EP3430662A1 - Plaque bipolaire à largeur variable des canaux à gaz de réaction dans la zone d'entrée de la zone active, empilement de cellules à combustible et système de cellules à combustible comportant de telles plaques bipolaires et véhicule - Google Patents

Plaque bipolaire à largeur variable des canaux à gaz de réaction dans la zone d'entrée de la zone active, empilement de cellules à combustible et système de cellules à combustible comportant de telles plaques bipolaires et véhicule

Info

Publication number
EP3430662A1
EP3430662A1 EP17731159.4A EP17731159A EP3430662A1 EP 3430662 A1 EP3430662 A1 EP 3430662A1 EP 17731159 A EP17731159 A EP 17731159A EP 3430662 A1 EP3430662 A1 EP 3430662A1
Authority
EP
European Patent Office
Prior art keywords
fuel cell
channels
width
region
active region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP17731159.4A
Other languages
German (de)
English (en)
Inventor
Hannes Scholz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Audi AG
Volkswagen AG
Original Assignee
Audi AG
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Audi AG, Volkswagen AG filed Critical Audi AG
Publication of EP3430662A1 publication Critical patent/EP3430662A1/fr
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0265Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant the reactant or coolant channels having varying cross sections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0213Gas-impermeable carbon-containing materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04126Humidifying
    • H01M8/04134Humidifying by coolants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the invention relates to a bipolar plate for a fuel cell, the two profiled
  • Separator plates has, each having an active area and two manifold areas for supply and discharge of reaction gases and coolants to or from the active area, the separator plates are formed such that the bipolar plate has separate channels for the reaction gases and the coolant, which ports for
  • Reaction gases and coolant both distribution areas connect together and each formed as an open channel-like channel structures, the two profiled
  • Separator plates are arranged one above the other, that in the adjacent sides through the channel structures coolant channels are formed, a
  • Fuel cell stack a fuel cell system and a vehicle.
  • Fuel cells use the chemical transformation of a fuel with oxygen to water to generate electrical energy.
  • fuel cells contain as core component the so-called membrane electrode assembly (MEA for membrane electrode assembly), which is a composite of an ion-conducting, in particular proton-conducting membrane and in each case an electrode arranged on both sides of the membrane (anode and cathode).
  • MEA membrane electrode assembly
  • GDL gas diffusion layers
  • the fuel cell is formed by a multiplicity of stacked MEAs whose electrical powers add up.
  • the fuel in particular hydrogen H 2 or a hydrogen-containing gas mixture
  • the anode where an electrochemical oxidation of H 2 to H + takes place with emission of electrons.
  • an electrochemical oxidation of H 2 to H + takes place with emission of electrons.
  • the electrolyte or the membrane which separates the reaction spaces gas-tight from each other and electrically isolated, takes place (water-bound or anhydrous) transport of protons H + from the anode compartment in the cathode compartment.
  • the electrons provided at the anode are supplied to the cathode via an electrical line.
  • the cathode is supplied with oxygen or an oxygen-containing gas mixture, so that a reduction of 0 2 to O 2 " taking the Electrons take place.
  • these oxygen anions in the cathode compartment react with the protons transported via the membrane to form water.
  • the fuel cell is formed by a plurality of membrane-electrode units arranged in the stack, so that it is also referred to as a fuel cell stack. Between two membrane-electrode units, a bipolar plate is in each case arranged, which is a supply of the individual cells with the operating media, ie the reactants and a
  • the bipolar plates provide an electrically conductive contact to the membrane-electrode assemblies. Furthermore, they ensure a tight separation between anode and cathode space.
  • the bipolar plates are usually constructed of two profiled electrically conductive Separatorplatten, which arranged a structure in the form of either side of the plates
  • Operating media are in turn separated by the plates so that inside the plate the coolant is passed while outside the reactant gases are conducted.
  • the channels of the reactant gases are limited on the one hand by the respective plate and on the other by a gas diffusion layer.
  • a bipolar plate is known from DE 10 2008 033 21 1 A1, in which the width of the channels of a reaction gas and the webs lying therebetween is continuously varied.
  • the invention is based on the object, a bipolar plate and a
  • a bipolar plate for a fuel cell which has two profiled separator plates, each having an active region and two distributor regions for the supply and discharge of reaction gases and coolants
  • the bipolar plate according to the invention is characterized by the following configurations of the channel structures:
  • the channels for a reaction gas or both reaction gases have a smaller width in an inlet region of the active region than in the remaining partial region of the active region, the width of the channels increasing continuously from the beginning to the end of the inlet region.
  • channel width and land width represents a channel land unit and is also referred to as a "channel pitch”.
  • the width of the reaction gas channels in the region of the gas inlet is reduced in the active area, as it is provided in the other active area and thus increased the width of the webs between the reaction gas channels, so that the reaction gases and the product water in less Extent through the GDL diffuse, and thus sets a higher humidity difference between the membrane and reaction gas channels.
  • the inlet region occupies 5 to 30%, preferably 10 to 25% and particularly preferably 20% of the active region, so that the membrane is already sufficiently moistened at the beginning of the active region and at the same time an excessive moistening in the further course of the active Area is avoided.
  • the width of the channels or of the webs can be adjusted from the beginning to the end of the
  • Entry area continuously or discontinuously be designed increasingly.
  • the channel width in the entry region is smaller than in the remaining active region, but constant, and that the channels widen only upon entry into the remaining region of the active region.
  • a short transition region can be provided, which avoids a step in the channels.
  • bipolar plate can be implemented advantageously in metallic or graphitic bipolar plates.
  • the invention can be preferably used to control the humidification of the cathode gas, but it is also suitable for the control of the humidity of the anode gas. Likewise, both reaction gases can simultaneously by a
  • Embodiment of the inlet region of the bipolar plate with respect to the humidification can be influenced.
  • Velocity distribution in the anode and cathode gas channels optimized in the active region of the bipolar plate means that as far as possible over the entire active area uniform pressure conditions, uniform humidification of Reactants and the membrane and same flow rates are present.
  • the performance and service life of the fuel cell stack are advantageously increased thereby.
  • the fuel cell stack according to the invention comprises a stack alternately
  • Another aspect of the invention relates to a fuel cell system comprising fuel cell stacks according to the invention and a vehicle having at least one
  • the vehicle is preferably an electric vehicle, in which an electrical energy generated by the fuel cell system of the supply of an electric traction motor and / or a
  • FIG. 2 shows in a diagram the profiles of the relative humidity of a membrane and in the reaction gas channel along the active region of the bipolar plate in comparison with the minimum moisture content of the membrane
  • FIG. 3 shows a schematic view of the structure according to the invention
  • FIG. 4 shows in a diagram a web-channel ratio of the bipolar plate according to FIG. 3 in relation to the active region
  • FIG. 5 shows in a diagram the profiles of the relative humidity of a membrane and in the reaction gas channel along the active region of the bipolar plate according to FIG. 3 in comparison with the minimum moisture content of the membrane
  • Figure 6 is a schematic sectional view of the structure of a metallic
  • FIG. 7 shows in schematic sectional views A-A and B-B of the bipolar plate according to FIG. 3 the structure of a metallic embodiment
  • FIG. 9 shows a schematic view of the structure according to the invention.
  • FIG. 10 shows in a diagram a web-channel ratio of the bipolar plate according to FIG. 9 in relation to the active region
  • Figure 1 1 is a graph showing the profiles of the relative humidity of a membrane and in the reaction gas channel along the active region of the bipolar plate according to Figure 9 in comparison with the minimum moisture content of the membrane.
  • FIG. 1 shows a bipolar plate 10 according to the prior art.
  • the bipolar plate 10 has two profiled separator plates 12, 14, wherein only one separator plate 12, 14 is visible in the plan view.
  • the separator plates 12, 14 together form an active region 16, on both sides of the manifold areas 18, 20 adjacent, each having two ports 22, 24 for reaction gases and a port 26 for a coolant, over which the active region 16, the reaction gases and the coolant be forwarded and derived from this again.
  • In the bipolar plate 10 separate channels run 28, 30, 32 for the
  • Reaction gases and the coolant which are open groove-like structures, of which only the channels 28 are represented symbolically for a reaction gas by a reinforced line.
  • Figure 1 shows a longitudinal section through one of the channels 28 for a reaction gas, wherein the flow direction 42 is indicated by an arrow. From one side 44 of the channels 28, which, when the bipolar plate 10 is arranged in a fuel cell stack, not shown, adjacent to a gas diffusion layer, penetrates product water 46 of the cell reaction, symbolized by arrows, in this, so that the reaction gas is moistened.
  • the proportion of water (curve 48a) in the reaction gas and the proportion of water (curve 48b) in the membrane of a fuel cell are shown in a diagram in FIG.
  • the reaction gas enters the active region 16 with an insufficient amount of water, that is, the water content is lower than the required minimum moisture content of the membrane. Accordingly, the actual water content of the membrane at the beginning of the active region 16 is too low for optimum reaction of the reaction gases.
  • the reaction gas continuously absorbs product water 46, so that the water content of reaction gas and membrane above the required minimum moisture increase.
  • Figure 3 is an inventively designed bipolar plate 10 for a
  • the construction of the bipolar plate 10 according to the invention corresponds to that of the bipolar plate 10 according to FIG. 1 with the difference according to the invention that the active region 16 is divided into an inlet region 34 in which the reaction gas flows into the active region 16 and into a remaining partial region 36.
  • the channels 28 for a reaction gas have a smaller width B2 than in the partial region 36, while the webs 54 located between the channels 28 have a greater width B1. This is shown in more detail in FIGS. 5 and 7.
  • the entrance area 34 is optically delimited by a vertical line to the partial area 36, which otherwise has no technical significance. This applies correspondingly to the vertical line in FIG. 9.
  • the ratio of the width B1 of the web 54 to the width B2 of the reaction gas channel 28 is shown in a curve 49.
  • this ratio is, for example, 2: 1 (reference numeral 49a), which falls to 1: 1 (reference numeral 49b) with entry into the remaining portion 36 of the active region 16.
  • FIG. 5 shows, as in FIG. 2, the course of the water content in the reaction gas (curve 48a) and in the membrane (curve 48b) of a fuel cell in a diagram and the permissible one Minimum moisture content (curve 48) of the membrane in relation to the length I of the active region 16.
  • a moisture of the membrane is achieved in the inlet region 34, which is above the required minimum moisture, so that an optimized cell reaction can already occur in the inlet area.
  • the humidity increases until the entry region 34 ends and then drops abruptly to the required minimum moisture content.
  • An extension of the inlet region 34 would result in a further increase in the humidity, but would have a negative effect that the passage of the reaction gas to / through the narrow channels 28 would be hindered.
  • FIGS. 6 and 7 show a bipolar plate 10 according to FIG. 3 in sectional views AA and BB, with the sections AA in the inlet region 34 and the sections BB in the remaining partial region 36 of the active region 16.
  • the open, channel-like reaction gas channels 28, 32 adjoin to a GDL 50 in which a membrane 52 is located.
  • section A-A has a width B1 for the passage 30 through the channel
  • FIG. 8 shows simulation results of the local current-voltage characteristic assuming different channel geometries, ie narrow compared to wide webs 54 or correspondingly narrow or wide channels 28 and with differently set relative humidities in the reaction gas channel 28 (60% vs. 100%).
  • the curves show 100% relative humidity for wide lands 54 (56a), 100% for narrow lands 54 (58a), 60% for wide lands 54 (56b), 60% for narrow lands 54 (58b).
  • the results show that at high humidity narrow webs 54 are advantageous (dashed lines), but at low humidity wide webs 54 can lead to higher power (solid lines). Therefore, the embodiment according to the invention of the active region 16 with wide webs 54 in the entry region 34 and with narrower webs 54 in the remaining subregion 36 of the active region 16 is advantageous.
  • FIG. 9 shows a bipolar plate 10 designed according to the invention after a second one
  • the entry region 34 is designed in such a way that the width B2 of the channel 28 increases continuously from the beginning of the entry region 34 to the remaining subregion 36 and then retains its width B2.
  • the ratio of the width B1 of the web 54 to the width B2 of the reaction gas channel 28 is shown in a curve 49. In the inlet region 34, this ratio is for example 2: 1 and falls continuously (reference numeral 49a) until it enters the remaining portion 36 of the active region 16 to 1: 1 (reference numeral 49b).
  • Figure 1 1 shows the course of the water content in the reaction gas 48a and in the membrane 48b of a fuel cell in a diagram and the minimum permissible moisture of the membrane 48 in relation to the length I of the active region 16.
  • the inlet region 34 is characterized by the
  • inventive design achieves a humidity of the membrane, which over the

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

L'invention vise à produire une plaque bipolaire (10), qui est destinée à une cellule à combustible qui possède deux plaques de séparation profilées (12, 14) formées de telle sorte que la plaque bipolaire (10) comporte des conduits séparés (28, 30, 32) destinés aux gaz de réaction et à l'agent de refroidissement et dans laquelle la composition du gaz dans la zone active est prise en compte. Selon l'invention, les conduits (28, 32) destinés à un gaz de réaction ou aux deux gaz de réaction ont dans une zone d'entrée (34) de la zone active (16) une largeur inférieure (B2) à celle dans la zone partielle restante (36) de la zone active, leur largeur (B2) augmentant en continu du début à la fin de la zone d'entrée (34), tandis que des nervures (54) situées entre les conduits (28, 32) ont une largeur (B1) plus grande que celle dans la zone partielle restante (36) de la zone active (16), la somme de la largeur (B2) des conduits et de la largeur (B1) des nervures (54) étant constante. De plus, il est proposé selon l'invention que la largeur (B2, B1) des conduits (28, 32) et celle des nervures (54) sont constantes dans toute zone partielle restante (36). L'invention concerne également un empilement de cellules à combustible, un système de cellules à combustible et un véhicule.
EP17731159.4A 2016-06-24 2017-06-20 Plaque bipolaire à largeur variable des canaux à gaz de réaction dans la zone d'entrée de la zone active, empilement de cellules à combustible et système de cellules à combustible comportant de telles plaques bipolaires et véhicule Ceased EP3430662A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016111638.6A DE102016111638A1 (de) 2016-06-24 2016-06-24 Bipolarplatte mit variabler Breite der Reaktionsgaskanäle im Eintrittsbereich des aktiven Bereichs, Brennstoffzellenstapel und Brennstoffzellensystem mit solchen Bipolarplatten sowie Fahrzeug
PCT/EP2017/065049 WO2017220552A1 (fr) 2016-06-24 2017-06-20 Plaque bipolaire à largeur variable des canaux à gaz de réaction dans la zone d'entrée de la zone active, empilement de cellules à combustible et système de cellules à combustible comportant de telles plaques bipolaires et véhicule

Publications (1)

Publication Number Publication Date
EP3430662A1 true EP3430662A1 (fr) 2019-01-23

Family

ID=59078085

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17731159.4A Ceased EP3430662A1 (fr) 2016-06-24 2017-06-20 Plaque bipolaire à largeur variable des canaux à gaz de réaction dans la zone d'entrée de la zone active, empilement de cellules à combustible et système de cellules à combustible comportant de telles plaques bipolaires et véhicule

Country Status (7)

Country Link
US (1) US11108059B2 (fr)
EP (1) EP3430662A1 (fr)
JP (1) JP6745920B2 (fr)
KR (1) KR102307256B1 (fr)
CN (1) CN109417176B (fr)
DE (1) DE102016111638A1 (fr)
WO (1) WO2017220552A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7176490B2 (ja) * 2019-07-19 2022-11-22 トヨタ車体株式会社 燃料電池スタック
DE102020203066A1 (de) * 2020-03-11 2021-09-16 Robert Bosch Gesellschaft mit beschränkter Haftung Bipolarplatte mit optimiertem Massenstrom
CN113839060A (zh) * 2020-06-24 2021-12-24 未势能源科技有限公司 燃料电池单元和燃料电池电堆结构
DE102020128279A1 (de) 2020-10-28 2022-04-28 Audi Aktiengesellschaft Bipolarplatte und Brennstoffzellenstapel
DE102021100186A1 (de) * 2021-01-08 2022-07-14 Audi Aktiengesellschaft Bipolarplatte mit im aktiven Bereich vorhandenen Kanalaufteilungen und Brennstoffzellenstapel
DE102021214667A1 (de) 2021-12-20 2023-06-22 Robert Bosch Gesellschaft mit beschränkter Haftung Bipolarplatte für eine elektrochemische Zelle und Verfahren zum Herstellen einer Bipolarplatte

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6756149B2 (en) 2001-10-23 2004-06-29 Ballard Power Systems Inc. Electrochemical fuel cell with non-uniform fluid flow design
JP4585737B2 (ja) * 2002-08-12 2010-11-24 本田技研工業株式会社 燃料電池
US7951507B2 (en) * 2004-08-26 2011-05-31 GM Global Technology Operations LLC Fluid flow path for stamped bipolar plate
TW200737576A (en) * 2006-03-24 2007-10-01 Asia Pacific Fuel Cell Tech Gas-inlet pressure adjustment structure for bipolar plate of fuel cell stack
DE102006027034A1 (de) 2006-06-08 2007-12-13 Daimlerchrysler Ag Brennstoffzelle mit einer Separatorplatteneinheit und Separatorplatteneinheit
EP2026393A1 (fr) * 2007-08-13 2009-02-18 Nissan Motor Co., Ltd. Séparateur de pile à combustible et pile à combustible
DE102008033211A1 (de) * 2008-07-15 2010-01-21 Daimler Ag Bipolarplatte für eine Brennstoffzellenanordnung, insbesondere zur Anordnung zwischen zwei benachbarten Membran-Elektroden-Anordnungen
JP5589946B2 (ja) 2011-04-20 2014-09-17 トヨタ自動車株式会社 燃料電池及びその製造方法

Also Published As

Publication number Publication date
JP6745920B2 (ja) 2020-08-26
KR20190021357A (ko) 2019-03-05
JP2019518317A (ja) 2019-06-27
US20190229347A1 (en) 2019-07-25
CN109417176A (zh) 2019-03-01
US11108059B2 (en) 2021-08-31
DE102016111638A1 (de) 2017-12-28
CN109417176B (zh) 2022-07-08
KR102307256B1 (ko) 2021-09-30
WO2017220552A1 (fr) 2017-12-28

Similar Documents

Publication Publication Date Title
WO2017220552A1 (fr) Plaque bipolaire à largeur variable des canaux à gaz de réaction dans la zone d'entrée de la zone active, empilement de cellules à combustible et système de cellules à combustible comportant de telles plaques bipolaires et véhicule
WO2017186770A1 (fr) Plaque bipolaire comportant des canaux à gaz réactif présentant des surfaces de section transversale variables, empilement de pile à combustible et véhicule équipé d'un tel empilement de pile à combustible
DE102008013439B4 (de) Brennstoffzellenstapel und Bipolarplatte für eine Brennstoffzelle
EP3378117B1 (fr) Plaque bipolaire à sections d'étanchéité asymétriques et empilement de piles à combustible muni d'une telle plaque bipolaire
WO2017025555A1 (fr) Plaque bipolaire ainsi qu'empilement de piles à combustible muni d'une plaque bipolaire de ce type
EP3884535B1 (fr) Plaque de pile à combustible, plaque bipolaire et système de pile à combustible
DE102015225228A1 (de) Bipolarplatte für eine Brennstoffzelle sowie Brennstoffzellenstapel mit einer solchen
DE112007000282T5 (de) Brennstoffzelle
DE10220183A1 (de) Brennstoffzelle
DE102017101954A1 (de) Membran-Elektroden-Anordnung und Brennstoffzellenstapel
EP4154335B1 (fr) Plaque bipolaire et empilement de piles à combustible
EP3736894B1 (fr) Plaque bipolaire pour piles à combustible, empilement de piles à combustible doté de telles plaques bipolaires ainsi que véhicule doté d'un tel empilement de piles à combustible
WO2017085030A1 (fr) Empilement de piles à combustible, comprenant des plaques bipolaires, et système de piles à combustible
DE102019205069A1 (de) Bipolarplatte für Brennstoffzellen, Brennstoffzellenstapel mit solchen Bipolarplatten sowie Fahrzeug mit einem solchen Brennstoffzellenstapel
DE102018211078B3 (de) Bipolarplatte für Brennstoffzellen mit drei Einzelplatten, sowie Brennstoffzelle und Brennstoffzellenstapel mit solchen Bipolarplatten
EP4165705B1 (fr) Plaque bipolaire et empilement de piles à combustible
DE102012011441A1 (de) Membran-Elektroden-Einheit für eine Brennstoffzelle
DE102016201707A1 (de) Bipolarplatte für Brennstoffzellen mit verbesserter Struktur, Brennstoffzellenstapel mit solchen Bipolarplatten sowie Fahrzeug mit einem solchen Brennstoffzellenstapel
DE102020114066A1 (de) Bipolarplatte
DE102015222245A1 (de) Polarplatte für einen Brennstoffzellenstapel
WO2022090128A1 (fr) Pile individuelle et empilement de piles à combustible ayant des structures élastiques pour distribuer uniformément des milieux de travail
DE102019206118A1 (de) Bipolarplatte für Brennstoffzellen umfassend elastische elektrodenseitige Strukturelemente
WO2021233647A1 (fr) Plaque bipolaire
DE102019205579A1 (de) Bipolarplatte für Brennstoffzellen, Brennstoffzellenstapel mit solchen Bipolarplatten sowie Fahrzeug mit einem solchen Brennstoffzellenstapel
DE102018218076A1 (de) Membran-Elektroden-Anordnung für eine Brennstoffzelle, Brennstoffzellenstapel sowie Fahrzeug mit einem solchen Brennstoffzellenstapel

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181017

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20190905

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20201217