum 65 und dem Fluidauslass 68 hergestellt. Die Verarbeitungseinrichtung 72 ist in gleicher Weise wie die Verarbeitungseinrichtung 19 gemäß der Figur 1 ausgebildet und ermöglicht somit anhand von Sensorsignalen der Drucksensoren 73, 74, 75 eine Bereitstellung von vorgebbaren Fluidvolumenströmen in den Arbeitsraum 65 und aus dem Arbeitsraum 65.In the embodiment according to Figure 2 the valve device 62 is designed as a proportional 3/3-way valve, in which in the illustrated switching position, which can also be referred to as the rest position or neutral position, fluidically communicating connections between a fluid source 66, a working connection 67 and a fluid outlet 68 with a silencer are blocked . The valve slide 69 of the valve device 62 can be brought into two different functional positions with the aid of the associated magnetic drives 70, 71. In the first functional position, a fluidically communicating connection is established between the fluid source 66 and the working space 65. In the second functional position, a fluidically communicating connection is established between the working chamber 65 and the fluid outlet 68. The processing device 72 is designed in the same way as the processing device 19 according to FIG. 1 and thus enables a provision of on the basis of sensor signals from the pressure sensors 73, 74, 75 specifiable fluid volume flows into the working space 65 and out of the working space 65.

Bei der Ausführungsform gemäß der Figur 3 sind die Ventileinrichtungen 92 jeweils als proportionale 2/2-Wegeventile 100, 101 mit Ventilschiebern 99 als Ventilelementen ausgebildet und können individuell von der zugeordneten Verarbeitungseinrichtung 102 angesteuert werden, um eine wahlweise Bereitstellung von druckbeaufschlagtem Fluid von der Fluidquelle 66 in den Arbeitsraum 65 oder aus dem Arbeitsraum 65 zum Fluidauslass 68 zu gewährleisten. Die Verarbeitungseinrichtung 102 ist in gleicher Weise wie die Verarbeitungseinrichtung 19 gemäß der Figur 1 ausgebildet und ermöglicht somit anhand von Sensorsignalen der Drucksensoren 103, 104, 105 eine Bereitstellung von vorgebbaren Fluidströmen in den Arbeitsraum 65 und aus dem Arbeitsraum 65.In the embodiment according to Figure 3 the valve devices 92 are each designed as proportional 2/2-way valves 100, 101 with valve spools 99 as valve elements and can be controlled individually by the associated processing device 102 in order to selectively provide pressurized fluid from the fluid source 66 into the working chamber 65 or from the To ensure working space 65 to fluid outlet 68. The processing device 102 is in the same way as the processing device 19 according to FIG Figure 1 and thus enables predefinable fluid flows into the working space 65 and out of the working space 65 to be provided on the basis of sensor signals from the pressure sensors 103, 104, 105.

Claims (10)

  1. Method for operating a valve device (2; 62; 92) for supplying compressed air to compressed air consumer (3; 63), the method comprising the steps of: determination of a first fluid pressure in a first section (20, 21, 22, 23) of a fluid passage of the valve assembly (2; 62; 92), which extends between an inlet port (28, 30) which is provided for a fluidically communicating connection to a fluid source (32; 66) or a fluid sink (33; 68), and a valve element (4, 5, 6, 7; 69; 99), determination of a second fluid pressure in a second section (24, 25, 26, 27) of the fluid passage of the valve assembly (2; 62; 92), which extends between the valve element (4, 5, 6, 7; 69; 99) and an outlet port (29, 31) which is provided for a fluidically communicating connection to a compressed air consumer (3; 63), determination of a flow value for the valve element (4, 5, 6, 7; 69; 99) from the two fluid pressures and of a flow function, relating of the flow value with a presettable volumetric fluid flow rate or mass fluid flow rate for the pressurised fluid, which flow rate is provided for flow through the fluid passage (20 to 27), to a guide value and the determination of a required actuating energy for an actuating device (8, 9, 10, 11; 70, 71; 100, 101) which is designed for an actuation of the valve element (4, 5, 6, 7; 69; 99), provision of the actuating energy to the actuating device (8, 9, 10, 11; 70, 71; 100, 101) for adjusting the presettable volumetric fluid flow rate or mass fluid flow rate, characterised in that the flow value is determined from the flow function set in relation to a quotient of the first fluid pressure and the second fluid pressure.
  2. Method according to claim 1, characterised in that the actuating energy is determined on the basis of the guide value and of a, in particular experimentally determined, valve characteristic.
  3. Method according to claim 1 or 2, characterised in that two independently controllable valve assemblies (2; 62; 92) are provided, their respective second sections (24, 25, 26, 27) of the respective fluid passages being connected to a common outlet port (29, 31) and their inlet ports (28, 30) being connected to different fluid sources (32) or fluid sinks (33), wherein one of the two valve assemblies (2; 62; 92) is selectively controlled as a function of a pressure differential between the respective inlet port (28, 30) and the common outlet port (29, 31) and of the presettable volumetric fluid flow rate or mass fluid flow rate.
  4. Method according to claim 3, characterised in that the compressed air consumer (3) has two fluidically separated, kinematically coupled operating chambers (53, 54) and that each of the operating chambers (53, 54) is assigned two independently controllable valve assemblies (2; 62; 92), their respective second sections (24, 25, 26, 27) of the respective fluid passages being connected to a common outlet port (29, 31) and their respective inlet ports (28, 30) being connected to different fluid sources (32) or fluid sinks (33), characterised in that the two operating chambers (53, 54) are synchronously supplied with compressed air with presettable volumetric fluid flow rates by selective control of the respective valve assemblies (2; 62; 92).
  5. Method according to claim 4, characterised in that a first volumetric fluid flow rate or mass fluid flow rate is preset for a first operating chamber (53) of the compressed air consumer (3) and a second volumetric fluid flow rate or mass fluid flow rate is preset for a second operating chamber (54) of the compressed air consumer (3) in order to obtain a movement profile for the connected compressed air consumer (3), and/or that a first pressure pattern profile is preset for the first operating chamber (53) and a second pressure pattern profile is preset for the second operating chamber (54).
  6. Valve device for operating a compressed air consumer, with a valve assembly in which a fluid passage is formed between an inlet port (28, 30) for a fluidically communicating connection to a fluid source (32) or fluid sink (33) and an outlet port (29, 31) for a fluidically communicating connection to a compressed air consumer (3), and with a valve element (4, 5, 6, 7; 69; 99) which is located movably in the fluid passage for influencing a cross-section of the fluid passage and which is assigned an actuating device (8, 9, 10, 11; 70, 71; 100.101) for changing a functional position, and with a processing device (19) for a provision of actuating energy to the actuating device (8, 9, 10, 11; 70, 71; 100.101), wherein a first pressure sensor (43, 44) is assigned to a first section (20, 21, 22, 23) of the fluid passage between the inlet port (28, 30) and the valve element (4, 5, 6, 7; 69; 99) and a second pressure sensor (42, 45) is assigned to a second section (24, 25, 26, 27) of the fluid passage between the valve element (4, 5, 6, 7; 69; 99) and the output port (29, 31), characterised in that the processing device (19) is designed for an execution of a method according to claim 1 or 2.
  7. Valve device according to claim 6, characterised in that two independently controllable valve assemblies are provided, their respective second sections (24, 25, 26, 27) of the respective fluid passages being connected to a common outlet port (29, 31) and their inlet ports (28, 30) being connected to different fluid sources (32) or fluid sinks (33), and in that the processing device (19) is designed for an execution of a method according to claim 3.
  8. Valve device according to claim 6, characterised in that the processing device (19) is connected to two pairs of two independently controllable valve assemblies each, the second section (24, 25, 26, 27) of each of the respective fluid passages being connected in pairs to a common outlet port (29, 31) and a first inlet port (28) of each pair being connected to a fluid source (42) and a second inlet port (30) of each pair being connected to a fluid sink (33), characterised in that the processing device (19) is designed for a synchronous compressed air supply of the two operating chambers (53, 54) with presettable volumetric fluid flow rates by optional control of the respective valve assemblies.
  9. Valve device according to claim 7, characterised in that the valve device is designed as a proportional valve, in particular as a fluidically pilot-controlled proportional valve.
  10. Data storage medium with a computer programme designed for storage in a processing device of a valve device and, if executed in a processor of the processing device (19), inducing a method according to any of claims 1 to 5.
EP17715710.4A 2016-04-21 2017-04-04 Method for operating a valve device, valve device and data carrier with a computer program Active EP3445976B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016206821.0A DE102016206821A1 (en) 2016-04-21 2016-04-21 Method for operating a valve device, valve device and data carrier with a computer program
PCT/EP2017/058012 WO2017182268A1 (en) 2016-04-21 2017-04-04 Method for operating a valve device, valve device and data carrier with a computer program

Publications (2)

Publication Number Publication Date
EP3445976A1 EP3445976A1 (en) 2019-02-27
EP3445976B1 true EP3445976B1 (en) 2020-09-23

Family

ID=58489342

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17715710.4A Active EP3445976B1 (en) 2016-04-21 2017-04-04 Method for operating a valve device, valve device and data carrier with a computer program

Country Status (6)

Country Link
US (1) US10774857B2 (en)
EP (1) EP3445976B1 (en)
KR (1) KR102221570B1 (en)
CN (1) CN109154312B (en)
DE (1) DE102016206821A1 (en)
WO (1) WO2017182268A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016206822A1 (en) * 2016-04-21 2017-10-26 Festo Ag & Co. Kg Method for supplying compressed air to a compressed air consumer, valve device and data carrier with a computer program
DE102019211992B4 (en) * 2019-08-09 2023-09-28 Festo Se & Co. Kg Fluidic system, check valve and method for placing a fluidic actuator in a safety state
DE102019215436A1 (en) * 2019-10-09 2021-04-15 Zf Friedrichshafen Ag Controlling a pneumatic actuator
DE102019218485B4 (en) * 2019-11-28 2022-03-31 Festo Se & Co. Kg work facility
DE102020204484A1 (en) * 2020-04-07 2021-10-07 Festo Se & Co. Kg Compressed air supply facility, system and method
US11067102B1 (en) * 2020-04-13 2021-07-20 Mac Valves, Inc. Digital proportional pressure controller
DE102020204737B3 (en) 2020-04-15 2021-07-01 Festo Se & Co. Kg System and method for end position cushioning
DE102020213982B3 (en) * 2020-11-06 2022-02-03 Festo Se & Co. Kg Procedure for commissioning a pneumatic actuator device, commissioning system and pneumatic control module
SE545154C2 (en) * 2021-02-11 2023-04-18 Staccato Technoligies Ab Pneumatic cylinder system
CN113090604B (en) * 2021-04-07 2023-07-04 海明液压技术有限公司 1D holds multi-functional intelligent control change valve function module unit of chamber formula

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014004877B3 (en) * 2014-04-04 2015-09-17 Festo Ag & Co. Kg Drive system and method for operating a drive system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6354185B1 (en) * 1999-06-17 2002-03-12 Sturman Industries, Inc. Flow manager module
ITTO20020440A1 (en) * 2002-05-23 2003-11-24 Fiat Ricerche ELECTROHYDRAULIC CIRCUIT FOR THE CONTROL OF A FLUID ACTUATOR.
US7021191B2 (en) * 2003-01-24 2006-04-04 Viking Technologies, L.C. Accurate fluid operated cylinder positioning system
US20060090462A1 (en) * 2003-11-14 2006-05-04 Kazunori Yoshino Energy regeneration system for working machinery
JP2005273911A (en) 2004-03-25 2005-10-06 Husco Internatl Inc Hydraulic system control method using differential pressure compensation discharge coefficient
US7451685B2 (en) 2005-03-14 2008-11-18 Husco International, Inc. Hydraulic control system with cross function regeneration
US7380398B2 (en) * 2006-04-04 2008-06-03 Husco International, Inc. Hydraulic metering mode transitioning technique for a velocity based control system
DE102009017879A1 (en) 2009-04-17 2010-10-21 Festo Ag & Co. Kg Fluidic system
DE102009026608A1 (en) * 2009-05-29 2010-12-02 Metso Paper, Inc. Method for removing foreign matter from a digital hydraulic pressure regulator of a hydraulic system
US9279236B2 (en) * 2012-06-04 2016-03-08 Caterpillar Inc. Electro-hydraulic system for recovering and reusing potential energy
US9290912B2 (en) * 2012-10-31 2016-03-22 Caterpillar Inc. Energy recovery system having integrated boom/swing circuits
DE112014006747A5 (en) * 2014-08-14 2017-05-18 Festo Ag & Co. Kg Actuator control and method for controlling the movement of an actuator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014004877B3 (en) * 2014-04-04 2015-09-17 Festo Ag & Co. Kg Drive system and method for operating a drive system

Also Published As

Publication number Publication date
KR102221570B1 (en) 2021-02-26
KR20180133429A (en) 2018-12-14
CN109154312A (en) 2019-01-04
EP3445976A1 (en) 2019-02-27
US20190136880A1 (en) 2019-05-09
US10774857B2 (en) 2020-09-15
WO2017182268A1 (en) 2017-10-26
CN109154312B (en) 2021-06-15
DE102016206821A1 (en) 2017-10-26

Similar Documents

Publication Publication Date Title
EP3445976B1 (en) Method for operating a valve device, valve device and data carrier with a computer program
EP3445977B1 (en) Method for the supply of compressed air to a compressed-air consumer
EP2032878B1 (en) Device for controlling a fluid-activated double-action operating cylinder
DE10296738B4 (en) Valve structure for controlling a hydraulic motor
DE3347000C2 (en)
WO2016023569A1 (en) Actuator controller and method for regulating the movement of an actuator
EP2360003B1 (en) Method and device for operating a needle valve nozzle of an injection moulding tool
DE102020114071A1 (en) Drive system and control method for clamping device
DE10248797A1 (en) High speed drive method and device
DE19855684A1 (en) System and method for calibrating an independent metering valve
AT521402A2 (en) LIFTING PISTON COMPRESSOR VALVE BODY FROM ADDITIVE MANUFACTURING
EP3887791B1 (en) Load simulation test stand and method for operating the same
DE102014004876B3 (en) Drive system and method for operating a drive system
DE2023504C3 (en) Electromagnetically operated hydraulic control valve
DE3214845C2 (en)
WO2017076965A1 (en) Method and device for controlling a hydraulically actuated drive unit of a valve
DE102018219365A1 (en) Hydro machine, control arrangement, hydraulic system and method
DE2754430A1 (en) CONTROL DEVICE FOR AT LEAST TWO ADJUSTABLE PUMPS
DE3741425C2 (en)
DE1426471A1 (en) Electro-hydraulic servo drive
EP1721081A1 (en) Valve control for hydraulic actuators based on electrorheological liquids
DE4031628C2 (en) 3-way control valve
DE3213135A1 (en) Electrohydraulic actuating drive
DE102005033786B3 (en) Device for controlling the flow of a pressure device comprises a pressure regulating valve to control the flow of the pressure device and having a working pressure side and a pressure sensor
DE10246565B4 (en) clamping system

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181121

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502017007398

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F15B0011000000

Ipc: F15B0015280000

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FESTO SE & CO. KG

RIC1 Information provided on ipc code assigned before grant

Ipc: F15B 15/28 20060101AFI20200311BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200515

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017007398

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1316652

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201224

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200923

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210125

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210123

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017007398

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

26N No opposition filed

Effective date: 20210624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210404

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1316652

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200923

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170404

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220404

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240423

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240418

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240430

Year of fee payment: 8

Ref country code: FR

Payment date: 20240422

Year of fee payment: 8