EP3444370B1 - Copper based alloy for the production of metallic solid glasses - Google Patents

Copper based alloy for the production of metallic solid glasses Download PDF

Info

Publication number
EP3444370B1
EP3444370B1 EP17186878.9A EP17186878A EP3444370B1 EP 3444370 B1 EP3444370 B1 EP 3444370B1 EP 17186878 A EP17186878 A EP 17186878A EP 3444370 B1 EP3444370 B1 EP 3444370B1
Authority
EP
European Patent Office
Prior art keywords
alloy
glass
alloys
melt
metallic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17186878.9A
Other languages
German (de)
French (fr)
Other versions
EP3444370A1 (en
Inventor
Ralf Busch
Alexander Elsen
Moritz Stolpe
Hans-Jürgen Wachter
Eugen Milke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heraeus Deutschland GmbH and Co KG
Original Assignee
Heraeus Deutschland GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heraeus Deutschland GmbH and Co KG filed Critical Heraeus Deutschland GmbH and Co KG
Priority to EP17186878.9A priority Critical patent/EP3444370B1/en
Priority to US16/639,236 priority patent/US11214854B2/en
Priority to KR1020207004348A priority patent/KR20200031132A/en
Priority to PCT/EP2018/071580 priority patent/WO2019034506A1/en
Priority to JP2020507032A priority patent/JP6997860B2/en
Priority to CN201880052813.1A priority patent/CN110997959A/en
Publication of EP3444370A1 publication Critical patent/EP3444370A1/en
Application granted granted Critical
Publication of EP3444370B1 publication Critical patent/EP3444370B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/02Alloys containing less than 50% by weight of each constituent containing copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/02Casting exceedingly oxidisable non-ferrous metals, e.g. in inert atmosphere
    • B22D21/025Casting heavy metals with high melting point, i.e. 1000 - 1600 degrees C, e.g. Co 1490 degrees C, Ni 1450 degrees C, Mn 1240 degrees C, Cu 1083 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D25/00Special casting characterised by the nature of the product
    • B22D25/06Special casting characterised by the nature of the product by its physical properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/11Making amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/04Alloys containing less than 50% by weight of each constituent containing tin or lead
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/001Amorphous alloys with Cu as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper

Definitions

  • Metallic glasses also known as amorphous metals
  • amorphous metals have very high strength. Furthermore, they show little or no change in volume during solidification, so that the possibility of near-net-shape shaping without solidification shrinkage opens up.
  • metallic glasses with dimensions of at least 1 mm ⁇ 1 mm ⁇ 1 mm can be produced with an alloy, then these glasses are also referred to as bulk metallic glasses or solid metallic glasses (English: “Bulk Metallic Glasses” ( “BMG” )) .
  • metallic glasses especially metallic solid glasses, are very interesting construction materials that are in principle suitable for the production of components in series production processes such as injection molding, without the need for further processing steps after the shaping has taken place would be.
  • a measure of the ability of an alloy to form glass is therefore, for example, the maximum or "critical" diameter up to which a specimen cast from the melt still has an essentially amorphous structure. This is also referred to as the critical casting thickness.
  • Metallic glasses can not only be formed by melting metallurgical processes, but also shaped by thermoplastic forming at comparatively low temperatures in the same way as thermoplastics or silicate glasses. For this purpose, the metallic glass is first heated above the glass transition point and then behaves like a highly viscous liquid that can be deformed with relatively low forces. Following the deformation, the material is cooled back below the glass transition temperature.
  • thermoplastic forming also involves heating the metallic glass to a temperature above the gas formation temperature T g .
  • T g the crystallization temperature
  • Improved glass forming ability of an alloy upon cooling from the melt does not automatically translate to improved heat resistance (ie, higher ⁇ T x ) of the metallic glass made from that alloy. These are usually independent parameters that can even behave in opposite directions. Therefore, if it is intended to provide an alloy with as high a ⁇ T x value as possible, care must also be taken that this does not occur at the expense of the glass-forming ability on cooling from the melt.
  • the alloys most commonly used for the manufacture of metallic glasses are currently Zr-based alloys.
  • a disadvantage of these alloys is the relatively high material price for zirconium.
  • U.S. 5,618,359 describes Zr- and Cu-based alloys for the production of metallic glasses.
  • the alloys contain at least 4 alloying elements.
  • One of the Cu-based alloys has the composition Cu 45 Ti 33.8 Zr 11.3 Ni 10 and can be cast into an amorphous specimen with a thickness of 4 mm.
  • Cu- and Zr-based alloys for the production of metallic glasses. With dimensions of at least 1 mm, these are referred to as " bulk metallic glasses" .
  • the Cu and Zr alloys each contain a total of 4 alloying elements (Cu, Zr, Ti and Ni).
  • the alloy with the composition Cu 47 Ti 34 Zr 11 Ni 8 shows the best compromise between good glass-forming ability on cooling from the melt and the highest possible ⁇ T x value.
  • U.S. 2006/0231169 A1 describes alloys for the production of metallic glasses, which can be Cu-based, among other things.
  • the alloy produced in Example 3 has the composition Cu 47 Ti 33 Zr 7 Ni 8 Si 1 Nb 4 . Starting with the alloy Cu 47 Ti 34 Zr 11 Ni 8 , Ti was substituted by Si and Zr by Nb.
  • the alloy produced in Comparative Example 3 has the composition Cu 47 Ti 33 Zr 11 Ni 8 Si 1 .
  • the improved heat resistance should also not adversely affect other relevant properties such as hardness.
  • alloys with the composition defined above have high ⁇ T x values and thus improved heat resistance while still having good glass-forming ability.
  • the alloys according to the invention are therefore, for example, very well suited for thermoplastic forming.
  • the atomic ratio of Ti to Zr is defined with the values for a and b.
  • the alloy according to the invention contains oxygen, this is present in a maximum concentration of 1.7 at%, for example 0.01-1.7 at% or 0.02-1.0 at%.
  • the proportion of unavoidable impurities in the alloy is less than 0.1 at%, preferably less than 0.05 at% or even less than 0.01 at%.
  • the composition of the alloy can be determined by inductively coupled plasma optical emission spectrometry (ICP-OEC).
  • the glass transition temperature T g and the crystallization temperature T x are determined by DSC (differential scanning calorimetry). It will be the onset temperature used. The cooling and heating rates are 20 °C/min. The DSC measurement is carried out in an argon atmosphere in an aluminum oxide crucible.
  • the alloy is preferably an amorphous alloy.
  • the alloy according to the invention has a crystallinity of less than 50%, more preferably less than 25% or is even completely amorphous.
  • a completely amorphous material shows no diffraction reflections in X-ray diffraction.
  • the crystalline fraction is determined via DSC as a ratio of the maximum enthalpy of crystallization (determined by crystallization of a completely amorphous reference sample) and the actual enthalpy of crystallization in the sample.
  • the invention further relates to a method for producing the alloy described above, the alloy being obtained from a melt containing Cu, Ti, Zr, Ni, Sn and optionally Si.
  • the melt is preferably maintained under an inert gas atmosphere (e.g., an inert gas atmosphere).
  • an inert gas atmosphere e.g., an inert gas atmosphere
  • the components of the alloy can each be introduced into the melt in their elemental form (e.g. elemental Cu etc.). Alternatively, it is also possible that two or more of these metals are pre-alloyed in a starting alloy and this starting alloy is then introduced into the melt.
  • elemental form e.g. elemental Cu etc.
  • the alloy is obtained as a solid.
  • the melt can, for example, be poured into a mold or subjected to atomization.
  • the alloy can be atomized in the form of a powder, whose particles are substantially spherical in shape.
  • Suitable atomization processes are known to those skilled in the art, for example gas atomization (e.g. using nitrogen or an inert gas such as argon or helium as the atomization gas), plasma atomization, centrifugal atomization or crucible-less atomization (e.g. a "rotating electrode” process (REP) method, in particular a "Plasma Rotating Electrode” process (PREP)).
  • REP rotating electrode
  • PREP Pasma Rotating Electrode
  • EIGA electrode induction-melting gas atomization
  • inductive melting of the starting material and subsequent gas atomization.
  • the powder obtained from the atomization can then be used in an additive manufacturing process or subjected to thermoplastic molding.
  • the alloy according to the invention Due to the very good glass-forming ability of the alloy according to the invention, it can easily be obtained in the form of an amorphous alloy.
  • the present invention relates to a metallic bulk glass that contains the alloy described above or even consists of this.
  • the metallic solid glass preferably has dimensions of at least 1 mm ⁇ 1 mm ⁇ 1 mm.
  • the metallic bulk glass has a crystallinity of less than 50%, more preferably less than 25%, or is even completely amorphous.
  • the production of the metallic bulk glass can be carried out using methods that are known to those skilled in the art.
  • the alloy described above is subjected to additive manufacturing, thermoplastic forming, or is melt cast in a mold.
  • the alloy may be used in the form of a powder (e.g., a powder obtained via atomization).
  • Additive manufacturing describes a process in which a component is built up layer by layer on the basis of digital 3D design data by depositing material.
  • a thin layer of powder is first applied to the construction platform.
  • a sufficiently high energy input for example in the form of a laser or electron beam, at least partially melts the powder at the points specified by the computer-generated design data.
  • the construction platform is then lowered and another powder application takes place.
  • the further layer of powder is at least partially melted again and connects to the layer underneath at the defined points.
  • Thermoplastic forming is usually done at a temperature between the T g and T x of the alloy.
  • Alloys E4, E5 and E8 according to the invention were produced, the respective composition of which is given in Table 1 below.
  • the alloys CE1-CE5 were produced.
  • the ⁇ T x value (i.e. the distance between the crystallization temperature T x and the glass formation temperature T g ) and the critical casting thickness D c of the alloys are given in Table 1.
  • the glass transition temperature T g and the crystallization temperature T x were determined by DSC based on the onset temperatures and with cooling and heating rates of 20 °C/min.
  • the critical casting thickness D c was determined as follows: A cylinder with a length of 50mm and a specific diameter is cast. The determination of D c is done by cutting the sample about 10-15mm away from the gate (to exclude the heat affected zone) and measuring the XRD at the cutting point over the entire cross-section.
  • the alloy of comparative example CE1 has the composition Cu 47 Ti 34 Zr 11 Ni 8 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Laminated Bodies (AREA)

Description

Metallische Gläser (auch als amorphe Metalle bezeichnet) weisen sehr hohe Festigkeiten auf. Weiterhin zeigen sie bei der Erstarrung keine oder nur eine sehr geringe Volumenänderung, so dass sich die Möglichkeit einer endformnahen Formgebung ohne Erstarrungsschwindung eröffnet.Metallic glasses (also known as amorphous metals) have very high strength. Furthermore, they show little or no change in volume during solidification, so that the possibility of near-net-shape shaping without solidification shrinkage opens up.

Lassen sich mit einer Legierung metallische Gläser mit einer Abmessung von mindestens 1 mm x 1 mm x 1mm herstellen, so werden diese Gläser auch als massive metallische Gläser bzw. metallische Massivgläser bezeichnet (englisch: "Bulk Metallic Glasses" ("BMG")). If metallic glasses with dimensions of at least 1 mm×1 mm×1 mm can be produced with an alloy, then these glasses are also referred to as bulk metallic glasses or solid metallic glasses (English: “Bulk Metallic Glasses” ( “BMG” )) .

Aufgrund ihrer vorteilhaften Eigenschaften wie z.B. einer hohen Festigkeit und dem Ausbleiben einer Erstarrungsschwindung sind metallische Gläser, insbesondere metallische Massivgläser, sehr interessante Konstruktionswerkstoffe, die sich prinzipiell für die Herstellung von Bauteilen in Serienfertigungsverfahren wie dem Spritzguss eignen, ohne dass weitere Bearbeitungsschritte nach erfolgter Formgebung zwingend erfoderlich wären.Due to their advantageous properties, such as high strength and the absence of solidification shrinkage, metallic glasses, especially metallic solid glasses, are very interesting construction materials that are in principle suitable for the production of components in series production processes such as injection molding, without the need for further processing steps after the shaping has taken place would be.

Um beim Abkühlen aus der Schmelze eine Kristallisation der Legierung zu verhindern, muss eine kritische Abkühlgeschwindigkeit überschritten werden. Je größer jedoch das Volumen der Schmelze ist, desto langsamer (bei ansonsten unveränderten Bedingungen) kühlt die Schmelze ab. Wird eine bestimmte Probendicke überschritten, kommt es zu einer Kristallisation, bevor die Legierung amorph erstarren kann.In order to prevent crystallization of the alloy when cooling from the melt, a critical cooling rate must be exceeded. However, the larger the volume of the melt, the slower (under otherwise unchanged conditions) the melt cools down. If a certain sample thickness is exceeded, crystallization occurs before the alloy can solidify amorphously.

Ein Maß für die Glasbildungsfähigkeit einer Legierung ist daher beispielsweise der maximale bzw. "kritische" Durchmesser, bis zu dem ein aus der Schmelze gegossener Probenkörper im Wesentlichen noch eine amorphe Struktur aufweist. Dies wird auch als kritische Abgussdicke bezeichnet. Je größer der Durchmesser des noch amorph erstarrenden Probenkörpers, desto größer ist die Glasbildungsfähigkeit der Legierung.A measure of the ability of an alloy to form glass is therefore, for example, the maximum or "critical" diameter up to which a specimen cast from the melt still has an essentially amorphous structure. This is also referred to as the critical casting thickness. The larger the diameter of the still amorphously solidifying specimen, the greater the glass-forming ability of the alloy.

Neben den hervorragenden mechanischen Eigenschaften metallischer Gläser ergeben sich aus dem Glaszustand auch einzigartige Prozessierungsmöglichkeiten. So lassen sich metallische Gläser nicht nur durch schmelzmetallurgische Verfahren formen, sondern auch über ein thermoplastisches Formen bei vergleichsweise niedrigen Temperaturen analog zu thermoplastischen Kunststoffen oder Silikatgläsern formgebend verarbeiten. Hierzu wird das metallische Glas zunächst über den Glasübergangspunkt erwärmt und verhält sich dann wie eine hochviskose Flüssigkeit, die bei relativ niedrigen Kräften umgeformt werden kann. Im Anschluss an die Verformung wird das Material wieder unter die Glasübergangtemperatur abgekühlt.In addition to the excellent mechanical properties of metallic glasses, the glass state also results in unique processing options. Metallic glasses can not only be formed by melting metallurgical processes, but also shaped by thermoplastic forming at comparatively low temperatures in the same way as thermoplastics or silicate glasses. For this purpose, the metallic glass is first heated above the glass transition point and then behaves like a highly viscous liquid that can be deformed with relatively low forces. Following the deformation, the material is cooled back below the glass transition temperature.

Ein metallisches Glas kann in Abhängigkeit von der Anwendung zumindest zeitweilig einer erhöhten Temperatur ausgesetzt sein, die unter Umständen sogar oberhalb der Glasbildungstemperatur Tg liegt. Wie oben bereits erwähnt, beinhaltet auch das thermoplastische Formen eine Erwärmung des metallischen Glases auf eine Temperatur oberhalb der Gasbildungstemperatur Tg. In diesen Fällen ist erwünscht, dass ein möglichst großer Abstand zwischen Glasbildungstemperatur Tg und Kristallisationstemperatur Tx (d.h. ein möglichst hoher Wert für ΔTx=Tx-Tg) vorliegt. Je höher dieser ΔTx-Wert, umso größer ist beispielsweise das "Temperaturfenster" für das thermoplastische Formen und umso geringer ist das Risiko einer unerwünschten Kristallisation, wenn das metallische Glas zeitweilig einer Temperatur oberhalb von Tg ausgesetzt ist.Depending on the application, a metallic glass can at least temporarily be exposed to an elevated temperature, which under certain circumstances is even above the glass formation temperature T g . As already mentioned above, thermoplastic forming also involves heating the metallic glass to a temperature above the gas formation temperature T g . In these cases, it is desirable for there to be as great a difference as possible between the glass formation temperature T g and the crystallization temperature T x (ie the highest possible value for ΔT x =T x -T g ). The higher this ΔT x value, the larger the "temperature window" for thermoplastic forming, for example, and the lower the risk of undesired crystallization when the metallic glass is temporarily exposed to a temperature above T g .

Eine verbesserte Glasbildungsfähigkeit einer Legierung beim Abkühlen aus der Schmelze führt nicht automatisch zu einer verbesserten Wärmebeständigkeit (d.h. einem höheren ΔTx-Wert) des aus dieser Legierung bestehenden metallischen Glases. Es handelt sich üblicherweise um voneinander unabhängige Parameter, die sich sogar gegenläufig verhalten können. Wenn also beabsichtigt ist, eine Legierung mit möglichst hohem ΔTx-Wert bereit zu stellen, muss auch darauf geachtet werden, dass dies nicht auf Kosten der Glasbildungsfähigkeit beim Abkühlen aus der Schmelze erfolgt.Improved glass forming ability of an alloy upon cooling from the melt does not automatically translate to improved heat resistance (ie, higher ΔT x ) of the metallic glass made from that alloy. These are usually independent parameters that can even behave in opposite directions. Therefore, if it is intended to provide an alloy with as high a ΔT x value as possible, care must also be taken that this does not occur at the expense of the glass-forming ability on cooling from the melt.

Es sind inzwischen viele Legierungssysteme wie z.B. Edelmetall-, Zr-, Cu- oder Febasierte Legierungen bekannt, die metallische Gläser bilden können. Eine Übersicht findet sich z.B. bei C.H. Shek et al., Materials Science and Engineering, R 44, 2004, S. 45-89 .In the meantime, many alloy systems such as noble metal, Zr, Cu or Fe-based alloys are known which can form metallic glasses. An overview can be found, for example, at CH Shek et al., Materials Science and Engineering, R 44, 2004, pp. 45-89 .

Die derzeit am häufigsten für die Herstellung metallischer Gläser verwendeten Legierungen sind Zr-basierte Legierungen. Nachteilig an diesen Legierungen ist der recht hohe Materialpreis für Zirconium.The alloys most commonly used for the manufacture of metallic glasses are currently Zr-based alloys. A disadvantage of these alloys is the relatively high material price for zirconium.

US 5,618,359 beschreibt Zr- und Cu-basierte Legierungen für die Herstellung metallischer Gläser. Die Legierungen enthalten mindestens 4 Legierungselemente. Eine der Cu-basierten Legierungen weist die Zusammensetzung Cu45Ti33.8Zr11.3Ni10 auf und lässt sich zu einem amorphen Probenkörper mit einer Dicke von 4 mm gießen. U.S. 5,618,359 describes Zr- and Cu-based alloys for the production of metallic glasses. The alloys contain at least 4 alloying elements. One of the Cu-based alloys has the composition Cu 45 Ti 33.8 Zr 11.3 Ni 10 and can be cast into an amorphous specimen with a thickness of 4 mm.

W.L. Johnson et al., J. Appl. Phys., 78, Nr. 11, December 1995, S. 6514-6519 , beschreiben ebenfalls Cu- und Zr-basierte Legierungen für die Herstellung metallischer Gläser. Bei Abmessungen von mindestens 1 mm werden diese als metallische Massivgläser ("Bulk Metallic Glasses") bezeichnet. Die Cu- und Zr-Legierungen enthalten jeweils insgesamt 4 Legierungselemente (Cu, Zr, Ti und Ni). Den besten Kompromiss zwischen guter Glasbildungsfähigkeit beim Abkühlen aus der Schmelze und möglichst hohem ΔTx-Wert zeigt die Legierung mit der Zusammensetzung Cu47Ti34Zr11Ni8. WL Johnson et al., J.Appl. Phys., 78, No. 11, December 1995, pp. 6514-6519 , also describe Cu- and Zr-based alloys for the production of metallic glasses. With dimensions of at least 1 mm, these are referred to as " bulk metallic glasses" . The Cu and Zr alloys each contain a total of 4 alloying elements (Cu, Zr, Ti and Ni). The alloy with the composition Cu 47 Ti 34 Zr 11 Ni 8 shows the best compromise between good glass-forming ability on cooling from the melt and the highest possible ΔT x value.

G.R. Garrett et al., Appl. Phys. Lett., 101, 241913 (2012), doi: 10.1063/1.4769997 , beschreiben, dass sich die Glasbildungsfähigkeit der Legierung Cu47Ti34Zr11Ni8 durch Hinzufügen geringer Mengen an Si, optional in Kombination mit Sn, weiter verbessern lässt. Ausgehend von der Basislegierung Cu47Ti34Zr11Ni8 wurden Ti durch Si und Ni durch Sn substituiert, so dass die Zusammensetzungen Cu47Ti33Zr11Ni8Si1 und Cu47Ti33Zr11Ni6Si1Sn2 erhalten wurden. GR Garrett et al., Appl. physics Lett., 101, 241913 (2012), doi: 10.1063/1.4769997 , describe that the glass forming ability of the Cu 47 Ti 34 Zr 11 Ni 8 alloy can be further improved by adding small amounts of Si, optionally in combination with Sn. Starting from the base alloy Cu 47 Ti 34 Zr 11 Ni 8 Ti was substituted by Si and Ni by Sn, so that the compositions Cu 47 Ti 33 Zr 11 Ni 8 Si 1 and Cu 47 Ti 33 Zr 11 Ni 6 Si 1 Sn 2 are obtained became.

US 2006/0231169 A1 beschreibt Legierungen für die Herstellung metallischer Gläser, die unter anderem Cu-basiert sein können. Die in Beispiel 3 hergestellte Legierung weist die Zusammensetzung Cu47Ti33Zr7Ni8Si1Nb4 auf. Ausgehend von der Legierung Cu47Ti34Zr11Ni8 wurden also Ti durch Si und Zr durch Nb substituiert. Die im Vergleichsbeispiel 3 hergestellte Legierung weist die Zusammensetzung Cu47Ti33Zr11Ni8Si1 auf. U.S. 2006/0231169 A1 describes alloys for the production of metallic glasses, which can be Cu-based, among other things. The alloy produced in Example 3 has the composition Cu 47 Ti 33 Zr 7 Ni 8 Si 1 Nb 4 . Starting with the alloy Cu 47 Ti 34 Zr 11 Ni 8 , Ti was substituted by Si and Zr by Nb. The alloy produced in Comparative Example 3 has the composition Cu 47 Ti 33 Zr 11 Ni 8 Si 1 .

Li et al., Scripta mater., 42, 2000, S. 923-927 , beschreiben Legierungen der allgemeinen Formel (Cu40Ti30Zr10Ni15)(100-x)/95Snx (x=0, 2, 4, 6 oder 8). Li et al., Scripta mater., 42, 2000, pp. 923-927 , describe alloys of the general formula (Cu 40 Ti 30 Zr 10 Ni 15 ) (100-x)/95 Sn x (x=0, 2, 4, 6 or 8).

M.A. El-Hadek et al., J. Mater. Sci., 44, 2009, S. 1127-1136 , beschreiben Legierungen der allgemeinen Formel Cu47Ti33Zr11Ni9-(x+y) (x=Si; y=Sn; 0≤x≤1; 0≤y≤2). MA El-Hadek et al., J. Mater. Sci., 44, 2009, pp. 1127-1136 , describe alloys of the general formula Cu 47 Ti 33 Zr 11 Ni 9-(x+y) (x=Si; y=Sn; 0≤x≤1; 0≤y≤2).

M. Calin et al., Advanced Engineering Materials, 7, 2005, 960-965 , beschreiben eine Sn-haltige Legierung der Zusammensetzung Cu47Ti33Zr11Ni8Sn1. M. Calin et al., Advanced Engineering Materials, 7, 2005, 960-965 , describe a Sn-containing alloy with the composition Cu 47 Ti 33 Zr 11 Ni 8 Sn 1 .

Eine Augabe der vorliegenden Erfindung liegt in der Bereitstellung einer Legierung, die einen möglichst hohen ΔTx-Wert (d.h. ein breites Temperaturfenster für das thermoplastische Formen) aufweist, dies jedoch nicht auf Kosten der Glasbildungsfähigkeit erzielt, und die kostengünstig herstellbar ist. Bevorzugt sollte die verbesserte Wärmebestandigkeit auch andere relevante Eigenschaften wie die Härte nicht nachteilig beeinflussen.It is an object of the present invention to provide an alloy which exhibits as high a ΔTx (ie, a wide temperature window for thermoplastic forming) as possible without sacrificing glass-formability, and which is inexpensive to produce. Preferably, the improved heat resistance should also not adversely affect other relevant properties such as hardness.

Gelöst wird die Aufgabe durch eine Legierung, die folgende Zusammensetzung aufweist:

  • Cu47at%-(x+y+z)(TiaZrb)cNi7at%+xSn1at%+ySiz
  • wobei
  • c = 43 - 47 at%, a = 0.65-0.85, b=0.15-0.35, wobei a+b=1.00;
  • x = 5-7 at%;
  • y = 0-2 at%, z = 0-2 at%, wobei y+z ≤ 4 at%;
wobei die Legierung optional Sauerstoff in einer Konzentration von maximal 1,7 at% enthält und der Rest unvermeidliche Verunreinigungen sind.The task is solved by an alloy with the following composition:
  • Cu 47at%-(x+y+z) (Ti a Zr b ) c Ni 7at%+x Sn 1at%+y Si z
  • whereby
  • c = 43 - 47 at%, a = 0.65-0.85, b=0.15-0.35, where a+b=1.00;
  • x = 5-7 at%;
  • y = 0-2 at%, z = 0-2 at%, where y+z ≤ 4 at%;
the alloy optionally containing oxygen in a concentration of at most 1.7 at% and the balance being unavoidable impurities.

Im Rahmen der vorliegenden Erfindung wurde erkannt, dass Legierungen mit der oben definierten Zusammensetzung hohe ΔTx-Werte und somit eine verbesserte Wärmebeständigkeit bei nach wie vor guter Glasbildungsfähigkeit aufweisen. Die erfindungsgemäßen Legierungen sind also z.B. sehr gut für ein thermoplastisches Formen geeignet.In the context of the present invention, it was recognized that alloys with the composition defined above have high ΔT x values and thus improved heat resistance while still having good glass-forming ability. The alloys according to the invention are therefore, for example, very well suited for thermoplastic forming.

Erfindungsgemäß sind y = 0-2 at% und z = 0-2 at%. Wenn also Si in der Legierung vorliegt, beträgt dessen Konzentration maximal 2 at% (z.B. 0,5 at% ≤ Si ≤ 2 at%), unter der Maßgabe, dass die Gesamtkonzentration an Sn und Si maximal 4 at% beträgt.According to the invention, y = 0-2 at% and z = 0-2 at%. Therefore, when Si is present in the alloy, its concentration is at most 2 at% (e.g. 0.5 at%≦Si≦2 at%) provided that the total concentration of Sn and Si is at most 4 at%.

Erfindungsgemäß sind x = 5-7 at% und y+z ≤ 4. Besonders bevorzugt sind x = 5-7 at%, y = 0-2 at% und z = 0 at%; oder x = 5-7 at%, y = 0-2 at% und 0 < z ≤ 2 at% (bevorzugter 0,5 < z ≤ 2 at%).According to the invention, x=5-7 at% and y+z≦4. Particularly preferred are x=5-7 at%, y=0-2 at% and z=0 at%; or x = 5-7 at%, y = 0-2 at% and 0 < z ≤ 2 at% (more preferably 0.5 < z ≤ 2 at%).

Bevorzugt sind a = 0.70-0.80 und b=0.20-0.30. Mit den Werten für a und b wird das atomare Verhältnis von Ti zu Zr definiert.Preferred are a=0.70-0.80 and b=0.20-0.30. The atomic ratio of Ti to Zr is defined with the values for a and b.

Sofern die erfindungsgemäße Legierung Sauerstoff enthält, liegt dieser in einer Konzentration von maximal 1,7 at% vor, beispielsweise 0,01-1,7 at% oder 0,02-1,0 at%.If the alloy according to the invention contains oxygen, this is present in a maximum concentration of 1.7 at%, for example 0.01-1.7 at% or 0.02-1.0 at%.

Der Anteil unvermeidlicher Verunreinigungen in der Legierung beträgt weniger als 0,1 at%, bevorzugt weniger als 0,05 at% oder sogar weniger als 0,01 at%.The proportion of unavoidable impurities in the alloy is less than 0.1 at%, preferably less than 0.05 at% or even less than 0.01 at%.

In einer beispielhaften Ausführungsform weist die erfindungsgemäße Legierung folgende Zusammensetzung auf:

  • 36-42 at% Cu, bevorzugter 37-41 at% Cu;
  • 28-40 at% Ti, bevorzugter 30 - 38 at% Ti, und 7-15 at% Zr, wobei Ti und Zr gemeinsam in einer Konzentration im Bereich von 43-47 at% vorliegen;
  • 11-15 at% Ni,
  • 1-3 at% Sn und optional ≤ 2 at%Si (z.B. 0,5 at% ≤ Si ≤ 2 at%), wobei, sofern Si vorhanden ist, die Gesamtkonzentration von Sn + Si maximal 4 at% beträgt,
wobei die Legierung optional Sauerstoff in einer Konzentration von maximal 1,7 at% enthält und der Rest unvermeidliche Verunreinigungen sind.In an exemplary embodiment, the alloy according to the invention has the following composition:
  • 36-42 at% Cu, more preferably 37-41 at% Cu;
  • 28-40 at% Ti, more preferably 30-38 at% Ti, and 7-15 at% Zr, wherein Ti and Zr together are present in a concentration in the range 43-47 at%;
  • 11-15 at% Ni,
  • 1-3 at% Sn and optionally ≤ 2 at% Si (e.g. 0.5 at% ≤ Si ≤ 2 at%), where, if Si is present, the total concentration of Sn + Si is a maximum of 4 at%,
the alloy optionally containing oxygen in a concentration of at most 1.7 at% and the balance being unavoidable impurities.

Die Zusammensetzung der Legierung kann durch optische Emissionsspektrometrie mittels induktiv gekoppeltem Plasma (ICP-OEC) bestimmt werden.The composition of the alloy can be determined by inductively coupled plasma optical emission spectrometry (ICP-OEC).

Bevorzugt weist die erfindungsgemäße Legierung eine Kristallisationstemperatur Tx und eine Glasübergangstemperatur Tg auf, die der folgenden Bedingung genügen: Δ T x = T x T g 55 ° C .

Figure imgb0001
Noch bevorzugter ist ΔTx ≥ 64°C oder sogar ≥ 67°C, z.B. 64 ≤ ΔTx ≤ 95°C oder 67 ≤ ΔTx ≤ 90°C.The alloy according to the invention preferably has a crystallization temperature T x and a glass transition temperature T g that satisfy the following condition: Δ T x = T x T G 55 ° C .
Figure imgb0001
Even more preferred is ΔT x ≥ 64°C or even ≥ 67°C, eg 64 ≤ ΔT x ≤ 95°C or 67 ≤ ΔT x ≤ 90°C.

Die Glasübergangstemperatur Tg und die Kristallisationstemperatur Tx werden durch DSC (dynamische Differenzkalorimetrie) bestimmt. Es wird jeweils die Onset-Temperatur herangezogen. Die Abkühl- und Aufheizgeschwindigkeiten betragen 20 °C/min. Die DSC-Messung erfolgt unter Argonatmosphäre in einem Aluminiumoxidtiegel.The glass transition temperature T g and the crystallization temperature T x are determined by DSC (differential scanning calorimetry). It will be the onset temperature used. The cooling and heating rates are 20 °C/min. The DSC measurement is carried out in an argon atmosphere in an aluminum oxide crucible.

Bevorzugt ist die Legierung eine amorphe Legierung. In einer bevorzugten Ausführungsform weist die erfindungsgemäße Legierung eine Kristallinität von weniger als 50%, bevorzugter weniger als 25% auf oder ist sogar vollständig amorph. Ein vollständig amorphes Material zeigt bei einer Röntgenbeugung keine Beugungsreflexe.The alloy is preferably an amorphous alloy. In a preferred embodiment, the alloy according to the invention has a crystallinity of less than 50%, more preferably less than 25% or is even completely amorphous. A completely amorphous material shows no diffraction reflections in X-ray diffraction.

Der kristalline Anteil wird bestimmt über DSC als ein Verhältnis von maximaler Kristallisationsenthalpie (bestimmt durch Kristallisation einer vollständig amorphen Referenzprobe) und der tatsächlichen Kristallisationsenthalpie in der Probe.The crystalline fraction is determined via DSC as a ratio of the maximum enthalpy of crystallization (determined by crystallization of a completely amorphous reference sample) and the actual enthalpy of crystallization in the sample.

Die Erfindung betrifft weiterhin ein Verfahren zur Herstellung der oben beschriebenen Legierung, wobei die Legierung aus einer Schmelze, die Cu, Ti, Zr, Ni, Sn und optional Si enthält, erhalten wird.The invention further relates to a method for producing the alloy described above, the alloy being obtained from a melt containing Cu, Ti, Zr, Ni, Sn and optionally Si.

Die Schmelze wird bevorzugt unter einer inerten Gasatmosphäre (z.B. einer Edelgasatmosphäre) gehalten.The melt is preferably maintained under an inert gas atmosphere (e.g., an inert gas atmosphere).

Die Bestandteile der Legierung können jeweils in ihrer elementaren Form (z.B. elementares Cu etc.) in die Schmelze eingebracht werden. Alternativ ist es auch möglich, dass zwei oder mehr dieser Metalle in einer Ausgangslegierung vorlegiert werden und diese Ausgangslegierung dann in die Schmelze eingebracht wird.The components of the alloy can each be introduced into the melt in their elemental form (e.g. elemental Cu etc.). Alternatively, it is also possible that two or more of these metals are pre-alloyed in a starting alloy and this starting alloy is then introduced into the melt.

Durch Abkühlen und Erstarren der Schmelze erhält man die Legierung als Feststoff bzw. Festkörper.By cooling and solidifying the melt, the alloy is obtained as a solid.

Die Schmelze kann beispielsweise in eine Form gegossen oder einer Verdüsung unterzogen werden. Über eine Verdüsung kann die Legierung in Form eines Pulvers, dessen Partikel im Wesentlichen eine sphärische Form aufweisen, erhalten werden. Geeignete Verdüsungsverfahren sind dem Fachmann bekannt, beispielsweise eine Gasverdüsung (z.B. unter Verwendung von Stickstoff oder einem Edelgas wie Argon oder Helium als Verdüsungsgas), eine Plasmaverdüsung, eine Zentrifugalverdüsung oder eine tiegellosen Verdüsung (z.B. einem als "Rotating-Electrode"-Prozess (REP) bezeichneten Verfahren, insbesondere ein "Plasma-Rotating-Electrode"-Prozess (PREP)). Ein weiteres beispielhaftes Verfahren ist das EIGA-Verfahren ("Electrode Induction-Melting Gas Atomisation"), induktives Aufschmelzen des Ausgangsmaterials und anschließend Gasverdüsung. Das über die Verdüsung erhaltene Pulver kann anschließend in einem additiven Fertigungsverfahren eingesetzt oder auch einem thermoplastischen Formen unterzogen werden.The melt can, for example, be poured into a mold or subjected to atomization. The alloy can be atomized in the form of a powder, whose particles are substantially spherical in shape. Suitable atomization processes are known to those skilled in the art, for example gas atomization (e.g. using nitrogen or an inert gas such as argon or helium as the atomization gas), plasma atomization, centrifugal atomization or crucible-less atomization (e.g. a "rotating electrode" process (REP) method, in particular a "Plasma Rotating Electrode" process (PREP)). Another exemplary method is the EIGA method ("electrode induction-melting gas atomization"), inductive melting of the starting material and subsequent gas atomization. The powder obtained from the atomization can then be used in an additive manufacturing process or subjected to thermoplastic molding.

Aufgrund der sehr guten Glasbildungsfähigkeit der erfindungsgemäßen Legierung kann diese ohne weiteres in Form einer amorphen Legierung erhalten werden.Due to the very good glass-forming ability of the alloy according to the invention, it can easily be obtained in the form of an amorphous alloy.

Weiterhin betrifft die vorliegende Erfindung ein metallisches Massivglas, das die oben beschriebene Legierung enthält oder sogar aus dieser besteht.Furthermore, the present invention relates to a metallic bulk glass that contains the alloy described above or even consists of this.

Bevorzugt weist das metallische Massivglas eine Abmessung von mindestens 1 mm x 1mm x 1mm auf.The metallic solid glass preferably has dimensions of at least 1 mm×1 mm×1 mm.

Bevorzugt weist das metallische Massivglas eine Kristallinität von weniger als 50%, bevorzugter weniger als 25% auf oder ist sogar vollständig amorph.Preferably, the metallic bulk glass has a crystallinity of less than 50%, more preferably less than 25%, or is even completely amorphous.

Die Herstellung des metallischen Massivglases kann über Verfahren erfolgen, die dem Fachmann bekannt sind. Beispielsweise wird die oben beschriebene Legierung einem additiven Fertigungsverfahren oder einem thermoplastischen Formen unterzogen oder als Schmelze in eine Form gegossen.The production of the metallic bulk glass can be carried out using methods that are known to those skilled in the art. For example, the alloy described above is subjected to additive manufacturing, thermoplastic forming, or is melt cast in a mold.

Für das additive Fertigungsverfahren oder das thermoplastische Formen kann die Legierung beispielsweise in Form eines Pulvers (z.B. ein über eine Verdüsung erhaltenes Pulver) eingesetzt werden.For example, for additive manufacturing or thermoplastic forming, the alloy may be used in the form of a powder (e.g., a powder obtained via atomization).

Über additive Fertigungsverfahren lassen sich Bauteile mit komplexer dreidimensionaler Geometrie direkt herstellen. Die Additive Fertigung bezeichnet einen Prozess, bei dem auf der Basis von digitalen 3D-Konstruktionsdaten durch das Ablagern von Material schichtweise ein Bauteil aufgebaut wird. Üblicherweise wird dabei zunächst eine dünne Schicht des Pulvers auf die Bauplattform aufgetragen. Über einen ausreichend hohen Energieeintrag, beispielsweise in Form eines Laser- oder Elektronenstrahls, wird das Pulver an den Stellen zumindest teilweise aufgeschmolzen, die die Computer-generierten Konstruktionsdaten vorgeben. Danach wird die Bauplattform abgesenkt und es erfolgt ein weiterer Pulverauftrag. Die weitere Pulverschicht wird erneut zumindest teilweise aufgeschmolzen und verbindet sich an den definierten Stellen mit der darunterliegenden Schicht. Diese Schritte werden so häufig wiederholt, bis das Bauteil in seiner finalen Form vorliegt.Components with complex three-dimensional geometry can be produced directly using additive manufacturing processes. Additive manufacturing describes a process in which a component is built up layer by layer on the basis of digital 3D design data by depositing material. Usually, a thin layer of powder is first applied to the construction platform. A sufficiently high energy input, for example in the form of a laser or electron beam, at least partially melts the powder at the points specified by the computer-generated design data. The construction platform is then lowered and another powder application takes place. The further layer of powder is at least partially melted again and connects to the layer underneath at the defined points. These steps are repeated until the component is in its final form.

Das thermoplastische Formen erfolgt üblicherweise bei einer Temperatur, die zwischen Tg und Tx der Legierung liegt.Thermoplastic forming is usually done at a temperature between the T g and T x of the alloy.

Die Erfindung wird anhand der nachfolgenden Beispiele eingehender erläutert.The invention is explained in more detail by means of the following examples.

Beispieleexamples

Es wurden erfindungsgemäße Legierungen E4, E5 und E8 hergestellt, deren jeweilige Zusammensetzung in der nachfolgenden Tabelle 1 angegeben ist. In den Vergleichsbeispielen erfolgte die Herstellung der Legierungen CE1-CE5.Alloys E4, E5 and E8 according to the invention were produced, the respective composition of which is given in Table 1 below. In the comparative examples, the alloys CE1-CE5 were produced.

Die Herstellungsbedingungen waren in allen Beispielen identisch, lediglich die Zusammensetzung wurde variiert.The production conditions were identical in all examples, only the composition was varied.

Die ΔTx-Wert (also der Abstand zwischen Kristallisationstemperatur Tx und Glasbildungstemperatur Tg) sowie die kritische Abgussdicke Dc der Legierungen sind in Tabelle 1 angegeben.The ΔT x value (i.e. the distance between the crystallization temperature T x and the glass formation temperature T g ) and the critical casting thickness D c of the alloys are given in Table 1.

Wie oben bereits erwähnt, erfolgte die Bestimmung der Glasübergangstemperatur Tg sowie der Kristallisationstemperatur Tx durch DSC auf Basis der Onset-Temperaturen und mit Abkühl- und Aufheizgeschwindigkeiten von 20 °C/min.As already mentioned above, the glass transition temperature T g and the crystallization temperature T x were determined by DSC based on the onset temperatures and with cooling and heating rates of 20 °C/min.

Die kritische Abgussdicke Dc wurde folgendermaßen bestimmt:
Es wird ein Zylinder 50mm Länge und einem bestimmten Durchmesser gegossen. Die Bestimmung von Dc erfolgt durch Trennen der Probe in etwas 10-15mm von der Angussstelle entfern (um die Wärmeeinflusszone auszuschließen) und XRD Messung an der Trennstelle über den gesamten Querschnitt.
The critical casting thickness D c was determined as follows:
A cylinder with a length of 50mm and a specific diameter is cast. The determination of D c is done by cutting the sample about 10-15mm away from the gate (to exclude the heat affected zone) and measuring the XRD at the cutting point over the entire cross-section.

Die Herstellung der Legierungen erfolgte in einem Lichtbogenofen aus reinen Elementen durch Ein- und Umschmelzen zu einem kompakten Körper, der wieder aufgeschmolzen und in eine Cu-Kokille abgegossen wurde. Tabelle 1: Zusammensetzung der Legierungen und deren ΔTx- und Dc-Werte Cu [at%] Ti [at%] Zr [at%] Ni [at%] Sn [at%] Si [at%] ΔTX [°C] Dc [mm] CE1 47 34 11 8 0 0 43 4 E4 41,5 34 11 11,5 2 0 64 6 E5 39,8 34 11 13,2 2 0 68 5 CE2 34,5 34 11 18,5 2 0 81 0,5 CE3 48,5 34 11 4,5 2 0 47 5 CE4 50,2 34 11 2,8 2 0 43 6 E8 38,2 34 11 13,3 2 1,5 85 4 CE5 42 34 11 8 2 3 62 0,5 The alloys were produced in an electric arc furnace from pure elements by melting and remelting to form a compact body, which was then melted again and cast into a copper mould. Table 1: Composition of the alloys and their ΔT<sub>x</sub> and D<sub>c</sub> values Cu [at%] Ti [at%] Zr [at%] Ni [at%] Sn [at%] Si [at%] ΔT X [°C] D c [mm] CE1 47 34 11 8th 0 0 43 4 E4 41.5 34 11 11.5 2 0 64 6 E5 39.8 34 11 13.2 2 0 68 5 CE2 34.5 34 11 18.5 2 0 81 0.5 CE3 48.5 34 11 4.5 2 0 47 5 CE4 50.2 34 11 2.8 2 0 43 6 E8 38.2 34 11 13.3 2 1.5 85 4 CE5 42 34 11 8th 2 3 62 0.5

Die Legierung des Vergleichsbeispiels CE1 weist die Zusammensetzung Cu47Ti34Zr11Ni8 auf.The alloy of comparative example CE1 has the composition Cu 47 Ti 34 Zr 11 Ni 8 .

Eine Erhöhung der Ni-Konzentration (siehe Beispiele E4 und E5) führt zu einer weiteren Verbesserung des ΔTx-Werts und auch der Dc-Wert kann auf einem relativ hohen Niveau gehalten werden. Eine zu hohe Nickelkonzentration führt zu einer signifikanten Abnahme des Dc-Werts (siehe Vergleichsbeispiel CE2), während eine zu niedrige Ni-Konzentration zu einer deutlichen Abnahme des ΔTx-Werts führt (siehe Vergleichsbeispiele CE3 und CE4).Increasing the Ni concentration (see examples E4 and E5) leads to a further improvement in the ΔT x value and the D c value can also be kept at a relatively high level. Too high a nickel concentration leads to a significant decrease in D c (see Comparative Example CE2), while too low a Ni concentration leads to a significant decrease in ΔT x (see Comparative Examples CE3 and CE4).

Wie das Beispiel E8 zeigt, führt die Anwesenheit von Si zu einer weiteren Steigerung des ΔTx-Werts, so dass Werte von mehr als 80°C (E8) erhalten werden. Die Dc-Werte sind dabei immer noch auf einem ausreichen hohen Level. Aufgrund der sehr hohen ΔTx-Werte sind die Legierungen insbesondere für ein thermoplastisches Formen sehr gut geeignet. Wie Vergleichsbeispiel CE5 zeigt, führt eine zu hohe Gesamtkonzentration an Sn+Si zu einer Verschlechterung der ΔTx- und Dc-Werte.As example E8 shows, the presence of Si leads to a further increase in the ΔT x value, so that values of more than 80°C (E8) are obtained. The D c values are still at a sufficiently high level. Due to the very high ΔT x values, the alloys are particularly well suited for thermoplastic forming. As Comparative Example CE5 shows, too high a total concentration of Sn+Si leads to a deterioration in the ΔT x and D c values.

Wie die Daten der Tabelle 1 zeigen, können mit den erfindungsgemäßen Legierungen hohe ΔTx-Werte (d.h. ein breites Temperaturfenster für das thermoplastische Formen aufweist) realisiert werden, während gleichzeitig auch die kritische Abgussdicke Dc auf einem ausreichend hohen Level gehalten werden kann.As the data in Table 1 show, high ΔTx values (i.e. having a wide temperature window for thermoplastic forming) can be realized with the alloys according to the invention, while at the same time the critical casting thickness Dc can also be kept at a sufficiently high level.

Für die Legierung des Beispiels E5 wurde außerdem die Vickers-Härte bei einer Prüfkraft von 5 Kilopond (HV5) bestimmt. Tabelle 2: Vickers-Härte der Legierungen HV5 Legierung Beispiel E5 590-612 The Vickers hardness at a test load of 5 kiloponds (HV5) was also determined for the alloy of example E5. Table 2: Vickers hardness of the alloys HV5 Alloy Example E5 590-612

Die Daten der Tabelle 2 zeigen, dass die erfindungsgemäßen Legierungen auch gute Härte-Werte zeigen.The data in Table 2 show that the alloys of the present invention also exhibit good hardness values.

Claims (9)

  1. An alloy having the following composition:
    Cu47at%-(x+y+z)(TiaZrb)cNi7at%+xSn1at%+ySiz
    wherein
    c = 43 - 47 at%, a = 0.65-0.85, b=0.15-0.35, wherein a+b=1.00;
    x = 5-7 at%;
    y = 0-2 at%, z = 0-2 at%, wherein y+z ≤ 4 at%;
    wherein the alloy optionally contains oxygen in a maximum concentration of 1.7 at%, and the remainder is unavoidable impurities.
  2. The alloy according to claim 1, wherein a = 0.70-0.80 and b=0.20-0.30.
  3. The alloy according to any one of the preceding claims, wherein z = 0 at%.
  4. The alloy according to claim 1 or 2, wherein 0 < z ≤ 2 at%.
  5. A method for manufacturing the alloy according to any one of claims 1-4, wherein the alloy is obtained from a melt containing Cu, Ti, Zr, Ni, Sn, and optionally Si.
  6. The method according to claim 5, wherein the melt is poured into a mold or is subjected to atomization.
  7. Metallic solid glass comprising the alloy according to any one of claims 1-4.
  8. Metallic solid glass according to claim 7, having dimensions of at least 1 mm x 1 mm x 1 mm.
  9. A method for producing a metallic solid glass, wherein the alloy according to any one of claims 1-4 is subjected to an additive manufacturing process or a thermoplastic molding, or is poured as a melt into a mold.
EP17186878.9A 2017-08-18 2017-08-18 Copper based alloy for the production of metallic solid glasses Active EP3444370B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP17186878.9A EP3444370B1 (en) 2017-08-18 2017-08-18 Copper based alloy for the production of metallic solid glasses
US16/639,236 US11214854B2 (en) 2017-08-18 2018-08-09 Copper-based alloy for the production of bulk metallic glasses
KR1020207004348A KR20200031132A (en) 2017-08-18 2018-08-09 Copper-based alloys for the production of bulk metallic glass
PCT/EP2018/071580 WO2019034506A1 (en) 2017-08-18 2018-08-09 Copper-based alloy for the production of bulk metallic glasses
JP2020507032A JP6997860B2 (en) 2017-08-18 2018-08-09 Copper-based alloys for the production of bulk metallic glasses
CN201880052813.1A CN110997959A (en) 2017-08-18 2018-08-09 Copper-based alloy for producing bulk metallic glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP17186878.9A EP3444370B1 (en) 2017-08-18 2017-08-18 Copper based alloy for the production of metallic solid glasses

Publications (2)

Publication Number Publication Date
EP3444370A1 EP3444370A1 (en) 2019-02-20
EP3444370B1 true EP3444370B1 (en) 2022-03-09

Family

ID=59699507

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17186878.9A Active EP3444370B1 (en) 2017-08-18 2017-08-18 Copper based alloy for the production of metallic solid glasses

Country Status (6)

Country Link
US (1) US11214854B2 (en)
EP (1) EP3444370B1 (en)
JP (1) JP6997860B2 (en)
KR (1) KR20200031132A (en)
CN (1) CN110997959A (en)
WO (1) WO2019034506A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111360276A (en) * 2020-03-24 2020-07-03 上海材料研究所 Method for modifying TC4 high-oxygen powder to be used for 3D printing raw material
EP3895827B1 (en) 2020-04-17 2023-11-15 Heraeus Amloy Technologies GmbH Process for manufacturing a hollow body from amorphous metal
WO2024046742A1 (en) 2022-08-29 2024-03-07 Universität des Saarlandes Alloy for producing bulk metallic glasses and shaped bodies therefrom
KR20240065910A (en) 2022-11-07 2024-05-14 정지원 Waist guard apparatus that seperates and tows the upper body weight

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2009254C1 (en) * 1952-04-01 1994-03-15 Научно-производственное объединение "Гамма" Amorphous iron based alloy having improved surface state
US5618359A (en) 1995-02-08 1997-04-08 California Institute Of Technology Metallic glass alloys of Zr, Ti, Cu and Ni
US20060102315A1 (en) * 2002-09-27 2006-05-18 Lee Jung G Method and apparatus for producing amorphous alloy sheet, and amorphous alloy sheet produced using the same
CN1219905C (en) 2002-12-30 2005-09-21 中国科学院物理研究所 Copper base lump non-crystalline alloy
KR100530040B1 (en) 2003-06-23 2005-11-22 학교법인연세대학교 Cu-based Amorphous Alloys
KR100701027B1 (en) 2005-04-19 2007-03-29 연세대학교 산학협력단 Monolithic Metallic Glasses With Enhanced Ductility
CN101538690B (en) * 2008-03-21 2011-04-20 比亚迪股份有限公司 Amorphous alloy and preparation method thereof
US9732401B2 (en) * 2011-11-16 2017-08-15 M. Technique Co., Ltd. Solid metal alloy
CN103866156B (en) 2014-04-03 2016-08-24 东莞台一盈拓科技股份有限公司 Acid bronze alloy ingot and preparation method thereof and the cu-based amorphous alloys prepared
KR20150141103A (en) * 2014-06-09 2015-12-17 삼성전자주식회사 metallic glass matrix composite
CN104117672B (en) 2014-07-31 2017-01-18 华中科技大学 Method for preparing/forming amorphous alloy and composite material of amorphous alloy
KR101532409B1 (en) 2014-09-22 2015-06-30 서울대학교산학협력단 Work hardenable metallic glass matrix composite
WO2016112507A1 (en) 2015-01-14 2016-07-21 东莞帕姆蒂昊宇液态金属有限公司 Watch case of amorphous alloy, watch and manufacturing method therefor
KR101752976B1 (en) * 2015-10-07 2017-07-11 서울대학교산학협력단 Fabricating method for metallic glass composite with controlling work hardening capacity and composites fabricated by the method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
JP6997860B2 (en) 2022-02-04
KR20200031132A (en) 2020-03-23
US11214854B2 (en) 2022-01-04
JP2020531683A (en) 2020-11-05
CN110997959A (en) 2020-04-10
EP3444370A1 (en) 2019-02-20
US20200208243A1 (en) 2020-07-02
WO2019034506A1 (en) 2019-02-21

Similar Documents

Publication Publication Date Title
EP3444370B1 (en) Copper based alloy for the production of metallic solid glasses
US11603583B2 (en) Ribbons and powders from high strength corrosion resistant aluminum alloys
EP1978120B1 (en) Aluminium-silicon alloy and method for production of same
EP2829624B1 (en) Aluminium material with improved precipitation hardening
EP2944401B1 (en) Method for producing a component from a metallic alloy containing an amorphous phase
EP1718777B1 (en) Method for the production of a molybdenum alloy
DE3043503A1 (en) CRYSTALINE METAL ALLOY
DE2445462B2 (en) Use of a nickel alloy
DE4016340C1 (en) Process for the treatment of chrome and niobium-modified titanium-aluminum alloys
EP2974812B1 (en) Method for the manufacture of a component from a metal alloy with an amorphous phase
DE1935329B2 (en) Process for the production of workpieces from dispersion-reinforced metals or alloys
EP3481971A1 (en) Ribbons and powders from high strength corrosion resistant aluminum alloys
DE60122214T2 (en) AMORPHIC ALLOY ON CU-BE BASE
DE2134393C2 (en) Use of an aluminum alloy for the manufacture of electrically conductive objects
US4440572A (en) Metal modified dispersion strengthened copper
DE1921359A1 (en) Casting alloys
DE2049546C3 (en) Process for the powder-metallurgical production of a dispersion-strengthened alloy body
DE2450361A1 (en) HEAT-RESISTANT METAL CONTAINING BODY AND METHOD OF MANUFACTURING IT
EP0548636A1 (en) Use of an hardenable copper alloy
DE2948916C2 (en) Copper-tin alloy, process for their manufacture and use
EP0172852B1 (en) High temperature resistant molybdenum alloy
DE102018101391A1 (en) Process for the preparation of a dispersion strengthened copper material and dispersion strengthened copper material
EP0302255B1 (en) Use of a copper alloy for continuous-casting moulds
DE19514803C2 (en) Manufacturing process for a molded part from a copper (CU) -zirconium (Zr) -Cer (Ce) -lanthan (La) alloy by thermomechanical treatment
EP0249740B1 (en) Using a copper alloy

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190819

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200304

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: B22D 25/06 20060101ALI20211007BHEP

Ipc: B22D 21/02 20060101ALI20211007BHEP

Ipc: C22C 1/00 20060101ALI20211007BHEP

Ipc: C22C 45/00 20060101ALI20211007BHEP

Ipc: C22C 30/04 20060101ALI20211007BHEP

Ipc: C22C 1/02 20060101ALI20211007BHEP

Ipc: C22C 9/00 20060101ALI20211007BHEP

Ipc: C22C 30/02 20060101AFI20211007BHEP

INTG Intention to grant announced

Effective date: 20211102

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1474217

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017012730

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220609

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220610

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220711

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220709

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017012730

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

26N No opposition filed

Effective date: 20221212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220818

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220831

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220818

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1474217

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220818

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220818

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230821

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309