EP3414020B1 - Method for covering internal walls of a cavity with a protective layer made of corrosion protecting wax or other wax based corrosion protecting material - Google Patents

Method for covering internal walls of a cavity with a protective layer made of corrosion protecting wax or other wax based corrosion protecting material Download PDF

Info

Publication number
EP3414020B1
EP3414020B1 EP17703199.4A EP17703199A EP3414020B1 EP 3414020 B1 EP3414020 B1 EP 3414020B1 EP 17703199 A EP17703199 A EP 17703199A EP 3414020 B1 EP3414020 B1 EP 3414020B1
Authority
EP
European Patent Office
Prior art keywords
mist
cavity
protective agent
corrosion
wax
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17703199.4A
Other languages
German (de)
French (fr)
Other versions
EP3414020A1 (en
Inventor
Bernhard Woll
Marc Engelhart
Fredy Doll
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IPR Intelligente Peripherien fuer Roboter GmbH
Original Assignee
IPR Intelligente Peripherien fuer Roboter GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IPR Intelligente Peripherien fuer Roboter GmbH filed Critical IPR Intelligente Peripherien fuer Roboter GmbH
Publication of EP3414020A1 publication Critical patent/EP3414020A1/en
Application granted granted Critical
Publication of EP3414020B1 publication Critical patent/EP3414020B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/06Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00 specially designed for treating the inside of hollow bodies
    • B05B13/0627Arrangements of nozzles or spray heads specially adapted for treating the inside of hollow bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/02Arrangements for controlling delivery; Arrangements for controlling the spray area for controlling time, or sequence, of delivery
    • B05B12/06Arrangements for controlling delivery; Arrangements for controlling the spray area for controlling time, or sequence, of delivery for effecting pulsating flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/22Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to internal surfaces, e.g. of tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/10Spray pistols; Apparatus for discharge producing a swirling discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2259/00Applying the material to the internal surface of hollow articles other than tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2501/00Varnish or unspecified clear coat
    • B05D2501/10Wax
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0218Pretreatment, e.g. heating the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies

Definitions

  • the invention relates to a method for covering the inner walls of a cavity of a vehicle body or an add-on part for a vehicle body with a protective layer of anti-corrosion wax or a wax-based anti-corrosion agent according to the preamble of claim 1.
  • Generic methods are used in vehicle construction in order to protect body parts and in particular cavities in body parts and their attachments such as flaps, doors and the like against environmental influences. Typically, this is done by either applying anti-corrosion wax to the surfaces in question by spraying or by flooding the cavities with anti-corrosion wax and then removing excess protective wax from the surfaces in question.
  • Spraying corrosion protection wax does not allow complex geometries to reach all surfaces of the cavity starting from an exit point of the protection wax. Beyond, for example, bulkhead sheets that apply to the reinforcement, spray shadow areas that cannot be reached can remain. Even tight geometries such as intermediate areas of double-walled designs are difficult to reach by spraying.
  • Flooding with anti-corrosive wax requires great energy and amounts of protective wax and is made more difficult by the need to remove the excess protective wax. Furthermore, improvements in cycle times when applying anti-corrosion wax by flooding are difficult to achieve.
  • a method for lining pipes of a pipeline is known.
  • a plastic mist is used here.
  • a method for reducing leakage on pipes is known, which is based on the fact that an aqueous wax dispersion is passed through the pipe and reaches the surrounding earth through damaged areas, where it seals the damaged area.
  • Another method for repairing pipes in the ground is known.
  • From the GB 867303 A is a process for lining steel tanks known.
  • the US 3488213 A discloses a method for lining beer kegs with a wax layer.
  • the object of the invention is to provide a technically uncomplicated method by means of which a reliable covering of inner surfaces of a cavity is possible with little use of protective agents.
  • Corrosion protection wax or wax-based corrosion protection agent is brought into a nebulized form (protective agent mist) by means of a mist generator and supplied to the cavity of the vehicle body or the add-on part to be preserved through an outlet opening.
  • the protective agent mist consists of air and droplets of the anti-corrosion wax or wax-based anti-corrosion agent, the mean diameter of the droplets of the supplied mist is ⁇ 60 ⁇ m and the droplets of the protective agent mist emerge from the outlet opening at a speed of ⁇ 10 m / s.
  • the protective agent mist is deposited on the inner walls of the cavity of the vehicle body or the add-on part and forms a layer of anti-corrosion agent here.
  • the corrosion protection agent used in the method according to the invention can be designed as a corrosion protection wax and as such has a wax content (mineral oil-based wax / paraffin) of at least 50% by weight.
  • wax-based corrosion protection agents with a lower wax content of at least 5% by weight and preferably between 5% by weight and 15% by weight can also be used.
  • Such corrosion protection agents can in particular also contain a proportion between 15% by weight and 30% by weight of a polyester resin. This gives the used protective layer a high degree of thermal stability after it has dried through.
  • corrosion protection agent includes both classic corrosion protection wax with a high wax content and corrosion protection agent with a lower wax content.
  • a fog atmosphere of corrosion protection agent and gas is generated within the cavity or such a fog atmosphere is supplied to the cavity becomes.
  • This consists of gas, especially air, and the finest droplets of the anti-corrosion agent. These are atomized small enough to be able to float in the surrounding air.
  • the average droplet size of the droplets of the corrosion protection agent in the mist is ⁇ 60 ⁇ m, in particular preferably ⁇ 30 ⁇ m or even ⁇ 10 ⁇ m on average.
  • a protective agent mist is generated by means of a suitable mist generator.
  • This can be a single-substance nozzle, for example, to which the corrosion agent is supplied at high pressures. This is explained in more detail below. Compared to the single-substance nozzle, which is operated at high pressures, a two-substance nozzle is considered to be advantageous, since very small droplets can also be generated at lower pressures.
  • fog is also known as an undesirable side effect of wax spraying, as can be seen, for example, in DE 102009052089 A1 .
  • the discharge process is preferably of such a type, in particular by the choice of the nozzle used and the pressure under which the anti-corrosion agent and possibly compressed air is supplied, that at least 50%, preferably at least 80%, of the droplets produced have a size of around does not deviate more than 20% from the mean droplet size mentioned.
  • the fog atmosphere of the protective agent mist which according to the invention is introduced into the cavity for the purpose of surface coating, largely does not directly affect the walls of the cavity, unlike when spraying the anti-corrosion agent, but initially distributes itself in the cavity and then also deposits surfaces that would not be directly accessible by spraying from the outlet opening.
  • the size of the droplets and the exit velocity and, if appropriate, also the influence on the mist formed should preferably be selected in order to generate this mist atmosphere such that at least 50% of the volume flow of the protective agent introduced takes 5 seconds or more until the droplets have deposited on the walls.
  • the foggy atmosphere therefore has time to be largely homogeneously distributed in the cavity.
  • the type of precipitation of the protective agent and the layer formation can be influenced by targeted heating or cooling of the walls of the cavity. Furthermore, it is also possible to influence the precipitation by electrostatically charging the protective agent before or during the discharge and / or charging of the walls.
  • the solidification can be brought about by an elevated temperature and a reduced temperature of the protective agent.
  • chemical drying, radiation drying or drying by air flow is also possible.
  • the protective agent mist can remain in the cavity at the end of the process or can be extracted from it.
  • the types of wax that are usually used today for spraying or flooding the cavities in vehicles are suitable as corrosion protection agents.
  • the anti-corrosion wax with the brand name Eftec Efcoat WH 320 A1 is just one example, which can be used here.
  • Other corrosion protection agents mentioned by way of example, which can be removed by means of the method according to the invention, are the corrosion protection agents available under the brand names Anticorit CPX 3373 LV and Anticorit DS 329 DE.
  • Anticorit CPX 3373 is a wax-based corrosion protection agent with a wax content of approximately 5 to 15% by weight and a polyester resin as an additive with a content between 15% and 30% by weight.
  • Such wax-based corrosion protection agents have proven to be particularly suitable for atomization.
  • Such an anti-corrosion agent preferably further comprises a filler, in particular with a proportion between 15% by weight and 25% by weight and / or additives such as anti-corrosion additives with a proportion from 10% by weight to 20% by weight.
  • the viscosity of the corrosion protection agent used is preferably below 750 mPas, particularly preferably below 600 mPas. Such low-viscosity corrosion protection agents have proven to be advantageous in order to generate the desired protective agent mist.
  • the droplets of the protective agent mist emerge from the outlet opening at a speed of ⁇ 10 m / s, in particular ⁇ 5 m / s, preferably 2 ⁇ m / s, particularly preferably ⁇ 0.5 m / s.
  • the velocity of the droplets being discharged is not completely uniform.
  • the two-substance nozzles that are preferably used for the generation of mist for example a Miniquest nozzle from Düsen-Schlick GmbH from Untersiemau / Coburg, produce droplets of different speeds. Usually, the speed is highest in a center of the cloud of nascent.
  • the speed values given above do not take these particularly fast droplets into account. They relate to the 80% of the volume flow that is generated by the slowest droplets.
  • a gas is supplied to the cavity at a different second introduction point in order to influence the direction of the flow of the protective agent mist in the cavity and / or the speed of the protective agent mist to reduce.
  • This gas which can in particular be air, is preferably supplied through a second opening in the walls of the cavity, this opening being particularly preferably arranged at a location of the cavity opposite the mist generator.
  • the supply of gas serves in particular the purpose of producing a type of gas or air cushion which is able to prevent droplets of the protective agent mist from directly hitting one of the walls of the cavity.
  • a counter pressure that counteracts the spreading of the droplets is generated, by means of which the droplets are braked so that they become part of a foggy atmosphere.
  • a particularly low volume flow becomes the cavity regarded as particularly advantageous, in particular a volume flow of the corrosion protection agent of less than 200 g / minute, preferably less than 100 g / minute, particularly preferably less than 50 g / minute.
  • the protective agent mist can be supplied at several points or at different points within the cavity to be preserved.
  • the protective agent mist can also be supplied by means of a plurality of mist generators which are arranged at different points within the cavity to be preserved and / or are arranged in different directions relative to the cavity to be preserved.
  • the fog atmosphere can be created from both ends by means of several outlet openings, which are arranged, for example, at opposite ends of an elongated cavity.
  • an outlet opening which is movable within the cavity and discharges at different points, a very homogeneous fog atmosphere can be created with only one outlet opening.
  • a plurality of outlet openings which point in different directions, particularly in conjunction with a joint movement of these outlet openings through the cavity, it can be ensured particularly well that the foggy atmosphere also reaches surface areas which are difficult to access.
  • Protective agent mist can be supplied via several mist generators, for example by using a two-substance nozzle in combination with the above-mentioned supply of gas. By introducing protective agent mist through two approximately oppositely oriented nozzles, it is achieved that these generate a standing mist cloud in a particularly advantageous manner Droplets do not precipitate on walls of the cavity immediately after introduction into the cavity.
  • the protective agent mist can be moved within the cavity by generating a pressure difference between two disputed partial areas of the cavity.
  • a periodically repeated movement of the protective mist in the cavity can be generated by alternately generating an overpressure and a vacuum in at least one partial area of the cavity.
  • the protective agent mist distributes itself largely homogeneously in the cavity.
  • a distribution of the droplets of the protective agent mist can be positively influenced if the introduction takes place in a pulsed manner.
  • This is understood to mean that the parameters of the fog generation by the at least one fog generator change repeatedly.
  • the pressure of the air supplied to the mist generator could fluctuate periodically.
  • the average frequency of the pulsed operation is preferably between 0.1 Hz and 5 Hz.
  • mist generators which operate in such a way that a first of the two mist generators and a second of the two mist generators alternately discharge the relatively larger volume flow.
  • two separate and controllable mist generators are provided which are spaced apart and which alternate with the larger volume flow of corrosion protection agent deliver. This also makes it possible to generate a periodically recurring movement of the fog, which causes the fog to be distributed quickly and homogeneously.
  • a typical workpiece, which is protected against corrosion by the method according to the invention is the partial area of a body with an elongated cavity. In such a case, it is possible to let the protective mist exit through the outlet opening in alignment with the main direction of extension of the cavity.
  • the protective mist can also emerge from the outlet opening in a direction that is angled relative to the main direction of extent of such a cavity.
  • the protective mist moves helically within the preferably elongated cavity, which favors precipitation on all surfaces.
  • a similar effect can be achieved by providing an influence that takes place after the fog exits through the outlet opening.
  • the protective agent mist can be influenced in a targeted manner with regard to its direction of movement, in particular by supplying air from air nozzles different from the outlet opening. Due to their mutually angled alignment, these air nozzles are also capable of causing such a helical movement of the fog atmosphere.
  • Mist nozzles are already known from other areas of the prior art.
  • a possible embodiment provides that only the anti-corrosion agent is pressurized and atomized through a narrow single-substance nozzle.
  • the liquid anticorrosive agent is preferably supplied at a pressure of at least 20 bar, particularly preferably at least 60 bar. Higher pressures are particularly advantageous, especially from about 100 bar. It is true that the nebulization can be positively influenced by significantly exceeding this value. Beyond 120 bar, however, the effort involved in handling the protective agent before it is discharged is so great that it should normally be avoided.
  • An alternative design provides that corrosion protection agent and air, which are each pressurized, are mixed before or when the protective agent mist escapes.
  • the pressurized air tears apart the liquid anti-corrosion agent and thereby creates the mist.
  • this technique allows the generation of mist with a sufficiently small droplet size even at comparatively low pressures.
  • a feed pressure of between 1 bar and 3 bar for the corrosion protection agent and between 1 bar and 5 bar for the air is preferably used. Due to the low pressures, the total effort for the process is less than when using single-component nozzles, where higher pressures are required.
  • the two-substance nozzle is fed with air in such a way that it is accelerated to over 100 m / s, ideally to about 250 m / s before it emerges.
  • the best parameter selection for generating the desired protective agent mist is currently considered to be if a two-substance nozzle is used, within which anti-corrosion agent is atomized by gas, in particular air, the volume flow of the anti-corrosion agent being less than 100 g / min for atomization and the atomizing air with more than 100 m / s is supplied.
  • the supply pressure of the air from 1.5 bar to 2.5 bar and the supply pressure of the anti-corrosion agent from 2 bar to 4 bar are considered optimal.
  • the mist that can be created in this way forms a fine mist atmosphere, which is deposited in the form of a thin and very homogeneous protective layer on the walls of the cavity.
  • Another possibility of generating fog provides a high-frequency oscillating actuator, for example a piezo actuator or another form of an ultrasonic atomizer.
  • mist generators and outlet openings it can additionally be provided that they have a rotatable component, so that the outlet openings are in a rotational movement during the outlet of the corrosion protection agent, which serves for the homogeneous distribution of the corrosion protection agent.
  • a mist generation chamber can be connected upstream of the outlet opening.
  • the mist generator can be designed to generate the protective agent mist in the mist generation chamber.
  • Conveying means for conveying the protective agent mist to the outlet opening can be provided.
  • the upstream mist generation chamber is used to generate a homogeneous mist before it is introduced into the cavity to be preserved.
  • a conveying device such as a pump for conveying the protective agent mist or for generating an overpressure in the mist generation chamber, this mist is supplied to the cavity in the homogenized form.
  • the method can be used to feed the protective agent mist into a cavity between the walls of a double-walled hollow body. It can also be used to feed the protective agent mist into a cavity, the inner walls of which, starting from the positioning of the outlet opening within the cavity, are covered at least in sections by other wall sections. Surfaces of curved or angled cavities can also advantageously be provided with anti-corrosion agents using the described method. In such designs in particular, the protective agent mist can achieve better results than spraying protective waxes.
  • the system has a working position at which a workpiece with a cavity to be preserved can be positioned. It has a feed device for feeding a corrosion protection agent into the cavity.
  • the feed device has a mist generator with an outlet opening which can be positioned on or in the cavity to be preserved in such a way that the anti-corrosion agent can be introduced into the cavity in a nebulized form (protective agent mist).
  • the system can have air nozzles for introducing air for the purpose of moving the protective agent mist generated within the cavity.
  • the system can have at least one pressure generator, by means of which a partial vacuum or an excess pressure can be generated in a partial area of the cavity.
  • the pressure generator can be provided with a control device by means of which periodically changing pressure can be generated within the cavity.
  • the system is designed to generate a protective agent mist of the type described above.
  • system can have further components mentioned for the method described and in connection with the exemplary embodiments.
  • FIGS 1 and 2 show an exemplary workpiece 10, which can be, for example, a partial section of a sill of a motor vehicle. It poses Figure 1 one cut and Figure 2 a perspective, sectioned representation. As can be seen, a cavity 12 of this sill is not only limited by a cylindrical outer wall 20, but also by partition plates 22.
  • the aim of the method described here is to cover the surfaces within the cavity with anti-corrosion wax or wax-based anti-corrosion agent.
  • the aforementioned baffle plates 22 make it impossible to reach all surfaces starting from an end face region 14 of the cavity 12 by spraying corrosion protection agents.
  • Figure 3 shows how in the method according to the invention an applicator 30 with a mist nozzle (not shown in the figure) with an outlet opening 32 is inserted into the cavity 12 at the end.
  • the protective agent mist 40 is then introduced into the cavity 12 through the outlet opening 32 of the applicator.
  • the protective agent mist 40 consists of fine droplets with an average diameter of less than 60 microns.
  • the protective agent mist 40 is distributed within the cavity 12 and is deposited on the surfaces of the outer wall 20 and the partition plates 22.
  • the mist introduced is to be distinguished from spraying, which is already known in the area of cavity preservation.
  • spraying which is already known in the area of cavity preservation.
  • the generation of mist in the sense of the invention and the known spraying consistently provide that the liquid cavity preservative in the form of small droplets which are introduced into the cavity.
  • the mean droplet diameter is smaller, preferably less than 30 ⁇ m, particularly preferably less than 10 ⁇ m, and that the droplets do not hit and remain directly on a wall of the hollow body and remain there, but rather a fog atmosphere form within the hollow body, which moves very slowly within the hollow body.
  • the majority of the cavity preservative that is introduced into the cavity has not come into contact with the wall even 5 seconds after the introduction.
  • Figure 4 shows the cavity with a protective agent layer 50, which has deposited on the walls.
  • a protective agent layer 50 in areas 52 which would not have been accessible directly from the outlet opening 32 by spraying, but only due to the tendency of the protective agent mist 40 to be homogeneously distributed in the cavity 12 and to be deposited on the surfaces.
  • Figure 5 shows an example of a single-substance nozzle forming the mist generator 31.
  • This can be provided at the end in the applicator 30. It has a thin nozzle channel 34, the opening of which defines the outlet opening 32, a sharp-edged design being provided on edges 36 of this outlet opening 32 for the purpose of tearing the corrosion protection agent into fine drops.
  • the anti-corrosion agent is supplied through a supply channel 38 under high pressure. The higher the pressure, the finer the droplets of the anti-corrosion agent. It is particularly advantageous if the anti-corrosion agent in channel 38 has a pressure between 80 and 120 bar.
  • Figure 6 shows again, similar to the Figure 3 , the introduction of the anti-corrosion agent into the cavity.
  • the special feature here is that the outlet opening 32 is displaced within the cavity in the manner illustrated by the arrow 2. This can result in an even more homogeneous distribution of the fog.
  • the time required for the mist to be homogeneously distributed can also be shortened. This serves to achieve short cycle times.
  • pressure channels 70, 72 are respectively connected to the two opposite end regions 14, 16 of the cavity 12. These allow an overpressure or underpressure to be created specifically in the regions 14, 16. As a result, the cloud of fog 40 can in turn be moved back and forth within the cavity 12, as is illustrated by the arrows 4a, 4b. In particular, the complete overlap of the bulkhead plates 22 with anti-corrosion agents is favored by this.
  • the pressure channel 72 on the side opposite the nozzle can also be advantageous when introducing the cloud of fog, since it allows an air cushion to be generated by the application of air to introduce fog droplets at the pressure channel 72, which prevents that an excessively high proportion of the droplets is deposited directly on a wall of the cavity 12 due to their exit velocity.
  • Figure 8 shows a design in which, in addition to the applicator 30, two air nozzles 60 are introduced in the end region of the cavity, these air nozzles each defining an outlet direction of the air, which does not only run in the main direction of extent 1 of the cavity 12, but both in the clockwise direction or both in opposite directions are angled clockwise.
  • a helical swirl in the mist 40 can be generated, which, as it were, causes the mist to be screwed into the cavity and thereby in turn favors the covering of even difficult-to-access areas.
  • Figure 9 shows that something similar can also be achieved in that the mist generator itself has two outlet openings 32a, 32b which are angled in opposite directions in order to be able to generate the desired swirl.
  • the applicator 30 can rotate as a whole.
  • a mist generation chamber 80 belonging to the system and not belonging to the workpiece is provided, into which the protective agent mist 40 is generated by a mist nozzle 31. From here, the mist is fed to the actual cavity through a channel 90. This can be done by means of a pump 92 or, for example, by creating an excess pressure in the mist generation chamber 80 via a separate channel in addition to the protective agent mist 40, which presses the protective agent mist 40 through the channel 90 into the workpiece.
  • Fig. 11 shows a further exemplary embodiment, in which, in deviation from the previous exemplary embodiments, a mist generator 31A, 31B is provided at two ends of the cavity with a protective agent layer, each of which is designed as a two-component mist nozzle.
  • a mist generator 31A, 31B is provided at two ends of the cavity with a protective agent layer, each of which is designed as a two-component mist nozzle.
  • a mist generator 31A, 31B is provided at two ends of the cavity with a protective agent layer, each of which is designed as a two-component mist nozzle.
  • a protective agent layer each of which is designed as a two-component mist nozzle.
  • it can be nozzles of the type Mod. 970/0 S4 from the company Düsen-Schlick GmbH from Untersiemau / Coburg. These nozzles are in the case of the embodiment of the Fig. 11 inserted through side openings of the workpiece.
  • the mist generators 31A, 31B are supplied with anti-corrosion agent and air via lines 33A, 33B. Only a small volume flow of anti-corrosion agent of about 50 ml / min is supplied. The actual atomization at the outlet nozzle of the mist generator 31A, 31B takes place with inflow of air at a speed of approximately 250 m / s and with inflow pressures of 2 bar in the case of air and 3 bar in the case of the anti-corrosion agent. The result is the generation of a mist with an average droplet size of approximately 10 ⁇ m.
  • the cloud of mist emerges from the mist generator in the form of a cone, the speed in the center of this cone being approximately 16 m / s and rapidly falling to below 10 m / s to the outside. Due to the air resistance, the small droplets cause them to decelerate immediately after they exit. This effect is further enhanced by an air cushion that is created by the opposite mist generator.
  • the fine droplet size and the effect of these air cushions mean that the majority of the corrosion protection agent introduced initially forms a standing or only slightly moved foggy atmosphere, the droplets of which remain in suspension for at least 5 seconds until they settle on a wall.
  • the Figures 12 and 13 illustrate this phase of fog formation and precipitation.
  • the introduction can take place in a phase of 2 to 3 seconds in length, followed by a short phase of 1 to 3 seconds with the mist generator deactivated.
  • the 14 to 16 illustrate this using an example with two mist generators 31A, 31B.
  • fog is generated by the fog generator 31B on the left in the figures, we Fig. 14 shows.
  • the discharge is then continued again with a discharge process on the left mist generator 31B. In this way, the desired dense cloud of fine droplets 40 is obtained, which are then deposited on the walls in the manner already described.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Nozzles (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

ANWENDUNGSGEBIE UND STAND DER TECHNIKAPPLICATION AREA AND PRIOR ART

Die Erfindung betrifft ein Verfahren zur Überdeckung von Innenwandungen eines Hohlraums einer Fahrzeugkarosserie oder eines Anbauteils für eine Fahrzeugkarosserie mit einer Schutzschicht aus Korrosionsschutzwachs oder einem wachsbasierten Korrosionsschutzmittel nach dem Oberbegriff von Anspruch 1.The invention relates to a method for covering the inner walls of a cavity of a vehicle body or an add-on part for a vehicle body with a protective layer of anti-corrosion wax or a wax-based anti-corrosion agent according to the preamble of claim 1.

Gattungsgemäße Verfahren finden im Fahrzeugbau Verwendung, um Karosserieteile und insbesondere Hohlräume von Karosserien und deren Anbauteilen wie Klappen, Türen und dergleichen gegen Umwelteinflüsse zu schützen. Typischerweise erfolgt dies dadurch, dass Korrosionsschutzwachs entweder durch Sprühen auf die betreffenden Oberflächen aufgebracht wird oder dass durch Fluten der Hohlräume mit Korrosionsschutzwachs und anschließendes Entfernen überschüssigen Schutzwachses die betreffenden Oberflächen bedeckt werden.Generic methods are used in vehicle construction in order to protect body parts and in particular cavities in body parts and their attachments such as flaps, doors and the like against environmental influences. Typically, this is done by either applying anti-corrosion wax to the surfaces in question by spraying or by flooding the cavities with anti-corrosion wax and then removing excess protective wax from the surfaces in question.

Beide Verfahren sind nicht für jeden Einsatzweck ideal. Das Sprühen von Korrosionsschutzwachs erlaubt es bei komplexen Geometrien nicht, ausgehend von einem Austrittpunkt des Schutzwachses alle Oberflächen des Hohlraums zu erreichen. Jenseits von beispielsweise Schottblechen, die der Verstärkung gelten, können Sprühschattenbereiche verbleiben, die nicht erreichbar sind. Auch enge Geometrien wie beispielsweise Zwischenbereiche von doppelwandigen Gestaltungen sind durch Sprühen schwer erreichbar. Das Fluten mit Korrosionsschutzwachs bedarf großer Energie und Schutzwachsmengen und ist durch den Bedarf erschwert, das überschüssige Schutzwachs zu entfernen. Des Weiteren sind Verbesserungen der Taktzeiten bei der Aufbringung von Korrosionsschutzwachs mittels Fluten nur schwer erzielbar.Both methods are not ideal for every application. Spraying corrosion protection wax does not allow complex geometries to reach all surfaces of the cavity starting from an exit point of the protection wax. Beyond, for example, bulkhead sheets that apply to the reinforcement, spray shadow areas that cannot be reached can remain. Even tight geometries such as intermediate areas of double-walled designs are difficult to reach by spraying. Flooding with anti-corrosive wax requires great energy and amounts of protective wax and is made more difficult by the need to remove the excess protective wax. Furthermore, improvements in cycle times when applying anti-corrosion wax by flooding are difficult to achieve.

Aus der DE 3315465 A1 ist ein Verfahren zum Auskleiden von Rohren einer Rohrleitung bekannt. Hierbei findet ein Kunststoffnebel Verwendung. Aus der US 3227572 A ist ein Verfahren zur Reduzierung von Leckage an Rohren bekannt, welches darauf basiert, dass eine wässrige Wachsdispersion durch das Rohr geleitet wird und durch Schadstellen in das umgebende Erdreich gelangt, wo es eine Versiegelung der Schadstelle bewirkt. Aus der JP S59-150578 A ist ein weiteres Verfahren zur Reparatur von Rohren im Erdreich bekannt. Aus der GB 867303 A ist ein Verfahren zur Auskleidung von Stahltanks bekannt. Die US 3488213 A offenbart ein Verfahren zum Auskleiden von Bierfässern mit einer Wachsschicht.From the DE 3315465 A1 a method for lining pipes of a pipeline is known. A plastic mist is used here. From the US 3227572 A a method for reducing leakage on pipes is known, which is based on the fact that an aqueous wax dispersion is passed through the pipe and reaches the surrounding earth through damaged areas, where it seals the damaged area. From the JP S59-150578 A Another method for repairing pipes in the ground is known. From the GB 867303 A is a process for lining steel tanks known. The US 3488213 A discloses a method for lining beer kegs with a wax layer.

Weitere Dokumente, die den technologischen Hintergrund der Erfindung darstellen, sind die Dokumente DE 3043246 A1 , DE 3315364 A1 , CN 102601010 A , DE 3006908 A1 , US 3202363 A sowie JP S8-189074 A .Other documents that represent the technological background of the invention are the documents DE 3043246 A1 , DE 3315364 A1 , CN 102601010 A , DE 3006908 A1 , US 3202363 A such as JP S8-189074 A .

AUFGABE UND LÖSUNGTASK AND SOLUTION

Aufgabe der Erfindung ist es, ein technisch unaufwändiges Verfahren zur Verfügung stellen, mittels dessen bei geringem Schutzmitteleinsatz ein zuverlässiges Überdecken von Innenoberflächen eines Hohlraums möglich ist.The object of the invention is to provide a technically uncomplicated method by means of which a reliable covering of inner surfaces of a cavity is possible with little use of protective agents.

Erfindungsgemäß ist das folgende Verfahren vorgesehen: Korrosionsschutzwachs bzw. wachsbasierten Korrosionsschutzmittel wird mittels eines Nebelerzeugers in vernebelte Form (Schutzmittelnebel) gebracht und durch eine Austrittsöffnung dem zu konservierende Hohlraum der Fahrzeugkarosserie oder des Anbauteils zugeführt. Dabei besteht der Schutzmittelnebel aus Luft sowie Tröpfchen des Korrosionsschutzwachses bzw. des wachsbasierten Korrosionsschutzmittels, beträgt der mittlere Durchmesser der Tröpfchen des zugeführten Nebels < 60 µm und treten die Tröpfchen des Schutzmittelnebels aus der Austrittsöffnung mit einer Geschwindigkeit < 10 m/s aus. Der Schutzmittelnebel schlägt sich an Innenwandungen des Hohlraums der Fahrzeugkarosserie oder des Anbauteils nieder und bildet hier eine Korrosionsschutzmittelschicht.According to the invention, the following method is provided: Corrosion protection wax or wax-based corrosion protection agent is brought into a nebulized form (protective agent mist) by means of a mist generator and supplied to the cavity of the vehicle body or the add-on part to be preserved through an outlet opening. The protective agent mist consists of air and droplets of the anti-corrosion wax or wax-based anti-corrosion agent, the mean diameter of the droplets of the supplied mist is <60 µm and the droplets of the protective agent mist emerge from the outlet opening at a speed of <10 m / s. The protective agent mist is deposited on the inner walls of the cavity of the vehicle body or the add-on part and forms a layer of anti-corrosion agent here.

Das bei dem erfindungsgemäßen Verfahren genutzte Korrosionsschutzmittel kann als Korrosionsschutzwachs ausgebildet sein und weist als solches einen Wachsanteil (mineralölbasisches Wachs/Paraffin) von mindestens 50 Gew.-% auf. Es sind jedoch auch wachsbasierte Korrosionsschutzmittel mit einem geringeren Wachsanteil von mindestens 5 Gew.-% und vorzugsweise zwischen 5 Gew.-% und 15 Gew.-% verwendbar. Solche Korrosionsschutzmittel können insbesondere auch einen Anteil zwischen 15 Gew.-% und 30 Gew.-% eines Polyesterharzes enthalten. Dies verleiht der aufgebrauchten Schutzmittelschicht nach der Durchtrocknung eine hohe Wärmestabilität.The corrosion protection agent used in the method according to the invention can be designed as a corrosion protection wax and as such has a wax content (mineral oil-based wax / paraffin) of at least 50% by weight. However, wax-based corrosion protection agents with a lower wax content of at least 5% by weight and preferably between 5% by weight and 15% by weight can also be used. Such corrosion protection agents can in particular also contain a proportion between 15% by weight and 30% by weight of a polyester resin. This gives the used protective layer a high degree of thermal stability after it has dried through.

Im Weiteren wird der Begriff des Korrosionsschutzmittels verwendet, der sowohl klassisches Korrosionsschutzwachs mit einem hohen Wachsanteil als auch Korrosionsschutzmittel mit einem geringeren Wachsanteil umfasst.The term corrosion protection agent is also used, which includes both classic corrosion protection wax with a high wax content and corrosion protection agent with a lower wax content.

Erfindungsgemäß ist vorgesehen, dass innerhalb des Hohlraums eine Nebelatmosphäre aus Korrosionsschutzmittel und Gas erzeugt wird oder eine solche Nebelatmosphäre dem Hohlraum zugeführt wird. Diese besteht aus Gas, insbesondere aus Luft, sowie feinsten Tröpfchen des Korrosionsschutzmittels. Diese sind ausreichend klein zerstäubt, um in der umgebenden Luft schwebefähig zu sein. Die mittlere Tröpfchengröße der Tröpfchen des Korrosionsschutzmittels im Nebel beträgt zu diesem Zweck < 60 µm, insbesondere vorzugsweise < 30 µm oder gar < 10µm im Mittel. Die Erzeugung eines solchen Schutzmittelnebels erfolgt mittels eines geeigneten Nebelerzeugers. Dieser kann beispielsweise eine Einstoffdüse sein, der das Korrosionsmittelmittel mit hohen Drücken zugeführt wird. Dies wird in Weiterem noch näher erläutert. Gegenüber der Einstoffdüse, die mit hohen Drücken betrieben wird, wird jedoch eine Zweistoffdüse als vorteilhaft angesehen, da hier bei geringeren Drücken ebenfalls sehr kleine Tröpfchen erzeugt werden können.According to the invention, it is provided that a fog atmosphere of corrosion protection agent and gas is generated within the cavity or such a fog atmosphere is supplied to the cavity becomes. This consists of gas, especially air, and the finest droplets of the anti-corrosion agent. These are atomized small enough to be able to float in the surrounding air. For this purpose, the average droplet size of the droplets of the corrosion protection agent in the mist is <60 μm, in particular preferably <30 μm or even <10 μm on average. Such a protective agent mist is generated by means of a suitable mist generator. This can be a single-substance nozzle, for example, to which the corrosion agent is supplied at high pressures. This is explained in more detail below. Compared to the single-substance nozzle, which is operated at high pressures, a two-substance nozzle is considered to be advantageous, since very small droplets can also be generated at lower pressures.

Alle in diesem Dokument genannten mittleren Tröpchendurchmesser beziehen sind anzahlgemittelte Durchmesser, beziehen sich also auf die Summe der Tröpfchendurchmesser geteilt durch die Anzahl er Tröpfchen.All mean droplet diameters mentioned in this document are number-average diameters, ie they relate to the sum of the droplet diameters divided by the number of droplets.

Die Entstehung von Nebel ist als ungewünschter Nebeneffekt auch vom Wachssprühen bekannt, wie sich beispielsweise aus der DE 102009052089 A1 . Erfindungsgemäß ist jedoch gezielt keine Ausbildung eines Sprühstrahls gewünscht, dessen Tröpfchen unmittelbar gegen eine Innenwandung des Hohlraums prallen. Stattdessen erfolgt die Nebelerzeugung gezielt. Vorzugsweise ist der Austragvorgang zu diesem Zweck so geartet, insbesondere durch die Wahl der verwendeten Düse und den Druck unter dem das Korrosionsschutzmittel und ggf. Druckluft zugeführt wird, dass mindestens 50%, vorzugsweise mindestens 80%, der erzeugten Tröpfchen eine Größe aufweist, die um nicht mehr als 20% von der genannten mittleren Tröpfchengröße abweicht.The formation of fog is also known as an undesirable side effect of wax spraying, as can be seen, for example, in DE 102009052089 A1 . According to the invention, however, it is specifically not desired to form a spray jet whose droplets collide directly against an inner wall of the cavity. Instead, the fog is generated specifically. For this purpose, the discharge process is preferably of such a type, in particular by the choice of the nozzle used and the pressure under which the anti-corrosion agent and possibly compressed air is supplied, that at least 50%, preferably at least 80%, of the droplets produced have a size of around does not deviate more than 20% from the mean droplet size mentioned.

Die Nebelatmosphäre des Schutzmittelnebels, die erfindungsgemäß zum Zwecke der Oberflächenbeschichtung in den Hohlraum eingebracht wird, schlägt sich anders als beim Sprühen des Korrosionsschutzmittels zum weit überwiegenden Teil nicht unmittelbar an den Wandungen des Hohlraums nieder, sondern verteilt sich zunächst im Hohlraum und schlägt sich dann auch an solchen Oberflächen nieder, die ausgehend von der Austrittsöffnung durch Sprühen nicht unmittelbar zugänglich wären.The fog atmosphere of the protective agent mist, which according to the invention is introduced into the cavity for the purpose of surface coating, largely does not directly affect the walls of the cavity, unlike when spraying the anti-corrosion agent, but initially distributes itself in the cavity and then also deposits surfaces that would not be directly accessible by spraying from the outlet opening.

Die Größe der Tröpfchen und die Austrittsgeschwindigkeit und ggf. auch die Beeinflussung des entstandenen Nebels sind zur Erzeugung dieser Nebelatmosphäre vorzugsweise so zu wählen, dass mindestens 50% des Volumenstroms des eingebrachten Schutzmittels 5 Sekunden oder mehr braucht, bis sich die Tröpfchen an den Wandungen niedergeschlagen haben. Der Nebelatmosphäre bleibt also Zeit, sich weitgehend homogen im Hohlraum zu verteilen.The size of the droplets and the exit velocity and, if appropriate, also the influence on the mist formed should preferably be selected in order to generate this mist atmosphere such that at least 50% of the volume flow of the protective agent introduced takes 5 seconds or more until the droplets have deposited on the walls. The foggy atmosphere therefore has time to be largely homogeneously distributed in the cavity.

Durch gezielte Erwärmung oder Abkühlung der Wandungen des Hohlraums kann die Art des Niederschlags des Schutzmittels und die Schichtbildung beeinflusst werden. Weiterhin ist es auch möglich, durch elektrostatische Aufladung des Schutzmittels vor oder während des Austrags und/oder Ladung der Wandungen den Niederschlag zu beeinflussen.The type of precipitation of the protective agent and the layer formation can be influenced by targeted heating or cooling of the walls of the cavity. Furthermore, it is also possible to influence the precipitation by electrostatically charging the protective agent before or during the discharge and / or charging of the walls.

Je nach Art des Schutzmittels kann die Verfestigung durch eine erhöhte Temperatur und eine verminderte Temperatur des Schutzmittels bewirkt werden. Je nachverwendetem Korrosionsschutzmittel ist auch eine chemische Trocknung, Strahlungstrocknung oderTrocknung per Luftstrom möglich.Depending on the type of protective agent, the solidification can be brought about by an elevated temperature and a reduced temperature of the protective agent. Depending on the corrosion protection agent used, chemical drying, radiation drying or drying by air flow is also possible.

Der Schutzmittelnebel kann bei Abschluss des Verfahrens im Hohlraum verbleiben oder aus diesem abgesaugt werden.The protective agent mist can remain in the cavity at the end of the process or can be extracted from it.

Als zu verwendendes Korrosionsschutzmittel kommen die zur Hohlraumkonservierung bei Fahrzeugen bereits heute üblicherweise zum Sprühen oder Fluten verwendeten Wachssorten in Frage. Rein exemplarisch sei das Korrosionsschutzwachs mit dem Markennamen Eftec Efcoat WH 320 A1 genannt, welches hier Verwendung finden kann. Weitere exemplarisch genannte Korrosionsschutzmittel, die mittels des erfindungsgemäßen Verfahrens ausgetragen werden können, sind die unter den Markennamen Anticorit CPX 3373 LV und Anticorit DS 329 DE erhältlichen Korrosionsschutzmittel. Anticorit CPX 3373 ist dabei ein Korrosionsschutzmittel auf Wachsbasis mit einem Wachsanteil von etwa 5 bis 15 Gew.-% und einem Polyesterharz als Zusatz mit einem Anteil zwischen 15 Gew.-% und 30 Gew.-%. Gerade solche wachsbasierten Korrosionsschutzmittel haben sich als besonders gut für die Vernebelung geeignet herausgestellt. Vorzugsweise umfasst ein solches Korrosionsschutzmittel weiterhin einen Füller, insbesondere mit einem Anteil zwischen 15 Gew.-% und 25 Gew.-% und/oder Additive wie Korrosionsschutzadditive mit einem Anteil von 10 Gew.-% bis 20 Gew.-%.The types of wax that are usually used today for spraying or flooding the cavities in vehicles are suitable as corrosion protection agents. The anti-corrosion wax with the brand name Eftec Efcoat WH 320 A1 is just one example, which can be used here. Other corrosion protection agents mentioned by way of example, which can be removed by means of the method according to the invention, are the corrosion protection agents available under the brand names Anticorit CPX 3373 LV and Anticorit DS 329 DE. Anticorit CPX 3373 is a wax-based corrosion protection agent with a wax content of approximately 5 to 15% by weight and a polyester resin as an additive with a content between 15% and 30% by weight. Such wax-based corrosion protection agents have proven to be particularly suitable for atomization. Such an anti-corrosion agent preferably further comprises a filler, in particular with a proportion between 15% by weight and 25% by weight and / or additives such as anti-corrosion additives with a proportion from 10% by weight to 20% by weight.

Die Viskosität des verwendeten Korrosionsschutzmittels liegt vorzugsweise unterhalb von 750 mPas, insbesondere vorzugsweise unterhalb von 600 mPas. Solche niederviskosen Korrosionsschutzmittel haben sich als vorteilhaft erwiesen, um den gewünschten Schutzmittelnebel zu erzeugen.The viscosity of the corrosion protection agent used is preferably below 750 mPas, particularly preferably below 600 mPas. Such low-viscosity corrosion protection agents have proven to be advantageous in order to generate the desired protective agent mist.

Die Tröpfchen des Schutzmittelnebels treten aus der Austrittsöffnung mit einer Geschwindigkeit <10 m/s, insbesondere < 5 m/s aus, vorzugsweise 2 < m/s, insbesondere vorzugsweise < 0,5 m/s aus.The droplets of the protective agent mist emerge from the outlet opening at a speed of <10 m / s, in particular <5 m / s, preferably 2 <m / s, particularly preferably <0.5 m / s.

Durch den vergleichsweise langsamen Austritt des Schutzmittelnebels aus der Austrittsöffnung wird die Bildung einer Nebelatmosphäre begünstigt. Zu hohe Geschwindigkeiten können dazu führen, dass trotz geringer Tröpfchengröße ein zu großer Anteil der Tröpfchen unmittelbar an einer ebenen Wandung des Hohlraums aufschlägt und somit zur Bildung einer Nebelatmosphäre nicht mehr beitragen kann.The comparatively slow exit of the protective agent mist from the outlet opening favors the formation of a foggy atmosphere. Too high speeds can lead to the fact that despite the small droplet size, too large a proportion of the droplets hits directly on a flat wall of the cavity and can therefore no longer contribute to the formation of a foggy atmosphere.

Die Geschwindigkeit der ausgetragenen Tröpfchen ist nicht vollständig einheitlich. So erzeugen die bevorzugt für die Nebelerzeugung verwendeten Zweistoffdüsen, beispielsweise eine Düse vom Typ Miniquest der Firma Düsen-Schlick GmbH aus Untersiemau/Coburg, Tröpfchen unterschiedlicher Geschwindigkeit. Üblicherweise ist in einem Zentrum der entstehenden Nebelwolke die Geschwindigkeit am höchsten. Die oben angegebenen Geschwindigkeitswerte berücksichtigen diese besonders schnellen Tröpfchen nicht. Sie beziehen sich auf jene 80% des ausgetragenen Volumenstroms, die von den langsamsten Tröpfchen gebildet werden.The velocity of the droplets being discharged is not completely uniform. The two-substance nozzles that are preferably used for the generation of mist, for example a Miniquest nozzle from Düsen-Schlick GmbH from Untersiemau / Coburg, produce droplets of different speeds. Usually, the speed is highest in a center of the cloud of nascent. The speed values given above do not take these particularly fast droplets into account. They relate to the 80% of the volume flow that is generated by the slowest droplets.

Es wird als vorteilhaft angesehen, wenn während der Zuführung des Schutzmittelnebels in den Hohlraum an einer ersten Einbringungsstelle dem Hohlraum an einer hiervon abweichenden zweiten Einbringungsstelle ein Gas zugeführt wird, um den Schutzmittelnebel im Hohlraum hinsichtlich seiner Strömungsrichtung zu beeinflussen und/oder um die Geschwindigkeit des Schutzmittelnebels zu reduzieren.It is considered advantageous if, during the supply of the protective agent mist into the cavity at a first introduction point, a gas is supplied to the cavity at a different second introduction point in order to influence the direction of the flow of the protective agent mist in the cavity and / or the speed of the protective agent mist to reduce.

Dieses Gas, bei dem es sich insbesondere um Luft handeln kann, wird vorzugsweise durch eine zweite Öffnung in Wandungen des Hohlraums zugeführt, wobei diese Öffnung insbesondere vorzugsweise an einem zum Nebelerzeuger gegenüberliegenden Ort des Hohlraums angeordnet ist.This gas, which can in particular be air, is preferably supplied through a second opening in the walls of the cavity, this opening being particularly preferably arranged at a location of the cavity opposite the mist generator.

Die Zuführung von Gas dient insbesondere dem Zweck, eine Art Gas- oder Luftpolster zu erzeugen, welches in der Lage ist, das unmittelbare Aufprallen von Tröpfchen des Schutzmittelnebels auf einer der Wandungen des Hohlraums zu verhindern. Es wird ein der Ausbreitung der Tröpfchen entgegen gerichteter Gegendruck erzeugt, durch den die Tröpfchen abgebremst werden, so dass sie Teil einer Nebelatmosphäre werden.The supply of gas serves in particular the purpose of producing a type of gas or air cushion which is able to prevent droplets of the protective agent mist from directly hitting one of the walls of the cavity. A counter pressure that counteracts the spreading of the droplets is generated, by means of which the droplets are braked so that they become part of a foggy atmosphere.

Da die Bedeckung der Wandungen mittels eines Nebels bereits bei vergleichsweise geringen Schichtdicken zuverlässig die gewünschte Konservierungswirkung entfaltet und da ein zu hoher Volumenanteil der Tröpfchen im Nebel die Gefahr erhöht, dass Tröpfchen sich zu größeren und schneller sich niederschlagende Tröpfchen vereinen, wird ein besonders geringer Volumenstrom in den Hohlraum als besonders vorteilhaft angesehen, insbesondere ein Volumenstrom des Korrosionsschutzmittels von weniger als 200 g / Minute, vorzugsweise weniger als 100 g / Minute, insbesondere vorzugsweise weniger als 50 g / Minute. Diese Werte liegen deutlich unter jenen Werten, die bei dem bekannten Sprühen von Korrosionsschutzwachs üblich sind und die im Bereich von 500 g / Minute und mehr liegen.Since the covering of the walls by means of a mist reliably develops the desired preservation effect even with comparatively small layer thicknesses, and since an excessively high volume proportion of the droplets in the mist increases the risk that droplets combine to form larger and faster droplets, a particularly low volume flow becomes the cavity regarded as particularly advantageous, in particular a volume flow of the corrosion protection agent of less than 200 g / minute, preferably less than 100 g / minute, particularly preferably less than 50 g / minute. These values are significantly below those values which are customary in the known spraying of corrosion protection wax and which are in the range of 500 g / minute and more.

Es kann zweckmäßig sein, die sich ausbildende Nebelatmosphäre gezielt und insbesondere zyklisch in Bewegung zu versetzen. Dies kann durch die Geschwindigkeit und Austrittsrichtung des austretenden Schutzmittelnebels gesteuert werden. Auch die Steuerung dieser Bewegung durch anderweitig zugeführte Energie ist möglich.It can be expedient to set the fog atmosphere which is formed in a targeted manner and in particular cyclically in motion. This can be controlled by the speed and direction of exit of the emerging protective agent mist. This movement can also be controlled by energy supplied in some other way.

Die Zuführung des Schutzmittelnebels kann an mehreren Stellen oder an wechselnden Stellen innerhalb des zu konservierenden Hohlraums erfolgen. Die Zuführung des Schutzmittelnebels kann auch mittels mehrerer Nebelerzeuger erfolgen, die an unterschiedlichen Stellen innerhalb des zu konservierenden Hohlraums angeordnet sind und/oder in unterschiedliche Richtungen relativ zum zu konservierenden Hohlraum angeordnet sind.The protective agent mist can be supplied at several points or at different points within the cavity to be preserved. The protective agent mist can also be supplied by means of a plurality of mist generators which are arranged at different points within the cavity to be preserved and / or are arranged in different directions relative to the cavity to be preserved.

Auch wenn grundsätzlich die Einbringung des Schutzmittelnebels an nur einer Stelle des Hohlraums ausreichen kann, da sich der Schutzmittelnebel im Hohlraum verteilt, kann eine besonders gute und schnelle Verteilung des Nebels durch die genannten zusätzlichen Maßnahmen begünstigt werden. Durch mehrere Austrittsöffnungen, die beispielsweise an gegenüberliegenden Enden eines länglichen Hohlraums angeordnet sind, lässt sich ausgehend von beiden Enden die Nebelatmosphäre schaffen. Durch eine innerhalb des Hohlraums bewegliche Austrittsöffnung, die an verschiedenen Stellen austrägt, kann mit nur einer Austrittsöffnung eine recht homogene Nebelatmosphäre geschaffen werden. Durch mehrere Austrittsöffnungen, die in unterschiedliche Richtungen weisen, kann, insbesondere im Zusammenspiel mit einer gemeinsamen Bewegung dieser Austrittsöffnungen durch den Hohlraum hindurch, besonders gut gewährleistet werden, dass die Nebelatmosphäre auch schwer zugängliche Oberflächenbereiche erreicht.Even if the introduction of the protective agent mist at only one point in the cavity can in principle suffice, since the protective agent mist is distributed in the cavity, a particularly good and rapid distribution of the mist can be promoted by the additional measures mentioned. The fog atmosphere can be created from both ends by means of several outlet openings, which are arranged, for example, at opposite ends of an elongated cavity. By means of an outlet opening which is movable within the cavity and discharges at different points, a very homogeneous fog atmosphere can be created with only one outlet opening. By means of a plurality of outlet openings which point in different directions, particularly in conjunction with a joint movement of these outlet openings through the cavity, it can be ensured particularly well that the foggy atmosphere also reaches surface areas which are difficult to access.

Die Zuführung von Schutzmittelnebel über mehrere Nebelerzeuger kann beispielsweise durch Verwendung einer Zweistoffdüse in Kombination mit oben genannter Zuführung von Gas erfolgen. Durch Einbringung von Schutzmittelnebel durch zwei in etwa entgegengesetzt ausgerichtete Düsen wird dabei erreicht, dass diese in besonders vorteilhafter Weise eine stehende Nebelwolke erzeugen, deren Tröpfchen sich nicht unmittelbar nach der Einbringung in den Hohlraum an Wandungen des Hohlraums niederschlagen.Protective agent mist can be supplied via several mist generators, for example by using a two-substance nozzle in combination with the above-mentioned supply of gas. By introducing protective agent mist through two approximately oppositely oriented nozzles, it is achieved that these generate a standing mist cloud in a particularly advantageous manner Droplets do not precipitate on walls of the cavity immediately after introduction into the cavity.

Durch Erzeugung einer Druckdifferenz zwischen zwei beanstandeten Teilbereichen des Hohlraums kann der Schutzmittelnebel innerhalb des Hohlraums bewegt werden.The protective agent mist can be moved within the cavity by generating a pressure difference between two disputed partial areas of the cavity.

Dabei kann durch alternierende Erzeugung eines Überdrucks und eines Unterdrucks in mindestens einem Teilbereich des Hohlraums eine periodisch wiederholte Bewegung des Schutznebels im Hohlraum erzeugt werden.A periodically repeated movement of the protective mist in the cavity can be generated by alternately generating an overpressure and a vacuum in at least one partial area of the cavity.

Zwar verteilt sich der Schutzmittelnebel grundsätzlich eigenständig im Hohlraum weitgehend homogen. Da jedoch je nach Anwendungszweck kurze Taktzeiten gewünscht sind, kann es insbesondere von Vorteil sein, den Schutzmittelnebel durch einen lokalen Überdruck oder Unterdruck im Hohlraum gezielt zu bewegen. Dies kann beispielsweise durch das Einbringen oder Absaugen von Luft an einer Öffnung des Hohlraums erfolgen, sei es durch eine von der Austrittsöffnung separate Drucköffnung der Anlage zur Hohlraumkonservierung oder durch die Austrittsöffnung selbst. Durch periodisch wiederholte Druckerhöhungen oder -senkungen kann eine zyklische Bewegung des Schutzmittelnebels im Hohlraum erzeugt werden, durch die ein besonders günstiges Niederschlagsverhalten des Schutzmittels auf der Oberfläche erzielt wird.In principle, the protective agent mist distributes itself largely homogeneously in the cavity. However, since short cycle times are desired depending on the application, it can be particularly advantageous to move the protective agent mist in a targeted manner by means of a local overpressure or underpressure in the cavity. This can be done, for example, by introducing or extracting air at an opening of the cavity, be it through a pressure opening of the system for cavity preservation separate from the outlet opening or through the outlet opening itself. Periodically repeated increases or decreases in pressure can cause a cyclical movement of the protective agent mist in the Cavity are generated through which a particularly favorable precipitation behavior of the protective agent is achieved on the surface.

Ebenfalls wurde festgestellt, dass eine Verteilung der Tröpfchen des Schutzmittelnebels positiv beeinflussbar ist, wenn die Einbringung in gepulster Art und Weise erfolgt. Hierunter wird verstanden, dass die Parameter der Nebelerzeugung durch den mindestens einen Nebelerzeuger sich wiederholt ändern. So könnte beispielsweise der Druck der dem Nebelerzeuger zugeführten Luft periodisch schwanken. Besonders einfach zu realisieren und vorteilhaft in der Wirkung ist es jedoch, wenn die Zuführung von Nebel mittels des Nebelerzeugers pulsweise erfolgt, jeweils unterbrochen durch Phasen, in denen keine Nebelerzeugung durch den Nebelerzeuger vorgesehen ist. Die mittlere Frequenz des gepulsten Betriebs liegt vorzugsweise zwischen 0,1 Hz und 5 Hz.It was also found that a distribution of the droplets of the protective agent mist can be positively influenced if the introduction takes place in a pulsed manner. This is understood to mean that the parameters of the fog generation by the at least one fog generator change repeatedly. For example, the pressure of the air supplied to the mist generator could fluctuate periodically. However, it is particularly simple to implement and the effect is advantageous if the supply of mist by means of the mist generator takes place in pulses, each interrupted by phases in which no mist generation is provided by the mist generator. The average frequency of the pulsed operation is preferably between 0.1 Hz and 5 Hz.

Auch ist möglich, dass zwei Nebelerzeuger Verwendung finden, die derart betrieben, dass im Wechsel ein erster der beiden Nebelerzeuger und ein zweiter der beiden Nebelerzeuger den relativ größeren Volumenstrom austragen. Hierbei sind demnach zwei voneinander beabstandete und separate steuerbare Nebelerzeuger vorgesehen, die im Wechsel den jeweils größeren Volumenstrom von Korrosionsschutzmittel austragen. Auch hierdurch lässt sich eine periodisch wiederkehrende Bewegung des Nebels erzeugen, die eine schnelle und homogene Verteilung des Nebels bewirkt.It is also possible for two mist generators to be used which operate in such a way that a first of the two mist generators and a second of the two mist generators alternately discharge the relatively larger volume flow. In this case, two separate and controllable mist generators are provided which are spaced apart and which alternate with the larger volume flow of corrosion protection agent deliver. This also makes it possible to generate a periodically recurring movement of the fog, which causes the fog to be distributed quickly and homogeneously.

Ein typisches Werkstück, welches mit den erfindungsgemäßen Verfahren vor Korrosion geschützt wird, ist der Teilbereich eine Karosserie mit einem länglichen Hohlraum. In einem solchen Falle ist es möglich, den Schutznebel durch die Austrittsöffnung fluchtend zur Haupterstreckungsrichtung des Hohlraums austreten zu lassen.A typical workpiece, which is protected against corrosion by the method according to the invention, is the partial area of a body with an elongated cavity. In such a case, it is possible to let the protective mist exit through the outlet opening in alignment with the main direction of extension of the cavity.

Der Schutznebel kann jedoch auch in einer Richtung aus der Austrittsöffnung austreten, die gegenüber der Haupterstreckungsrichtung eines solchen Hohlraums angewinkelt ist.However, the protective mist can also emerge from the outlet opening in a direction that is angled relative to the main direction of extent of such a cavity.

Durch eine angewinkelte Austrittsrichtung durch die Austrittsöffnung hindurch kann erreicht werden, dass der Schutznebel sich innerhalb des vorzugsweise länglichen Hohlraums schraubenförmig bewegt, was den Niederschlag an allen Oberflächen begünstigt.By means of an angled exit direction through the exit opening, it can be achieved that the protective mist moves helically within the preferably elongated cavity, which favors precipitation on all surfaces.

Ein ähnlicher Effekt ist erzielbar, indem eine nach Austritt des Nebels durch die Austrittsöffnung stattfindende Beeinflussung vorgesehen ist. Der Schutzmittelnebel kann nach Austritts aus der Austrittsöffnung in Hinblick auf seine Bewegungsrichtung gezielt beeinflusst werden, insbesondere durch Luftzufuhr aus von der Austrittsöffnung unterschiedliche Luftdüsen. Durch deren gegeneinander angewinkelte Ausrichtung sind diese Luftdüsen ebenfalls in der Lage sind, eine solche schraubenförmige Bewegung der Nebelatmosphäre zu bewirken.A similar effect can be achieved by providing an influence that takes place after the fog exits through the outlet opening. After leaving the outlet opening, the protective agent mist can be influenced in a targeted manner with regard to its direction of movement, in particular by supplying air from air nozzles different from the outlet opening. Due to their mutually angled alignment, these air nozzles are also capable of causing such a helical movement of the fog atmosphere.

Es sind jedoch auch andere Techniken möglich, um die Bewegung des Nebels innerhalb des Hohlraums gezielt zu beeinflussen. Hierzu gehören beispielsweise der Magnetismus und die Elektrostatik als nutzbare Wirkprinzipien.However, other techniques are also possible to selectively influence the movement of the mist within the cavity. These include, for example, magnetism and electrostatics as useful principles of action.

Zur Erzeugung des Nebels können vielfältige aus dem Stand der Technik bereits bekannte Techniken Verwendung finden. Aus anderen Bereichen des Standes der Technik sind Nebeldüsen bereits bekannt.Various techniques already known from the prior art can be used to generate the mist. Mist nozzles are already known from other areas of the prior art.

Eine mögliche Ausgestaltung sieht vor, dass ausschließlich das Korrosionsschutzmittel druckbeaufschlagt wird und durch eine schmale Einstoffdüse hindurch vernebelt wird. Die Zuführung des flüssigen Korrosionsschutzmittels erfolgt in diesem Fall vorzugsweise bei einem Druck von mindestens 20 bar, insbesondere vorzugsweise mindestens 60 bar. Von besonderem Vorteil sind noch höhere Drücke, insbesondere ab etwa 100 bar. Zwar ist durch noch deutliches Überschreiten dieses Wertes die Verneblung positiv zu beeinflussen. Jenseits von 120 bar ist der Aufwand zur Handhabung des Schutzmittels vor dem Austrag jedoch so groß, dass üblicherweise hiervon abgesehen werden sollte.A possible embodiment provides that only the anti-corrosion agent is pressurized and atomized through a narrow single-substance nozzle. In this case, the liquid anticorrosive agent is preferably supplied at a pressure of at least 20 bar, particularly preferably at least 60 bar. Higher pressures are particularly advantageous, especially from about 100 bar. It is true that the nebulization can be positively influenced by significantly exceeding this value. Beyond 120 bar, however, the effort involved in handling the protective agent before it is discharged is so great that it should normally be avoided.

Eine alternative Gestaltung sieht vor, dass eine Vermengung von Korrosionsschutzmittel und Luft, die jeweils druckbeaufschlagt sind, vor oder bei Austritt des Schutzmittelnebels stattfindet. Die druckbeaufschlagte Luft zerreißt das flüssig zugeführte Korrosionsschutzmittel und erzeugt hierdurch den Nebel.An alternative design provides that corrosion protection agent and air, which are each pressurized, are mixed before or when the protective agent mist escapes. The pressurized air tears apart the liquid anti-corrosion agent and thereby creates the mist.

Es hat sich gezeigt, dass diese Technik eine Nebelerzeugung mit ausreichend kleiner Tröpfchengröße auch bei vergleichsweise geringen Drücken gestattet. So ist in diesem Fall vorzugsweise mit einem Zuführüberdruck zwischen 1 bar und 3 bar für das Korrosionsschutzmittel und zwischen 1 bar und 5 bar für die Luft gearbeitet. Durch die geringen Drücke ist der Gesamtaufwand für das Verfahren geringer als bei Verwendung von Einstoffdüsen, bei denen höhere Drücke benötigt werden.It has been shown that this technique allows the generation of mist with a sufficiently small droplet size even at comparatively low pressures. In this case, a feed pressure of between 1 bar and 3 bar for the corrosion protection agent and between 1 bar and 5 bar for the air is preferably used. Due to the low pressures, the total effort for the process is less than when using single-component nozzles, where higher pressures are required.

Bei der Verwendung einer Zweistoffdüse hat es sich für die Zerstäubung zum hier angegebene Zweck als vorteilhaft erwiesen, wenn die Zweistoffdüse derart mit Luft gespeist wird, dass diese vor dem Austritt auf über 100 m/s beschleunigt wird, idealerweise auf etwa 250 m/s.When using a two-substance nozzle, it has proven advantageous for atomization for the purpose specified here if the two-substance nozzle is fed with air in such a way that it is accelerated to over 100 m / s, ideally to about 250 m / s before it emerges.

Die genannten Drücke und Geschwindigkeiten gewährleistet eine sehr feine Zerstäubung. Es lassen sich Tröpfchengrößen mit einem mittleren Tröpfchendurchmesser von 10 µm oder weniger erzeugen, was für die Ausbildung einer ruhigen Nebelatmosphäre im Hohlraum als ideal angesehen wird.The pressures and speeds mentioned ensure very fine atomization. Droplet sizes with an average droplet diameter of 10 μm or less can be produced, which is considered ideal for the formation of a calm mist atmosphere in the cavity.

Zusammengefasst wird derzeit als beste Parameterwahl zur Erzeugung des gewünschten Schutzmittelnebels angesehen, wenn eine Zweistoffdüse Verwendung findet, innerhalb derer Korrosionsschutzmittel durch Gas, insbesondere Luft, zerstäubt wird, wobei der Volumenstrom des Korrosionsschutzmittels zur Zerstäubung bei unter 100 g /min liegt und die zerstäubende Luft mit mehr als 100 m/s zugeführt wird. Ergänzend wird der Zuführüberdruck der Luft von 1,5 bar bis 2,5 bar und der Zuführdruck des Korrosionsschutzmittels von 2 bar bis 4 bar als optimal angesehen.In summary, the best parameter selection for generating the desired protective agent mist is currently considered to be if a two-substance nozzle is used, within which anti-corrosion agent is atomized by gas, in particular air, the volume flow of the anti-corrosion agent being less than 100 g / min for atomization and the atomizing air with more than 100 m / s is supplied. In addition, the supply pressure of the air from 1.5 bar to 2.5 bar and the supply pressure of the anti-corrosion agent from 2 bar to 4 bar are considered optimal.

Der hierdurch erzeugbare Nebel bildet eine feine Nebelatmosphäre, die sich in Form einer dünnen und sehr homogenen Schutzschicht auf den Wandungen des Hohlraums niederschlägt.The mist that can be created in this way forms a fine mist atmosphere, which is deposited in the form of a thin and very homogeneous protective layer on the walls of the cavity.

Eine weitere Möglichkeit der Nebelerzeugung sieht einen hochfrequent schwingenden Aktor vor, beispielsweise einen Piezoaktor oder eine andere Form eines Ultraschallzerstäubers.Another possibility of generating fog provides a high-frequency oscillating actuator, for example a piezo actuator or another form of an ultrasonic atomizer.

Für alle Formen von Nebelerzeugern und Austrittsöffnungen kann zusätzlich vorgesehen sein, dass diese eine drehbare Komponente aufweisen, so dass die Austrittsöffnungen sich während des Austritts des Korrosionsschutzmittels in einer rotativen Bewegung befindet, was der homogenen Verteilung des Korrosionsschutzmittels dient.For all forms of mist generators and outlet openings, it can additionally be provided that they have a rotatable component, so that the outlet openings are in a rotational movement during the outlet of the corrosion protection agent, which serves for the homogeneous distribution of the corrosion protection agent.

Der Austrittöffnung kann eine Nebelerzeugungskammer vorgeschaltet sein. Der Nebelerzeuger kann zur Erzeugung des Schutzmittelnebels in der Nebelerzeugungskammer ausgebildet sein. Es kann Fördereinrichtung zur Förderung des Schutzmittelnebels zur Austrittöffnung vorgesehen sein.A mist generation chamber can be connected upstream of the outlet opening. The mist generator can be designed to generate the protective agent mist in the mist generation chamber. Conveying means for conveying the protective agent mist to the outlet opening can be provided.

Die vorgeschaltete Nebelerzeugungskammer dient der Erzeugung eines homogenen Nebels bereits vor Einbringung in den zu konservierenden Hohlraum. Durch eine Fördereinrichtung wie einer Pumpe zur Förderung des Schutzmittelnebels oder zur Erzeugung eines Überdrucks in der Nebelerzeugungskammer wird dieser Nebel in der homogenisierten Form dem Hohlraum zugeführt.The upstream mist generation chamber is used to generate a homogeneous mist before it is introduced into the cavity to be preserved. By means of a conveying device such as a pump for conveying the protective agent mist or for generating an overpressure in the mist generation chamber, this mist is supplied to the cavity in the homogenized form.

Das Verfahren kann Anwendung finden zur Zuführung des Schutzmittelnebels in einen Hohlraum zwischen Wandungen eines doppelwandigen Hohlkörpers. Es kann weiterhin Anwendung finden zur Zuführung des Schutzmittelnebels in einen Hohlraum, dessen Innenwandungen ausgehend von der Positionierung der Austrittöffnung innerhalb des Hohlraums zumindest abschnittsweise durch andere Wandungsabschnitte verdeckt sind. Auch Oberflächen gebogener oder abgewinkelter Hohlräume sind mittels des beschriebenen Verfahrens vorteilhaft mit Korrosionsschutzmittel zu versehen. Insbesondere bei solchen Gestaltungen lassen sich durch den Schutzmittelnebel bessere Ergebnisse als durch Versprühen von Schutzwachse erzielen.The method can be used to feed the protective agent mist into a cavity between the walls of a double-walled hollow body. It can also be used to feed the protective agent mist into a cavity, the inner walls of which, starting from the positioning of the outlet opening within the cavity, are covered at least in sections by other wall sections. Surfaces of curved or angled cavities can also advantageously be provided with anti-corrosion agents using the described method. In such designs in particular, the protective agent mist can achieve better results than spraying protective waxes.

Zur Durchführung des beschriebenen Verfahrens wird folgende Anlage vorgeschlagen: Die Anlage weist eine Arbeitsposition auf, an der ein Werkstück mit einem zu konservierenden Hohlraum positionierbar ist. Sie weist eine Zuführvorrichtung zur Zuführung eines Korrosionsschutzmittels in den Hohlraum auf. Die Zuführvorrichtung verfügt über einen Nebelerzeuger mit Austrittöffnung, die derart an oder in dem zu konservierenden Hohlraum positionierbar ist, dass das Korrosionsschutzmittel in vernebelter Form (Schutzmittelnebel) in den Hohlraum eingebracht werden kann.The following system is proposed for carrying out the described method: The system has a working position at which a workpiece with a cavity to be preserved can be positioned. It has a feed device for feeding a corrosion protection agent into the cavity. The feed device has a mist generator with an outlet opening which can be positioned on or in the cavity to be preserved in such a way that the anti-corrosion agent can be introduced into the cavity in a nebulized form (protective agent mist).

Die Anlage kann über Luftdüsen zur Einbringung von Luft zum Zwecke der Bewegung des erzeugten Schutzmittelnebels innerhalb des Hohlraums verfügen.The system can have air nozzles for introducing air for the purpose of moving the protective agent mist generated within the cavity.

Die Anlage kann mindestens einen Druckerzeuger aufweisen, mittels dessen in einem Teilbereich des Hohlraums ein Unterdruck oder ein Überdruck erzeugbar ist. Der Druckerzeuger kann mit einer Steuereinrichtung versehen sein, durch die periodisch wechselnder Druck innerhalb des Hohlraums erzeugbar ist.The system can have at least one pressure generator, by means of which a partial vacuum or an excess pressure can be generated in a partial area of the cavity. The pressure generator can be provided with a control device by means of which periodically changing pressure can be generated within the cavity.

Die Anlage ist zur Erzeugung eines Schutzmittelnebels oben beschriebener Art ausgebildet.The system is designed to generate a protective agent mist of the type described above.

Weiterhin kann die Anlage weitere zum beschriebenen Verfahren sowie im Zusammenhang mit den Ausführungsbeispielen genannten Komponenten aufweisen.Furthermore, the system can have further components mentioned for the method described and in connection with the exemplary embodiments.

KURZBESCHREIBUNG DER ZEICHNUNGENBRIEF DESCRIPTION OF THE DRAWINGS

Weitere Vorteile und Aspekte der Erfindung ergeben sich aus den Ansprüchen und aus der nachfolgenden Beschreibung von bevorzugten Ausführungsbeispielen der Erfindung, die nachfolgend anhand der Figuren erläutert sind.

  • Fig. 1 und 2 zeigen ein exemplarisches Werkstück mit einem Hohlraum, dessen Oberflächen mit Korrosionsschutzmittel zu versehen sind.
  • Fig. 3 zeigt die Einbringung von vernebeltem Korrosionsschutzmittel in den Hohlraum durch eine Austrittsöffnung hindurch an einer endseitigen Stirnseite des Werkstücks. Fig. 4 zeigt den Hohlraum, nachdem sich das Korrosionsschutzmittel an den Wandungen niedergeschlagen hat.
  • Fig. 5 zeigt einen möglichen Aufbau eines Nebelerzeugers in Form einer Nebeldüse, durch die hindurch das Korrosionsschutzmittel eingebracht werden kann und dabei zu Nebel zerstäubt wird.
  • Fig. 6 zeigt eine Variante, bei der durch Bewegung der Austrittöffnung der Nebelaustrag verbessert ist.
  • Fig. 7a und 7b zeigt eine Variante, bei der durch gezielte Erzeugung von Überdruck und/oder Unterdruck im Hohlkörper eine Bewegung des Schutzmittelnebels erzielt wird.
  • Fig. 8 und 9 zeigen Varianten, bei denen durch Zuführung von Luft oder durch besondere Ausrichtung von Nebelaustrittsöffnungen ein Drall im Schutzmittelnebel erzeugt wird.
  • Fig. 10 zeigt eine Variante, bei der die Nebelerzeugung in einer nicht zum Werkstück gehörigen Nebelerzeugungskammer erfolgt und der erzeugt Nebel erst anschließend dem Hohlraum des Werkstücks zugeführt wird.
Further advantages and aspects of the invention result from the claims and from the following description of preferred exemplary embodiments of the invention, which are explained below with reference to the figures.
  • 1 and 2 show an exemplary workpiece with a cavity, the surfaces of which are to be provided with anti-corrosion agents.
  • Fig. 3 shows the introduction of nebulized anti-corrosion agent into the cavity through an outlet opening on an end face of the workpiece. Fig. 4 shows the cavity after the anti-corrosion agent has deposited on the walls.
  • Fig. 5 shows a possible structure of a mist generator in the form of a mist nozzle through which the anti-corrosion agent can be introduced and thereby atomized into mist.
  • Fig. 6 shows a variant in which the discharge of fog is improved by moving the outlet opening.
  • 7a and 7b shows a variant in which a movement of the protective agent mist is achieved by the targeted generation of overpressure and / or underpressure in the hollow body.
  • 8 and 9 show variants in which a swirl is created in the protective agent mist by supplying air or by special alignment of the mist outlet openings.
  • Fig. 10 shows a variant in which the mist generation takes place in a mist generation chamber that does not belong to the workpiece and the mist that is generated is only subsequently supplied to the cavity of the workpiece.

DETAILLIERTE BESCHREIBUNG DER AUSFÜHRUNGSBEISPIELEDETAILED DESCRIPTION OF THE EMBODIMENTS

Die Figuren 1 und 2 zeigen ein exemplarisches Werkstück 10, bei dem es sich beispielsweise um einen Teilabschnitt eines Schwellers eines Kraftfahrzeuges handeln kann. Dabei stellt Figur 1 eine geschnitten und Figur 2 eine perspektivische, geschnittene Darstellung dar. Wie zu ersehen ist, ist ein Hohlraum 12 dieses Schwellers nicht nur durch eine zylindrische Außenwandung 20, sondern auch durch Schottbleche 22 begrenzt.The Figures 1 and 2 show an exemplary workpiece 10, which can be, for example, a partial section of a sill of a motor vehicle. It poses Figure 1 one cut and Figure 2 a perspective, sectioned representation. As can be seen, a cavity 12 of this sill is not only limited by a cylindrical outer wall 20, but also by partition plates 22.

Ziel des hier beschriebenen Verfahrens ist es, die Oberflächen innerhalb des Hohlraums mit Korrosionsschutzwachs oder wachsbasiertem Korrosionsschutzmittel zu überdecken. Die genannten Schottbleche 22 machen es jedoch unmöglich, ausgehend von einem Stirnseitenbereich 14 des Hohlraums 12 durch Versprühen von Korrosionsschutzmittel sämtliche Oberflächen zu erreichen.The aim of the method described here is to cover the surfaces within the cavity with anti-corrosion wax or wax-based anti-corrosion agent. However, the aforementioned baffle plates 22 make it impossible to reach all surfaces starting from an end face region 14 of the cavity 12 by spraying corrosion protection agents.

Figur 3 zeigt, wie bei dem erfindungsgemäßen Verfahren ein Applikator 30 mit einer in der Figur nicht dargestellten Nebeldüse mit Austrittsöffnung 32 endseitig in den Hohlraum 12 eingeführt wird. Durch die Austrittsöffnung 32 des Applikators hindurch wird dann der Schutzmittelnebel 40 in den Hohlraum 12 eingebracht. Der Schutzmittelnebel 40 besteht aus feinen Tröpfchen mit einem mittleren Durchmesser von unter 60 µm. Der Schutzmittelnebel 40 verteilt sich innerhalb des Hohlraums 12 und schlägt sich an den Oberflächen der Außenwandung 20 und der Schottbleche 22 nieder. Figure 3 shows how in the method according to the invention an applicator 30 with a mist nozzle (not shown in the figure) with an outlet opening 32 is inserted into the cavity 12 at the end. The protective agent mist 40 is then introduced into the cavity 12 through the outlet opening 32 of the applicator. The protective agent mist 40 consists of fine droplets with an average diameter of less than 60 microns. The protective agent mist 40 is distributed within the cavity 12 and is deposited on the surfaces of the outer wall 20 and the partition plates 22.

Der eingebrachte Nebel ist zu unterscheiden vom Sprühen, welches im Bereich der Hohlraumkonservierung schon bekannt ist. Die Nebelerzeugung im Sinne der Erfindung und das bekannte Sprühen sehen übereinstimmend vor, dass das flüssige Hohlraumkonservierungsmittel in Form kleiner Tröpfchen, die in den Hohlraum eingebracht werden. Allerdings ist bei der Nebelerzeugung vorgesehen, dass der mittlere Tröpfchendurchmesser kleiner ist, vorzugsweise weniger als 30 µm, insbesondere vorzugsweise weniger als 10 µm, und dass die Tröpfchen zumindest zum überwiegenden Teil nicht unmittelbar auf einer Wandung des Hohlkörpers aufschlagen und dort verbleiben, sondern eine Nebelatmosphäre innerhalb des Hohlkörpers bilden, welche sich nur sehr langsam innerhalb des Hohlkörpers bewegt. Die überwiegende Menge des Hohlraumkonservierungsmittels, welches in den Hohlraum eingebracht wird, ist auch noch 5 Sekunden nach Einbringung nicht in Wandkontakt gelangt.The mist introduced is to be distinguished from spraying, which is already known in the area of cavity preservation. The generation of mist in the sense of the invention and the known spraying consistently provide that the liquid cavity preservative in the form of small droplets which are introduced into the cavity. However, it is provided that the mean droplet diameter is smaller, preferably less than 30 µm, particularly preferably less than 10 µm, and that the droplets do not hit and remain directly on a wall of the hollow body and remain there, but rather a fog atmosphere form within the hollow body, which moves very slowly within the hollow body. The majority of the cavity preservative that is introduced into the cavity has not come into contact with the wall even 5 seconds after the introduction.

Figur 4 zeigt den Hohlraum mit einer Schutzmittelschicht 50, die sich an den Wandungen niedergeschlagen hat. Insbesondere besteht auch eine Schutzmittelschicht 50 in Bereichen 52, die unmittelbar von der Austrittsöffnung 32 aus durch Sprühen nicht erreichbar gewesen wären, sondern nur durch die Neigung des Schutzmittelnebels 40, sich homogen im Hohlraum 12 zu verteilen und sich an den Oberflächen niederzuschlagen. Figure 4 shows the cavity with a protective agent layer 50, which has deposited on the walls. In particular, there is also a protective agent layer 50 in areas 52 which would not have been accessible directly from the outlet opening 32 by spraying, but only due to the tendency of the protective agent mist 40 to be homogeneously distributed in the cavity 12 and to be deposited on the surfaces.

Figur 5 zeigt exemplarisch eine den Nebelerzeuger 31 bildende Einstoffdüse. Diese kann endseitig im Applikator 30 vorgesehen sein. Sie verfügt über einen dünnen Düsenkanal34, dessen Öffnung die Austrittsöffnung 32 definiert, wobei zum Zwecke des Zerreißens des Korrosionsschutzmittels in feine Tropfen eine scharfkantige Gestaltung an Kanten 36 dieser Austrittsöffnung 32 vorgesehen ist. Das Korrosionsschutzmittel wird durch einen Zufuhrkanal 38 unter hohem Druck zugeführt. Je höher der Druck ist, desto feiner sind die entstehenden Tröpfchen des Korrosionsschutzmittels. Von besonderem Vorteil ist es, wenn das Korrosionsschutzmittel im Kanal 38 einen Druck zwischen 80 und 120 bar aufweist. Figure 5 shows an example of a single-substance nozzle forming the mist generator 31. This can be provided at the end in the applicator 30. It has a thin nozzle channel 34, the opening of which defines the outlet opening 32, a sharp-edged design being provided on edges 36 of this outlet opening 32 for the purpose of tearing the corrosion protection agent into fine drops. The anti-corrosion agent is supplied through a supply channel 38 under high pressure. The higher the pressure, the finer the droplets of the anti-corrosion agent. It is particularly advantageous if the anti-corrosion agent in channel 38 has a pressure between 80 and 120 bar.

Figur 6 zeigt nochmals, ähnlich der Figur 3, die Einbringung des Korrosionsschutzmittels in den Hohlraum. Die Besonderheit liegt hier darin, dass in der durch den Pfeil 2 verdeutlichten Weise die Austrittsöffnung 32 innerhalb des Hohlraums verlagert wird. Hierdurch kann eine noch homogenere Verteilung des Nebels bewirkt werden. Je nach Eindringtiefe des Applikators 30 in den Hohlraum kann auch die erforderliche Zeit verkürzt werden, die es braucht, bis sich der Nebel homogen verteilt hat. Dies dient der Erzielung kurzer Taktzeiten. Figure 6 shows again, similar to the Figure 3 , the introduction of the anti-corrosion agent into the cavity. The special feature here is that the outlet opening 32 is displaced within the cavity in the manner illustrated by the arrow 2. This can result in an even more homogeneous distribution of the fog. Depending on the depth of penetration of the applicator 30 into the cavity, the time required for the mist to be homogeneously distributed can also be shortened. This serves to achieve short cycle times.

Bei der Gestaltung gemäß Figur 7 ist vorgesehen, dass an den beiden gegenüberliegenden Endbereichen 14, 16 des Hohlraums 12 jeweils Druckkanäle 70, 72 angeschlossen sind. Diese gestatten es, gezielt in den Bereichen 14, 16 einen Überdruck bzw. einen Unterdruck entstehen zu lassen. Hierdurch wiederum kann die Nebelwolke 40 gezielt innerhalb des Hohlraums 12 hin und her bewegt werden, wie durch die Pfeil 4a, 4b verdeutlicht wird. Insbesondere die vollständige Überdeckung der Schottbleche 22 mit Korrosionsschutzmittel wird hierdurch begünstigt.When designing according to Figure 7 it is provided that pressure channels 70, 72 are respectively connected to the two opposite end regions 14, 16 of the cavity 12. These allow an overpressure or underpressure to be created specifically in the regions 14, 16. As a result, the cloud of fog 40 can in turn be moved back and forth within the cavity 12, as is illustrated by the arrows 4a, 4b. In particular, the complete overlap of the bulkhead plates 22 with anti-corrosion agents is favored by this.

Der Druckkanal 72 auf der der Düse gegenüberliegenden Seite kann auch bereits bei der Einbringung der Nebelwolke von Vorteil sein, da er es gestattet, durch zur Einbringung von Nebeltröpfchen durch den Applikator 30 zeitgleiche Einbringung von Luft am Druckkanal 72 ein Luftpolster zu erzeugen, welches verhindert, dass ein zu hoher Anteil der Tröpfchen sich aufgrund ihrer Austrittsgeschwindigkeit unmittelbar an einer Wandung des Hohlraums 12 niederschlägt.The pressure channel 72 on the side opposite the nozzle can also be advantageous when introducing the cloud of fog, since it allows an air cushion to be generated by the application of air to introduce fog droplets at the pressure channel 72, which prevents that an excessively high proportion of the droplets is deposited directly on a wall of the cavity 12 due to their exit velocity.

Figur 8 zeigt eine Gestaltung, bei der zusätzlich zum Applikator 30 zwei Luftdüsen 60 im Endbereich des Hohlraums eingeführt werden, wobei diese Luftdüsen jeweils eine Austrittsrichtung der Luft definieren, die nicht einzig in Haupterstreckungsrichtung 1 des Hohlraums 12 verläuft, sondern jeweils demgegenüber beide im Uhrzeigersinn oder beide gegen den Uhrzeigersinn angewinkelt sind. Hierdurch lässt sich ein schraubenförmiger Drall im Nebel 40 erzeugen, welcher gleichsam eine Art Einschrauben des Nebels in den Hohlraum bewirkt und hierdurch wiederum die Überdeckung auch schwierig zugänglicher Flächen begünstigt. Figure 8 shows a design in which, in addition to the applicator 30, two air nozzles 60 are introduced in the end region of the cavity, these air nozzles each defining an outlet direction of the air, which does not only run in the main direction of extent 1 of the cavity 12, but both in the clockwise direction or both in opposite directions are angled clockwise. In this way, a helical swirl in the mist 40 can be generated, which, as it were, causes the mist to be screwed into the cavity and thereby in turn favors the covering of even difficult-to-access areas.

Figur 9 zeigt, dass ähnliches auch dadurch erreicht werden kann, dass der Nebelerzeuger selbst zwei Austrittsöffnungen 32a, 32b aufweist, die gegenläufig angewinkelt sind, um den gewünschten Drall erzeugen zu können. Zusätzlich kann der Applikator30 als Ganzes rotieren. Figure 9 shows that something similar can also be achieved in that the mist generator itself has two outlet openings 32a, 32b which are angled in opposite directions in order to be able to generate the desired swirl. In addition, the applicator 30 can rotate as a whole.

Die Ausgestaltung gemäß Figur 10 weist einen deutlichen Unterschied auf. Hier ist eine zur Anlage und nicht zum Werkstück gehörende Nebelerzeugungskammer 80 vorgesehen, in die durch eine Nebeldüse 31 der Schutzmittelnebel 40 erzeugt wird. Von hier aus wird durch einen Kanal 90 der Nebel dem eigentlichen Hohlraum zugeführt. Dies kann über eine Pumpe 92 erfolgen oder beispielsweise, indem zusätzlich zum Schutzmittelnebel 40 über einen separaten Kanal ein Überdruck in der Nebelerzeugungskammer 80 verursacht wird, der den Schutzmittelnebel 40 durch den Kanal 90 in das Werkstück hineindrückt.The design according to Figure 10 shows a clear difference. Here, a mist generation chamber 80 belonging to the system and not belonging to the workpiece is provided, into which the protective agent mist 40 is generated by a mist nozzle 31. From here, the mist is fed to the actual cavity through a channel 90. This can be done by means of a pump 92 or, for example, by creating an excess pressure in the mist generation chamber 80 via a separate channel in addition to the protective agent mist 40, which presses the protective agent mist 40 through the channel 90 into the workpiece.

Fig. 11 zeigt ein weiteres Ausführungsbeispiel, bei dem abweichend von den vorangegangenen Ausführungsbeispielen an zwei Enden des mit einer Schutzmittelschicht Hohlraums jeweils ein Nebelerzeuger 31A, 31B vorgesehen sind, die jeweils als Zweistoff-Nebeldüsen ausgeführt sind. Exemplarisch kann es sich um Düsen des Typs Mod. 970/0 S4 der Firma Düsen-Schlick GmbH aus Untersiemau/Coburg handeln. Diese Düsen sind im Falle des Ausführungsbeispiels der Fig. 11 durch seitliche Öffnungen des Werkstücks eingeführt. Fig. 11 shows a further exemplary embodiment, in which, in deviation from the previous exemplary embodiments, a mist generator 31A, 31B is provided at two ends of the cavity with a protective agent layer, each of which is designed as a two-component mist nozzle. As an example, it can be nozzles of the type Mod. 970/0 S4 from the company Düsen-Schlick GmbH from Untersiemau / Coburg. These nozzles are in the case of the embodiment of the Fig. 11 inserted through side openings of the workpiece.

Die Nebelerzeuger 31A, 31B werden mit über Leitungen 33A, 33B mit Korrosionsschutzmittel und Luft versorgt. Dabei wird nur ein geringer Volumenstrom von Korrosionsschutzmittel von etwa 50 ml/min zugeführt. Die eigentliche Zerstäubung an Austrittsdüse der Nebelerzeuger 31A, 31B erfolgt unter Zuströmen der Luft mit einer Geschwindigkeit von etwa 250 m/s und bei Zuströmüberdrücken von 2 bar im Falle der Luft und 3 bar im Falle des Korrosionsschutzmittels. Ergebnis ist die Erzeugung eines Nebels mit einer mittleren Tröpfchengröße von etwa 10 µm. Die Nebelwolke tritt in Form eines Kegels aus dem Nebelerzeuger aus, wobei die Geschwindigkeit im Zentrum dieses Kegels etwa 16 m/s beträgt und nach außen schnell auf unter 10 m/s abfällt. Durch die kleinen Tröpfchen erfahren diese aufgrund des Luftwiderstandes unmittelbar nach dem Austritt eine starke Verzögerung. Dieser Effekt wird noch durch ein Luftpolster verstärkt, dass durch den jeweils gegenüberliegen Nebelerzeuger bewirkt wird.The mist generators 31A, 31B are supplied with anti-corrosion agent and air via lines 33A, 33B. Only a small volume flow of anti-corrosion agent of about 50 ml / min is supplied. The actual atomization at the outlet nozzle of the mist generator 31A, 31B takes place with inflow of air at a speed of approximately 250 m / s and with inflow pressures of 2 bar in the case of air and 3 bar in the case of the anti-corrosion agent. The result is the generation of a mist with an average droplet size of approximately 10 µm. The cloud of mist emerges from the mist generator in the form of a cone, the speed in the center of this cone being approximately 16 m / s and rapidly falling to below 10 m / s to the outside. Due to the air resistance, the small droplets cause them to decelerate immediately after they exit. This effect is further enhanced by an air cushion that is created by the opposite mist generator.

Die feine Tröpfchengröße und die Wirkung dieser Luftpolster bewirken, dass die überwiegende Menge des eingebrachten Korrosionsschutzmittels zunächst eine stehende oder nur gering bewegte Nebelatmosphäre bildet, deren Tröpfchen mindestens 5 Sekunden im Schwebezustand bleiben, bis sie sich auf einer Wandung niederschlagen. Die Figuren 12 und 13 verdeutlichen diese Phase der der Nebelbildung und des Niederschlags.The fine droplet size and the effect of these air cushions mean that the majority of the corrosion protection agent introduced initially forms a standing or only slightly moved foggy atmosphere, the droplets of which remain in suspension for at least 5 seconds until they settle on a wall. The Figures 12 and 13 illustrate this phase of fog formation and precipitation.

Es hat sich gezeigt, dass durch iterative Einbringung des Korrosionsschutzmittels mit nur einem Nebelerzeuger ebenfalls zu einer gut für die Beschichtungszwecke geeigneten Nebelatomsphäre führt. So kann die Einbringung beispielsweise in Phase von 2 bis 3 Sekunden Länge erfolgen, auf die dann eine kurze Phase von 1 bis 3 Sekunden bei deaktiviertem Nebelerzeuger folgt.It has been shown that iterative introduction of the anti-corrosion agent with only one mist generator also leads to a mist atmosphere that is well suited for coating purposes. For example, the introduction can take place in a phase of 2 to 3 seconds in length, followed by a short phase of 1 to 3 seconds with the mist generator deactivated.

Die Fig. 14 bis 16 verdeutlichen dies an einem Beispiel mit zwei Nebelerzeugern 31A, 31B. Zunächst wird Nebel mittels des in den Figuren linken Nebelerzeugers 31B erzeugt, wir Fig. 14 zeigt. Anschließend setzt hier die Nebelerzeugung aus und der in den Figuren rechte Nebelerzeuger 31A gibt Nebel aus Korrosionsschutzmittel ab. Durch die entgegengesetzte Austragrichtung bremsen die beiden Nebelwolken sich gegenseitig ab. Der Austrag wird dann wiederum mit einem Austragvorgang am linken Nebelerzeuger 31B fortgesetzt. Es stellt sich so schrittweise die gewünschte dichte Nebelwolke 40 aus feinsten Tröpfchen ein, die sich dann in der schon beschriebenen Weise auf den Wandungen niederschlagen.The 14 to 16 illustrate this using an example with two mist generators 31A, 31B. First, fog is generated by the fog generator 31B on the left in the figures, we Fig. 14 shows. Subsequently, the mist generation stops here and the mist generator 31A on the right in the figures releases mist from corrosion protection agent. Due to the opposite discharge direction, the two clouds of fog brake each other. The discharge is then continued again with a discharge process on the left mist generator 31B. In this way, the desired dense cloud of fine droplets 40 is obtained, which are then deposited on the walls in the manner already described.

Obwohl beim Ausführungsbeispiel der Figuren 14 bis 16 zwei Nebelerzeuger dargestellt sind, hat sich auch bei der Verwendung nur eines Nebelerzeugers gezeigt, dass die iterative oder pulsierende Abgabe von Schutzmittelnebel - also das Wiederholte Aktivieren und Deaktivieren der Abgabe des Schutzmittelnebels - gegenüber einer ununterbrochenen Abgabe zur verbesserten Ausbildung der Nebelatmosphäre aus Korrosionsschutzmittel und zu einem geringeren Anteil direkt gegen Wandungen prallender Tröpfchen führt.Although in the embodiment of Figures 14 to 16 Two mist generators are shown, even when using only one mist generator, it has been shown that the iterative or pulsating delivery of protective agent mist - that is, the repeated activation and deactivation of the release of the protective agent mist - compared to an uninterrupted delivery leads to an improved formation of the mist atmosphere from corrosion protection agent and to a lower proportion of droplets hitting walls.

Claims (14)

  1. Method for covering inner walls of a cavity of a vehicle body (10) or of an add-on part for vehicle bodies, with a protective layer (50) made of anti-corrosion wax or a wax-based anti-corrosion agent, characterized by the following features:
    a. anti-corrosion wax or a wax-based anti-corrosion agent is brought by means of a mist generator (31) into an atomized form as a protective agent mist (40) and is supplied through an outlet opening (32) to the cavity (12) to be preserved of the vehicle body (10) or of the add-on part, wherein the protective agent mist consists of air and droplets of the anti-corrosion wax or anti-corrosion agent, wherein the average diameter of the droplets of the supplied mist is < 60 µm, wherein the droplets of the protective agent mist emerge from the outlet opening (32) at a speed of < 10 m/s, and
    b. the protective agent mist (40) is deposited on inner walls of the cavity (12) of the vehicle body (10) or of the add-on part and forms an anti-corrosion agent layer (50) here.
  2. Method according to Claim 1 with the additional features:
    a. the average diameter of the droplets of the supplied mist is < 30 µm, preferably < 10 µm.
  3. Method according to either of the preceding claims with the additional feature:
    a. during the supplying of the protective agent mist (40) into the cavity (12) at a first introduction point, a gas, in particular air, is supplied to the cavity (12) at a second introduction point differing therefrom, in order to influence the protective agent mist (40) in the cavity in respect of its flow direction and/or in order to reduce the speed of the protective agent mist (40).
  4. Method according to one of the preceding claims with the additional feature:
    a. the volumetric flow of anti-corrosion agent which is supplied to the cavity is less than 200 g/minute, preferably less than 100 g/minute, particularly preferably less than 50 g/minute.
  5. Method according to one of the preceding claims with at least one of the additional features:
    a. the protective agent mist (40) is supplied at a plurality of points or at alternating points within the cavity (12) to be preserved, and/or
    b. the protective agent mist (40) is supplied by means of a plurality of mist generators and/or through a plurality of outlet openings (32a, 32b) which are arranged at different points within the cavity (12) to be preserved and/or are arranged in different directions relative to the cavity (12) to be preserved.
  6. Method according to one of the preceding claims with the additional feature:
    a. by generation of a pressure difference between two spaced-apart partial regions (14, 16) of the cavity (12), the protective agent mist (40) is moved within the cavity (12).
  7. Method according to one of the preceding claims with the additional feature:
    a. by alternating generation of a positive pressure and a negative pressure in at least one partial region (14, 16) of the cavity, a periodically repeated movement of the protective agent mist (40) is generated in the cavity (12).
  8. Method according to one of the preceding claims with the additional feature:
    a. the mist generator (31A, 31B) is operated at least in phases in a pulsed mode in which parameters of the mist generation change in an alternating manner, or in which the mist generation is interrupted in phases,
    preferably with the following additional feature:
    b. in the pulsed mode, the alternating parameters change or the interruptions in the mist generation (31A, 31B) take place at an average frequency of between 0.1 Hertz and 5 Hertz, preferably between 0.2 Hertz and 1 Hertz.
  9. Method according to one of the preceding claims with the additional feature:
    a. the mist (40) is generated from anti-corrosion agent by means of at least two mist generators (31A, 31B) which are operated in such a manner that a first of the two mist generators and a second of the two mist generators alternately discharge the relatively greater volumetric flow of anti-corrosion agent.
  10. Method according to one of the preceding claims with one of the additional features:
    a. the mist generator (31) generates the protective agent mist (40) by pressurized forcing of anti-corrosion agent through a nozzle opening (34), or
    b. the mist generator generates the protective agent mist by means of an actuator vibrating at high frequency,
    in particular with the following feature:
    c. the outlet opening (32) through which the protective agent mist (40) is introduced into the cavity (12) is in a rotational movement at least in phases.
  11. Method according to one of the preceding claims with the additional features:
    a. the mist generation takes place through at least one nozzle opening (34) with a diameter of less than 0.5 mm, preferably less than 0.3 mm, and
    b. the anti-corrosion agent is supplied to the nozzle opening (34) at a pressure of at least 20 bar, preferably at least 60 bar, particularly preferably at least 100 bar.
  12. Method according to one of the preceding claims with one of the additional features:
    a. the protective agent mist (40) emerges from the outlet opening (32) in a direction which is angled in relation to a main direction of extent (1) of the cavity (12), and/or
    b. after emerging from the outlet opening, the protective agent mist (40) is influenced in a targeted manner in respect of its movement direction, in particular by a supply of air from air nozzles (60) different from the outlet opening.
  13. Method according to one of the preceding claims with the additional features:
    a. a mist generation chamber (80) is connected upstream of the outlet opening (32), and
    b. the mist generator (31) is designed for generating the protective agent mist (40) in the mist generation chamber (80),
    in particular with the additional feature:
    c. a conveying device (90) is provided for conveying the protective agent mist (40) into the cavity (12) .
  14. Method according to one of the preceding claims with one of the additional features:
    a. the method is used for supplying the protective agent mist (40) into a cavity (12) between walls of a double-walled hollow body, or
    b. the method is used for supplying the protective agent mist (40) into a cavity (12), the inner walls of which are concealed, starting from the positioning of the outlet opening (32) within the cavity (12), at least in sections by other wall sections (22).
EP17703199.4A 2016-02-09 2017-02-09 Method for covering internal walls of a cavity with a protective layer made of corrosion protecting wax or other wax based corrosion protecting material Active EP3414020B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP16154796.3A EP3205407B1 (en) 2016-02-09 2016-02-09 Method and installation for covering internal walls of a cavity with a protective layer made of corrosion protecting wax
PCT/EP2017/052932 WO2017137520A1 (en) 2016-02-09 2017-02-09 Method and system for covering inner walls of a cavity with a protective layer made of anti-corrosion wax or anti-corrosion agent

Publications (2)

Publication Number Publication Date
EP3414020A1 EP3414020A1 (en) 2018-12-19
EP3414020B1 true EP3414020B1 (en) 2020-04-08

Family

ID=55411176

Family Applications (2)

Application Number Title Priority Date Filing Date
EP16154796.3A Active EP3205407B1 (en) 2016-02-09 2016-02-09 Method and installation for covering internal walls of a cavity with a protective layer made of corrosion protecting wax
EP17703199.4A Active EP3414020B1 (en) 2016-02-09 2017-02-09 Method for covering internal walls of a cavity with a protective layer made of corrosion protecting wax or other wax based corrosion protecting material

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP16154796.3A Active EP3205407B1 (en) 2016-02-09 2016-02-09 Method and installation for covering internal walls of a cavity with a protective layer made of corrosion protecting wax

Country Status (4)

Country Link
US (1) US10870124B2 (en)
EP (2) EP3205407B1 (en)
CN (1) CN108698066B (en)
WO (1) WO2017137520A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3670001B1 (en) * 2018-12-18 2021-07-28 IPR-Intelligente Peripherien für Roboter GmbH Method for cavity preservation, mixing nozzle unit and cavity preservation device with such a mixing nozzle unit
DE102020127076A1 (en) * 2020-01-20 2021-07-22 Jens-Werner Kipp Process for thin coating of internal surfaces of through holes

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB867303A (en) 1958-02-24 1961-05-03 Shell Res Ltd Improvements in or relating to methods of inhibiting corrosion in the cargo tanks ofmarine vessels
US3227572A (en) * 1962-06-06 1966-01-04 Chevron Res Pipe repair process
US3202363A (en) * 1963-07-01 1965-08-24 Aro Corp Automatic fogspray device
US3488213A (en) * 1965-05-20 1970-01-06 Schlitz Brewing Co J Method and apparatus for applying a coating to the interior surface of a hollow article
US3673463A (en) * 1969-06-30 1972-06-27 Gourdine Systems Inc Methods and apparatus for electrogasdynamic coating
DE3066513D1 (en) * 1979-10-25 1984-03-15 Sumitomo Light Metal Ind Method, apparatus and spray nozzle for coating the inner surface of long tubes of small diameter
DE3006908C2 (en) * 1980-02-23 1985-04-18 Fritz 8942 Ottobeuren Noack Device for the corrosion protection of metal surfaces
JPS5813226B2 (en) 1980-05-29 1983-03-12 株式会社 日本プラントサ−ビスセンタ− Lining method for pipe inner wall surface
US4314670A (en) * 1980-08-15 1982-02-09 Walsh William A Jun Variable gas atomization
GB2123516B (en) 1982-04-30 1986-02-05 Hakko Co Lining old underground pipes
JPS58189074A (en) 1982-04-30 1983-11-04 Hakko Co Ltd Method for repairing inner surface of existing pipe line
GB2123917B (en) 1982-04-30 1986-02-12 Hakko Co Lining underground pipes
JPS5952570A (en) 1982-09-20 1984-03-27 Nissan Motor Co Ltd Coating method
JPS59150578A (en) 1983-02-18 1984-08-28 Hakko Co Ltd Repairing method for inner surface of existing pipe
DE3910179C1 (en) * 1989-03-29 1990-03-29 J. Wagner Gmbh, 7990 Friedrichshafen, De
US5522930A (en) * 1994-11-04 1996-06-04 The Regents, University Of California Method and device for producing and delivering an aerosol for remote sealing and coating
DE10115463A1 (en) * 2001-03-29 2002-10-02 Duerr Systems Gmbh Atomizer for a coating system and process for its material supply
FI20080264L (en) * 2008-04-03 2009-10-04 Beneq Oy Coating method and device
DE102009052089A1 (en) * 2009-11-05 2010-06-17 Daimler Ag Device for conserving cavities in automobile body, has reducer provided in area of connection for strongly reducing cross section of line of specific length, where reducer is fixed in connection by press fit, sticking, or welding process
CN102601010A (en) * 2011-03-30 2012-07-25 中国石油化工集团公司 Natural gas pipe corrosion inhibitor coating device
FR3014334A3 (en) * 2013-12-05 2015-06-12 Renault Sa NOZZLE OF A PLATE OF INJECTION OF WAX

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2017137520A1 (en) 2017-08-17
EP3205407B1 (en) 2019-09-25
CN108698066A (en) 2018-10-23
US20190022686A1 (en) 2019-01-24
US10870124B2 (en) 2020-12-22
EP3414020A1 (en) 2018-12-19
EP3205407A1 (en) 2017-08-16
CN108698066B (en) 2021-10-29

Similar Documents

Publication Publication Date Title
EP2566627B1 (en) Coating device with jets of coating medium which are broken down into drops
EP3804863B1 (en) Application method and application system
EP2121197B1 (en) Deflecting air ring and corresponding coating process
DE1571086A1 (en) Spray nozzle for creating coatings on objects
DE2401649B2 (en) METHOD OF COOLING A STRAND AND SPRAY NOZZLE
EP2953794B1 (en) Coating apparatus having deflection device for deflecting a coating agent
DE3501145A1 (en) FLOW-ENHANCING LIQUID SPRAYING NOZZLE
EP3414020B1 (en) Method for covering internal walls of a cavity with a protective layer made of corrosion protecting wax or other wax based corrosion protecting material
EP2943680A1 (en) Device for spraying liquid into an operating space
WO2020239774A1 (en) Printhead cleaning device for a 3d printer, 3d printer comprising a printhead cleaning device, use of the printhead cleaning device and method for cleaning a printhead of a 3d printer
WO2016055116A1 (en) Pneumatic atomizing nozzle
DE1964981A1 (en) Spray nozzle for liquids and gases and processes for their production
DE102015201464B4 (en) Device and method for gluing particles
EP3578297B1 (en) Device and method for producing a matt surface
DE2925435A1 (en) Spray head for pressurised liq. has opening for insert - with outer axial grooves forming nozzle ducts with wall of opening
DE2159909A1 (en) Method and aircraft for spraying agricultural materials
DE3329880A1 (en) METHOD FOR SPRAY COATING WITHOUT AIR AND SPRAY GUN FOR COATING WITHOUT AIR
DE10139347B4 (en) Method and device for lubricating lubrication points with minimal lubricant quantities
DE3505619C2 (en) Process for coating objects and apparatus for carrying out the process
DE202010015304U1 (en) jet
DE102020202896A1 (en) Application / scoop roller and process for its manufacture
DD220770A3 (en) DEVICE FOR PRESSURE AIR RADIATION
DE202014101462U1 (en) Device for generating liquid mist
DE102020102289A1 (en) Device and method for applying a cleaning fluid to a vehicle part
DE102014114868A1 (en) Apparatus and method for blasting a cleaning medium on a surface to be cleaned

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180809

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: B05D 1/02 20060101ALI20191202BHEP

Ipc: B05D 7/22 20060101ALI20191202BHEP

Ipc: B05D 7/14 20060101ALN20191202BHEP

Ipc: B05D 3/02 20060101ALN20191202BHEP

Ipc: B05B 13/06 20060101AFI20191202BHEP

Ipc: B05B 12/06 20060101ALI20191202BHEP

Ipc: B05B 7/10 20060101ALN20191202BHEP

RIC1 Information provided on ipc code assigned before grant

Ipc: B05B 13/06 20060101AFI20191210BHEP

Ipc: B05B 12/06 20060101ALI20191210BHEP

Ipc: B05B 7/10 20060101ALN20191210BHEP

Ipc: B05D 1/02 20060101ALI20191210BHEP

Ipc: B05D 7/14 20060101ALN20191210BHEP

Ipc: B05D 7/22 20060101ALI20191210BHEP

Ipc: B05D 3/02 20060101ALN20191210BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200117

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1253640

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200415

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017004632

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200408

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200709

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200808

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200817

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017004632

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

26N No opposition filed

Effective date: 20210112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210209

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210209

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210209

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210209

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502017004632

Country of ref document: DE

Representative=s name: WITTE, WELLER & PARTNER PATENTANWAELTE MBB, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1253640

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220209

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230217

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230228

Year of fee payment: 7

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240221

Year of fee payment: 8