EP3406780B1 - Getemperter meltblown-vliesstoff mit hoher stauchhärte - Google Patents

Getemperter meltblown-vliesstoff mit hoher stauchhärte Download PDF

Info

Publication number
EP3406780B1
EP3406780B1 EP17172180.6A EP17172180A EP3406780B1 EP 3406780 B1 EP3406780 B1 EP 3406780B1 EP 17172180 A EP17172180 A EP 17172180A EP 3406780 B1 EP3406780 B1 EP 3406780B1
Authority
EP
European Patent Office
Prior art keywords
meltblown nonwoven
nonwoven fabric
filaments
meltblown
annealed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17172180.6A
Other languages
English (en)
French (fr)
Other versions
EP3406780A1 (de
Inventor
Axel Nickel
Norbert Jording
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to EP17172180.6A priority Critical patent/EP3406780B1/de
Priority to US16/633,065 priority patent/US20200165759A1/en
Priority to PCT/EP2018/063287 priority patent/WO2018215402A1/de
Priority to CN201880049523.1A priority patent/CN111226001B/zh
Publication of EP3406780A1 publication Critical patent/EP3406780A1/de
Application granted granted Critical
Publication of EP3406780B1 publication Critical patent/EP3406780B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/56Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in association with fibre formation, e.g. immediately following extrusion of staple fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/4291Olefin series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/007Addition polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/02Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins
    • D10B2321/022Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins polypropylene

Definitions

  • the present invention relates to a tempered meltblown nonwoven with a high compression hardness and in particular to a tempered voluminous meltblown nonwoven with a high compression hardness. Furthermore, the present invention relates to a method for producing such a tempered meltblown nonwoven.
  • Felts and nonwovens are usually produced from staple fibers and / or continuous filaments by means of known mechanical or aerodynamic processes.
  • a well-known aerodynamic process is the meltblown process based on the Exxon principle, such as that in the US 3,755,527 is described.
  • a low-viscosity polymer is extruded through capillaries located at the tip of a nozzle.
  • the polymer droplets that form are then subjected to an air flow, which is referred to as blown air and has a high temperature and speed, from two sides, as a result of which the polymer droplets are drawn out into a polymer free jet in the form of fine filaments.
  • the polymer strands are additionally stretched, so that the filaments obtained after the filaments have been deposited on a support and after cooling can have a diameter and fineness in the single-digit micrometer range or even less.
  • the meltblown nonwovens or meltblown nonwovens produced in this way are used for various applications, for example for barrier functions in the hygiene area. For these applications, the filaments are placed on the carrier as a flat, two-dimensional nonwoven.
  • Voluminous, three-dimensional meltblown nonwovens can also be produced by depositing the filaments formed between two suction drums or double drums, as is the case, for example, in DE 17 85 712 C3 and in the US 4,375,446 is described.
  • These voluminous meltblown nonwovens can be used, for example, as oil absorbers or as acoustic damping materials.
  • these voluminous meltblown nonwovens have the disadvantage that they are very ductile and are characterized by poor relaxation, which leads to a loss of volume after pressure load.
  • meltblown nonwovens which contain, in addition to the meltblown filaments, staple fibers of polyethylene terephthalate incorporated therein. These nonwovens are characterized by increased resilience, which is why the nonwoven has better relaxation. However, these nonwovens are constructed from two incompatible polymers, which precludes recycling, which in turn leads to a major cost disadvantage.
  • a major disadvantage of the known meltblown nonwovens and in particular of the known voluminous meltblown nonwovens is their comparatively low rigidity and the resulting low compression hardness, in particular under higher loads. Furthermore, these materials are usually limp, which means that they deform under their own weight, but not a specific one Keep in shape. For these reasons, these known meltblown nonwovens and in particular known voluminous meltblown nonwovens are difficult to convert permanently into a predetermined shape. Deformation generally leads to compression of these nonwovens.
  • meltblown nonwoven and in particular a voluminous meltblown nonwoven, which has increased rigidity and, in particular, an increased compression hardness, especially under greater loads, and which is also easy to convert into a predetermined, permanent shape.
  • this object is achieved by a tempered meltblown nonwoven fabric which can be obtained by a process in which at least some of the meltblown nonwoven fabric is subsequently tempered at a temperature which is between the glass transition temperature and 0.1 ° C. below the melting temperature of the filaments of the meltblown nonwoven, the meltblown nonwoven being composed of filaments from a polyolefin, and the meltblown nonwoven having a basis weight of 100 to 600 g / m 2 , a density of 5 to 50 kg / m 3 and one in accordance with DIN EN Compression hardness measured according to ISO 3386 at 60% compression of at least 2 kPa.
  • meltblown nonwoven fabric according to the invention is also characterized by a significantly increased compression hardness, especially under greater loads, such as, for example, at 40% or 60% compression , namely by a compression hardness measured according to DIN EN ISO 3386 at 60% compression of at least 2 kPa.
  • meltblown nonwoven according to the invention can easily be shaped into a desired shape during the tempering.
  • these advantages are at least partly due to the fact that the degree of crystallization of the nonwoven filaments, which were previously predominantly amorphous, is significantly increased during the subsequent annealing carried out according to the invention. This is suspected because the inventors found that the melting temperature of the filaments of the meltblown nonwoven fabric can increase by about 10 to 20 ° C depending on the conditions during the annealing.
  • the filament fineness and the nonwoven structure are not changed, or at most only insignificantly, by the tempering, so that after the tempering the nonwoven maintains its other properties, such as, for example, in the case of a voluminous nonwoven, its thickness-specific acoustic properties, such as the degree of acoustic absorption.
  • meltblown nonwoven is understood to mean a nonwoven fabric produced using one of the known meltblown processes, regardless of whether it is a two-dimensional nonwoven or a voluminous nonwoven.
  • Processes for producing such meltblown nonwovens are, for example, in US Pat US 4,118,531 , in the US 4,375,446 , in the US 4,380,570 and in the DE 17 85 712 C3 described.
  • annealing is generally understood to mean a heat treatment, that is to say the heating of the meltblown nonwoven at the aforementioned temperature for a certain period of time.
  • the meltblown nonwoven is subsequently annealed, specifically at a temperature which is between the glass transition temperature and 0.1 ° C. below the melting temperature of the filaments of the meltblown nonwoven.
  • Both the glass transition temperature and the melting temperature of the filaments of the meltblown nonwoven refer to the corresponding temperatures of the meltblown nonwoven present at the time.
  • the inventors have found that the melting temperature of the filaments of the meltblown nonwoven fabric can increase by about 10 to 20 ° C depending on the conditions during the annealing. Therefore, the temperature can be raised during annealing. For example, if the melting temperature of the filaments of the meltblown nonwoven is 152 ° C.
  • the tempering can be carried out, for example, in such a way that the meltblown nonwoven is first annealed at a temperature of 150 ° C, after a certain period of time, for example 10 minutes, the temperature is increased to 155 ° C (which is 2 ° C below the melting temperature which the filaments of the meltblown nonwoven have at this time), before after a further period of 10 minutes, for example, the temperature is raised again to 165 ° C. (which is 2 ° C. below the melting temperature which the filaments of the meltblown nonwoven have at this point in time).
  • the meltblown nonwoven is partially or fully annealed.
  • a specific partial area of the meltblown nonwoven or several partial areas of the meltblown nonwoven can be annealed, whereas the rest of the meltblown nonwoven remains untempered. It is also possible and, according to the present invention, particularly preferred to heat the entire meltblown nonwoven.
  • the meltblown nonwoven or the subarea (s) to be tempered at one temperature are annealed, which is between 20 ° C below the melting temperature and 1 ° C below the melting temperature of the filaments of the meltblown nonwoven.
  • the tempering is particularly preferably carried out at a temperature which is between 15 ° C. below the melting temperature and 1 ° C. below the melting temperature and very particularly preferably between 10 ° C. below the melting temperature and 2 ° C. below the melting temperature, for example at about 5 ° C below the melting temperature (for example between 8 ° C below the melting temperature and 2 ° C below the melting temperature) of the filaments of the meltblown nonwoven.
  • the duration of the annealing depends on the temperature to which the meltblown nonwoven is heated during the annealing, with a lower annealing temperature tending to require a longer annealing period. Basically, an annealing period of 1 minute to 10 days and in particular 2 minutes to 24 hours has proven to be suitable.
  • the period of annealing is preferably 2 minutes to 2 hours, particularly preferably 2 to 60 minutes and most preferably 2 to 10 minutes.
  • meltblown nonwoven is annealed for 2 minutes to 2 hours at a temperature which is between 20 ° C. below the melting temperature and 1 ° C. below the melting temperature of the filaments of the meltblown nonwoven.
  • Annealing is particularly preferred of the meltblown nonwoven is carried out for 2 to 60 minutes at a temperature which is between 15 ° C. below the melting temperature and 2 ° C. below the melting temperature of the filaments of the meltblown nonwoven, and the tempering of the meltblown nonwoven is very particularly preferred for 2 to 10 minutes at a temperature which is about 5 ° C below the melting temperature, that is between 8 ° C below the melting temperature and 2 ° C below the melting temperature of the filaments of the meltblown nonwoven.
  • the melting point of the meltblown nonwoven may increase during annealing due to the increase in the degree of crystallization.
  • the distance between the tempering temperature and the melting point of the meltblown nonwoven would increase more and more during the tempering, and the required tempering time would be comparatively long. Therefore, in accordance with an alternative embodiment of the present invention, it is proposed to increase the temperature during the annealing in order to keep the annealing temperature always just below (for example about 2 ° C. or 5 ° C.) below the melting point of the meltblown nonwoven which increases during the annealing , For example, if the melting temperature of the filaments of the meltblown nonwoven is 152 ° C.
  • the tempering can be carried out as described above, for example that the meltblown nonwoven is first tempered at a temperature of 150 ° C, after a certain period of time, for example 10 minutes, the temperature is 155 ° C (which is 2 ° C below the melting temperature that the filaments of the meltblown nonwoven at this time ) is increased before, after a further period of 10 minutes, for example, the temperature is again increased to 165 ° C. (which is 2 ° C. below the melting temperature that the filaments of the meltblown nonwoven have at this point in time).
  • the present invention is not restricted with regard to the way in which the meltblown nonwoven is annealed.
  • Annealing in which hot melt and / or superheated steam is applied to the meltblown nonwoven fabric, has proven to be not only simple, but particularly effective.
  • the hot air or the superheated water vapor has a temperature which corresponds to that to which the meltblown nonwoven is to be heated during the annealing.
  • hot air or superheated steam is preferably applied to the meltblown nonwoven by flowing hot air or superheated steam around the meltblown nonwoven or, more preferably, flowing through it.
  • the meltblown nonwoven is preferably annealed in an oven which has at least one blow box which is arranged such that the hot air or the superheated steam can be blown into the meltblown nonwoven. If only one or more areas of the meltblown nonwoven are to be tempered, the blow box should be designed so that the hot air or the superheated steam is only blown into the area (s) of the meltblown nonwoven to be tempered.
  • the meltblown nonwoven be annealed in an oven which has at least one suction box, which is arranged such that air flowing through the meltblown nonwoven or superheated water vapor can be sucked off in order to ensure a safe flow guarantee. Vacuuming on both sides ensures that hot air or superheated water vapor flows safely through the nonwoven fabric and that the nonwoven fabric does not collapse but maintains its volume.
  • the meltblown nonwoven is annealed in an oven which has at least one blow box and at least one suction box, the at least one blow box being arranged such that the hot air or the superheated water vapor in the meltblown Nonwoven can be blown in, and, wherein the at least one suction box is arranged so that the air flowing through the meltblown nonwoven or superheated water vapor can be sucked off.
  • the furnace particularly preferably has two blow boxes and one or two suction boxes, the suction box being arranged downstream of the first or second blowing box in the case of a suction box, and, the two suction boxes being downstream of the first and the second in the case of two suction boxes Blow box are arranged.
  • the meltblown nonwoven has a weight per unit area of 100 to 600 g / m 2 , preferably 100 to 400 g / m 2 and particularly preferably 250 to 350 g / m 2 , such as 350 g / m 2 .
  • the meltblown nonwoven is preferably a voluminous meltblown nonwoven with a density of 8 to 25 kg / m 3 and particularly preferably of 10 to 20 kg / m 3 .
  • the filaments of the meltblown nonwoven according to the present invention are composed of a polymer selected from the group consisting of polypropylene and polyethylene.
  • the filaments of the meltblown nonwoven according to the present invention are very particularly preferably composed of isotactic polypropylene, since it has been found that the degree of crystallization is particularly well increased during the tempering in filaments made of isotactic polypropylene.
  • the meltblown nonwoven in a shaped body in order to also convert the meltblown nonwoven into a predetermined shape during the annealing.
  • This can be achieved, for example, in that the molded body in which the meltblown nonwoven is tempered is at least partially designed as a sieve, so that the meltblown nonwoven is flowed through and / or flowed around with hot air or with superheated steam during the tempering can.
  • meltblown nonwoven after heating, but before cooling, in a shaped body and thus to convert it into a predetermined shape in order to shape it, the meltblown nonwoven being cooled in the mold in order to complete the tempering process ,
  • the meltblown nonwoven can be shaped into a specific shape, such as a hemisphere, by tempering as a stamped part.
  • the meltblown nonwoven fabric, tempered and shaped in this way is significantly more dimensionally stable than the starting material and largely retains its shape.
  • the meltblown nonwoven can therefore take on forces after tempering, so that additional stiffening structural elements in the meltblown nonwoven can be dispensed with after molding.
  • At least one spacer which has a length that is greater than the thickness of the meltblown nonwoven, is provided in the meltblown nonwoven and is arranged in the thickness direction of the meltblown nonwoven. This is advantageous, for example, if the meltblown nonwoven is to be used as an acoustic absorber.
  • an inherently rigid molded part is obtained, in which, due to the spacer (s) - if it acts as an acoustic absorber in front of a reflective plane, such as the sheet metal wall of an automobile, is mounted - a not insignificant air gap is formed between the absorber and the reflecting plane, the additional air volume thus created acting as an integral part of the absorber structure.
  • a molded part made of meltblown nonwoven fabric with an excellent absorber effect can be achieved with a significantly reduced material expenditure.
  • the air volume enclosed between the absorber and the wall results in a significant improvement in the low-frequency behavior of the structure, which can otherwise only be achieved by means of correspondingly thick and thus also heavy and expensive materials.
  • the air volume between the absorber and the wall described above can also be created by a structure of the wall with a flat absorber or a structure of the wall and the absorber, the inherent rigidity of the absorber being necessary for the permanent formation of the air volume.
  • the meltblown nonwoven to be tempered can be made by any of the known meltblown processes, such as one in the art US 4,118,531 , in the US 4,375,446 , in the US 4,380,570 or in the DE 17 85 712 C3 described method.
  • a meltblown process is used to produce nonwoven by extruding polymer melt extruded through a nozzle on the outside with flowing air and stretching it before the filaments thus formed are placed on a carrier and cooled.
  • the carrier is preferably a double suction drum.
  • the degree of crystallization of the meltblown nonwoven is increased by the annealing.
  • the filaments of the annealed meltblown nonwoven preferably have at least in sections and preferably over the entire surface, a degree of crystallization of 20 to 80%, more preferably 30 to 75%, particularly preferably 40 to 75% and most preferably 50 to 70%. If the meltblown nonwoven is annealed only in sections, the tempered areas of the annealed meltblown nonwoven preferably have a degree of crystallization of 20 to 80%, more preferably 30 to 75%, particularly preferably 40 to 75% and most preferably 50 to 70 % on.
  • the meltblown nonwoven has, at least in sections and preferably over the entire surface, a compression hardness (compressive stress) measured at 60% compression of at least 2 kPa based on DIN EN ISO 3386.
  • the meltblown nonwoven preferably has, at least in sections and preferably over the entire area, a compression hardness (compressive stress) measured in accordance with DIN EN ISO 3386 at 60% compression of at least 8 kPa, particularly preferably of at least 12 kPa, very particularly preferably of at least 20 kPa and maximum preferably has at least 30 kPa.
  • the compression hardness at 60% compression is to be understood as the compressive stress under which a material sample is reduced by 60% of the original thickness.
  • the preload for determining the initial thickness of the material is reduced to 0.014 kPa in order to take into account the very low compression hardness of the untempered material. In the case of deviating degrees of compression or other test conditions, deviating compressive stresses with non-linear relationships to the stated values can result.
  • the annealing temperature In order to shorten the annealing time, it is proposed in a further development of the inventive concept to raise the annealing temperature continuously or in stages during the annealing, and preferably also above the melting temperature of the non-annealed filaments of the meltblown nonwoven, the annealing temperature, however, always being at least 0.1 ° C below the current (ie the melting temperature of the filaments of the meltblown nonwoven at this time.
  • the present invention makes it possible to increase the degree of crystallization of the filaments of meltblown nonwovens in sections or over the entire area, and thus to increase the rigidity of meltblown nonwovens in sections or over the entire area.
  • the present invention can be used to anneal the entire surface of the meltblown nonwoven and thus to increase the degree of crystallization in the entire area of the meltblown nonwoven. This enables the production of rigid, pressure-stable two-dimensional components.
  • the shaped meltblown nonwoven can also only be partially annealed and the degree of crystallization in the meltblown nonwoven can only be raised over part of the surface, for example to increase the rigidity only in component-specific areas or in the continuous grid of the component.
  • edge areas of the component made of the meltblown nonwoven can be annealed in order to make the edge areas of the component more rigid, for example to increase the stackability of the component made of the meltblown nonwoven.
  • tempering can be used to form a component from the meltblown nonwoven and to increase the degree of crystallization over the entire surface in order to produce inherently rigid three-dimensional components.
  • locally condensed or consolidated areas can expand the functionality, for example for the formation of contact surfaces at fastening points.
  • Another object of the present invention is a tempered meltblown nonwoven whose filaments are at least in sections and preferably over the entire surface have a degree of crystallization of 20 to 80%, preferably 30 to 75%, particularly preferably 40 to 75% and most preferably 50 to 70%.
  • the present invention relates to a meltblown nonwoven with a compression hardness measured at least in sections and preferably over the entire surface in accordance with DIN EN ISO 3386 at 60% compression of at least 2 kPa.
  • the meltblown nonwoven according to the invention preferably has a compression hardness at 60% compression of at least 8 kPa, particularly preferably of at least 12 kPa, very particularly preferably of at least 20 kPa and most preferably of at least 30 kPa.
  • the meltblown nonwoven in step b) is annealed for 2 minutes to 2 hours at a temperature which is between 20 ° C. below the melting temperature and 1 ° C. below the melting temperature of the filaments of the meltblown nonwoven ,
  • the Fig. 1 schematically shows a belt furnace 10 for producing a tempered meltblown nonwoven according to an embodiment of the present invention.
  • the open 10 comprises air-permeable belts 14, 14 'which are guided and driven on rollers 12 and via which the meltblown nonwoven fabric 15 is guided into and through the oven 10.
  • the meltblown nonwoven 15 is passed through the furnace 10 from right to left on the lower belt 14.
  • meltblown nonwoven fabric 15 When passing through the blow boxes 16, 16 ', hot air is flowed into and through the meltblown nonwoven fabric 15 in order to raise the filaments of the meltblown nonwoven fabric 15 to the desired tempering temperature. In the area of the suction box 18, air flowing through the meltblown nonwoven 15 is sucked off to ensure that the meltblown nonwoven 15 is safely flowed through by the hot air and the meltblown nonwoven 15 does not collapse but maintains its volume.
  • FIG. 2 schematically shows a mold 20 for the simultaneous molding and tempering of a meltblown nonwoven fabric 15 according to another exemplary embodiment of the present invention.
  • the meltblown nonwoven fabric 15 is held in the desired shape from both sides by appropriately shaped sieves 22, 22 ', from which the mold 20 is composed, and heated to the desired temperature by tempering or flowing hot air around it.
  • the nonwoven mat produced in this way retains the embossed shape and is dimensionally stable.
  • a meltblown nonwoven fabric with a basis weight of 300 g / m 2 and a density of 15 kg / m 3 was produced from filaments made of isotactic polypropylene with a filament fineness of 5 ⁇ m on average by using the US 4,375,446 described meltblown process was carried out.
  • This meltblown nonwoven was then heat-treated in a forced air oven at 158 ° C. for 10 minutes. By inserting the cold nonwoven and opening the oven door, the initial temperature was below the melting point of the filaments of the unheated nonwoven. Due to the immediate onset of crystallization with an accompanying increase in the melting point of the filaments, the rest of the 10 minutes could be further tempered at 158 ° C, i.e. above the melting temperature of the unheated filaments, but below the melting temperature of the filaments present at the time, and so on Tempering time can be shortened compared to tempering at a lower temperature.
  • the degree of sound absorption of the tempered meltblown nonwoven was measured as a function of the thickness-standardized frequency in accordance with DIN EN ISO 10534.
  • the results are in the Fig. 3 in curve A in comparison to the values which have been achieved with the unannealed meltblown nonwoven fabric produced in the comparative example (curve B).
  • the unit of the abscissa is the measurement frequency x absorber thickness / 15 mm. The comparison of the results shows that the heat treatment according to the invention has no negative effects on the sound absorption properties of the nonwoven.
  • An annealed meltblown nonwoven fabric was made according to the procedure described in Example 1, except that the annealing was carried out at 155 ° C for 10 minutes.
  • An annealed meltblown nonwoven fabric was made according to the procedure described in Example 1, except that the annealing was carried out at 155 ° C for 25 minutes.
  • Example 1 An untempered meltblown nonwoven fabric was produced in accordance with the first process step described in Example 1, which, unlike the one described in Example 1, was not annealed.
  • Table 1 example Annealing temperature (° C) Annealing time (min.) Compression hardness factor at 60% compression Compression hardness factor at 60% compression 1 158 10 18.5 14 2 155 10 9.5 7 3 155 25 12 9 Comparative Example 1 - - 1 1 Compression hardness factor: Ratio of the compression hardness of the annealed nonwoven fabric of the example divided by the compression hardness of the non-annealed nonwoven fabric of the comparative example

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Nonwoven Fabrics (AREA)

Description

  • Die vorliegende Erfindung betrifft einen getemperten Meltblown-Vliesstoff mit hoher Stauchhärte und insbesondere einen getemperten voluminösen Meltblown-Vliesstoff mit hoher Stauchhärte. Des Weiteren betrifft die vorliegende Erfindung ein Verfahren zum Herstellen eines solchen getemperten Meltblown-Vliesstoffs.
  • Üblicherweise erfolgt die Herstellung von Filzen und Vliesen aus Stapelfasern und/oder Endlosfilamenten mittels bekannter mechanischer oder aerodynamischer Verfahren. Ein bekanntes aerodynamisches Verfahren ist das Meltblown-Verfahren nach dem Exxon-Prinzip, wie dieses zum Beispiel in der US 3,755,527 beschrieben wird. Bei diesem Verfahren wird ein niedrigviskoses Polymer durch Kapillaren, die sich an einer Düsenspitze befinden, extrudiert. Die sich bildenden Polymertropfen werden dann von zwei Seiten mit einer als Blasluft bezeichneten, eine hohe Temperatur und Geschwindigkeit aufweisenden, Luftströmung beaufschlagt, infolge dessen die Polymertropfen zu einem Polymerfreistrahl in Form von feinen Filamenten ausgezogen werden. Durch die im spitzen Winkel auf die Polymertropfen aufeinandertreffenden Luftströmungen wird in dem Polymerfreistrahl zudem ein Schwingungsvorgang im dann vorliegenden Freistrahl induziert, infolge dessen es zu hochfrequenten Vorgängen kommt, welche die Polymerstränge über die Geschwindigkeit der Blasluft hinaus beschleunigen. Dadurch werden die Polymerstränge zusätzlich verstreckt, so dass die nach Ablegen der Filamente auf einem Träger und nach Abkühlen erhaltenen Filamente einen Durchmesser und eine Feinheit im einstelligen Mikrometerbereich oder sogar darunter aufweisen können. Die so hergestellten Meltblown-Vliesstoffe bzw. Schmelz-Blas-Vliesstoffe werden für unterschiedliche Anwendungen verwendet, wie zum Beispiel für Barrierefunktionen im Hygienebereich. Für diese Anwendungen werden die Filamente auf dem Träger als flacher, zweidimensionaler Vliesstoff abgelegt.
  • Ein weiteres bekanntes Meltblown-Verfahren ist von der Firma Biax Fiberfilm Corp. entwickelt worden und zum Beispiel in der US 4,380,570 beschrieben worden.
  • Es können auch voluminöse, dreidimensionale Meltblown-Vliesstoffe hergestellt werden, indem die gebildeten Filamente zwischen zwei Saugtrommeln bzw. Doppeltrommeln abgelegt werden, wie dies beispielsweise in der DE 17 85 712 C3 und in der US 4,375,446 beschrieben wird. Diese voluminösen Meltblown-Vliesstoffe können zum Beispiel als Ölabsorber oder als akustische Dämpfungsmaterialien eingesetzt werden. Allerdings weisen diese voluminösen Meltblown-Vliesstoffe den Nachteil auf, dass sie sehr duktil sind und sich durch eine schlechte Relaxation auszeichnen, was nach Druckbelastung zu einem Verlust an Volumen führt.
  • Aus der US 4,118,531 sind Meltblown-Vliesstoffe bekannt, die zusätzlich zu den Meltblown-Filamenten darin eingebrachte Stapelfasern aus Polyethylenterephthalat enthalten. Diese Vliesstoffe zeichnen sich durch eine erhöhte Sprungelastizität aus, weswegen der Vliesstoff eine bessere Relaxation aufweist. Allerdings sind diese Vliesstoffe aus zwei nicht miteinander kompatiblen Polymeren aufgebaut, was ein Recycling ausschließt, was wiederum zu einem großen Kostennachteil führt.
  • Ein wesentlicher Nachteil der bekannten Meltblown-Vliesstoffe und insbesondere der bekannten voluminösen Meltblown-Vliesstoffe ist deren vergleichsweise geringe Steifigkeit und deren daraus resultierende geringe Stauchhärte insbesondere bei größeren Belastungen. Ferner sind diese Materialien in der Regel biegeschlaff, was bedeutet, dass sie sich bereits unter Eigengewicht verformen, aber keine bestimmte Form behalten. Aus diesen Gründen sind diese bekannten Meltblown-Vliesstoffe und insbesondere bekannten voluminösen Meltblown-Vliesstoffe nur schwer dauerhaft in eine vorbestimmte Form zu überführen. Eine Verformung führt in der Regel zusätzlich zu einer Komprimierung dieser Vliesstoffe.
  • Aufgabe der vorliegenden Erfindung ist es daher, einen Meltblown-Vliesstoff und insbesondere einen voluminösen Meltblown-Vliesstoff bereitzustellen, welcher eine erhöhte Steifigkeit und insbesondere eine erhöhte Stauchhärte vor allem bei größeren Belastungen aufweist, und welcher zudem leicht in eine vorbestimmte dauerhafte Form zu überführen ist.
  • Erfindungsgemäß wird diese Aufgabe gelöst durch einen getemperten Meltblown-Vliesstoff, der durch ein Verfahren erhältlich ist, bei dem zumindest ein Teil des Meltblown-Vliesstoffs nachträglich bei einer Temperatur getempert wird, die zwischen der Glasübergangstemperatur und 0,1 °C unterhalb der Schmelztemperatur der Filamente des Meltblown-Vliesstoffs liegt, wobei der Meltblown-Vliesstoff aus Filamenten aus einem Polyolefin zusammengesetzt ist, und der Meltblown-Vliesstoff ein Flächengewicht von 100 bis 600 g/m2, eine Dichte von 5 bis 50 kg/m3 sowie eine gemäß DIN EN ISO 3386 gemessene Stauchhärte bei 60% Kompression von mindestens 2 kPa aufweist.
  • Diese Lösung basiert auf der überraschenden Erkenntnis, dass ein nachträglich bei einer zwischen der Glasübergangstemperatur und 0,1 °C unterhalb der Schmelztemperatur der Filamente des Meltblown-Vliesstoffs liegenden Temperatur getemperter voluminöser Meltblown-Vliesstoff, nämlich einer mit einem Flächengewicht von 100 bis 600 g/m2 sowie mit einer Dichte von 5 bis 50 kg/m3, im Vergleich zu dem entsprechenden ungetemperten Meltblown-Vliesstoff eine signifikant erhöhte Steifigkeit aufweist. Aufgrund dessen zeichnet sich der erfindungsgemäße Meltblown-Vliesstoff zudem durch eine signifikant erhöhte Stauchhärte vor allem bei größeren Belastungen, wie beispielsweise bei 40% oder 60% Kompression, aus, nämlich durch eine gemäß DIN EN ISO 3386 gemessene Stauchhärte bei 60% Kompression von mindestens 2 kPa. Des Weiteren lässt sich der erfindungsgemäße Meltblown-Vliesstoff während des Temperns leicht zu einer gewünschten Form formen. Ohne an eine Theorie gebunden sein zu wollen, wird vermutet, dass diese Vorteile zumindest teilweise darauf zurückzuführen sind, dass bei dem erfindungsgemäß nachträglich durchgeführten Tempern der Kristallisationsgrad der Vliesstofffilamente, welche zuvor überwiegend amorph sind, signifikant erhöht wird. Dies wird deshalb vermutet, weil die Erfinder festgestellt haben, dass sich die Schmelztemperatur der Filamente des Meltblown-Vliesstoffs durch das Tempern in Abhängigkeit von den Bedingungen während des Temperns um etwa 10 bis 20°C erhöhen kann. Die von den Erfindern durchgeführten Experimente scheinen zu zeigen, dass durch die sehr hohen Abzugsgeschwindigkeiten bei der Herstellung der Filamente auf sehr dünne Feinheiten der Filamente, es trotz der heißen Blasluft zu einer rapiden Abkühlung der Polymerschmelze kommt, wodurch die amorphe Molekülstruktur der Schmelze gewissermaßen "eingefroren" wird. Wie dargelegt, wird durch das erfindungsgemäße Tempern der Kristallisationsgrad der amorphen Vliesstofffilamente erhöht. Vorteilhafterweise wird durch das Tempern die Filamentfeinheit sowie die Vliesstruktur nicht oder allenfalls unbeträchtlich verändert, so dass der Vliesstoff nach dem Tempern seine anderen Eigenschaften, wie beispielsweise im Falle eines voluminösen Vliesstoffs, seine dickenspezifischen akustischen Eigenschaften, wie akustischen Absorptionsgrad, beibehält.
  • Unter einem Meltblown-Vliesstoff wird im Sinne der vorliegenden Erfindung ein mit einem der bekannten Meltblown-Verfahren hergestellter Vliesstoff verstanden, unabhängig davon, ob es ein flächiger 2-dimensionaler Vliesstoff oder ein voluminöser Vliesstoff ist. Verfahren zur Herstellung solcher Meltblown-Vliesstoffe sind beispielsweise in der US 4,118,531 , in der US 4,375,446 , in der US 4,380,570 und in der DE 17 85 712 C3 beschrieben.
  • Zudem wird im Sinne der vorliegenden Erfindung unter Tempern allgemein eine Wärmebehandlung verstanden, also das Erhitzen des Meltblown-Vliesstoffs bei der vorgenannten Temperatur für eine gewisse Zeitspanne.
  • Erfindungsgemäß wird zumindest ein Teil des Meltblown-Vliesstoffs nachträglich getempert, und zwar bei einer Temperatur, die zwischen der Glasübergangstemperatur und 0,1 °C unterhalb der Schmelztemperatur der Filamente des Meltblown-Vliesstoffs liegt. Dabei bezieht sich sowohl die Glasübergangstemperatur als auch die Schmelztemperatur der Filamente des Meltblown-Vliesstoffs auf die entsprechenden Temperaturen des zu diesem Zeitpunkt vorliegenden Meltblown-Vliesstoffs. Wie vorstehend dargelegt, haben die Erfinder festgestellt, dass sich die Schmelztemperatur der Filamente des Meltblown-Vliesstoffs durch das Tempern in Abhängigkeit von den Bedingungen während des Temperns um etwa 10 bis 20°C erhöhen kann. Daher kann die Temperatur während des Temperns erhöht werden. Wenn beispielsweise die Schmelztemperatur der Filamente des Meltblown-Vliesstoffs vor Beginn des Temperns 152°C beträgt und sich die Schmelztemperatur der Filamente des Meltblown-Vliesstoffs während Temperns beispielsweise auf 170°C erhöht, kann das Tempern beispielsweise so durchgeführt werden, dass der Meltblown-Vliesstoff zunächst bei einer Temperatur von 150°C getempert wird, nach einer gewissen Zeitspanne von beispielswiese 10 Minuten die Temperatur auf 155°C (die 2°C unterhalb der Schmelztemperatur liegt, welche die Filamente des Meltblown-Vliesstoffs zu diesem Zeitpunkt aufweisen) erhöht wird, bevor nach einer weiteren Zeitspanne von beispielswiese erneut 10 Minuten die Temperatur auf 165°C (die 2°C unterhalb der Schmelztemperatur liegt, welche die Filamente des Meltblown-Vliesstoffs zu diesem Zeitpunkt aufweisen) erhöht wird.
  • Dabei wird der Meltblown-Vliesstoff abschnittsweise oder vollflächig getempert. Dabei kann ein bestimmter Teilbereich des Meltblown-Vliesstoffs oder können mehrere Teilbereiche des Meltblown-Vliesstoffs getempert werden, wohingegen der Rest des Meltblown-Vliesstoffs ungetempert bleibt. Ebenso ist es möglich und gemäß der vorliegenden Erfindung auch besonders bevorzugt, den gesamten Meltblown-Vliesstoff zu tempern.
  • Gute Ergebnisse sowohl im Hinblick auf die Formbarkeit als auch im Hinblick auf die Erhöhung der Steifigkeit und insbesondere der Stauchhärte des getemperten Meltblown-Vliesstoffs werden insbesondere erhalten, wenn der Meltblown-Vliesstoff bzw. der/die davon zu tempernden Teilbereich(e) bei einer Temperatur getempert wird/werden, die zwischen 20°C unterhalb der Schmelztemperatur und 1°C unterhalb der Schmelztemperatur der Filamente des Meltblown-Vliesstoffs liegt. Besonders bevorzugt wird das Tempern bei einer Temperatur durchgeführt, welche zwischen 15°C unterhalb der Schmelztemperatur und 1°C unterhalb der Schmelztemperatur und ganz besonders bevorzugt zwischen 10°C unterhalb der Schmelztemperatur und 2°C unterhalb der Schmelztemperatur, wie beispielsweise bei etwa 5°C unterhalb der Schmelztemperatur (also beispielsweise zwischen 8°C unterhalb der Schmelztemperatur und 2°C unterhalb der Schmelztemperatur) der Filamente des Meltblown-Vliesstoffs liegt.
  • Die Dauer des Temperns hängt von der Temperatur ab, auf welche der Meltblown-Vliesstoff während des Temperns erwärmt wird, wobei tendenziell eine tiefere Tempertemperatur eine längere Temperzeitspanne erfordert. Grundsätzlich hat sich eine Temperzeitspanne von 1 Minute bis 10 Tage und insbesondere von 2 Minuten bis 24 Stunden als geeignet erwiesen. Bevorzugt beträgt die Zeitspanne des Temperns 2 Minuten bis 2 Stunden, besonders bevorzugt 2 bis 60 Minuten und höchst bevorzugt 2 bis 10 Minuten.
  • Gute Ergebnisse werden insbesondere erzielt, wenn der Meltblown-Vliesstoff für 2 Minuten bis 2 Stunden bei einer Temperatur getempert wird, die zwischen 20°C unterhalb der Schmelztemperatur und 1°C unterhalb der Schmelztemperatur der Filamente des Meltblown-Vliesstoffs liegt. Besonders bevorzugt wird das Tempern des Meltblown-Vliesstoffs für 2 bis 60 Minuten bei einer Temperatur durchgeführt, welche zwischen 15°C unterhalb der Schmelztemperatur und 2°C unterhalb der Schmelztemperatur der Filamente des Meltblown-Vliesstoffs liegt, und ganz besonders bevorzugt wird das Tempern des Meltblown-Vliesstoffs für 2 bis 10 Minuten bei einer Temperatur durchgeführt, welche etwa 5°C unterhalb der Schmelztemperatur, also zwischen 8°C unterhalb der Schmelztemperatur und 2°C unterhalb der Schmelztemperatur der Filamente des Meltblown-Vliesstoffs liegt.
  • Wie vorstehend dargelegt, kann sich der Schmelzpunkt des Meltblown-Vliesstoffs während des Temperns durch die Zunahme des Kristallisationsgrades erhöhen. In diesem Fall würde sich bei einer konstanten Tempertemperatur der Abstand zwischen der Tempertemperatur und dem Schmelzpunkt des Meltblown-Vliesstoffs während des Temperns immer mehr erhöhen und so die erforderliche Temperzeit vergleichsweise lang sein. Daher wird es gemäß einer alternativen Ausführungsform der vorliegenden Erfindung vorgeschlagen, die Temperatur während des Temperns zu erhöhen, um die Tempertemperatur immer knapp (beispielsweise etwa 2°C oder 5°C) unterhalb des sich während des Temperns erhöhenden Schmelzpunktes des Meltblown-Vliesstoffs zu halten. Wenn beispielsweise die Schmelztemperatur der Filamente des Meltblown-Vliesstoffs vor Beginn des Temperns 152°C beträgt und sich die Schmelztemperatur der Filamente des Meltblown-Vliesstoffs während Temperns beispielsweise auf 170°C erhöht, kann das Tempern, wie vorstehend dargelegt, beispielsweise so durchgeführt werden, dass der Meltblown-Vliesstoff zunächst bei einer Temperatur von 150°C getempert wird, nach einer gewissen Zeitspanne von beispielswiese 10 Minuten die Temperatur auf 155°C (die 2°C unterhalb der Schmelztemperatur liegt, welche die Filamente der Meltblown-Vliesstoff zu diesem Zeitpunkt aufweisen) erhöht wird, bevor nach einer weiteren Zeitspanne von beispielswiese erneut 10 Minuten die Temperatur auf 165°C (die 2°C unterhalb der Schmelztemperatur liegt, welche die Filamente der Meltblown-Vliesstoff zu diesem Zeitpunkt aufweisen) erhöht wird.
  • Grundsätzlich ist die vorliegende Erfindung hinsichtlich der Art, wie der Meltblown-Vliesstoff getempert wird, nicht beschränkt. Als nicht nur einfach, sondern besonders wirksam hat sich im Rahmen der Erfindung ein Tempern erwiesen, bei dem der Meltblown-Vliesstoff mit heißer Luft und/oder mit überhitztem Wasserdampf beaufschlagt wird. Die heiße Luft bzw. der überhitzte Wasserdampf weist bei dieser Ausführungsform eine Temperatur auf, die der entspricht, auf die der Meltblown-Vliesstoff bei dem Tempern erwärmt werden soll. Vorzugsweise wird der Meltblown-Vliesstoff bei dieser Ausführungsform mit heißer Luft bzw. mit überhitztem Wasserdampf beaufschlagt, indem der Meltblown-Vliesstoff mit der heißen Luft bzw. mit überhitztem Wasserdampf umströmt oder weiter bevorzugt durchströmt wird.
  • Um dies zu realisieren, wird der Meltblown-Vliesstoff bevorzugt in einem Ofen getempert, der wenigstens einen Blaskasten aufweist, der so angeordnet ist, dass die heiße Luft bzw. der überhitzte Wasserdampf in den Meltblown-Vliesstoff eingeblasen werden kann. Sofern nur ein oder mehrere Teilbereiche des Meltblown-Vliesstoff getempert werden sollen, ist der Blaskasten so auszugestalten, dass die heiße Luft bzw. der überhitzte Wasserdampf nur in den bzw. die zu tempernden Teilbereich(e) des Meltblown-Vliesstoffs eingeblasen wird.
  • In Weiterbildung des Erfindungsgedankens wird es vorgeschlagen, dass der Meltblown-Vliesstoff in einem Ofen getempert wird, der wenigstens einen Saugkasten aufweist, der so angeordnet ist, dass den Meltblown-Vliesstoff durchströmende Luft bzw. überhitzter Wasserdampf abgesaugt werden kann, um ein sicheres Durchströmen zu gewährleisten. Durch ein beidseitiges Absaugen wird gewährleistet, dass der Vliesstoff mit der heißen Luft bzw. dem überhitzten Wasserdampf sicher durchströmt wird und der Vliesstoff zudem nicht kollabiert, sondern sein Volumen beibehält.
  • Gemäß einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung wird der Meltblown-Vliesstoff in einem Ofen getempert, der wenigstens einen Blaskasten und wenigstens einen Saugkasten aufweist, wobei der wenigstens eine Blaskasten so angeordnet ist, dass die heiße Luft bzw. der überhitzt Wasserdampf in den Meltblown-Vliesstoff eingeblasen werden kann, und, wobei der wenigstens eine Saugkasten so angeordnet ist, dass die den Meltblown-Vliesstoff durchströmende Luft bzw. überhitzter Wasserdampf abgesaugt werden kann. Besonders bevorzugt weist der Ofen bei dieser Ausführungsform zwei Blaskästen und einen oder zwei Saugkästen auf, wobei der Saugkasten im Falle eines Saugkastens stromabwärts des ersten oder zweiten Blaskastens angeordnet ist, und, wobei die beiden Saugkästen im Falle von zwei Saugkästen stromabwärts des ersten und des zweiten Blaskastens angeordnet sind.
  • Erfindungsgemäß weist der Meltblown-Vliesstoff ein Flächengewicht von 100 bis 600 g/m2, bevorzugt von 100 bis 400 g/m2 und besonders bevorzugt von 250 bis 350 g/m2, wie etwa von 350 g/m2, auf.
  • Vorzugsweise ist der Meltblown-Vliesstoff ein voluminöser Meltblown-Vliesstoff mit einer Dichte von 8 bis 25 kg/m3 und besonders bevorzugt von 10 bis 20 kg/m3.
  • Vorzugswese sind die Filamente des Meltblown-Vliesstoffs gemäß der vorliegenden Erfindung aus einem aus der aus Polypropylen und Polyethylen bestehenden Gruppe ausgewähltem Polymer zusammengesetzt. Ganz besonders bevorzugt sind die Filamente des Meltblown-Vliesstoffs gemäß der vorliegenden Erfindung aus isotaktischem Polypropylen zusammengesetzt, da es sich herausgestellt hat, dass bei Filamenten aus isotaktischem Polypropylen der Kristallisationsgrad während des Temperns besonderes gut erhöht wird.
  • Bei Werkstoffen, die kein besonders gutes Kristallisationsverhalten zeigen, kann dieses durch die Zugabe von Kristallisationskeimen während des Extrusionsprozesses erhöht werden.
  • In Weiterbildung des Erfindungsgedankens wird es vorgeschlagen, den Meltblown-Vliesstoff in einem Formkörper zu tempern, um den Meltblown-Vliesstoff bei dem Tempern auch in eine vorgegebene Form zu überführen. Dies kann beispielsweise dadurch erreicht werden, dass der Formkörper, in welcher der Meltblown-Vliesstoff getempert wird, zumindest teilweise als Sieb ausgebildet ist, so dass der Meltblown-Vliesstoff bei dem Tempern mit heißer Luft bzw. mit überhitztem Wasserdampf durchströmt und/oder umströmt werden kann.
  • In einer alternativen Ausführung wird vorgeschlagen, den Meltblown-Vliesstoff nach dem Erwärmen, aber vor dem Abkühlen in einen Formkörper abzulegen und so in eine vorgegebene Form zu überführen, um diesen umzuformen, wobei der Meltblown-Vliesstoff in der Form gekühlt wird um den Temperprozess abzuschließen.
  • Auf diese Weise kann beispielsweise der Meltblown-Vliesstoff durch das Tempern als Stanzteil in eine bestimmte Form, wie zum Beispiel in eine Halbkugel, geformt werden. Der so getemperte und geformte Meltblown-Vliesstoff ist deutlich dimensionsstabiler als das Ausgangsmaterial und behält seine Form weitestgehend bei. Der Meltblown-Vliesstoff kann demnach nach dem Tempern Kräfte übernehmen, so dass bei nach Formung auf zusätzliche versteifende Strukturelemente in dem Meltblown-Vliesstoff verzichtet werden kann.
  • Gemäß einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung ist es vorgesehen, dass in dem Meltblown-Vliesstoff wenigstens ein in Dickenrichtung des Meltblown-Vliesstoffs angeordneter Abstandshalter vorgesehen ist, der eine Länge aufweist, die größer als die Dicke des Meltblown-Vliesstoffs ist. Dies ist beispielsweise vorteilhaft, wenn der Meltblown-Vliesstoff als akustischer Absorber eingesetzt werden soll. Durch das Formen des bzw. der Abstandshalter(s) in den steifen Meltblown-Vliesstoff wird ein eigensteifes Formteil erhalten, bei dem aufgrund des bzw. der Abstandshalter(s) - wenn es als akustischer Absorber vor eine reflektierende Ebene, wie zum Beispiel die Blechwand eines Automobils, montiert ist - zwischen dem Absorber und der reflektierenden Ebene ein nicht unwesentlicher Luftspalt ausgebildet wird, wobei das so geschaffene zusätzliche Luftvolumen als integraler Bestandteil des Absorberaufbaus wirkt. Dadurch kann mit einem deutlich verringerten Materialaufwand ein Formteil aus Meltblown-Vliesstoff mit einer hervorragenden Absorberwirkung erreicht werden. Durch das zwischen Absorber und Wand eingeschlossene Luftvolumen wird eine deutliche Verbesserung des tieffrequenten Verhaltens des Aufbaues bewirkt, was sonst nur durch entsprechend dicke und somit auch schwere und teure Materialien zu erzielen ist. In einer weiteren erfindungsgemäßen Ausführungsform kann das oben beschriebene Luftvolumen zwischen Absorber und Wand auch durch eine Struktur der Wand bei planem Absorber oder eine Struktur der Wand und des Absorbers geschaffen werden, wobei die Eigensteifigkeit des Absorbers für die dauerhafte Bildung des Luftvolumens erforderlich ist.
  • Wie dargelegt, kann der dem Tempern zu unterziehende Meltblown-Vliesstoff mit jedem der bekannten Meltblown-Verfahren hergestellt werden, wie beispielsweise mit einem in der US 4,118,531 , in der US 4,375,446 , in der US 4,380,570 oder in der DE 17 85 712 C3 beschriebenen Verfahren. Grundsätzlich wird bei einem Meltblown-Verfahren Vliesstoff hergestellt, indem durch eine Düse extrudierte Polymerschmelze außenseitig mit strömender Luft beaufschlagt und verstreckt wird, bevor die dadurch ausgebildeten Filamente auf einem Träger abgelegt und abgekühlt werden. Dabei ist der Träger bevorzugt eine Doppel-Saugtrommel.
  • Wie dargelegt, wird durch das Tempern der Kristallisationsgrad des Meltblown-Vliesstoffs erhöht. Vorzugsweise weisen die Filamente des getemperten Meltblown-Vliesstoffs zumindest abschnittsweise und bevorzugt vollflächig einen Kristallisationsgrad von 20 bis 80%, weiter bevorzugt von 30 bis 75%, besonders bevorzugt von 40 bis 75% und höchst bevorzugt von 50 bis 70% auf. Bei nur abschnittsweiser Temperung des Meltblown-Vliesstoffs weisen analog dazu bevorzugt die getemperten Bereiche des getemperten Meltblown-Vliesstoffs einen Kristallisationsgrad von 20 bis 80%, weiter bevorzugt von 30 bis 75%, besonders bevorzugt von 40 bis 75% und höchst bevorzugt von 50 bis 70% auf.
  • Erfindungsgemäß weist der Meltblown-Vliesstoff zumindest abschnittsweise und bevorzugt vollflächig eine in Anlehnung an die DIN EN ISO 3386 gemessene Stauchhärte (Druckspannung) bei 60% Kompression von mindestens 2 kPa. Bevorzugt weist der Meltblown-Vliesstoff zumindest abschnittsweise und bevorzugt vollflächig eine in Anlehnung an die DIN EN ISO 3386 gemessene Stauchhärte (Druckspannung) bei 60% Kompression von mindestens 8 kPa, besonders bevorzugt von mindestens 12 kPa, ganz besonders bevorzugt von mindestens 20 kPa und höchst bevorzugt von mindestens 30 kPa aufweist. Als Stauchhärte bei 60% Kompression ist abweichend von der oben genannten Norm die erforderliche Druckspannung zu verstehen, unter der eine Materialprobe eine Dickenminderung um 60% der Ausgangsdicke erfährt. Weiterhin ist die Vorlast zur Bestimmung der Ausgangsdicke des Materials auf 0,014 kPa reduziert, um der sehr niedrigen Stauchhärte des ungetetemperten Materials Rechnung zu tragen. Bei hiervon abweichenden Kompressionsgraden oder anderen Prüfbedingungen können sich abweichende Druckspannungen mit nicht linearen Zusammenhängen zu den genannten Werten ergeben.
  • Um die Temperzeit zu verkürzen, wird es in Weiterbildung des Erfindungsgedankens vorgeschlagen, bei dem Tempern die Tempertemperatur kontinuierlich oder stufenweise anzuheben, und zwar vorzugsweise auch über die Schmelztemperatur der ungetemperten Filamente des Meltblown-Vliesstoffs hinaus, wobei die Tempertemperatur jedoch immer mindestens 0,1 °C unterhalb der aktuellen (d.h. der zu diesem Zeitpunkt vorliegenden Schmelztemperatur) der Filamente des Meltblown-Vliesstoffs beträgt.
  • Insgesamt ermöglicht es die vorliegende Erfindung, abschnittsweise oder vollflächig den Kristallisationsgrad der Filamente von Meltblown-Vliesstoffen und so abschnittsweise oder vollflächig die Steifigkeit von Meltblown-Vliesstoffen zu erhöhen. Insbesondere kann die vorliegende Erfindung eingesetzt werden, um den Meltblown-Vliesstoff vollflächig zu tempern und so den Kristallisationsgrad in dem Meltblown-Vliesstoff vollflächig anzuheben. Dadurch können eigensteife, druckstabile zweidimensionale Bauteile hergestellt werden. Alternativ dazu kann der geformte Meltblown-Vliesstoff auch nur teilflächig getempert werden und so der Kristallisationsgrad in dem Meltblown-Vliesstoff nur teilflächig angehoben werden, um so beispielsweise die Steifigkeit nur an bauteilspezifischen Bereichen oder im durchlaufenden Raster des Bauteils zu erhöhen. Beispielsweise können nur die Randbereiche des Bauteils aus dem Meltblown-Vliesstoff getempert werden, um so die Randbereiche des Bauteils steifer zu machen, um beispielsweise die Stapelbarkeit des Bauteils aus dem Meltblown-Vliesstoff zu erhöhen. Alternativ dazu kann durch das Tempern aus dem Meltblown-Vliesstoff ein Bauteil geformt und in diesem vollflächig der Kristallisationsgrad angehoben werden, um eigensteife dreidimensionale Bauteile herzustellen. Andererseits ist es auch möglich, durch das Tempern den Meltblown-Vliesstoff nur teilflächig zu verformen und nur in dieser Teilfläche den Kristallisationsgrad anzuheben, um beispielsweise dadurch in dem Meltblown-Vliesstoff ein oder mehrere Abstandshalter oder eine andere lokale Funktionsgeometrie auszubilden. Bei allen vorgenannten Anwendungsmöglichkeiten können lokal verdichtete bzw. konsolidierte Bereiche die Funktionalität erweitern, und zwar zum Beispiel zur Ausbildung von Anlageflächen an Befestigungspunkten.
  • Ein weiterer Gegenstand der vorliegenden Erfindung ist ein getemperter Meltblown-Vliesstoff, dessen Filamente zumindest abschnittsweise und bevorzugt vollflächig einen Kristallisationsgrad von 20 bis 80%, bevorzugt von 30 bis 75%, besonders bevorzugt von 40 bis 75% und höchst bevorzugt von 50 bis 70% aufweisen.
  • Ferner betrifft die vorliegende Erfindung einen Meltblown-Vliesstoff mit einer zumindest abschnittsweise und bevorzugt vollflächig eine in Anlehnung an die DIN EN ISO 3386 gemessene Stauchhärte bei 60% Kompression von mindestens 2 kPa. Bevorzugt weist der erfindungsgemäße Meltblown-Vliesstoff eine Stauchhärte bei 60% Kompression von mindestens 8 kPa, besonders bevorzugt von mindestens 12 kPa, ganz besonders bevorzugt von mindestens 20 kPa und höchst bevorzugt von mindestens 30 kPa auf.
  • Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zum Herstellen eines getemperten Meltblown-Vliesstoffs mit einem Flächengewicht von 100 bis 600 g/m2 sowie mit einer Dichte von 5 bis 50 kg/m3 umfassend die folgenden Schritte:
    1. a) Herstellen eines Meltblown-Vliesstoffs vorzugsweise indem durch eine Düse extrudierte Polyolefinpolymerschmelze außenseitig mit strömender Luft beaufschlagt und verstreckt wird, bevor die dadurch ausgebildeten Filamente auf einem Träger, welcher bevorzugt eine Doppel-Saugtrommel ist, abgelegt und abgekühlt werden, sowie
    2. b) Tempern zumindest wenigstens eines Abschnittes des in dem Schritt a) hergestellten Meltblown-Vliesstoffs bei einer Temperatur, die zwischen der Glasübergangstemperatur und 0,1 °C unterhalb der Schmelztemperatur der Filamente des Meltblown-Vliesstoffs liegt.
  • Die vorstehend für den erfindungsgemäßen Meltblown-Vliesstoff als bevorzugt beschriebenen Verfahrensschritte gelten auch für das erfindungsgemäße Verfahren.
  • Dementsprechend ist es besonders bevorzugt, dass der Meltblown-Vliesstoff in dem Schritt b) für 2 Minuten bis 2 Stunden bei einer Temperatur getempert wird, die zwischen 20°C unterhalb der Schmelztemperatur und 1°C unterhalb der Schmelztemperatur der Filamente des Meltblown-Vliesstoffs beträgt.
  • Nachfolgend wird die vorliegende Erfindung unter Bezugnahme auf diese erläuternde, diese aber nicht einschränkenden Figuren beschrieben.
  • Dabei zeigen:
  • Fig. 1
    schematisch einen Ofen zur Herstellung eines getemperten Meltblown-Vliesstoffs gemäß einem Ausführungsbeispiel der vorliegenden Erfindung.
    Fig. 2
    schematisch eine Form zum gleichzeitigen Formen und Tempern eines Meltblown-Vliesstoffs gemäß einem anderen Ausführungsbeispiel der vorliegenden Erfindung.
    Fig. 3
    die Ergebnisse der Messung der Schallabsorption des in dem Beispiel 1 hergestellten getemperten Meltblown-Vliesstoffs gemäß der vorliegenden Erfindung (Kurve A) im Vergleich zu dem in dem Vergleichsbeispiel hergestellten ungetemperten Meltblown-Vliesstoff (Kurve B).
    Fig. 4
    die Ergebnisse der Messung des Absorptionskoeffizienten des in dem Beispiel 1 hergestellten getemperten Meltblown-Vliesstoffs direkt an eine Karosseriewand angebracht (Kurve A), in einem Abstand von 10 mm an eine Karosseriewand angebracht (Kurve B) und in einem Abstand von 40 mm an eine Karosseriewand angebracht (Kurve C).
  • Die Fig. 1 zeigt schematisch einen Bandofen 10 zur Herstellung eines getemperten Meltblown-Vliesstoffs gemäß einem Ausführungsbeispiel der vorliegenden Erfindung. Der Offen 10 umfasst auf Rollen 12 geführte und angetriebene luftdurchlässige Bänder 14, 14', über welche der Meltblown-Vliesstoff 15 in und durch den Ofen 10 geführt wird. In dem Ofen 10 sind ober- und unterhalb der beiden Bänder 14, 14', in der Förderrichtung von rechts nach links gesehen in dieser Reihenfolge, ein erster Blaskasten 16, ein Saugkasten 18 und ein zweiter Blaskasten 16' angeordnet. Während des Betriebs des Ofens 10 wird der Meltblown-Vliesstoff 15 von rechts nach links auf dem unteren Band 14 durch den Ofen 10 geführt. Dabei wird bei dem Durchlaufen durch die Blaskästen 16, 16' heiße Luft in den Meltblown-Vliesstoff 15 und durch diesen hindurch geströmt, um die Filamente des Meltblown-Vliesstoffs 15 auf die gewünschte Tempertemperatur zu erhöhen. In dem Bereich des Saugkastens 18 wird den Meltblown-Vliesstoff 15 durchströmende Luft abgesaugt, um zu gewährleisten, dass der Meltblown-Vliesstoff 15 mit der heißen Luft sicher durchströmt wird und der Meltblown-Vliesstoff 15 zudem nicht kollabiert, sondern sein Volumen beibehält.
  • In der Fig. 2 ist schematisch eine Form 20 zum gleichzeitigen Formen und Tempern eines Meltblown-Vliesstoffs 15 gemäß einem anderen Ausführungsbeispiel der vorliegenden Erfindung dargestellt. Der Meltblown-Vliesstoff 15 wird durch entsprechend geformte Siebe 22, 22', aus der die Form 20 zusammengesetzt ist, von beiden Seiten in der gewünschten Form gehalten und durch Um- oder Durchströmen heißer Luft zum Tempern auf die gewünschte Temperatur erwärmt. Die dadurch hergestellte Vliesstoffmatte behält die eingeprägte Form bei und ist dimensionsstabil.
  • Nachfolgend wird die vorliegende Erfindung anhand von diese erläuternde, diese aber nicht einschränkende Beispielen beschrieben.
  • Beispiel 1
  • Aus Filamenten aus isotaktischem Polypropylen mit einer Filamentfeinheit von im Mittel 5 µm wurde ein Meltblown-Vliesstoff mit einem Flächengewicht von 300 g/m2 und mit einer Dichte von 15 kg/m3 hergestellt, indem das in der US 4,375,446 beschriebene Meltblown-Verfahren durchgeführt wurde. Anschließend wurde dieser Meltblown-Vliesstoff in einem Umluftofen für 10 Minuten bei 158°C getempert. Durch das Einlegen des kalten Vliesstoffs und das Öffnen der Ofentür lag die Anfangstemperatur unter dem Schmelzpunkt der Filamente des ungetemperten Vliesstoffs. Durch die unmittelbar einsetzende Kristallisation mit einhergehender Erhöhung des Schmelzpunktes der Filament konnte für den Rest der 10 Minuten mit 158°C, also über der Schmelztemperatur der ungetemperten Filamente, aber unterhalb der aktuell zu diesem Zeitpunkt vorliegenden Schmelztemperatur der Filamente, weiter getempert werden und so die Temperdauer im Vergleich zu einem Tempern bei niedrigerer Temperatur verkürzt werden.
  • Danach wurde gemäß der DIN EN ISO 3386 die Stauchhärte bei 40% Kompression und die Stauchhärte bei 60% Kompression des getemperten Meltblown-Vliesstoffs gemessen. Die Ergebnisse sind in der untenstehenden Tabelle 1 zusammengefasst und zeigen, dass das erfindungsgemäße Tempern zu einer drastischen Zunahme der Stauchhärte führt.
  • Zudem wurde gemäß der DIN EN ISO 10534 der Schallabsorptionsgrad des getemperten Meltblown-Vliesstoffs in Abhängigkeit von der dickennormierten Frequenz gemessen. Die Ergebnisse sind in der Fig. 3 in Kurve A im Vergleich zu den Werten, die mit dem in dem Vergleichsbeispiel hergestellten ungetemperten Meltblown-Vliesstoff erzielt worden sind (Kurve B), dargestellt. Dabei ist die Einheit der Abszisse die Messfrequenz x Absorberdicke/15 mm. Der Vergleich der Ergebnisse zeigt, dass die erfindungsgemäße Temperung keine negativen Auswirkungen auf die Schallabsorptionseigenschaften des Vliesstoffs ausübt.
  • Ein Teil des getemperten Meltblown-Vliesstoffs wurde direkt an eine KfZ-Karosseriewand angebracht, wohingegen ein weiterer Teil des getemperten Meltblown-Vliesstoffs mit einem Abstand von 10 mm an eine KfZ-Karosseriewand angebracht wurde und ein weiterer Teil des getemperten Meltblown-Vliesstoffs mit einem Abstand von 40 mm an eine KfZ-Karosseriewand angebracht wurde. Danach wurde für die drei Aufbauten der Absorptionskoeffizient in Abhängigkeit von der Frequenz bestimmt. Die Ergebnisse sind in der Fig. 4 gezeigt, wobei die Kurve A die Werte für den direkt an die KfZ-Karosseriewand angebrachten Meltblown-Vliesstoff zeigt, die Kurve B die Werte für den mit einem Abstand von 10 mm an die KfZ-Karosseriewand angebrachten Meltblown-Vliesstoff zeigt und die Kurve C die Werte für den mit einem Abstand von 40 mm an die KfZ-Karosseriewand angebrachten Meltblown-Vliesstoff zeigt. Ein Vergleich der erhaltenen Werte zeigt, dass durch das zwischen Vliesstoff und Karosseriewand eingeschlossene Luftvolumen eine deutliche Verbesserung insbesondere der tieffrequenten Absorptionseigenschaften des Aufbaues erreicht wird, was sonst nur durch entsprechend dicke und somit auch schwere und teure Materialien zu erzielen ist.
  • Beispiel 2
  • Es wurde ein getemperter Meltblown-Vliesstoff gemäß dem in dem Beispiel 1 beschriebenen Verfahren hergestellt, ausgenommen, dass das Tempern bei 155°C für 10 Minuten durchgeführt worden ist.
  • Beispiel 3
  • Es wurde ein getemperter Meltblown-Vliesstoff gemäß dem in dem Beispiel 1 beschriebenen Verfahren hergestellt, ausgenommen, dass das Tempern bei 155°C für 25 Minuten durchgeführt worden ist.
  • Vergleichsbeispiel
  • Es wurde ein ungetemperter Meltblown-Vliesstoff gemäß dem in dem Beispiel 1 beschriebenen ersten Verfahrensschritt hergestellt, der im Unterschied zu dem in dem Beispiel 1 beschriebenen nicht getempert wurde. Tabelle 1
    Beispiel Tempertemperatur (°C) Temperdauer (Min.) Stauchhärtefaktor bei 60% Kompression Stauchhärtefaktor bei 60% Kompression
    1 158 10 18,5 14
    2 155 10 9,5 7
    3 155 25 12 9
    Vergleichsbeispiel 1 - - 1 1
    Stauchhärtefaktor: Verhältnis der Stauchhärte des getemperten Vliesstoffs des Beispiels geteilt durch die Stauchhärte des ungetemperten Vliesstoffs des Vergleichsbeispiels
  • Ein Vergleich der Ergebnisse zeigt, dass das erfindungsgemäße nachträgliche Tempern des Meltblown-Vliesstoffs zu einer drastischen Zunahme der Stauchhärte des Meltblown-Vliesstoffs führt.
  • Bezugszeichenliste
  • 10
    (Band)ofen
    12
    Rollen
    14, 14'
    Luftdurchlässiges Band
    15
    Meltblown-Vliesstoff
    16, 16'
    Blaskasten
    18
    Saugkasten
    20
    Form
    22, 22'
    Sieb

Claims (15)

  1. Getemperter Meltblown-Vliesstoff erhältlich durch ein Verfahren, bei dem zumindest ein Teil des Meltblown-Vliesstoffs (15) nachträglich bei einer Temperatur getempert wird, die zwischen der Glasübergangstemperatur und 0,1°C unterhalb der aktuellen Schmelztemperatur der Filamente des Meltblown-Vliesstoffs (15) beträgt, wobei der Meltblown-Vliesstoff (15) aus Filamenten aus einem Polyolefin zusammengesetzt ist, und der Meltblown-Vliesstoff (15) ein Flächengewicht von 100 bis 600 g/m2, eine Dichte von 5 bis 50 kg/m3 sowie eine gemäß DIN EN ISO 3386 gemessene Stauchhärte bei 60% Kompression von mindestens 2 kPa aufweist.
  2. Meltblown-Vliesstoff nach Anspruch 1,
    dadurch gekennzeichnet, dass
    der Meltblown-Vliesstoff (15) bei einer Temperatur getempert wird, die zwischen 20°C und 1°C unterhalb der aktuellen Schmelztemperatur der Filamente des Meltblown-Vliesstoffs (15), bevorzugt zwischen 15°C und 1°C unterhalb der aktuellen Schmelztemperatur der Filamente des Meltblown-Vliesstoffs (15) und besonders bevorzugt zwischen 10°C und 2°C unterhalb der aktuellen Schmelztemperatur der Filamente des Meltblown-Vliesstoffs (15) beträgt.
  3. Meltblown-Vliesstoff nach Anspruch 1 oder 2,
    dadurch gekennezeichnet, dass
    der Meltblown-Vliesstoff (15) für 1 Minute bis 10 Tage, bevorzugt für 2 Minuten bis 24 Stunden, besonders bevorzugt für 2 Minuten bis 2 Stunden, ganz besonders bevorzugt für 2 bis 60 Minuten und höchst bevorzugt für 2 bis 10 Minuten bei der Temperatur getempert wird.
  4. Meltblown-Vliesstoff nach zumindest einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    der Meltblown-Vliesstoff (15) getempert wird, indem er mit heißer Luft und/oder mit überhitztem Wasserdampf beaufschlagt wird.
  5. Meltblown-Vliesstoff nach Anspruch 4,
    dadurch gekennzeichnet, dass
    der Meltblown-Vliesstoff (15) in einem Ofen (10) getempert wird, der wenigstens einen Blaskasten (16, 16') und wenigstens einen Saugkasten (18), bevorzugt zwei Blaskästen (16, 16') und einen oder zwei Saugkästen (18), aufweist, wobei der wenigstens eine Blaskasten (16, 16') so angeordnet ist, dass die heiße Luft in den Meltblown-Vliesstoff (15) eingeblasen werden kann, und, wobei der wenigstens eine Saugkasten (18) so angeordnet ist, dass den Meltblown-Vliesstoff (15) durchströmende Luft abgesaugt werden kann.
  6. Meltblown-Vliesstoff nach zumindest einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    der Meltblown-Vliesstoff (15) ein Flächengewicht von 100 bis 400 g/m2 und besonders bevorzugt von 250 bis 350 g/m2 aufweist.
  7. Meltblown-Vliesstoff nach zumindest einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    der Meltblown-Vliesstoff (15) ein voluminöser Meltblown-Vliesstoff (15) mit einer Dichte von 8 bis 25 kg/m3 und besonders bevorzugt von 10 bis 20 kg/m3 ist.
  8. Meltblown-Vliesstoff nach zumindest einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    der Meltblown-Vliesstoff (15) aus Filamenten zusammengesetzt ist, welche aus Polypropylen und/oder Polyethylen zusammengesetzt sind.
  9. Meltblown-Vliesstoff nach zumindest einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    i) der Meltblown-Vliesstoff (15) in einer Form (20) getempert wird, um diesen bei dem Tempern umzuformen, wobei die Form (20) vorzugsweise zumindest teilweise als Sieb (22, 22') ausgebildet ist, so dass der Meltblown-Vliesstoff(15) bei dem Tempern mit heißer Luft bzw. mit überhitztem Wasserdampf durchströmt und/oder umströmt werden kann und/oder
    ii) der Meltblown-Vliesstoff (15) nach dem Erwärmen in eine Form (20) überführt wird, um diesen umzuformen, wobei der Meltblown-Vliesstoff(15) in der Form gekühlt wird, um den Temperprozess abzuschließen.
  10. Meltblown-Vliesstoff nach zumindest einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    in dem Meltblown-Vliesstoff (15) wenigstens ein in Dickenrichtung des Meltblown-Vliesstoffs (15) angeordneter Abstandshalter vorgesehen ist, der durch bleibende Ausformung eine Länge aufweist, die größer als die Dicke des Meltblown-Vliesstoffs (15) ist.
  11. Meltblown-Vliesstoff nach zumindest einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    der Meltblown-Vliesstoff (15), der nachträglich getempert wird, hergestellt worden ist, indem durch eine Düse extrudierte Polymerschmelze außenseitig mit strömender Luft beaufschlagt und verstreckt wird, bevor die dadurch ausgebildeten Filamente auf einem Träger, welcher bevorzugt eine Doppel-Saugtrommel ist, abgelegt und abgekühlt werden.
  12. Meltblown-Vliesstoff nach zumindest einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Filamente des Meltblown-Vliesstoffs (15) einen Kristallisationsgrad von 20 bis 80%, bevorzugt von 30 bis 75%, besonders bevorzugt von 40 bis 75% und höchst bevorzugt von 50 bis 70% aufweisen.
  13. Meltblown-Vliesstoff nach zumindest einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet , dass
    der Meltblown-Vliesstoff (15) eine gemäß DIN EN ISO 3386 gemessene Stauchhärte bei 60% Kompression von mindestens 8 kPa, besonders bevorzugt von mindestens 12 kPa, ganz besonders bevorzugt von mindestens 20 kPa und höchst bevorzugt von mindestens 30 kPa aufweist.
  14. Meltblown-Vliesstoff nach zumindest einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    bei dem Tempern die Tempertemperatur kontinuierlich oder stufenweise angehoben wird, und zwar vorzugsweise auch über die Schmelztemperatur der ungetemperten Filamente des Meltblown-Vliesstoffs hinaus, wobei die Tempertemperatur jedoch immer mindestens 0,1 °C unterhalb der aktuellen zu diesem Zeitpunkt vorliegenden Schmelztemperatur der Filamente des Meltblown-Vliesstoffs beträgt.
  15. Verfahren zum Herstellen eines getemperten Meltblown-Vliesstoffs mit einem Flächengewicht von 100 bis 600 g/m2 sowie mit einer Dichte von 5 bis 50 kg/m3 umfassend die folgenden Schritte:
    a) Herstellen eines Meltblown-Vliesstoffs (15) vorzugsweise indem durch eine Düse extrudierte Polyolefinpolymerschmelze außenseitig mit strömender Luft beaufschlagt und verstreckt wird, bevor die dadurch ausgebildeten Filamente auf einem Träger, welcher bevorzugt eine Doppel-Saugtrommel ist, abgelegt und abgekühlt werden, sowie
    b) Tempern zumindest wenigstens eines Abschnittes des in dem Schritt a) hergestellten Meltblown-Vliesstoffs bei einer Temperatur, die zwischen der Glasübergangstemperatur und 0,1 °C unterhalb der Schmelztemperatur der Filamente des Meltblown-Vliesstoffs beträgt.
EP17172180.6A 2017-05-22 2017-05-22 Getemperter meltblown-vliesstoff mit hoher stauchhärte Active EP3406780B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17172180.6A EP3406780B1 (de) 2017-05-22 2017-05-22 Getemperter meltblown-vliesstoff mit hoher stauchhärte
US16/633,065 US20200165759A1 (en) 2017-05-22 2018-05-22 Tempered Melt-Blown Nonwoven Having a High Compression Hardness
PCT/EP2018/063287 WO2018215402A1 (de) 2017-05-22 2018-05-22 Getemperter meltblown-vliesstoff mit hoher stauchhärte
CN201880049523.1A CN111226001B (zh) 2017-05-22 2018-05-22 具有高压缩硬度的经回火的熔喷非纺织物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP17172180.6A EP3406780B1 (de) 2017-05-22 2017-05-22 Getemperter meltblown-vliesstoff mit hoher stauchhärte

Publications (2)

Publication Number Publication Date
EP3406780A1 EP3406780A1 (de) 2018-11-28
EP3406780B1 true EP3406780B1 (de) 2020-01-08

Family

ID=58772401

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17172180.6A Active EP3406780B1 (de) 2017-05-22 2017-05-22 Getemperter meltblown-vliesstoff mit hoher stauchhärte

Country Status (4)

Country Link
US (1) US20200165759A1 (de)
EP (1) EP3406780B1 (de)
CN (1) CN111226001B (de)
WO (1) WO2018215402A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3425099A1 (de) * 2017-07-03 2019-01-09 Axel Nickel Meltblown-vliesstoff mit verbesserter stapelbarkeit und lagerbarkeit

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1785712C3 (de) 1967-09-29 1979-01-11 Celanese Corp., New York, N.Y. (V.St.A.) Fülliger Vliesstoff und seine Verwendung
US3755527A (en) 1969-10-09 1973-08-28 Exxon Research Engineering Co Process for producing melt blown nonwoven synthetic polymer mat having high tear resistance
CA1073648A (en) 1976-08-02 1980-03-18 Edward R. Hauser Web of blended microfibers and crimped bulking fibers
JPS6056825B2 (ja) 1978-05-01 1985-12-12 東亜燃料工業株式会社 不織布の製造法
US4380570A (en) 1980-04-08 1983-04-19 Schwarz Eckhard C A Apparatus and process for melt-blowing a fiberforming thermoplastic polymer and product produced thereby
US5702652A (en) * 1990-05-31 1997-12-30 Crain Industries, Inc. Controlled cooling of porous materials
CA2101833A1 (en) * 1992-12-14 1994-06-15 Kimberly-Clark Worldwide, Inc. Stretchable meltblown fabric with barrier properties
US5690873A (en) * 1995-12-11 1997-11-25 Pall Corporation Polyarylene sulfide melt blowing methods and products
US6238466B1 (en) * 1997-10-01 2001-05-29 3M Innovative Properties Company Electret articles and filters with increased oily mist resistance
US6068799A (en) * 1997-10-01 2000-05-30 3M Innovative Properties Company Method of making electret articles and filters with increased oily mist resistance
US6213122B1 (en) * 1997-10-01 2001-04-10 3M Innovative Properties Company Electret fibers and filter webs having a low level of extractable hydrocarbons
US5958322A (en) * 1998-03-24 1999-09-28 3M Innovation Properties Company Method for making dimensionally stable nonwoven fibrous webs
US7476632B2 (en) * 2002-11-15 2009-01-13 3M Innovative Properties Company Fibrous nonwoven web
US9770058B2 (en) * 2006-07-17 2017-09-26 3M Innovative Properties Company Flat-fold respirator with monocomponent filtration/stiffening monolayer
US8802002B2 (en) * 2006-12-28 2014-08-12 3M Innovative Properties Company Dimensionally stable bonded nonwoven fibrous webs
US10161063B2 (en) * 2008-09-30 2018-12-25 Exxonmobil Chemical Patents Inc. Polyolefin-based elastic meltblown fabrics
JP5477123B2 (ja) * 2010-04-02 2014-04-23 Jnc株式会社 熱風処理不織布加工装置および加工方法
JP6542787B2 (ja) * 2013-11-26 2019-07-10 スリーエム イノベイティブ プロパティズ カンパニー 寸法安定性メルトブローン不織布繊維構造とその製造方法及び製造装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2018215402A1 (de) 2018-11-29
EP3406780A1 (de) 2018-11-28
US20200165759A1 (en) 2020-05-28
CN111226001B (zh) 2022-12-30
CN111226001A (zh) 2020-06-02

Similar Documents

Publication Publication Date Title
DE2640206C2 (de) Verfahren zur Herstellung einer gekrümmten Verbundglaswindschutzscheibe
DE19706309A1 (de) Verfahren zum Herstellen einer Karosserie für ein Kraftfahrzeug
DE102009040901A1 (de) Verfahren zum Herstellen von Tragstrukturen in Kraftfahrzeugen
EP3192910B1 (de) Verfahren zur herstellung eines laminates und laminat
DE3124067A1 (de) Verfahren zum herstellen von gekruemmten verbundglasscheiben
DE102012207365A1 (de) Mehrschichtiges Bauteil und Verfahren zur Herstellung desselben
EP0498276B1 (de) Verfahren und Vorrichtung zum Herstellen von Mineralfaserplatten sowie danach hergestellte Mineralfaserplatten
EP3406780B1 (de) Getemperter meltblown-vliesstoff mit hoher stauchhärte
DE2148730A1 (de) Verfahren zur Herstellung einer Verbundsicherheitsglasscheibe fuer Kraftfahrzeuge
DE102021102287B3 (de) Spinnvlieslaminat und Verfahren zur Herstellung eines Spinnvlieslaminates
EP3052688B1 (de) Flächengebilde mit hoher temperaturstabilität
DE10259883B4 (de) Verfahren zur Herstellung eines Verbundwerkstoffes
EP3546211B1 (de) Fahrzeugfenster und verfahren zu dessen herstellung
EP3679187B1 (de) Vlies zur abschirmung von terahertz frequenzen
EP2742198A1 (de) Scharnierelement, hergestellt auf basis mindestens eines flächengebildes und verfahren zur herstellung eines scharnierelements auf basis mindestens eines flächengebildes
DE4135623C2 (de) Verfahren und Vorrichtung zum Herstellen von Mineralfaserplatten sowie danach hergestellte Mineralfaserplatten
EP1428919B1 (de) Verfahren zur Herstellung eines Flächengebildes aus zumindest teilweise gesplitteten Garnen, Fasern oder Filamenten
WO2005042823A2 (de) Fur dachbahnen oder dichtungsbahnen geeignete dimensionsstabile einlage
EP4036297A1 (de) Spinnvlieslaminat und verfahren zur herstellung eines spinnvlieslaminates
WO2006111349A1 (de) Metallschaum-sandwichs und verfahren zu deren formgebung
EP0907495A1 (de) Zumindest zweistufiges verfahren zur längsreckung von kunststoffolien sowie danach hergestellte kunststoffolie und zugehörige vorrichtung
DE102008050210B4 (de) Verfahren zum Verformen von thermoplastischen Wabenkörpern
DE102020108728A1 (de) Innenverkleidung für ein Kraftfahrzeug, die einen Dachhimmel und einen Versteifungsrahmen aufweist, und Verfahren zu ihrer Herstellung
WO2018172094A1 (de) Autoklavieren mit vakuumsack
DE102021133730B3 (de) Akustisch wirksames und dimensionsstabiles Formteil

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190507

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190723

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017003417

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1222832

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200215

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200108

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200531

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200409

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200508

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017003417

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20201009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200522

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1222832

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220522

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230519

Year of fee payment: 7