EP3436681B1 - Method and device for operating an internal combustion engine with a variable injection profile - Google Patents

Method and device for operating an internal combustion engine with a variable injection profile Download PDF

Info

Publication number
EP3436681B1
EP3436681B1 EP17710200.1A EP17710200A EP3436681B1 EP 3436681 B1 EP3436681 B1 EP 3436681B1 EP 17710200 A EP17710200 A EP 17710200A EP 3436681 B1 EP3436681 B1 EP 3436681B1
Authority
EP
European Patent Office
Prior art keywords
injection
model
injection parameters
internal combustion
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17710200.1A
Other languages
German (de)
French (fr)
Other versions
EP3436681A1 (en
Inventor
Wolfgang Fischer
Matthias Bitzer
Stefan Grodde
Philipp KOTMAN
Thomas MAKOWICKI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3436681A1 publication Critical patent/EP3436681A1/en
Application granted granted Critical
Publication of EP3436681B1 publication Critical patent/EP3436681B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • F02D2041/1434Inverse model
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0414Air temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1002Output torque
    • F02D2200/1004Estimation of the output torque

Definitions

  • the invention relates to internal combustion engines, in particular internal combustion engines, in which fuel can be operated according to a predetermined injection profile with one or more pilot injections and one or more main injections.
  • the present invention relates to measures for adapting the injection profile in transient engine operation.
  • the injection of fuel into the cylinder of an internal combustion engine can be carried out in one or more pilot injections and one or more main injections in accordance with a predefinable injection profile.
  • the injection profile can be specified by maps depending, for example, on the current engine speed and the required load of the internal combustion engine.
  • the state variables of the air system of the internal combustion engine usually only follow the corresponding setpoint values of the air system control with a delay. Since the injection profile is usually changed directly depending on the required load of the internal combustion engine, the injection profile is therefore not ideally adapted to the delayed changing air system conditions and the resulting cylinder charge. This can lead to increased pollutant emissions
  • DE 10 2008 001081 A1 relates to a device for controlling an internal combustion engine with self-ignition of the air / fuel mixture and metering of fuel via a fuel injection valve, at least one injection parameter relating to fuel metering being determined as a function of at least one operating variable of the internal combustion engine assuming a steady operating state. Furthermore, when the transient operating state is present, an actual combustion chamber temperature is determined as a function of a physical model for transient operation of the internal combustion engine as a function of the target combustion chamber temperature and at least one of the operating variables of the internal combustion engine.
  • a method for operating an internal combustion engine with at least one pre-injection and at least one main injection of fuel during a combustion cycle according to claim 1 and a device and an engine system according to the independent claims are provided.
  • the adaptation of the injection profile for the operation of an internal combustion engine as a function of the changing state variables of the air system in dynamic operation is generally not carried out or is carried out only for individual injection parameters of an injection profile.
  • One idea of the above method is to improve the behavior of the internal combustion engine in dynamic operating situations by specifying adapted injection parameters, whereby it is inherently ensured that the torque generated by the internal combustion engine or the indicated mean effective pressure or the "internal" engine torque generated by the combustion remains unchanged remains.
  • the above method provides for the combustion process during a work cycle of the internal combustion engine (gas exchange, compression and combustion) to model, to determine a correction of one or more of the injection parameters of the injection profile depending on the engine output variables predicted with the model (emissions, generated engine torque, ,,,) and to adapt the injection profile assigned in the steady-state operating state according to the correction.
  • the correction of the injection parameters is carried out by means of a correction injection parameter model, which can be formed by an optimization-based inversion of a combustion cycle model, taking into account the dynamic behavior of the air system.
  • a torque-neutral adjustment of the injection parameters can be achieved in particular.
  • the torque-neutral adaptation of the injection parameters is achieved by a secondary equation condition when formulating the optimization problem.
  • the correction injection parameters are determined by inverting a predetermined combustion cycle model as the correction injection parameter model with the aid of an optimization method, wherein the combustion cycle model can correspond to a combined physical / data-based model for describing physical processes in a cylinder of the internal combustion engine.
  • the combined physical / data-based model can include a crank angle-resolved description of the gas exchange and compression phase as well as a data-based approximation of the combustion, e.g. by means of a data-based non-parametric model, in particular a Gaussian process model, or a neural network.
  • the optimization method for optimizing one or more pollutant emissions (soot, NOx,%) Or a fuel consumption is carried out with weightings that can be individually adapted in each case.
  • the correction injection parameter model can be specified with the aid of a predetermined data-based non-parametric model learned offline, in particular a Gaussian process model, or a neural network.
  • the described optimization method for optimization is solved offline in the same way for a representative variation of the input variables not linked to the injection system (air system input variables, rail pressure and engine speed).
  • the result of the optimization, the correction injection parameters is stored in the above-mentioned data-based non-parametric model as a function of the previously varied input variables.
  • one or more of the input variables of the correction injection parameter model can be corrected as a function of a difference between one or more actual, i.e. measured, combustion characteristics of a combustion in the cylinder of the internal combustion engine from one or more modeled combustion characteristics of a combustion in the cylinder of the internal combustion engine.
  • the input variables for the correction injection parameter model can be corrected on the basis of the comparison of predicted and measured combustion features.
  • the one or more modeled combustion features can be determined based on at least some of the input variables for the correction injection parameter model and additionally the adapted injection parameters according to a combustion cycle model, which in particular with the aid of a data-based non-parametric model, in particular a Gaussian process model, is specified.
  • the core of the combustion cycle model for calculating the combustion characteristics can in principle be identical to that of the correction injection parameter model, i. H. physical / data-based model structure to describe the gas exchange, compression and combustion phase.
  • the models of the combustion phase are inverted based on optimization with regard to the correction injection parameters on the basis of a quality function that is formed from the corresponding prediction values for emissions etc.
  • the boundary conditions of this inversion by optimization are provided by the models of the gas exchange and compression phase.
  • the only difference with regard to the model structure is that certain combustion characteristics are estimated and the underlying model is not inverted.
  • the gas exchange and compression phase must also be calculated.
  • FIG. 1 an engine system with an internal combustion engine 1 with a number of cylinders 2 (in the present exemplary embodiment four cylinders) is shown schematically.
  • the internal combustion engine 1 can be designed as a diesel or Otto engine and is accordingly driven in four-stroke operation.
  • Fresh air is supplied to the cylinders 2 of the internal combustion engine 1 via an air supply system 3.
  • Fresh air is supplied via an intake manifold 6 to the injection valve 7 in each of the cylinders 2.
  • a charging device such as a turbocharger, a throttle valve and an exhaust gas recirculation system, can optionally be provided, which in each case increases the amount of fluid flowing into the cylinder 2 Fresh air and its composition, e.g. B. the oxygen concentration can be adjusted.
  • Combustion exhaust gases are discharged from the cylinders 2 with the aid of an exhaust gas discharge system 4.
  • the combustion exhaust gases are fed into the cylinder 2 via an exhaust manifold 9 via corresponding exhaust valves 8
  • Exhaust gas discharge system 4 discharged.
  • the air supply system 3 and the exhaust gas discharge system 4 together form the so-called air system of the engine system 1.
  • today's internal combustion engines also have exhaust gas recirculation and charging, for example by an exhaust gas turbocharger (not shown).
  • the cylinders 2 are assigned injection valves 5, which can be controlled in a suitable manner for opening or closing in order to inject fuel into the combustion chambers of the cylinders 2.
  • the operation of the internal combustion engine 2 is controlled with the aid of a control unit 10.
  • the control unit 10 detects a specification of a setpoint torque which, for example, can be derived from an accelerator pedal position or the like during operation in a motor vehicle and corresponds to a requested load.
  • a specification of a setpoint torque which, for example, can be derived from an accelerator pedal position or the like during operation in a motor vehicle and corresponds to a requested load.
  • the operating behavior of the can be determined by setting suitable actuators, such as a throttle valve, an exhaust gas recirculation valve, a charge generator (wastegate valve, VTG actuator, etc.) or the like
  • Engine system 1 can be set to achieve the predetermined target torque.
  • the amount of fuel injected into a cylinder per work cycle is essential for providing the requested target torque.
  • control unit 10 controls the engine system in such a way that the control interventions also achieve an engine operation that is as low-emission as possible, within both stationary and transient operating situations.
  • fuel can be injected in successive one or more pilot injections, one or more main injections, which can be predetermined according to an injection profile.
  • an injection profile is specified with corresponding injection parameters.
  • the injection profile of the Figure 2 shows the opening and closing times or opening and closing angles of a pre-injection and a Main injection.
  • the opening times or angles are specified as an injection parameter in each case by the time or angle difference to a top dead center of a piston movement in the relevant cylinder 2.
  • the fuel quantities for each of the injections can be specified as further injection parameters.
  • the injection valve opening time can also be used, the effective amount of injected fuel still being dependent on the injection pressure of the fuel provided, which must be taken into account when determining the correct injection valve opening time.
  • u e , k ⁇ k PI m k PI ⁇ k MI m k MI in which ⁇ k PI the relative starting time or starting angle of the pilot injection (PI), ⁇ k MI the relative starting time or starting angle of the main injection (MI), m k PI the injection amount of fuel of the pilot injection and m k MI the injection quantity of fuel correspond to the main injection for the respective work cycle k.
  • the starting times can, for example, be specified independently of the rotational speed in the form of a crankshaft angle, in particular relative to a fixed predetermined crankshaft angle of a crankshaft of the internal combustion engine 1, such as a top dead center of the crankshaft movement.
  • Figure 2 correspond m k PI and m k MI the areas under the injection rate curve shown and thus the amount of fuel injected in each case.
  • the number of preinjections and the number of main injections can, however, each be more than one and can be specified in particular as a function of the operating point, in particular indicated by the engine speed and the engine load. The number of injection parameters would increase accordingly.
  • FIG. 13 is a functional diagram for a function for providing adapted injection parameters u e , k ⁇ shown in the form of a control variable for an injection valve 5 of a cylinder 2.
  • the injection valve 5 assigned to the cylinder 2 is to be activated become.
  • the corresponding adjusted injection parameters u e , k ⁇ are fed to the injection block 15, in which the adjusted injection parameters u e , k ⁇ be converted into timing control signals for the relevant injection valve 5 for opening and closing, in particular as a function of a crankshaft angle and an engine speed.
  • the injection parameters of the control variable correspond to stationary injection parameters u e, k , which are corrected with correction injection parameters ⁇ u e , k.
  • the injection parameters of the control variable of the injection profile relevant for the operating point can be adapted or corrected.
  • the operating point ie dependent on an engine speed n of the internal combustion engine 1 and the setpoint torque M soll (corresponds to the individual working cycle M. should Work cycle ), ie the requested load, stationary injection parameters u e, k of a stationary injection profile in accordance with a predetermined injection profile map which is provided in a stationary injection profile block 11.
  • the injection profile map is usually determined offline, for example on a test stand, and is stored in a suitable manner and made available in a manner that can be called up by specifying the engine speed n for the setpoint torque M setpoint.
  • the injection profile map can be made available as a look-up table or as a functional model, such as a Gaussian process model.
  • the stationary injection parameters u e, k of the stationary injection profile have the correction injection parameters ⁇ u ek applied to them, in particular added.
  • the stationary injection parameters u e, k of the stationary injection profile can be multiplied by the correction injection parameters ⁇ u ek or linked in some other way.
  • the correction injection parameters ⁇ u e, k are determined in an adaptation block 12.
  • the correction injection parameters ⁇ u e, k can be calculated using a predefined correction injection parameter model.
  • the correction injection parameter model can, for example, correspond to a cylinder model ⁇ C -1 inverted by online optimization, which is based on a combustion cycle model ⁇ C.
  • the combustion cycle model ⁇ C depicts the physical processes in the cylinders.
  • the result of a comparable, but offline optimization can be stored in characteristic diagrams that are described, for example, by Gaussian process regression.
  • Bayesian regression is a data-based method that is based on a model.
  • To create the model measurement points of training data and associated output data of an output variable to be modeled are required.
  • the model is created on the basis of the use of interpolation point data which correspond in whole or in part to the training data or are generated from them.
  • abstract hyperparameters are determined, which parameterize the space of the model functions and effectively weight the influence of the individual measurement points of the training data on the later model prediction.
  • the correction injection parameter model supplies the correction injection parameters ⁇ u e, k as output variables.
  • the injection parameters adapted for the working cycle k result from the stationary injection parameters u e, k of the injection profile and the correction injection parameters ⁇ u e, k u e , k ⁇ .
  • characteristic values for correcting one or more of the above input variables that are used for the adaptation block 12 are determined.
  • the one or more input variables are determined in a correction application block 19 by applying one or more correction variables K.
  • correction values K for one or more input variables are selected in a simple manner, which have sufficient sensitivity to the relevant combustion feature.
  • ⁇ C e.g. B. within a model block 14 or in an inverted form within an adaptation block 12 are used as boundary conditions of the air system p IN THE t T IN THE t X IN THE O 2 t p EM T T EM t X EM O 2 t , the injection pressure p r ( t ), the engine speed n and the corresponding corrected injection parameters u e , k ⁇ given.
  • the output variables of the combustion cycle model ⁇ C can, in addition to the combustion features ⁇ k , as shown in the model block 14, for example also the pollutant emissions ⁇ NO x (Nitrogen oxide emissions), ⁇ PM (soot emissions) or the indicated mean effective pressure p mi , k Work cycle of the entire working cycle as used in adaptation block 12 (not in Figure 2 shown).
  • a data-based approximation of the combustion phase using a Gaussian process regression can be used to describe the output variables, such as pollutant emissions ⁇ NO x , ⁇ PM and the indicated mean effective pressure p mi , k combustion , depending on the cylinder filling level x t k PI or.
  • x ⁇ k PI (as a result of the model parts of the gas exchange phase and the compression phase), the injection parameters, whereby these can assume any values within the model validity range, e.g. B. the stationary
  • the determination of the correction injection parameters ⁇ u e, k in adaptation block 12 can be achieved by an optimization-based inversion of the combustion cycle model ⁇ C in order to obtain the correction injection parameter model and thus to determine the correction injection parameters ⁇ u e, k.
  • the combustion cycle model ⁇ C is inverted with regard to the injection parameters in order to obtain an inverted combustion cycle model ⁇ C -1 .
  • the inversion of a Gaussian process model is known from the prior art and can be carried out, for example, with the aid of a Newton method.
  • the part of the combustion cycle model linked to the injection parameters is described by means of one or more Gaussian process models, especially the emissions, then their forecast values can be summarized within a quality function.
  • a quality function Based on this quality function, according to the prior art, for example using a Newton method, an optimization-based inversion of the GPR models can be carried out, ie the determination of the correction injection parameters ⁇ u e, k which minimize the quality function (local / global). This represents the optimization-based inversion of the combustion cycle model. Other optimization-based methods can also be used.
  • the aim of the optimization is on the one hand the pollutant emissions ⁇ NO through the correction injection parameters ⁇ u e, k x , ⁇ PM , to optimize fuel consumption or the like and, on the other hand, to optimize the setpoint torque desired for the work cycle M.
  • should Work cycle or the correlated indicated mean effective pressure p pmi should Work cycle taking into account the gas exchange and the compression.
  • the Gaussian process models valid for the combustion phase (with regard to nitrogen oxide emissions ⁇ NO x , Soot emissions ⁇ PM or the indicated mean effective pressure p mi combustion the combustion phase, ...) is inverted according to an optimization, so that depending on freely formulable optimization goals for the pollutant emissions ⁇ NO x , ⁇ PM and the indicated mean pressure to be maintained for the work cycle p pmi , should Work cycle the corresponding correction injection parameters ⁇ u le, k of the injection profile can be obtained.
  • the optimization which can be carried out by minimizing a quality function taking into account given boundary conditions, can have the following mathematical structure: min ⁇ u e , k ⁇ ⁇ U e , k J ⁇ NO x , ⁇ PM , m k PI + m k MI ⁇
  • General Quality function w NO x ⁇ NO x + w PM ⁇ PM + w fuel m k PI + m k MI ⁇ structure one Quality function exemplary
  • the Gaussian process models taken into account for the combustion phase which are used in the described exemplary embodiment for the optimization in adaptation block 12, can also be modified in such a way that the information about the speed / load-dependent stationary injection parameters u e, k can already be taken into account or learned directly.
  • the setting limits of the injection parameters that depend on the engine operating point e.g.
  • the optimization limits can be formulated as simple box constraints and the result of the optimization also provides the output values from block 12 directly
  • direct analytical derivation can be calculated with regard to the correction injection parameters ⁇ u e, k to be determined by the optimization.
  • the boundary conditions of the optimization are determined by the cylinder model of the gas exchange phase and the cylinder model of the compression phase. This includes the cylinder filling condition x t k PI or. x ⁇ k PI at the beginning of the combustion (or the combustion cycle) and the target torque to be generated by the combustion phase M.
  • V H gives ( V H - stroke volume of the cylinder).
  • M should Work cycle describes the torque requirement derived from the driver's request and the requirements of the auxiliary units (air conditioning, ...), which must be generated integrally within a work cycle.
  • the optimization variables are the correction injection parameters ⁇ u e, k , which represent the correction values sought for the stationary injection parameters u e, k determined by engine speed n and setpoint torque M should .
  • the combustion center of gravity ⁇ 50 (describes the crankshaft angle at which 50% of the fuel introduced was chemically converted) and / or other combustion features z k (e.g. ⁇ 10 , ⁇ 90 , crank angle position and value of the cylinder peak pressure, crank angle position and value of the maximum pressure gradient etc.) can be determined based on state variables of the internal combustion engine 1.
  • the center of combustion and the other combustion features can be detected directly by a cylinder pressure sensor or, alternatively, can be derived from an analysis of a course of the engine speed.
  • a correction of the combustion cycle model used for the optimization can also be provided.
  • the correction can be made by adapting their input variables.
  • one or more combustion features ⁇ k such as a combustion center of gravity ⁇ 50 , as well as ⁇ 10 , ⁇ 90 (crank angle positions after 10% or 90% combustion of the fuel), the crank angle position and the value of the cylinder peak pressure or the crank angle position and the value of the maximum pressure gradient, the input variables being at least partially model-identical to those of the optimization in the adaptation block 12.
  • the error in a certain input variable for example the error in the estimated oxygen mass after the relevant inlet valve has been closed, is then determined on the basis of a model in a correction model block 17, which describes its sensitivity to the deviation ⁇ z k of the combustion feature.
  • the correction model block 17 supplies one or more correction values K for applying corresponding input variables in order to use the error of the input variable estimated in this way in the next working cycle k + 1 for the correction of the relevant input variable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

Technisches GebietTechnical area

Die Erfindung betrifft Verbrennungsmotoren, insbesondere Verbrennungsmotoren, bei denen Kraftstoff gemäß einem vorgegebenen Einspritzprofil mit einer oder mehreren Voreinspritzungen und einer oder mehreren Haupteinspritzungen betrieben werden kann. Insbesondere betrifft die vorliegende Erfindung Maßnahmen zum Anpassen des Einspritzprofils im transienten Motorbetrieb.The invention relates to internal combustion engines, in particular internal combustion engines, in which fuel can be operated according to a predetermined injection profile with one or more pilot injections and one or more main injections. In particular, the present invention relates to measures for adapting the injection profile in transient engine operation.

Technischer HintergrundTechnical background

Die Einspritzung von Kraftstoff in den Zylinder eines Verbrennungsmotors kann in einer oder mehreren Vor- und einer oder mehreren Haupteinspritzungen entsprechend eines vorgebbaren Einspritzprofils vorgenommen werden. Das Einspritzprofil kann durch Kennfelder in Abhängigkeit von z.B. der aktuellen Motordrehzahl und der angeforderten Last des Verbrennungsmotors vorgegeben werden.The injection of fuel into the cylinder of an internal combustion engine can be carried out in one or more pilot injections and one or more main injections in accordance with a predefinable injection profile. The injection profile can be specified by maps depending, for example, on the current engine speed and the required load of the internal combustion engine.

Im dynamischen Motorbetrieb folgen die Zustandsgrößen des Luftsystems des Verbrennungsmotors in der Regel nur verzögert den entsprechenden Sollwerten der Luftsystemregelung. Da das Einspritzprofil in der Regel unmittelbar abhängig von der angeforderten Last des Verbrennungsmotors verändert wird, ist das Einspritzprofil somit nicht ideal an die sich verzögert ändernden Luftsystembedingungen und die daraus resultierende Zylinderfüllung angepasst. Dies kann zu erhöhten Schadstoffemissionen führenIn dynamic engine operation, the state variables of the air system of the internal combustion engine usually only follow the corresponding setpoint values of the air system control with a delay. Since the injection profile is usually changed directly depending on the required load of the internal combustion engine, the injection profile is therefore not ideally adapted to the delayed changing air system conditions and the resulting cylinder charge. This can lead to increased pollutant emissions

DE 10 2008 001081 A1 betrifft eine Vorrichtung zum Steuern einer Brennkraftmaschine mit Selbstzündung des Luft-/Kraftstoff-Gemisches und Zumessung von Kraftstoff über ein Kraftstoffeinspritzventil, wobei mindestens ein Einspritzparameter bezüglich der Kraftstoffzumessung abhängig von mindestens einer Betriebsgröße der Brennkraftmaschine unter der Annahme eines stationären Betriebszustandes ermittelt wird. Ferner wird bei Vorliegen des instationären Betriebszustandes eine Ist-Brennraumtemperatur abhängig von einem physikalischen Modell für transienten Betrieb der Brennkraftmaschine abhängig von der Soll-Brennraumtemperatur und mindestens einer der Betriebsgrößen der Brennkraftmaschine ermittelt. DE 10 2008 001081 A1 relates to a device for controlling an internal combustion engine with self-ignition of the air / fuel mixture and metering of fuel via a fuel injection valve, at least one injection parameter relating to fuel metering being determined as a function of at least one operating variable of the internal combustion engine assuming a steady operating state. Furthermore, when the transient operating state is present, an actual combustion chamber temperature is determined as a function of a physical model for transient operation of the internal combustion engine as a function of the target combustion chamber temperature and at least one of the operating variables of the internal combustion engine.

Offenbarung der ErfindungDisclosure of the invention

Erfindungsgemäß sind ein Verfahren zum Betreiben eines Verbrennungsmotors mit mindestens einer Vor- und mindestens einer Haupteinspritzung von Kraftstoff während eines Verbrennungstaktes gemäß Anspruch 1 sowie eine Vorrichtung und ein Motorsystem gemäß den nebengeordneten Ansprüchen vorgesehen.According to the invention, a method for operating an internal combustion engine with at least one pre-injection and at least one main injection of fuel during a combustion cycle according to claim 1 and a device and an engine system according to the independent claims are provided.

Weitere Ausgestaltungen sind in den abhängigen Ansprüchen angegeben.Further refinements are given in the dependent claims.

Gemäß einem ersten Aspekt ist ein Verfahren zum Betreiben eines Verbrennungsmotors durch Vorgabe eines Einspritzprofils vorgesehen, das durch angepasste Einspritzparameter definiert ist. Das Verfahren umfasst die folgenden Schritte:

  • Ermitteln von stationären Einspritzparametern anhand eines vorgegebenen Stationär-Einspritzprofilkennfelds;
  • Ermitteln von Korrektur-Einspritzparametern anhand eines vorgegebenen Korrektureinspritzparametermodells, das Korrektureinspritzparameter abhängig von einer oder mehreren Zustandsgrößen eines Luftzuführungssystems des Verbrennungsmotors bereitstellt;
  • Beaufschlagen der stationären Einspritzparameter mit den Korrektureinspritzparametern, um die angepassten Einspritzparameter zu erhalten.
According to a first aspect, a method is provided for operating an internal combustion engine by specifying an injection profile that is defined by adapted injection parameters. The procedure consists of the following steps:
  • Determination of stationary injection parameters on the basis of a predetermined stationary injection profile map;
  • Determining corrective injection parameters on the basis of a predefined corrective injection parameter model which provides corrective injection parameters as a function of one or more state variables of an air supply system of the internal combustion engine;
  • Applying the corrective injection parameters to the stationary injection parameters in order to obtain the adjusted injection parameters.

Die Anpassung des Einspritzprofils für den Betrieb eines Verbrennungsmotors in Abhängigkeit von den sich ändernden Zustandsgrößen des Luftsystems im dynamischen Betrieb wird in der Regel nicht oder nur für einzelne Einspritzparameter eines Einspritzprofils durchgeführt. Eine Idee des obigen Verfahrens besteht darin, das Verhalten des Verbrennungsmotors in dynamischen Betriebssituationen durch Vorgabe von angepassten Einspritzparametern zu verbessern, wobei inhärent beachtet wird, dass das vom Verbrennungsmotor generierte Moment oder der indizierte Mitteldruck oder das durch die Verbrennung generierte "innere" Motormoment jeweils unverändert bleibt.The adaptation of the injection profile for the operation of an internal combustion engine as a function of the changing state variables of the air system in dynamic operation is generally not carried out or is carried out only for individual injection parameters of an injection profile. One idea of the above method is to improve the behavior of the internal combustion engine in dynamic operating situations by specifying adapted injection parameters, whereby it is inherently ensured that the torque generated by the internal combustion engine or the indicated mean effective pressure or the "internal" engine torque generated by the combustion remains unchanged remains.

Insgesamt sieht das obige Verfahren vor, den Verbrennungsprozess während eines Arbeitstaktes des Verbrennungsmotors (Gaswechsel, Kompression und Verbrennung) zu modellieren, abhängig von den mit dem Modell vorhergesagten Motorausgangsgrößen (Emissionen, generiertes Motormoment, ,,,) eine Korrektur eines oder mehrerer der Einspritzparameter des Einspritzprofils zu bestimmen und das im stationären Betriebszustand zugeordnete Einspritzprofil entsprechend der Korrektur anzupassen. Dadurch kann auch im dynamischen Betrieb des Verbrennungsmotors der Einfluss der Trägheit des Luftsystems auf die Verbrennung berücksichtigt werden. Die Korrektur der Einspritzparameter wird mittels eines Korrektureinspritzparametermodells, das durch eine optimierungsbasierte Inversion eines Verbrennungszyklusmodells unter Berücksichtigung des dynamischen Verhaltens des Luftsystems gebildet werden kann, vorgenommen. Durch die explizite Modellierung des Beitrags, den die einzelnen Verbrennungszyklusphasen (Gaswechsel, Kompression und Verbrennung) zum indizierten Mitteldruck bzw. dem generierten Motormoment des gesamten Arbeitsspiels beisteuern, kann insbesondere eine momentenneutrale Anpassung der Einspritzparameter erreicht werden. Die momentenneutrale Anpassung der Einspritzparameter wird durch eine Gleichungsnebenbedingung bei der Formulierung des Optimierungsproblems erreicht.Overall, the above method provides for the combustion process during a work cycle of the internal combustion engine (gas exchange, compression and combustion) to model, to determine a correction of one or more of the injection parameters of the injection profile depending on the engine output variables predicted with the model (emissions, generated engine torque, ,,,) and to adapt the injection profile assigned in the steady-state operating state according to the correction. As a result, the influence of the inertia of the air system on the combustion can also be taken into account in dynamic operation of the internal combustion engine. The correction of the injection parameters is carried out by means of a correction injection parameter model, which can be formed by an optimization-based inversion of a combustion cycle model, taking into account the dynamic behavior of the air system. By explicitly modeling the contribution made by the individual combustion cycle phases (gas exchange, compression and combustion) to the indicated mean effective pressure or the generated engine torque of the entire work cycle, a torque-neutral adjustment of the injection parameters can be achieved in particular. The torque-neutral adaptation of the injection parameters is achieved by a secondary equation condition when formulating the optimization problem.

Weiterhin werden die Korrektur-Einspritzparameter durch Invertieren eines vorgegeben Verbrennungszyklusmodell als das Korrektureinspritzparametermodell mithilfe eines Optimierungsverfahrens bestimmt, wobei das Verbrennungszyklusmodell einem kombiniert physikalisch / datenbasierten Modell zur Beschreibung von physikalischen Vorgängen in einem Zylinder des Verbrennungsmotors entsprechen kann. Insbesondere kann das kombiniert physikalisch / datenbasierte Modell eine kurbelwinkelaufgelöste Beschreibung der Gaswechsel- und Kompressionsphase sowie eine datenbasierte Approximation der Verbrennung, z.B. mittels eines datenbasierten nicht-parametrischen Modells, insbesondere eines Gauß-Prozess-Modells, oder eines neuronalen Netzes, umfassen.Furthermore, the correction injection parameters are determined by inverting a predetermined combustion cycle model as the correction injection parameter model with the aid of an optimization method, wherein the combustion cycle model can correspond to a combined physical / data-based model for describing physical processes in a cylinder of the internal combustion engine. In particular, the combined physical / data-based model can include a crank angle-resolved description of the gas exchange and compression phase as well as a data-based approximation of the combustion, e.g. by means of a data-based non-parametric model, in particular a Gaussian process model, or a neural network.

Erfindungsgemäß wird das Optimierungsverfahren zur Optimierung einer oder mehrerer Schadstoffemissionen (Ruß, NOx, ...) oder eines Kraftstoffverbrauchs mit jeweils individuell anpassbaren Gewichtungen durchgeführt. Durch die Wahl der Randbedingung des Optimierungsverfahrens zur Optimierung kann gewährleistet werden, dass das generierte Motormoment bzw. der indizierte Mitteldruck des Arbeitsspiels konstant bleibt.According to the invention, the optimization method for optimizing one or more pollutant emissions (soot, NOx,...) Or a fuel consumption is carried out with weightings that can be individually adapted in each case. By choosing the boundary conditions of the optimization method for optimization, it can be ensured that the generated engine torque or the indicated mean effective pressure of the work cycle remains constant.

Alternativ kann das Korrektureinspritzparametermodell mithilfe eines offline gelernten vorgegebenen datenbasierten nicht-parametrischen Modells, insbesondere eines Gauß-Prozess-Modells, oder einem neuronalen Netz vorgegeben werden. Das beschriebene Optimierungsverfahren zur Optimierung wird dabei in gleicher Weise offline für eine repräsentative Variation der nicht mit dem Einspritzsystem verknüpften Eingangsgrößen (Luftsystemeingangsgrößen, Raildruck und Motordrehzahl) gelöst. Das Ergebnis der Optimierung, die Korrektur-Einspritzparameter, wird in Abhängigkeit der zuvor variierten Eingangsgrößen in dem oben erwähnten datenbasierten nicht-parametrischen Modell abgelegt.Alternatively, the correction injection parameter model can be specified with the aid of a predetermined data-based non-parametric model learned offline, in particular a Gaussian process model, or a neural network. The described optimization method for optimization is solved offline in the same way for a representative variation of the input variables not linked to the injection system (air system input variables, rail pressure and engine speed). The result of the optimization, the correction injection parameters, is stored in the above-mentioned data-based non-parametric model as a function of the previously varied input variables.

Es kann vorgesehen sein, dass für das Korrektureinspritzparametermodell relevante Eingangsgrößen eine oder mehrere der folgenden Größen umfassen:

  • einen Gasdruck, eine Gastemperatur und eine Sauerstoffkonzentration in einem Einlasskrümmer des Verbrennungsmotors,
  • einen Gasdruck, eine Gastemperatur und eine Sauerstoffkonzentration in einem Auslasskrümmer des Verbrennungsmotors,
  • einen Kraftstoffdruck,
  • eine Motordrehzahl,
  • ein Sollmoment oder einen Soll-Mitteldruck (indiziert) IMEP des Arbeitsspiels.
It can be provided that input variables relevant for the correction injection parameter model include one or more of the following variables:
  • a gas pressure, a gas temperature and an oxygen concentration in an intake manifold of the internal combustion engine,
  • a gas pressure, a gas temperature and an oxygen concentration in an exhaust manifold of the internal combustion engine,
  • a fuel pressure,
  • an engine speed,
  • a target torque or a target mean effective pressure (indexed) IMEP of the work cycle.

Weiterhin können eine oder mehrere der Eingangsgrößen des Korrektureinspritzparametermodells abhängig von einem Unterschied eines oder mehrerer tatsächlicher, d.h. gemessener Verbrennungsmerkmale einer Verbrennung in dem Zylinder des Verbrennungsmotors von einem oder mehreren modellierten Verbrennungsmerkmalen einer Verbrennung in dem Zylinder des Verbrennungsmotors korrigiert werden. Insbesondere kann die Korrektur der Eingangsgrößen für das Korrektureinspritzparametermodell anhand des Vergleichs vorhergesagter und gemessener Verbrennungsmerkmale vorgenommen werden.Furthermore, one or more of the input variables of the correction injection parameter model can be corrected as a function of a difference between one or more actual, i.e. measured, combustion characteristics of a combustion in the cylinder of the internal combustion engine from one or more modeled combustion characteristics of a combustion in the cylinder of the internal combustion engine. In particular, the input variables for the correction injection parameter model can be corrected on the basis of the comparison of predicted and measured combustion features.

Insbesondere können das eine oder die mehreren modellierten Verbrennungsmerkmale basierend auf mindestens einem Teil der Eingangsgrößen für das Korrektureinspritzparametermodell und zusätzlich den angepassten Einspritzparametern gemäß einem Verbrennungszyklusmodell ermittelt werden, das insbesondere mithilfe eines datenbasierten nicht-parametrischen Modells, insbesondere eines Gauß-Prozess-Modells, vorgegeben ist.In particular, the one or more modeled combustion features can be determined based on at least some of the input variables for the correction injection parameter model and additionally the adapted injection parameters according to a combustion cycle model, which in particular with the aid of a data-based non-parametric model, in particular a Gaussian process model, is specified.

Der Kern des Verbrennungszyklusmodells zur Berechnung der Verbrennungsmerkmale kann prinzipiell identisch mit dem des Korrektureinspritzparametermodells sein, d. h. physikalisch/datenbasierte Modellstruktur zur Beschreibung der Gaswechsel-, Kompressions- und Verbrennungsphase. Innerhalb des Korrektureinspritzparametermodells werden die Modelle der Verbrennungsphase anhand einer Gütefunktion, die aus den entsprechenden Vorhersagewerten für Emissionen usw. gebildet wird, hinsichtlich der Korrektureinspritzparameter optimierungsbasiert invertiert. Die Randbedingungen dieser Inversion per Optimierung werden dabei von den Modellen der Gaswechsel- und Kompressionsphase geliefert. Für die Vorhersage der Verbrennungsmerkmale besteht der Unterschied hinsichtlich der Modellstruktur lediglich darin, dass bestimmte Verbrennungsmerkmale geschätzt werden und das zugrundeliegende Modell nicht invertiert wird. Zur Berechnung der Verbrennungsmerkmale muss somit ebenfalls die Gaswechsel- und Kompressionsphase berechnet werden.The core of the combustion cycle model for calculating the combustion characteristics can in principle be identical to that of the correction injection parameter model, i. H. physical / data-based model structure to describe the gas exchange, compression and combustion phase. Within the correction injection parameter model, the models of the combustion phase are inverted based on optimization with regard to the correction injection parameters on the basis of a quality function that is formed from the corresponding prediction values for emissions etc. The boundary conditions of this inversion by optimization are provided by the models of the gas exchange and compression phase. For the prediction of the combustion characteristics, the only difference with regard to the model structure is that certain combustion characteristics are estimated and the underlying model is not inverted. To calculate the combustion characteristics, the gas exchange and compression phase must also be calculated.

Gemäß einem weiteren Aspekt ist eine Vorrichtung, insbesondere Steuereinheit, zum Betreiben eines Verbrennungsmotors in einem Motorsystem durch Vorgabe eines Einspritzprofils, das durch angepasste Einspritzparameter definiert ist, vorgesehen, wobei die Vorrichtung ausgebildet ist, um:

  • stationäre Einspritzparameter anhand eines vorgegebenen Stationär-Einspritzprofilkennfelds zu ermitteln;
  • Korrektur-Einspritzparameter anhand eines vorgegebenen Korrektureinspritzparametermodells, das Korrektur-Einspritzparameter abhängig von einer oder mehreren Zustandsgrößen eines Luftzuführungs- und/oder Abgasabführungssystems des Verbrennungsmotors bereitstellt, zu ermitteln; und
  • die stationären Einspritzparameter mit den Korrektureinspritzparametern zu beaufschlagen, um die angepassten Einspritzparameter zu erhalten.
According to a further aspect, a device, in particular a control unit, is provided for operating an internal combustion engine in an engine system by specifying an injection profile that is defined by adapted injection parameters, the device being designed to:
  • determine stationary injection parameters on the basis of a predetermined stationary injection profile map;
  • To determine correction injection parameters on the basis of a predefined correction injection parameter model which provides correction injection parameters as a function of one or more state variables of an air supply and / or exhaust gas discharge system of the internal combustion engine; and
  • to apply the corrective injection parameters to the stationary injection parameters in order to obtain the adjusted injection parameters.

Kurzbeschreibung der ZeichnungenBrief description of the drawings

Ausführungsformen werden nachfolgend anhand der beigefügten Zeichnungen näher erläutert. Es zeigen:

Figur 1
eine schematische Darstellung eines Motorsystems mit einem Verbrennungsmotor;
Figur 2
ein beispielhaftes Einspritzprofil mit einer Vor- und einer Haupteinspritzung; und
Figur 3
ein Blockdiagramm zur Veranschaulichung eines Verfahrens zum Anpassen des Einspritzprofils abhängig von einem Betriebszustand des Motorsystems.
Embodiments are explained in more detail below with reference to the accompanying drawings. Show it:
Figure 1
a schematic representation of an engine system with an internal combustion engine;
Figure 2
an exemplary injection profile with a pilot and a main injection; and
Figure 3
a block diagram to illustrate a method for adapting the injection profile depending on an operating state of the engine system.

Beschreibung von AusführungsformenDescription of embodiments

In Figur 1 ist schematisch ein Motorsystem mit einem Verbrennungsmotor 1 mit einer Anzahl von Zylindern 2 (im vorliegenden Ausführungsbeispiel vier Zylinder) dargestellt. Der Verbrennungsmotor 1 kann als Diesel- oder Ottomotor ausgebildet sein und wird entsprechend im Viertaktbetrieb getrieben.In Figure 1 an engine system with an internal combustion engine 1 with a number of cylinders 2 (in the present exemplary embodiment four cylinders) is shown schematically. The internal combustion engine 1 can be designed as a diesel or Otto engine and is accordingly driven in four-stroke operation.

Über ein Luftzuführungssystem 3 wird den Zylindern 2 des Verbrennungsmotors 1 Frischluft zugeführt. Die Zuführung von Frischluft erfolgt über einen Einlasskrümmer 6 zu den Einspritzventil 7 in jedem der Zylinder 2. Im Luftzuführungssystem 3 können optional eine Aufladeeinrichtung, wie beispielsweise ein Turbolader, eine Drosselklappe und eine Abgasrückführung vorgesehen sein, womit jeweils die Menge von in die Zylinder 2 strömender Frischluft sowie deren Zusammensetzung, z. B. die Sauerstoffkonzentration, eingestellt werden kann.Fresh air is supplied to the cylinders 2 of the internal combustion engine 1 via an air supply system 3. Fresh air is supplied via an intake manifold 6 to the injection valve 7 in each of the cylinders 2. In the air supply system 3, a charging device, such as a turbocharger, a throttle valve and an exhaust gas recirculation system, can optionally be provided, which in each case increases the amount of fluid flowing into the cylinder 2 Fresh air and its composition, e.g. B. the oxygen concentration can be adjusted.

Verbrennungsabgase werden aus den Zylindern 2 mit Hilfe eines Abgasabführungssystems 4 abgeführt. Die Verbrennungsabgase werden dazu über entsprechende Auslassventile 8 in den Zylindern 2 über einen Auslasskrümmer 9 in das Abgasabführungssystem 4 abgeführt. Das Luftzuführungssystem 3 und das Abgasabführungssystem 4 bilden gemeinsam das sogenannte Luftsystem des Motorsystems 1. In der Regel weisen heutige Verbrennungsmotoren auch eine Abgasrückführung und eine Aufladung, z.B. durch einen Abgasturbolader, auf (nicht gezeigt).Combustion exhaust gases are discharged from the cylinders 2 with the aid of an exhaust gas discharge system 4. For this purpose, the combustion exhaust gases are fed into the cylinder 2 via an exhaust manifold 9 via corresponding exhaust valves 8 Exhaust gas discharge system 4 discharged. The air supply system 3 and the exhaust gas discharge system 4 together form the so-called air system of the engine system 1. As a rule, today's internal combustion engines also have exhaust gas recirculation and charging, for example by an exhaust gas turbocharger (not shown).

Zur Einbringung von Kraftstoff sind den Zylindern 2 Einspritzventile 5 zugeordnet, die in geeigneter Weise zum Öffnen oder Schließen angesteuert werden können, um Kraftstoff in die Brennräume der Zylinder 2 einzuspritzen.In order to introduce fuel, the cylinders 2 are assigned injection valves 5, which can be controlled in a suitable manner for opening or closing in order to inject fuel into the combustion chambers of the cylinders 2.

Der Betrieb des Verbrennungsmotors 2 wird mit Hilfe einer Steuereinheit 10 gesteuert. Die Steuereinheit 10 erfasst dazu eine Vorgabe eines Sollmoments, die beispielsweise bei einem Betrieb in einem Kraftfahrzeug aus einer Fahrpedalstellung oder dergleichen abgeleitet werden kann und einer angeforderten Last entspricht. Basierend auf dem vorgegebenen Sollmoment und sensorisch oder über ein Modell erhaltenen momentanen Zustandsgrößen des Motorsystems 1 kann durch Stellen von geeigneten Stellgebern, wie beispielsweise einer Drosselklappe, eines Abgasrückführungsventils, eines Laderstellers (Wastegate-Ventil, VTG-Steller usw.) oder dergleichen das Betriebsverhalten des Motorsystems 1 zum Erreichen des vorgegebenen Sollmoments eingestellt werden. Wesentlich für die Bereitstellung des angeforderten Sollmoments ist die pro Arbeitstakt in einem Zylinder eingespritzte Kraftstoffmenge. Diese wird in der Regel durch eine Öffnungszeitdauer der Einspritzventile 5 und die Anzahl von Einspritzvorgängen pro Arbeitstakt vorgegeben. Neben der Generierung des gewünschten Sollmoments steuert die Steuereinheit 10 das Motorsystem so, dass durch die Stelleingriffe zusätzlich ein möglichst emissionsarmer Motorbetrieb realisiert wird, innerhalb stationärer wie auch transienter Betriebssituationen.The operation of the internal combustion engine 2 is controlled with the aid of a control unit 10. To this end, the control unit 10 detects a specification of a setpoint torque which, for example, can be derived from an accelerator pedal position or the like during operation in a motor vehicle and corresponds to a requested load. Based on the specified target torque and instantaneous state variables of the engine system 1 obtained by sensors or via a model, the operating behavior of the can be determined by setting suitable actuators, such as a throttle valve, an exhaust gas recirculation valve, a charge generator (wastegate valve, VTG actuator, etc.) or the like Engine system 1 can be set to achieve the predetermined target torque. The amount of fuel injected into a cylinder per work cycle is essential for providing the requested target torque. As a rule, this is specified by an opening period of the injection valves 5 and the number of injection processes per working cycle. In addition to generating the desired setpoint torque, the control unit 10 controls the engine system in such a way that the control interventions also achieve an engine operation that is as low-emission as possible, within both stationary and transient operating situations.

Zur Optimierung des Motorverhaltens kann die Einspritzung von Kraftstoff in aufeinanderfolgenden ein oder mehreren Voreinspritzungen ein oder mehreren Haupteinspritzungen erfolgen, die gemäß einem Einspritzprofil vorgegeben sein können. Beispielsweise ist in Figur 2 ein derartiges Einspritzprofil mit entsprechenden Einspritzparametern angegeben. Das Einspritzprofil der Figur 2 zeigt anhand eines Verlaufs einer Durchflussmenge durch das Einspritzventil die Öffnungs- und Schließzeiten bzw. Öffnungs- und Schließwinkel einer Voreinspritzung und einer Haupteinspritzung. Die Öffnungszeiten bzw. -winkel werden als jeweils ein Einspritzparameter durch die Zeit- bzw. Winkeldifferenz zu einem oberen Totpunkt einer Kolbenbewegung in dem betreffenden Zylinder 2 angegeben. Weiterhin können als weitere Einspritzparameter die Kraftstoffmengen für jede der Einspritzungen vorgegeben werden. Anstelle der Verwendung der Kraftstoffmenge als Einspritzparameter kann auch die Einspritzventilöffnungszeit verwendet werden, wobei die effektive Menge an eingespritztem Kraftstoff sich weiterhin abhängig von dem Einspritzdruck des bereitgestellten Kraftstoffs ergibt, was bei der Ermittlung der korrekten Einspritzventilöffnungszeit berücksichtigt werden muss.In order to optimize the engine behavior, fuel can be injected in successive one or more pilot injections, one or more main injections, which can be predetermined according to an injection profile. For example, in Figure 2 such an injection profile is specified with corresponding injection parameters. The injection profile of the Figure 2 shows the opening and closing times or opening and closing angles of a pre-injection and a Main injection. The opening times or angles are specified as an injection parameter in each case by the time or angle difference to a top dead center of a piston movement in the relevant cylinder 2. Furthermore, the fuel quantities for each of the injections can be specified as further injection parameters. Instead of using the amount of fuel as an injection parameter, the injection valve opening time can also be used, the effective amount of injected fuel still being dependent on the injection pressure of the fuel provided, which must be taken into account when determining the correct injection valve opening time.

Dadurch ergibt sich ein stationärer Parametervektor u e,k für das Einspritzprofil mit jeweils einer Voreinspritzung und einer Haupteinspritzung wie folgt: u e , k = φ k PI m k PI φ k MI m k MI

Figure imgb0001
wobei φ k PI
Figure imgb0002
dem relativen Anfangszeitpunkt bzw. Startwinkel der Voreinspritzung (PI), φ k MI
Figure imgb0003
dem relativen Anfangszeitpunkt bzw. Startwinkel der Haupteinspritzung (MI), m k PI
Figure imgb0004
die Einspritzmenge von Kraftstoff der Voreinspritzung und m k MI
Figure imgb0005
die Einspritzmenge von Kraftstoff der Haupteinspritzung für den jeweiligen Arbeitstakt k entsprechen. Die Anfangszeitpunkte können beispielsweise drehzahlunabhängig in Form eines Kurbelwellenwinkels, insbesondere relativ zu einem fest vorgegebenen Kurbelwellenwinkel einer Kurbelwelle des Verbrennungsmotors 1, wie z.B. eines oberen Totpunkts der Kurbelwellenbewegung, vorgegeben sein. In Figur 2 entsprechen m k PI
Figure imgb0006
und m k MI
Figure imgb0007
den Flächen unter dem dargestellten Einspritzratenverlauf und somit der jeweils eingespritzten Kraftstoffmenge. Die Anzahl der Voreinspritzungen und die Anzahl der Haupteinspritzungen kann jedoch jeweils mehr als eine betragen und insbesondere abhängig von dem Betriebspunkt, insbesondere angegeben durch die Motordrehzahl und die Motorlast, vorgegeben sein. Entsprechend würde sich die Anzahl der Einspritzparameter erhöhen.This results in a stationary parameter vector u e , k for the injection profile, each with a pre-injection and a main injection, as follows: u e , k = φ k PI m k PI φ k MI m k MI
Figure imgb0001
in which φ k PI
Figure imgb0002
the relative starting time or starting angle of the pilot injection (PI), φ k MI
Figure imgb0003
the relative starting time or starting angle of the main injection (MI), m k PI
Figure imgb0004
the injection amount of fuel of the pilot injection and m k MI
Figure imgb0005
the injection quantity of fuel correspond to the main injection for the respective work cycle k. The starting times can, for example, be specified independently of the rotational speed in the form of a crankshaft angle, in particular relative to a fixed predetermined crankshaft angle of a crankshaft of the internal combustion engine 1, such as a top dead center of the crankshaft movement. In Figure 2 correspond m k PI
Figure imgb0006
and m k MI
Figure imgb0007
the areas under the injection rate curve shown and thus the amount of fuel injected in each case. The number of preinjections and the number of main injections can, however, each be more than one and can be specified in particular as a function of the operating point, in particular indicated by the engine speed and the engine load. The number of injection parameters would increase accordingly.

In Figur 3 ist ein Funktionsdiagramm für eine Funktion zum Bereitstellen von angepassten Einspritzparametern u e , k

Figure imgb0008
in Form einer Ansteuergröße für ein Einspritzventil 5 eines Zylinders 2 dargestellt. Entsprechend den angepassten Einspritzparametern u e , k
Figure imgb0009
soll das dem Zylinder 2 zugeordneten Einspritzventil 5 angesteuert werden. Die entsprechenden angepassten Einspritzparameter u e , k
Figure imgb0010
werden dazu dem Einspritzblock 15 zugeführt, in dem die angepassten Einspritzparametern u e , k
Figure imgb0011
in zeitliche Ansteuersignale für das betreffende Einspritzventil 5 zum Öffnen und Schließen umgewandelt werden, insbesondere abhängig von einem Kurbelwellenwinkel und einer Motordrehzahl.In Figure 3 FIG. 13 is a functional diagram for a function for providing adapted injection parameters u e , k
Figure imgb0008
shown in the form of a control variable for an injection valve 5 of a cylinder 2. According to the adjusted injection parameters u e , k
Figure imgb0009
the injection valve 5 assigned to the cylinder 2 is to be activated become. The corresponding adjusted injection parameters u e , k
Figure imgb0010
are fed to the injection block 15, in which the adjusted injection parameters u e , k
Figure imgb0011
be converted into timing control signals for the relevant injection valve 5 for opening and closing, in particular as a function of a crankshaft angle and an engine speed.

Die Einspritzparameter der Ansteuergröße entsprechen stationären Einspritzparameter ue,k , die mit Korrektur-Einspritzparametern Δu e,k korrigiert sind. Damit können insbesondere für einen dynamischen Betriebsfall des Verbrennungsmotors 1 die Einspritzparameter der Ansteuergröße des für den Betriebspunkt relevanten Einspritzprofils angepasst bzw. korrigiert werden.The injection parameters of the control variable correspond to stationary injection parameters u e, k , which are corrected with correction injection parameters Δ u e , k. In this way, in particular for a dynamic operating case of the internal combustion engine 1, the injection parameters of the control variable of the injection profile relevant for the operating point can be adapted or corrected.

Dazu wird betriebspunktabhängig, d.h. abhängig von einer Motordrehzahl n des Verbrennungsmotors 1 und dem Sollmoment Msoll (entspricht arbeitsspielindividuelles M soll Arbeitsspiel

Figure imgb0012
), d.h. der angeforderten Last, stationäre Einspritzparameter ue,k eines Stationär-Einspritzprofils entsprechend einem vorgegebenen Einspritzprofilkennfeld, das in einem Stationär-Einspritzprofilblock 11 bereitgestellt wird, vorgegeben. Das Einspritzprofilkennfeld wird in der Regel offline, z.B. auf einem Prüfstand ermittelt, und in geeigneter Weise gespeichert und abrufbar zur Verfügung durch Vorgabe der Motordrehzahl n dem Sollmoment Msoll zur Verfügung gestellt.For this purpose, it is dependent on the operating point, ie dependent on an engine speed n of the internal combustion engine 1 and the setpoint torque M soll (corresponds to the individual working cycle M. should Work cycle
Figure imgb0012
), ie the requested load, stationary injection parameters u e, k of a stationary injection profile in accordance with a predetermined injection profile map which is provided in a stationary injection profile block 11. The injection profile map is usually determined offline, for example on a test stand, and is stored in a suitable manner and made available in a manner that can be called up by specifying the engine speed n for the setpoint torque M setpoint.

Das Einspritzprofilkennfeld kann als Look-up-Tabelle oder als Funktionsmodell, wie z.B. einem Gaußprozessmodell zur Verfügung gestellt werden.The injection profile map can be made available as a look-up table or as a functional model, such as a Gaussian process model.

Den stationären Einspritzparametern ue,k des Stationär-Einspritzprofils werden mit den Korrektur-Einspritzparametern Δue.k beaufschlagt, insbesondere hinzuaddiert. Alternativ können die stationären Einspritzparameter ue,k des Stationär-Einspritzprofils mit den Korrektur-Einspritzparametern Δue.k multipliziert oder in sonstiger Weise verknüpft werden.The stationary injection parameters u e, k of the stationary injection profile have the correction injection parameters Δ u ek applied to them, in particular added. Alternatively, the stationary injection parameters u e, k of the stationary injection profile can be multiplied by the correction injection parameters Δ u ek or linked in some other way.

Die Korrektur-Einspritzparameter Δue,k werden in einem Anpassungsblock 12 ermittelt. Im Anpassungsblock 12 können die Korrektur-Einspritzparameter Δue,k durch ein vorgegebenes Korrektureinspritzparametermodell berechnet werden.The correction injection parameters Δ u e, k are determined in an adaptation block 12. In the adaptation block 12, the correction injection parameters Δ u e, k can be calculated using a predefined correction injection parameter model.

Das Korrektureinspritzparametermodell kann z.B. einem durch ein per Online-Optimierung invertiertes Zylindermodell ΣC -1 entsprechen, das auf einem Verbrennungszyklusmodell ΣC basiert. Das Verbrennungszyklusmodell ΣC bildet die physikalischen Vorgänge in den Zylindern ab.The correction injection parameter model can, for example, correspond to a cylinder model Σ C -1 inverted by online optimization, which is based on a combustion cycle model Σ C. The combustion cycle model Σ C depicts the physical processes in the cylinders.

Alternativ kann in dem Anpassungsblock 12 das Ergebnis einer vergleichbaren, jedoch offline durchgeführten Optimierung in Kennfeldern abgelegt werden, die z.B. per Gauß-Prozess-Regression beschrieben sind.Alternatively, in the adaptation block 12, the result of a comparable, but offline optimization, can be stored in characteristic diagrams that are described, for example, by Gaussian process regression.

Die Verwendung von nicht parametrischen, datenbasierten Funktionsmodellen wie z.B. der Gauß-Prozess-Regression, basiert auf einem Bayes-Regressionsverfahren. Die Grundlagen der Bayes-Regression sind beispielsweise in C. E. Rasmussen et al., "Gaussian Processes for Machine Learning", MIT Press 2006 , beschrieben. Bei der Bayes-Regression handelt es sich um ein datenbasiertes Verfahren, das auf einem Modell basiert. Zur Erstellung des Modells sind Messpunkte von Trainingsdaten sowie zugehörige Ausgangsdaten einer zu modellierenden Ausgangsgröße erforderlich. Die Erstellung des Modells erfolgt anhand der Verwendung von Stützstellendaten, die den Trainingsdaten ganz oder teilweise entsprechen oder aus diesen generiert werden. Weiterhin werden abstrakte Hyperparameter bestimmt, die den Raum der Modellfunktionen parametrisieren und effektiv den Einfluss der einzelnen Messpunkte der Trainingsdaten auf die spätere Modellvorhersage gewichten.The use of non-parametric, data-based function models such as Gaussian process regression is based on a Bayesian regression method. For example, the basics of Bayesian regression are in CE Rasmussen et al., "Gaussian Processes for Machine Learning," MIT Press 2006 described. Bayesian regression is a data-based method that is based on a model. To create the model, measurement points of training data and associated output data of an output variable to be modeled are required. The model is created on the basis of the use of interpolation point data which correspond in whole or in part to the training data or are generated from them. Furthermore, abstract hyperparameters are determined, which parameterize the space of the model functions and effectively weight the influence of the individual measurement points of the training data on the later model prediction.

Die für das Korrektureinspritzparametermodell relevanten Eingangsgrößen können eine oder mehrere der folgenden Größen umfassen:

  • gemessene und/oder modellierte Bedingungen innerhalb des Einlasskrümmers 6 des Luftzuführungssystems 3 unmittelbar vor den Einlassventilen 7, z.B. einen Gasdruck pIM (t), eine Gastemperatur TIM (t) und eine Sauerstoffkonzentration X IM O 2 t ,
    Figure imgb0013
  • gemessene und/oder modellierte Bedingungen innerhalb des Auslasskrümmers 9 des Abgasabführungssystems 4 unmittelbar nach den Auslassventilen 8 umfassen, z.B. einen Gasdruck pEM (t), eine Gastemperatur TEM (t) und eine Sauerstoffkonzentration X EM O 2 t ,
    Figure imgb0014
  • einen Kraftstoffdruck pr (t),
  • eine Motordrehzahl n,
  • ein Sollmoment M soll Arbeitsspiel
    Figure imgb0015
    oder einen Soll-Mitteldruck (indiziert) IMEP p mi , soll Arbeitsspiel
    Figure imgb0016
    des Arbeitsspiels.
The input variables relevant for the correction injection parameter model can include one or more of the following variables:
  • measured and / or modeled conditions within the intake manifold 6 of the air supply system 3 immediately in front of the intake valves 7, for example a gas pressure p IM ( t ), a gas temperature T IM ( t ) and an oxygen concentration X IN THE O 2 t ,
    Figure imgb0013
  • measured and / or modeled conditions within the exhaust manifold 9 of the exhaust gas discharge system 4 immediately after the exhaust valves 8, for example a gas pressure p EM ( t ), a gas temperature T EM ( t ) and an oxygen concentration X EM O 2 t ,
    Figure imgb0014
  • a fuel pressure p r ( t ) ,
  • an engine speed n,
  • a target torque M. should Work cycle
    Figure imgb0015
    or a target mean pressure (indexed) IMEP p mi , should Work cycle
    Figure imgb0016
    of the work cycle.

Zur Reduktion der Modellkomplexität ist es möglich, auch nur eine Auswahl dieser Eingangsgrößen zu berücksichtigen.To reduce the complexity of the model, it is also possible to consider just a selection of these input variables.

Das Korrektureinspritzparametermodell liefert als Ausgangsgrößen die Korrektur-Einspritzparameter Δue,k. Aus den stationären Einspritzparametern ue,k des Einspritzprofils und den Korrektur-Einspritzparametern Δue,k resultieren die für das Arbeitsspiel k angepassten Einspritzparameter u e , k .

Figure imgb0017
The correction injection parameter model supplies the correction injection parameters Δ u e, k as output variables. The injection parameters adapted for the working cycle k result from the stationary injection parameters u e, k of the injection profile and the correction injection parameters Δ u e, k u e , k .
Figure imgb0017

In dem Formungsblock 13 werden anhand einer Abweichung zwischen den modellierten Verbrennungsmerkmalen k und gemessenen Verbrennungsmerkmalen zk für einen Zylinder 2 Kennwerte zur Korrektur einer oder mehrerer der obigen Eingangsgrößen, die für den Anpassungsblock 12 verwendet werden, ermittelt. Die eine oder die mehreren Eingangsgrößen werden in einem Korrekturanwendungsblock 19 durch Beaufschlagung mit einer oder mehreren Korrekturgrößen K ermittelt. Insbesondere werden Korrekturwerte K für eine oder mehrere Eingangsgrößen in einfacher Weise ausgewählt, die eine ausreichende Sensitivität zu dem betreffenden Verbrennungsmerkmal aufweisen.In the shaping block 13, on the basis of a deviation between the modeled combustion features ẑ k and measured combustion features z k for a cylinder 2, characteristic values for correcting one or more of the above input variables that are used for the adaptation block 12 are determined. The one or more input variables are determined in a correction application block 19 by applying one or more correction variables K. In particular, correction values K for one or more input variables are selected in a simple manner, which have sufficient sensitivity to the relevant combustion feature.

Zur Berechnung des Verbrennungszyklusmodells ΣC, z. B. innerhalb eines Modellblocks 14 bzw. in invertierter Form innerhalb eines Anpassungsblocks 12, werden als Randbedingungen des Luftsystems p IM t T IM t X IM O 2 t p EM T T EM t X EM O 2 t ,

Figure imgb0018
der Einspritzdruck pr (t), die Motordrehzahl n sowie die entsprechende korrigierten Einspritzparameter u e , k
Figure imgb0019
vorgegeben. Die Ausgangsgrößen des Verbrennungszyklusmodells ΣC können neben den Verbrennungsmerkmalen k , wie in dem Modellblock 14 dargestellt, beispielsweise auch die Schadstoffemissionen εNOx (Stickoxidemissionen), εPM (Rußemissionen) oder der indizierte Mitteldruck p mi , k Arbeitsspiel
Figure imgb0020
des gesamten Arbeitsspiels sein, wie in Anpassungsblocks 12 verwendet (nicht in Figur 2 dargestellt).To calculate the combustion cycle model Σ C , e.g. B. within a model block 14 or in an inverted form within an adaptation block 12, are used as boundary conditions of the air system p IN THE t T IN THE t X IN THE O 2 t p EM T T EM t X EM O 2 t ,
Figure imgb0018
the injection pressure p r ( t ), the engine speed n and the corresponding corrected injection parameters u e , k
Figure imgb0019
given. The output variables of the combustion cycle model Σ C can, in addition to the combustion features ẑ k , as shown in the model block 14, for example also the pollutant emissions ε NO x (Nitrogen oxide emissions), ε PM (soot emissions) or the indicated mean effective pressure p mi , k Work cycle
Figure imgb0020
of the entire working cycle as used in adaptation block 12 (not in Figure 2 shown).

Das Verbrennungszyklusmodell ΣC umfasst mehrere Modellteile, die Teilphasen des Arbeitsspiels in einem Zylinder 2 entsprechen. Die Teilphasen umfassen z. B. die Gaswechselphase, die Kompressionsphase und die Verbrennungsphase. Die Teilphasen sind durch entsprechende thermodynamische Zustände x t = m t m O 2 t p t T bzw . x φ = m φ m O 2 φ p φ T

Figure imgb0021
(ϕ entspricht dem Kurbelwellenwinkel) der Zylinderfüllung eines Zylinders (Masse m, Sauerstoffmasse m O2 und Zylinderdruck p) für den Zeitpunkt des Öffnens des Auslassventils 8 t t k bzw . φ φ k ,
Figure imgb0022
des Schließens des Einlassventils 7 t t k ES bzw . φ φ k ES
Figure imgb0023
und des Starts der ersten Voreinspritzung t t k PI bzw . φ φ k PI
Figure imgb0024
miteinander gekoppelt. Hinsichtlich der Modellierung sind die einzelnen Phasen wie folgt charakterisiert:

  • Während der Gaswechselphase kann ein physikalisches, konzentriert parametrisches Zylindermodell mit Drosselgleichungen für die Einlass- und Auslassventile verwendet werden,
    • Gesamtmassenbilanzgleichung dm t dt = m ˙ AV t m ˙ EV t
      Figure imgb0025
      • AV : Massenstrom durch das Auslassventil
      • EV : Massenstrom durch das Einlassventil
    • Sauerstoffmassenbilanzgleichung dm O 2 t dt = m ˙ AV O 2 t m ˙ EV O 2 t
      Figure imgb0026
      • m ˙ AV O 2
        Figure imgb0027
        : Sauerstoffmassenstrom durch das Auslassventil
      • m ˙ EV O 2
        Figure imgb0028
        : Sauerstoffmassenstrom durch das Einlassventil
    • Drosselgleichung zur Beschreibung des Massenstroms durch das Einlass- bzw. Auslassventil m ˙ v t = α v A v p u 2 R T u κ κ 1 p d p u 2 κ p d p u κ + 1 κ mit p u > p d
      Figure imgb0029
      • αv : Durchflusskoeffizient
      • Av : effektive Querschnittsfläche
      • R : spezifische Gaskonstante
      • T u : Temperatur in Strömungsrichtung vor dem Ventil
      • p u : Druck in Strömungsrichtung vor dem Ventil
      • pd : Druck in Strömungsrichtung nach dem Ventil
      • κ : Isentropenexponent
      • v : Laufvariable für die Ventile (Einlass und Auslass) mit v ∈ {AV,EV}
    • Druckdifferentialgleichung (hergeleitet aus der Energiebilanzgleichung) dp t dt = R V c v v f m ˙ v f t h f T ˜ h f T + c p R f T R c p R p V ˙
      Figure imgb0030
      • R : spezifische Gaskonstante
      • V : aktuelles Zylindervolumen
      • : zeitliche Änderung des Zylindervolumens
      • c v : spezifische isochore Wärmekapazität
      • c p : spezifische isobare Wärmekapazität
      • hf : spezifische Enthalpie des Fluids f
      • T : aktuelle Zylindertemperatur
      • Rf : spezifische Gaskonstante der Gaskomponente f
      • R : spezifische Gaskonstante des Gasgemisches
      • v : Laufvariable für die Ventile (Einlass und Auslass) mit v ∈ {AV,EV}
      • f : Laufvariable für die betrachteten Gaskomponenten mit f e {O 2,...}
    • Berechnungsgleichung des indizierten Mitteldrucks p mi , k Gaswechsel
      Figure imgb0031
      während der Gaswechselphase φ k < φ φ k ES
      Figure imgb0032
      bzw. T K < t t k ES
      Figure imgb0033
      p mi , k Gaswechsel = 1 V zyl t k A O ¨ t k ES p t V ˙ t dt
      Figure imgb0034
      VH : Hubvolumen des Zylinders
The combustion cycle model Σ C comprises several model parts which correspond to partial phases of the work cycle in a cylinder 2. The sub-phases include e.g. B. the gas exchange phase, the compression phase and the combustion phase. The sub-phases are through corresponding thermodynamic states x t = m t m O 2 t p t T or . x φ = m φ m O 2 φ p φ T
Figure imgb0021
corresponds to the crank angle) of the cylinder charge of a cylinder (mass m, the oxygen mass m O 2 and cylinder pressure p) for the time of opening the exhaust valve 8 t t k or . φ φ k ,
Figure imgb0022
the closing of the inlet valve 7 t t k IT or . φ φ k IT
Figure imgb0023
and the start of the first pilot injection t t k PI or . φ φ k PI
Figure imgb0024
coupled with each other. With regard to the modeling, the individual phases are characterized as follows:
  • During the gas exchange phase, a physical, concentrated parametric cylinder model with throttle equations for the inlet and outlet valves can be used,
    • Total mass balance equation dm t German = m ˙ AV t - m ˙ EV t
      Figure imgb0025
      • AV : mass flow through the outlet valve
      • EV : mass flow through the inlet valve
    • Oxygen mass balance equation dm O 2 t German = m ˙ AV O 2 t - m ˙ EV O 2 t
      Figure imgb0026
      • m ˙ AV O 2
        Figure imgb0027
        : Oxygen mass flow through the outlet valve
      • m ˙ EV O 2
        Figure imgb0028
        : Oxygen mass flow through the inlet valve
    • Throttle equation to describe the mass flow through the inlet or outlet valve m ˙ v t = α v A. v p u 2 R. T u κ κ - 1 p d p u 2 κ - p d p u κ + 1 κ With p u > p d
      Figure imgb0029
      • α v : flow coefficient
      • A v : effective cross-sectional area
      • R : specific gas constant
      • T u : temperature in the direction of flow upstream of the valve
      • p u : Pressure in the direction of flow upstream of the valve
      • p d : pressure in the direction of flow after the valve
      • κ : isentropic exponent
      • v : Run variable for the valves (inlet and outlet) with v ∈ {AV, EV}
    • Pressure differential equation (derived from the energy balance equation) dp t German = R. V c v v f m ˙ v f t H f T ˜ - H f T + c p R. f T R. - c p R. p V ˙
      Figure imgb0030
      • R : specific gas constant
      • V : current cylinder volume
      • V̇: change in cylinder volume over time
      • c v : specific isochoric heat capacity
      • c p : specific isobaric heat capacity
      • h f : specific enthalpy of the fluid f
      • T : current cylinder temperature
      • R f : specific gas constant of the gas component f
      • R : specific gas constant of the gas mixture
      • v : Run variable for the valves (inlet and outlet) with v ∈ {AV, EV}
      • f : running variable for the considered gas components with f e { O 2 , ...}
    • Calculation equation for the indicated mean effective pressure p mi , k Gas switch
      Figure imgb0031
      during the gas exchange phase φ k < φ φ k IT
      Figure imgb0032
      or. T K < t t k IT
      Figure imgb0033
      p mi , k Gas switch = 1 V cyl t k A. O ¨ t k IT p t V ˙ t German
      Figure imgb0034
      V H : displacement of the cylinder

Während der Kompressionsphase kann ein physikalisches konzentriert parametrisches Zylindermodell verwendet werden.

  • Gesamtmassenbilanzgleichung dm t dt = 0
    Figure imgb0035
  • Sauerstoffmassenbilanzgleichung dm O 2 t dt = 0
    Figure imgb0036
  • Druckdifferentialgleichung (hergeleitet aus der Energiebilanzgleichung) dp t dt = c p p V ˙ V c v
    Figure imgb0037
  • Berechnungsgleichung des indizierten Mitteldrucks während der Kompressionsphase φ k ES < φ φ k PI
    Figure imgb0038
    bzw. t k ES < t t k PI
    Figure imgb0039
    p mi , k Kompression = 1 V zyl t k ES t k PI p t V ˙ t dt
    Figure imgb0040
A physical, concentrated parametric cylinder model can be used during the compression phase.
  • Total mass balance equation dm t German = 0
    Figure imgb0035
  • Oxygen mass balance equation dm O 2 t German = 0
    Figure imgb0036
  • Pressure differential equation (derived from the energy balance equation) dp t German = - c p p V ˙ V c v
    Figure imgb0037
  • Calculation equation for the indicated mean effective pressure during the compression phase φ k IT < φ φ k PI
    Figure imgb0038
    or. t k IT < t t k PI
    Figure imgb0039
    p mi , k compression = 1 V cyl t k IT t k PI p t V ˙ t German
    Figure imgb0040

Während der Verbrennungsphase kann eine datenbasierte Approximation der Verbrennungsphase durch eine Gauß-Prozess-Regression zur Beschreibung der Ausgangsgrößen, wie beispielsweise von Schadstoffemissionen εNOx , εPM und des indizierten Mitteldrucks p mi , k Verbrennung ,

Figure imgb0041
in Abhängigkeit des Zylinderfüllungszustands x t k PI
Figure imgb0042
bzw. x φ k PI
Figure imgb0043
(als Ergebnis der Modellteile der Gaswechselphase und der Kompressionsphase), der Einspritzparameter, wobei diese beliebige Werte innerhalb des Modellgültigkeitsbereichs annehmen können, also z. B. die stationärenDuring the combustion phase, a data-based approximation of the combustion phase using a Gaussian process regression can be used to describe the output variables, such as pollutant emissions ε NO x , ε PM and the indicated mean effective pressure p mi , k combustion ,
Figure imgb0041
depending on the cylinder filling level x t k PI
Figure imgb0042
or. x φ k PI
Figure imgb0043
(as a result of the model parts of the gas exchange phase and the compression phase), the injection parameters, whereby these can assume any values within the model validity range, e.g. B. the stationary

Einspritzparameter ue,k oder die angepassten Einspritzparameter u e , k ,

Figure imgb0044
dem Kraftstoffdruck pr und der Motordrehzahl n modelliert werden.

  • Physikalisch motivierte Approximation der Gesamtmassenbilanzgleichung (Beschreibung der Zylindermasse zum Zeitpunkt - Auslassventil öffnet) m t k A O ¨ = m t k PI + m k PI + m k MI
    Figure imgb0045
  • Physikalisch motivierte Approximation der Sauerstoffmassenbilanzgleichung (Beschreibung der Sauerstoffmasse innerhalb des Zylinders zum Zeitpunkt - Auslassventil öffnet) m O 2 t k A O ¨ = m O 2 t k PI μ O 2 m k PI + m k MI
    Figure imgb0046
    µ O2 : stöchiometrischer Faktor (Sauerstoffbedarf)
  • Datenbasierte Approximation der Druckdifferentialgleichung (basierend auf dem mathematischen Fluss der Differentialgleichung) z. B. per Gauß-Prozess-Regression p t k A O ¨ M GPR , p A O ¨ x t p PI , u e , k , p r , n E
    Figure imgb0047
  • Datenbasierte Approximation der NOx und Ruß Emissionen sowie des indizierten Mitteldrucks p mi , k Verbrennung
    Figure imgb0048
    z. B. per Gauß-Prozess-Regression p mi , k Verbrennung M GPR , p mi A O ¨ x t k PI , u e , k , p r , n E
    Figure imgb0049
    ε NO x M GPR , NO x A O ¨ x t k PI , u e , k , p r , n E
    Figure imgb0050
    ε PM M GPR , PM A O ¨ x t k PI , u e , k , p r , n E
    Figure imgb0051
Injection parameters u e, k or the adapted injection parameters u e , k ,
Figure imgb0044
the fuel pressure p r and the engine speed n can be modeled.
  • Physically motivated approximation of the total mass balance equation (description of the cylinder mass at the point in time - exhaust valve opens) m t k A. O ¨ = m t k PI + m k PI + m k MI
    Figure imgb0045
  • Physically motivated approximation of the oxygen mass balance equation (description of the oxygen mass within the cylinder at the point in time - exhaust valve opens) m O 2 t k A. O ¨ = m O 2 t k PI - μ O 2 m k PI + m k MI
    Figure imgb0046
    µ O2 : stoichiometric factor (oxygen demand)
  • Data-based approximation of the pressure differential equation (based on the mathematical flow of the differential equation) e.g. B. by Gaussian process regression p t k A. O ¨ M. GPR , p A. O ¨ x t p PI , u e , k , p r , n E.
    Figure imgb0047
  • Data-based approximation of the NOx and soot emissions as well as the indicated mean effective pressure p mi , k combustion
    Figure imgb0048
    z. B. by Gaussian process regression p mi , k combustion M. GPR , p mi A. O ¨ x t k PI , u e , k , p r , n E.
    Figure imgb0049
    ε NO x M. GPR , NO x A. O ¨ x t k PI , u e , k , p r , n E.
    Figure imgb0050
    ε PM M. GPR , PM A. O ¨ x t k PI , u e , k , p r , n E.
    Figure imgb0051

Die Berechnung des indizierten Mitteldrucks des gesamten Arbeitsspiels p mi , k Arbeitsspiel

Figure imgb0052
erfolgt entsprechend p mi , k Arbeitsspiel = p mi , k Gaswechsel + p mi , k Kompression + p mi , k Verbrennung .
Figure imgb0053
The calculation of the indicated mean effective pressure of the entire work cycle p mi , k Work cycle
Figure imgb0052
takes place accordingly p mi , k Work cycle = p mi , k Gas switch + p mi , k compression + p mi , k combustion .
Figure imgb0053

Die Bestimmung der Korrektureinspritzparameter Δue,k in Anpassungsblock 12 kann durch eine optimierungsbasierte Inversion des Verbrennungszyklusmodells ΣC erreicht werden, um das Korrektureinspritzparametermodell zu erhalten und um damit die Korrektureinspritzparameter Δue,k zu bestimmen. Dazu wird das Verbrennungszyklusmodell ΣC hinsichtlich der Einspritzparameter invertiert, um ein invertiertes Verbrennungszyklusmodell ΣC -1 zu erhalten. Die Invertierung eines Gaußprozessmodells ist aus dem Stand der Technik bekannt und kann beispielsweise mithilfe eines Newton-Verfahrens vorgenommen werden.The determination of the correction injection parameters Δ u e, k in adaptation block 12 can be achieved by an optimization-based inversion of the combustion cycle model Σ C in order to obtain the correction injection parameter model and thus to determine the correction injection parameters Δ u e, k. For this purpose, the combustion cycle model Σ C is inverted with regard to the injection parameters in order to obtain an inverted combustion cycle model Σ C -1 . The inversion of a Gaussian process model is known from the prior art and can be carried out, for example, with the aid of a Newton method.

Ist der mit den Einspritzparametern verknüpfte Teil des Verbrennungszyklusmodells mittels einem oder mehreren Gaußprozess-Modellen beschrieben, speziell die Emissionen, so können deren Vorhersagewerte innerhalb einer Gütefunktion zusammengefasst werden. Anhand dieser Gütefunktion kann gemäß dem Stand der Technik, z.B. mithilfe eines Newton-Verfahrens, eine optimierungsbasierte Inversion der GPR-Modelle durchgeführt werden, d. h. die Bestimmung der Korrektureinspritzparameter Δue,k , die die Gütefunktion (lokal / global) minimieren. Dies stellt die optimierungsbasierte Inversion des Verbrennungszyklusmodells dar. Es können auch andere optimierungsbasierte Verfahren zum Einsatz kommen. Ziel der Optimierung ist einerseits durch die Korrektur-Einspritzparameter Δue,k die Schadstoffemissionen εNOx , εPM , den Kraftstoffverbrauch oder dergleichen zu optimieren und dabei andererseits das für das Arbeitsspiel gewünschte Sollmoment M soll Arbeitsspiel

Figure imgb0054
bzw. den damit korrelierten indizierten Mitteldruck p pmi , soll Arbeitsspiel
Figure imgb0055
unter Berücksichtigung des Gaswechsels und der Kompression zu erzielen.If the part of the combustion cycle model linked to the injection parameters is described by means of one or more Gaussian process models, especially the emissions, then their forecast values can be summarized within a quality function. Based on this quality function, according to the prior art, for example using a Newton method, an optimization-based inversion of the GPR models can be carried out, ie the determination of the correction injection parameters Δ u e, k which minimize the quality function (local / global). This represents the optimization-based inversion of the combustion cycle model. Other optimization-based methods can also be used. The aim of the optimization is on the one hand the pollutant emissions ε NO through the correction injection parameters Δ u e, k x , ε PM , to optimize fuel consumption or the like and, on the other hand, to optimize the setpoint torque desired for the work cycle M. should Work cycle
Figure imgb0054
or the correlated indicated mean effective pressure p pmi , should Work cycle
Figure imgb0055
taking into account the gas exchange and the compression.

Für die Bestimmung der Korrektureinspritzparameter Δue,k werden die für die Verbrennungsphase gültigen Gauß-Prozess-Modelle (bezüglich Stickoxidemissionen εNOx , Rußemissionen εPM oder des indizierten Mitteldrucks p mi Verbrennung

Figure imgb0056
der Verbrennungsphase, ...) entsprechend einer Optimierung invertiert, so dass man abhängig von frei formulierbaren Optimierungszielen für die Schadstoffemissionen εNOx , εPM und dem für das Arbeitsspiel einzuhaltenden indizierten Mitteldruck p pmi , soll Arbeitsspiel
Figure imgb0057
die entsprechenden Korrektur-Einspritzparameter Δule,k des Einspritzprofils erhalten kann.To determine the correction injection parameters Δ u e, k , the Gaussian process models valid for the combustion phase (with regard to nitrogen oxide emissions ε NO x , Soot emissions ε PM or the indicated mean effective pressure p mi combustion
Figure imgb0056
the combustion phase, ...) is inverted according to an optimization, so that depending on freely formulable optimization goals for the pollutant emissions ε NO x , ε PM and the indicated mean pressure to be maintained for the work cycle p pmi , should Work cycle
Figure imgb0057
the corresponding correction injection parameters Δ u le, k of the injection profile can be obtained.

Die Optimierung, die durch eine Minimierung einer Gütefunktion unter Beachtung von vorgegebenen Randbedingungen erfolgen kann, kann die folgende mathematische Struktur aufweisen: min Δ u e , k Δ U e , k J ε NO x , ε PM , m k PI + m k MI Allgemeine Gütefunktion = w NO x ε NO x + w PM ε PM + w fuel m k PI + m k MI Struktur einer Gütefunktion exemplarish

Figure imgb0058
The optimization, which can be carried out by minimizing a quality function taking into account given boundary conditions, can have the following mathematical structure: min Δ u e , k Δ U e , k J ε NO x , ε PM , m k PI + m k MI General Quality function = w NO x ε NO x + w PM ε PM + w fuel m k PI + m k MI structure one Quality function exemplary
Figure imgb0058

Nebenbedingung der Optimierung: 0 = p mi Verbrennung = p mi , soll Arbeitsspiel p mi Gaswechsel p mi Kompression p mi , soll Verbrennung

Figure imgb0059
Secondary condition of the optimization: 0 = p mi combustion = p mi , should Work cycle - p mi Gas switch - p mi compression p mi , should combustion
Figure imgb0059

Dies entspricht einem physikalisch / datenbasierten Modell der Gaswechsel-,Kompressions- und Verbrennungsphase entsprechend des Verbrennungszyklusmodells ΣC mit Δue,k als zulässigen Wertebereich der Korrektur-Einspritzparameter Δ ue,k, w ... den Gewichtungsfaktoren der jeweiligen Gütefunktionselemente und der Gesamteinspritzmenge m k PI + m k MI ,

Figure imgb0060
hier beispielhaft für 2 Einspritzungen.This corresponds to a physical / data-based model of the gas exchange, compression and combustion phase corresponding to the combustion cycle model Σ C with Δ u e, k as the permissible value range of the correction injection parameters Δ u e, k , w ... the weighting factors of the respective quality function elements and the Total injection quantity m k PI + m k MI ,
Figure imgb0060
here as an example for 2 injections.

Die für die Verbrennungsphase berücksichtigten Gauß-Prozess-Modelle, die im beschriebenen Ausführungsbeispiel für die Optimierung in Anpassungsblock 12 zum Einsatz kommen, können des Weiteren so modifiziert sein, dass bei deren Modellbildung die Information über die drehzahl-/lastabhängigen stationären Einspritzparameter ue,k bereits direkt berücksichtigt bzw. mitgelernt werden. Durch diese Maßnahme werden die mit der Kraftstoffeinspritzung verknüpften Eingangsgrößen der Gauß-Prozess-Modelle von Einspritzparametern mit "absoluten" Bezug z. B. u e,k in Einspritzparameter mit relativem Bezug Δue,k transformiert. Da somit die vom Motorbetriebspunkt abhängigen Einstellgrenzen der Einspritzparameter, z.B. hinsichtlich der Einspritzzeitpunkte, implizit innerhalb der Gauß-Prozess-Modelle berücksichtigt sind, können die Optimierungsgrenzen als einfache Box Constraints formuliert werden und das Ergebnis der Optimierung liefert zusätzlich direkt die Ausgangswerte von Block 12. Des Weiteren können durch die Transformation der Variablen direkt analytische Ableitung hinsichtlich der durch die Optimierung zu bestimmenden Korrektur-Einspritzparameter Δue,k berechnet werden.The Gaussian process models taken into account for the combustion phase, which are used in the described exemplary embodiment for the optimization in adaptation block 12, can also be modified in such a way that the information about the speed / load-dependent stationary injection parameters u e, k can already be taken into account or learned directly. Through this measure, the input variables of the Gaussian process models linked to the fuel injection of injection parameters with "absolute" reference z. B. u e , k transformed into injection parameters with a relative reference Δ u e, k . There Thus, the setting limits of the injection parameters that depend on the engine operating point, e.g. with regard to the injection times, are implicitly taken into account within the Gaussian process models, the optimization limits can be formulated as simple box constraints and the result of the optimization also provides the output values from block 12 directly By transforming the variables, direct analytical derivation can be calculated with regard to the correction injection parameters Δ u e, k to be determined by the optimization.

Als Optimierungsverfahren zur Bestimmung der Korrektureinspritzparameter Δue,k kommen herkömmliche Optimierungsverfahren wie Gradientenabstiegsverfahren oder dergleichen in Betracht.Conventional optimization methods such as gradient descent methods or the like come into consideration as optimization methods for determining the correction injection parameters Δ u e, k.

Durch das Zylindermodell der Gaswechselphase und das Zylindermodell der Kompressionsphase werden die Randbedingungen der Optimierung ermittelt. Dies umfasst den Zylinderfüllungszustand x t k PI

Figure imgb0061
bzw. x φ k PI
Figure imgb0062
zu Beginn der Verbrennung (bzw. des Verbrennungstaktes) und das von der Verbrennungsphase zu erzeugende Soll-Moment M soll Verbrennung
Figure imgb0063
bzw. der soll-indizierte Mitteldruck IMEP p mi , soll Verbrennung
Figure imgb0064
der Verbrennungsphase entsprechend p mi , soll Verbrennung = p mi , soll Arbeitsspiel p mi Gaswechsel p mi Kompression
Figure imgb0065
wobei sich der indizierte Soll-Mitteldruck p mi , soll Arbeitsspiel
Figure imgb0066
des Arbeitsspiels aus dem Soll-Moment des Arbeitsspiels M soll Arbeitsspiel
Figure imgb0067
entsprechend p pmi , soll Arbeitsspiel = 4 π M soll Arbeitsspiel V H
Figure imgb0068
ergibt (V H - Hubvolumen des Zylinders). Das Moment M soll Arbeitsspiel
Figure imgb0069
beschreibt die aus dem Fahrerwunsch und den Anforderungen der Nebenaggregate (Klimaanlage, ...) abgeleitete Momentenanforderung, die integral innerhalb eines Arbeitsspiels erzeugt werden muss.The boundary conditions of the optimization are determined by the cylinder model of the gas exchange phase and the cylinder model of the compression phase. This includes the cylinder filling condition x t k PI
Figure imgb0061
or. x φ k PI
Figure imgb0062
at the beginning of the combustion (or the combustion cycle) and the target torque to be generated by the combustion phase M. should combustion
Figure imgb0063
or the target-indicated mean pressure IMEP p mi , should combustion
Figure imgb0064
according to the combustion phase p mi , should combustion = p mi , should Work cycle - p mi Gas switch - p mi compression
Figure imgb0065
where the indicated target mean effective pressure p mi , should Work cycle
Figure imgb0066
of the working cycle from the target moment of the working cycle M. should Work cycle
Figure imgb0067
corresponding p pmi , should Work cycle = 4th π M. should Work cycle V H
Figure imgb0068
gives ( V H - stroke volume of the cylinder). The moment M. should Work cycle
Figure imgb0069
describes the torque requirement derived from the driver's request and the requirements of the auxiliary units (air conditioning, ...), which must be generated integrally within a work cycle.

Die Optimierungsvariablen sind die Korrektureinspritzparameter Δue,k , die die gesuchten Korrekturwerte der durch Motordrehzahl n und Soll-Moment M soll bestimmten stationären Einspritzparameter ue,k darstellen.The optimization variables are the correction injection parameters Δ u e, k , which represent the correction values sought for the stationary injection parameters u e, k determined by engine speed n and setpoint torque M should .

Die Verbrennungsschwerpunktlage ϕ 50 (beschreibt den Kurbelwellenwinkel, an dem 50% des eingebrachten Kraftstoffs chemisch umgesetzt wurden) und/oder andere Verbrennungsmerkmale zk (z. B. ϕ 10 , ϕ 90, Kurbelwinkelposition und Wert des Zylinderspitzendrucks, Kurbelwinkelposition und Wert des maximalen Druckgradients usw.) können basierend auf Zustandsgrößen des Verbrennungsmotors 1 ermittelt werden. Insbesondere kann die Verbrennungsschwerpunktlage sowie die übrigen Verbrennungsmerkmale durch einen Zylinderdrucksensor direkt erfasst oder alternativ aus einer Analyse eines Verlaufs der Motordrehzahl abgeleitet werden.The combustion center of gravity ϕ 50 (describes the crankshaft angle at which 50% of the fuel introduced was chemically converted) and / or other combustion features z k (e.g. ϕ 10 , ϕ 90 , crank angle position and value of the cylinder peak pressure, crank angle position and value of the maximum pressure gradient etc.) can be determined based on state variables of the internal combustion engine 1. In particular, the center of combustion and the other combustion features can be detected directly by a cylinder pressure sensor or, alternatively, can be derived from an analysis of a course of the engine speed.

Man kann zusätzliche eine Korrektur des für die Optimierung verwendeten Verbrennungszyklusmodells vorsehen. Die Korrektur kann durch Anpassung von deren Eingangsgrößen erfolgen.A correction of the combustion cycle model used for the optimization can also be provided. The correction can be made by adapting their input variables.

Für diesen Zweck werden in einem Modellblock 14 von mindestens einem separaten Anpassungsmodell, z.B. mithilfe eines Gauß-Prozess-Modells, das einem Modellteil des Verbrennungszyklusmodells entsprechen kann, ein oder mehrere Verbrennungsmerkmale k , wie z.B. eine Verbrennungsschwerpunktlage ϕ 50, sowie ϕ 10,ϕ 90 (Kurbelwinkelpositionen nach 10%iger oder 90%iger Verbrennung des Kraftstoffs), die Kurbelwinkelposition und der Wert des Zylinderspitzendrucks oder die Kurbelwinkelposition und der Wert des maximalen Druckgradients, vorhergesagt, wobei die Eingangsgrößen zumindest teilweise modellidentisch zu denen der Optimierung im Anpassungsblock 12 sind. Durch Vergleich bzw. Differenzbildung in einem Differenzblock 16 mit Verbrennungsmerkmalen k , die anhand von Zustandsgrößen des Verbrennungsmotors 1 in einem Verbrennungsmerkmalblock 18 bestimmten werden, ergibt sich dabei eine Abweichung mit einem Fehler Δ zk .For this purpose, one or more combustion features ẑ k , such as a combustion center of gravity ϕ 50 , as well as ϕ 10 , ϕ 90 (crank angle positions after 10% or 90% combustion of the fuel), the crank angle position and the value of the cylinder peak pressure or the crank angle position and the value of the maximum pressure gradient, the input variables being at least partially model-identical to those of the optimization in the adaptation block 12. By comparing or forming the difference in a difference block 16 with combustion features ẑ k , which are determined on the basis of state variables of the internal combustion engine 1 in a combustion feature block 18, a deviation with an error Δ z k results.

Der Fehler in einer bestimmten Eingangsgröße, z.B. der Fehler der geschätzten Sauerstoffmasse nach dem Schließen des betreffenden Einlassventils, wird dann anhand eines Modells in einem Korrekturmodellblock 17 bestimmt, das deren Sensitivität zur Abweichung Δzk des Verbrennungsmerkmals beschreibt. Der Korrekturmodellblock 17 liefert dazu einen oder mehrere Korrekturwerte K zur Beaufschlagung von entsprechenden Eingangsgrößen, um den so geschätzten Fehler der Eingangsgröße im nächsten Arbeitsspiel k+1 für die Korrektur der betreffenden Eingangsgröße zu verwenden.The error in a certain input variable, for example the error in the estimated oxygen mass after the relevant inlet valve has been closed, is then determined on the basis of a model in a correction model block 17, which describes its sensitivity to the deviation Δ z k of the combustion feature. To this end, the correction model block 17 supplies one or more correction values K for applying corresponding input variables in order to use the error of the input variable estimated in this way in the next working cycle k + 1 for the correction of the relevant input variable.

Claims (10)

  1. Method for operating an internal combustion engine (1) by specifying an injection profile which is defined by adapted injection parameters u e , k ,
    Figure imgb0080
    having the following steps:
    - determining steady-state injection parameters (ue,k ) on the basis of a specified steady-state injection profile characteristic diagram;
    - determining correction injection parameters (Δue,k ) on the basis of a specified correction injection parameter model which makes available correction injection parameters (Δue,k ) as a function of one or more state variables of an air feed system (3) and/or exhaust gas discharge system (4) of the internal combustion engine (1);
    - applying the correction injection parameters (Δue,k ) to the steady-state injection parameters (ue,k ), in order to obtain the adapted injection parameters u e , k ,
    Figure imgb0081
    wherein the correction injection parameters (Δue,k ) are determined by inverting a specified combustion cycle model as the correction injection parameter model using an optimization method, wherein the combustion cycle model corresponds to a combined physical/data-based model for describing physical processes in a cylinder (2) of the internal combustion engine (1), wherein the optimization method is carried out to optimize one or more pollutant emissions or a fuel consumption value with a respectively individually adaptable weighting.
  2. Method according to Claim 1, wherein a boundary condition of the optimization method is selected for the optimization, such that a generated engine torque or an indexed mean pressure ρ mi , k work cycle
    Figure imgb0082
    of the combustion remains constant.
  3. Method according to Claim 1, wherein the correction injection parameter model is specified using a specified, data-based, non-parametric model, in particular a Gaussian process model, which is learnt offline.
  4. Method according to one of Claims 1 to 3, wherein input variables which are relevant for the correction injection parameter model comprise one or more of the following variables:
    - a gas pressure (ρIM (t)), a gas temperature (TIM (t)) and an oxygen concentration X IM O 2 t
    Figure imgb0083
    in an inlet manifold of the internal combustion engine (1),
    - a gas pressure (ρEM (t)), a gas temperature (TEM (t)) and an oxygen concentration X EM o 2 t
    Figure imgb0084
    in an outlet manifold of the internal combustion engine (1),
    - a fuel pressure (ρr (t)),
    - an engine speed (n),
    - a setpoint torque ρ setp work cycle
    Figure imgb0085
    or an indexed setpoint mean pressure ρ mi , setp work cycle
    Figure imgb0086
    of the work cycle.
  5. Method according to one of Claims 1 to 4, wherein one or more of the input variables of the correction injection parameter model are corrected as a function of a difference between one or more actual combustion features of a combustion in the cylinder (2) of the internal combustion engine (1) and one or more modelled combustion features of the combustion in the cylinder (2) of the internal combustion engine (1).
  6. Method according to Claim 5, wherein the one or more modelled combustion features are determined on the basis of at least some of the input variables for the correction injection parameter model and the adapted injection parameters (ue,k ) according to a combustion cycle model which is specified, in particular, using a data-based, non-parametric model, in particular a Gaussian process model.
  7. Device, in particular control unit (10), for operating an internal combustion engine (1) in an engine system by specifying an injection profile which is defined by adapted injection parameters u e , k ,
    Figure imgb0087
    wherein the device is designed:
    - to determine steady-state injection parameters (ue,k ) on the basis of a specified steady-state injection profile characteristic diagram;
    - to determine correction injection parameters (Δue,k ) on the basis of a specified correction injection parameter model, which makes available correction injection parameters (Δue,k ) as a function of one or more state variables of an air feed system and/or exhaust gas discharge system (3, 4) of the internal combustion engine (1); and
    - to apply the correction injection parameters (Δue,k ) to the steady-state injection parameters (ue,k ), in order to obtain the adapted injection parameters u e , k ,
    Figure imgb0088
    wherein the correction injection parameters (Δue.k ) are determined by inverting a specified combustion cycle model as the correction injection parameter model using an optimization method, wherein the combustion cycle model corresponds to a combined physical/data-based model for describing physical processes in a cylinder (2) of the internal combustion engine (1), wherein the optimization method is carried out to optimize one or more pollutant emissions or a fuel consumption value with a respectively individually adaptable weighting.
  8. Engine system comprising:
    - an internal combustion engine (1); and
    - a device according to Claim 7.
  9. Computer program which is configured to carry out all the steps of a method according to one of Claims 1 to 6, on a device according to Claim 7.
  10. Machine-readable storage medium in which a computer program according to Claim 9 is stored.
EP17710200.1A 2016-03-30 2017-03-09 Method and device for operating an internal combustion engine with a variable injection profile Active EP3436681B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016205241.1A DE102016205241A1 (en) 2016-03-30 2016-03-30 Method and device for operating an internal combustion engine with a variable injection profile
PCT/EP2017/055515 WO2017167561A1 (en) 2016-03-30 2017-03-09 Method and device for operating an internal combustion engine with a variable injection profile

Publications (2)

Publication Number Publication Date
EP3436681A1 EP3436681A1 (en) 2019-02-06
EP3436681B1 true EP3436681B1 (en) 2021-06-02

Family

ID=58266607

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17710200.1A Active EP3436681B1 (en) 2016-03-30 2017-03-09 Method and device for operating an internal combustion engine with a variable injection profile

Country Status (4)

Country Link
EP (1) EP3436681B1 (en)
CN (1) CN108884772B (en)
DE (1) DE102016205241A1 (en)
WO (1) WO2017167561A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018001727B4 (en) 2018-03-05 2021-02-11 Mtu Friedrichshafen Gmbh Method for model-based control and regulation of an internal combustion engine
DE102018120975A1 (en) * 2018-08-28 2020-03-05 Technische Universität Darmstadt Method for controlling and regulating the diesel engine combustion of a diesel engine
DE102018120974A1 (en) * 2018-08-28 2020-03-05 Technische Universität Darmstadt Method for determining a target combustion gas condition for a diesel engine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006061659B4 (en) * 2006-12-27 2010-04-08 Continental Automotive Gmbh Method and device for controlling an internal combustion engine
DE102008001081B4 (en) * 2008-04-09 2021-11-04 Robert Bosch Gmbh Method and engine control device for controlling an internal combustion engine
DE102013200932B4 (en) * 2013-01-22 2015-04-02 Robert Bosch Gmbh Method and device for monitoring a function of an engine control unit for use in an engine system with an internal combustion engine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2017167561A1 (en) 2017-10-05
DE102016205241A1 (en) 2017-10-05
CN108884772B (en) 2022-03-01
CN108884772A (en) 2018-11-23
EP3436681A1 (en) 2019-02-06

Similar Documents

Publication Publication Date Title
DE102015219684B4 (en) Control device and control method for an internal combustion engine
DE102015211808B4 (en) Control device for internal combustion engine
EP2029872B1 (en) Method for operating an internal combustion engine
DE102011052224B4 (en) A method of compensating for valve lift deviation of an engine equipped with CVVL mechanism
EP3308007B1 (en) Air charge determination, engine control unit and internal combustion engine
DE102016215610B4 (en) Control system for an internal combustion engine equipped with a supercharger
WO2006069853A1 (en) Method for the operation of an internal combustion engine
DE102011100291A1 (en) Method for controlling the timing of a multiple injection
WO2009074400A2 (en) Method for determining adapted measuring values and/or model parameters for controlling the air flow path of internal combustion engines
DE102007012604A1 (en) A method of controlling an injection of a direct injection internal combustion engine injector and a direct injection internal combustion engine
EP3436681B1 (en) Method and device for operating an internal combustion engine with a variable injection profile
EP0966600B1 (en) Process and device for controlling the mixture in an internal combustion engine
DE102012212479B4 (en) System and method for estimating an intake charge temperature for internal combustion engines
DE102007039691A1 (en) Modeling method and control unit for an internal combustion engine
DE102016208980A1 (en) Method and device for operating an internal combustion engine
WO2002020967A1 (en) Method for determining nox mass flow from characteristics map data with a variable air inlet and engine temperature
WO1998037321A9 (en) Process and device for controlling the mixture in an internal combustion engine
DE102008043315A1 (en) Method for operating internal combustion engine, particularly for motor vehicle, involves detecting combustion chamber pressure within combustion chamber of combustion engine
EP3499011A1 (en) Method and control device for determining a target inlet manifold pressure of a combustion engine
DE10356713B4 (en) Method for controlling or controlling an internal combustion engine operating in a cyclic process
EP3155247A1 (en) Method and control unit for carrying out a gas exchange in a cylinder of an internal combustion engine and internal combustion engine having such a control unit
DE102016200782A1 (en) Method and apparatus for determining a gas guide system size in an engine system having an internal combustion engine
DE102018132188A1 (en) MOTOR OPERATING SYSTEM AND METHOD
DE102010043966A1 (en) Method and device for controlling a gasoline engine in auto-ignition operation
DE102018120975A1 (en) Method for controlling and regulating the diesel engine combustion of a diesel engine

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181030

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201218

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1398653

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017010534

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210902

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210903

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210902

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211004

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017010534

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

26N No opposition filed

Effective date: 20220303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220309

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220309

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220309

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220309

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1398653

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220309

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230524

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602