EP3406503B1 - Procédé optimisé de gestion de la circulation d'un train et système de signalisation cbtc associé - Google Patents

Procédé optimisé de gestion de la circulation d'un train et système de signalisation cbtc associé Download PDF

Info

Publication number
EP3406503B1
EP3406503B1 EP18174146.3A EP18174146A EP3406503B1 EP 3406503 B1 EP3406503 B1 EP 3406503B1 EP 18174146 A EP18174146 A EP 18174146A EP 3406503 B1 EP3406503 B1 EP 3406503B1
Authority
EP
European Patent Office
Prior art keywords
train
route
zone
section
cbtc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18174146.3A
Other languages
German (de)
English (en)
Other versions
EP3406503A1 (fr
Inventor
Mathieu Bresson
Javier BALLESTEROS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alstom Transport Technologies SAS
Original Assignee
Alstom Transport Technologies SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Transport Technologies SAS filed Critical Alstom Transport Technologies SAS
Publication of EP3406503A1 publication Critical patent/EP3406503A1/fr
Application granted granted Critical
Publication of EP3406503B1 publication Critical patent/EP3406503B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/20Trackside control of safe travel of vehicle or train, e.g. braking curve calculation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L21/00Station blocking between signal boxes in one yard
    • B61L21/04Electrical locking and release of the route; Electrical repeat locks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L21/00Station blocking between signal boxes in one yard
    • B61L21/10Arrangements for trains which are closely following one another
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L3/00Devices along the route for controlling devices on the vehicle or train, e.g. to release brake or to operate a warning signal
    • B61L3/16Continuous control along the route
    • B61L3/22Continuous control along the route using magnetic or electrostatic induction; using electromagnetic radiation
    • B61L3/225Continuous control along the route using magnetic or electrostatic induction; using electromagnetic radiation using separate conductors along the route
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/20Trackside control of safe travel of vehicle or train, e.g. braking curve calculation
    • B61L2027/204Trackside control of safe travel of vehicle or train, e.g. braking curve calculation using Communication-based Train Control [CBTC]

Definitions

  • the subject of the invention is that of methods for managing the circulation of a train along a section of a railway track, implemented by a signaling system of the “Communication Based Train Control” type - CBTC, the signaling system being capable, in a nominal mode, of defining a route on the section allowing the train to run in a nominal direction of traffic, the route extending over a plurality of successive zones between an original signal and a signal destination.
  • a train travels along routes which are traced by a supervision system (ATS) and opened by an interlocking system (CBI).
  • ATS supervision system
  • CBI interlocking system
  • a road corresponds to a section of the track, which is traversed in a predetermined nominal direction of traffic.
  • a section groups together several successive zones between an origin signal and a destination signal.
  • the document US 20171113707 A1 discloses a method of managing the circulation of a train along a section of track, implemented by a signaling system of the CBTC type.
  • the signaling system is suitable, in a nominal mode, for defining a route on the track section allowing the train to run in a nominal direction of traffic, the route extending over a plurality successive zones between an origin signal and a destination signal.
  • the method consists, in the event of an event preventing the train from continuing its movement along said route, to circulate the train in a direction of circulation opposite to the nominal direction of circulation.
  • the invention therefore aims to overcome the aforementioned problem, in particular by proposing a degraded mode of traffic management by the CBTC signaling system, in which a train can be authorized to change the direction of travel when it has engaged on a road, to bring it out of the corresponding section of railway.
  • the figure 1 represents a signaling system 10 based on an ATC (“Automatic Train Control”) architecture of the “communication-based train management” type, also known as CBTC architecture, for “Communication Based Train Control ”.
  • a CBTC architecture is based on the presence of computers on board trains, also known as the on-board part of an ATP (“Automatic Train Protection”) system.
  • the computer 6 of the train T ensures, on the one hand, the coverage of the functional needs of the train T, that is to say for example the stations to be served, and, on the other On the other hand, the control of safety points, that is to say, for example, checking that train T does not have excessive speed at a particular kilometer point on the line.
  • the computer 6 of the train T determines a certain number of operating parameters of the train T and communicates with different systems on the ground to allow the train T to carry out, in safety, the mission which has been assigned to it.
  • the computer 6 is connected to at least one on-board radio communication unit 7, suitable for establishing a radio link with base stations 8 of a ground communication infrastructure, itself connected to a communication network 19 of the architecture CBTC.
  • the signaling system 10 includes an interlocking system 14, also called CBI according to the English acronym for "Computer Based Interlocking".
  • the CBI 14 is suitable for controlling track equipment, such as signaling lights, switch actuators, etc., this equipment allowing the safe movement of trains while avoiding conflicting movements between them.
  • the interlocking system is now carried out by computer using suitable computers.
  • the CBI 14 is located at a distance from the track equipment and is connected to the latter by a suitable communication network 13, preferably of the ETHERNET type.
  • the CBI 14 includes on the figure 1 a storage memory 15, in particular for storing information relating to the sub-routes.
  • the signaling system 10 comprises a zone controller 16, also called ZC ("Zone Controller"), which constitutes the ground part of an ATP ("Automatic Train Protection”) system.
  • ZC 16 is in particular responsible, on the one hand, for monitoring the presence of trains on the rail network and, on the other hand, in a centralized architecture, for providing movement authorizations to trains. These movement authorizations must guarantee the safe movement of the trains, that is to say for example not provide a train with a movement authorization which would lead it to go beyond the train preceding it.
  • the ZC 16 has on the figure 1 a storage memory 17, in particular for storing information relating to obstacles to be taken into account in determining movement authorizations.
  • the signaling system 10 includes an automatic train supervision system 18, also called the ATS (“Automatic Train Supervision”) system.
  • the ATS system 18 is implemented in an operational center and includes man / machine interfaces allowing operators to intervene on the various components of the signaling system 10.
  • the rail network 2 is subdivided into sections, each section extending between two signaling signals and being subdivided into a plurality of zones. On the figure 1 , three successive zones, 24, 25 and 26 are shown. A section is traversed by a train in a predetermined nominal traffic direction D1.
  • the ZC 16 receives information on the one hand from a primary detection system and, on the other hand, from a secondary detection system and reconciles this information to determine the occupied and free areas of the network.
  • the primary detection system determines the area occupied by a train from the instantaneous position of the train calculated by its on-board computer. For example, this position is determined by the on-board computer from the detection of beacons located along the track and whose geographic positions are known, and from the measurements delivered by odometry sensors fitted to the train and allowing the calculator 6 to determine the distance traveled since the last crossed beacon.
  • the ZC 16 determines, by means of a geographical map of the network identifying each area uniquely, the area within which the train is located. The zone is then placed in the "occupied" state. In this way, a first occupation information for each zone is determined by the ZC 16 and stored in the memory 17.
  • the secondary detection system is capable of redundant the primary detection system, in case, for example, the communication unit 7 of a train T no longer works and the ZC 16 can no longer obtain the instantaneous position of the train . While a “purely CBTC” system can only work with primary detection, a secondary detection system is necessary to, on the one hand, cover the modes of breakdown of on-board communication for a CBTC train and, on the other hand On the other hand, allow circulation on the network of non-CBTC trains, that is to say those that are not equipped with an on-board computer compatible with the CBTC architecture.
  • the secondary detection system is able to detect the presence of a train in an area.
  • these sensors can be axle sensors 11 (“Axle Counter”) located at each end of an area, such as area 25.
  • Axle Counter axle sensors 11
  • the upstream sensor 11 (according to the nominal traffic direction D1) allows the increment of a unit of a state counter associated with the zone 25, each time an axle 4 of the train T passes.
  • the downstream sensor 11 makes it possible to decrement the same state counter by one unit, on each detection of the passage of an axle 4 of the train T.
  • the zone 25 is in the "free" state when the counter associated state is zero. Otherwise, zone 25 is in the "occupied" state.
  • these sensors are track circuits making it possible to detect the presence of a short circuit between the rows of rails caused by the presence of the axle of a train.
  • the secondary detection system comprises, in addition to a plurality of sensors 11, a plurality of intermediate equipment 12 making it possible to generate, from analog measurement signals at the output of the sensors 11, the information of occupation. This is transmitted via network 13 to CBI 14 and then to ZC 16.
  • the figures 3 to 9 illustrate different times of traffic on railway line 2.
  • Section B comprises nine successive zones (referenced from 20 to 28) between the signaling signals S1 and S3.
  • Zone 20 which incorporates a needle, has a common border with section A. When the needle is correctly positioned, a train can enter section B from section A.
  • Zone 20 is surrounded by signals S1 and S2.
  • Sections 21 to 28 are successive linear sections and define a train running track according to a nominal running direction D1 (from left to right on the figures 3 to 9 ).
  • Zones 21, 24, 26 and 28 are more particularly associated with stations 31, 32, 33 and 34 allowing the exchange of passengers.
  • Zone 28 allows a train to leave section B by entering section C.
  • Section C includes a zone 29, which incorporates a needle and is surrounded by two signals S3 and S4.
  • section B is associated with a route R, delimited by the signal S1 as the origin signal and the signal S3 as the destination signal.
  • the ATS 18 communicates this route R to the CBI 14.
  • the CBI 14 opens this route R by reserving, for the train T2, each of the zones 20 to 28 in the direction of nominal circulation D1.
  • the CBI 14 locks objects called sub-routes: a sub-route associates an area reserved for the train T2 and a direction of travel of the train T2 on this area.
  • the sub-routes are stored in the memory 15 associated with the CBI 14.
  • the ZC 16 determines, from the locked sub-routes for the train T2 and the current running direction of the train T2 corresponding to the nominal running direction D1, a movement authorization.
  • This movement authorization is determined as a function of the areas of route R open for train T2 which are occupied by other trains.
  • zone 27 is occupied by a train T1.
  • the train T1 moves in the nominal direction of travel D1. It precedes train T2 in section B. Consequently, the movement authorization issued to train T2 by ZC 16 extends as far as the border between zones 26 and 27.
  • the T2 train enters route R. It enters section B by crossing the original signal S1. It then progresses along the R road.
  • CBI 14 releases the sub-route associated with the area that train T2 has just left. So on the figure 4 , when the train T2 is in zone 24, the previously locked zones 20 to 23 are now released. They are erased from the memory 15 of the CBI 14.
  • the CBI 14 releases the considered sub-route.
  • train T1 In nominal mode, train T1 should continue its movement in the direction of nominal traffic D1 and eventually leave section B by crossing the signal S3. At each movement of the train T1, the ZC 16 determines the areas of the route R which are no longer occupied by the train T1 and updates the movement authorization of the train T2. In nominal mode, train T2 should therefore continue its movement along route R to exit section B by crossing signal S3.
  • train T2 is also prevented from continuing to move. In nominal mode, train T2 is blocked.
  • Such an event may for example be a breakdown of the train T1 or a person on the track at the level of the zone 28 necessitating the interruption of the electrical supply in this zone so that the train T1 can no longer continue its movement.
  • the method 100 according to the invention is then implemented as follows.
  • an operator decides to switch the signaling system 10 to a degraded mode of operating the line in which the trains will be allowed to turn back and their supervised safety maneuvers.
  • step 110 from the control center of the ATS 18, the operator takes the hand and selects a train engaged on the section of track considered to make it change direction of travel so that it comes out of the section considered. So, as illustrated in the figure 5 , the operator selects the train T2 so that it moves in an opposite direction of circulation D2, which is the direction opposite to the nominal direction of circulation D1, so that it emerges from the section B on which it is engaged.
  • step 120 after having selected a train from among the trains to turn around, the operator also selects the zone from which the selected train will be authorized to move in the opposite direction of travel D2 and the signal of destination that the selected train must cross in order to leave the section to which it has engaged.
  • the zones from which to initiate a change in the direction of train running are predetermined. These are, for example, areas belonging to extended track sections on which several trains can be engaged at the same time. In general, on a section, these zones correspond to zones waiting time where a train is brought when an event occurs before the decision is made to go into degraded mode. These are essentially zones corresponding to stations, such as zone 24.
  • zone 24 as the origin of the maneuver and signal S2 as the destination or exit signal.
  • ATC 18 which, in step 130, traces, that is to say defines, a pseudo-route between the origin zone and the destination signal selected in step 120 for the train selected in step 110.
  • This is a pseudo-route since a route is normally defined between two signaling signals, an origin signal and a destination signal. It is the possibility of choosing a zone as the origin of a route rather than a signal which allows the automatic management of the maneuver by the signaling system.
  • This pseudo-route once traced is indicated to the CBI 14, which opens it in step 140.
  • the CBI 14 reserves, for the selected train, the different zones of the pseudo-route between the zone of origin (included) and the destination signal, by associating with each of these zones a direction of circulation corresponding to the opposite direction of circulation.
  • the pseudo-route PR is opened by the CBI 14 for the train T2 by locking zones 21 to 24 in the opposite direction of traffic D2.
  • the CBI 14 stores and maintains the corresponding sub-routes in memory 15.
  • the ATS 18 after having traced the pseudo-route, informs the on-board computer of the selected train that it must change the current running direction of the train so that it corresponds to the direction of opposite traffic.
  • the train is a fully automatic train and the on-board computer manages this change in traffic direction by itself; or the train is steered and the driver is asked to change the cabin so that the active cabin, which was the head cabin when the train was traveling in the direction of nominal travel D1, is now the head cabin when the train moves in the opposite direction of travel D2.
  • This change of active cabin is carried out in a secure manner by the use of a suitable key which the driver must use to indicate the active cabin.
  • train T2 therefore informs ZC 16 that its current running direction is now direction D2.
  • the ZC 16 knowing the current running direction of the train and receiving from the CBI 14 the locked sub-routes for this train, calculates a movement authorization for this train.
  • the ZC 16 knowing that the train T2 will now run in the direction D2, will periodically calculate a movement authorization from the sub-routes which have been reserved for it and which correspond to the opposite direction of traffic D2 .
  • the movement authorizations calculated by ZC 16 must allow train T2 to advance along the pseudo-route PR, until it crosses the destination signal S2 and comes out of section B.
  • the ZC 16 takes account, when calculating a movement authorization for the train in question, of a list of obstacles. This list of obstacles is kept up to date (step 200) by ZC 16.
  • the obstacles are defined from all the movement authorizations already calculated and transmitted for execution to the other trains running on the section B and moving in the direction D1.
  • the ZC 16 determines the movement authorization for the train T2 taking into account the constraint that the train T2, traveling in the direction D2, must not be authorized to go beyond the point P. Thus the movement authorization transmitted to train T2 cannot extend beyond zone 23.
  • ZC 16 avoids all face to face between a train running in the opposite direction and a non-CBTC train.
  • the ZC 16 determines the area over which the non-CBTC train is located at the current instant and calculates, around this instantaneous position, a safety envelope E. This is the case which is represented on the figure 8 by the thick line for train T3, considered in this figure as a non-CBTC train.
  • the safety envelope E determined by ZC 16 for train T3 covers, for example, zones 21 and 22.
  • This safety envelope E constitutes an obstacle in the list to be taken into account for the determination of a movement authorization for the train T2 because it limits movement in the direction D2 (but not the direction D1). So on the figure 8 , if the safety envelope E of train T3 extends to point P, the movement authorization which will be calculated by ZC 16 for train T2 cannot extend beyond point P ( according to direction D2). This avoids any risk of face to face between the train T2, which is a CBTC train, and the non-CBTC train T3.
  • the on-board computer of train T2 controls train T2 in accordance with this movement authorization. For example, as shown in the figure 9 , if the movement authorization given to train T2 makes it possible to advance to point P, train T2 leaves zone 24 and advances to zone 23.
  • step 170 the movement authorization calculated by the ZC 16 is transmitted to the train for execution. Movement authorization is represented by a dotted arrow on the Figures 7 and 8 .
  • step 180 the method 100 repeats step 160 to update the movement authorization of the train.
  • train T3 can be maneuvered so as to turn back.
  • the list of obstacles is updated (step 200) by the ZC 16, which allows it to update a movement authorization for the train T2.
  • T3 Another case consists of a T3 train which would be a CBTC type train but in manual driving, the safety mechanisms of the ATP system then being bypassed. However, train T3 communicates the identifier of its active cabin to the ground.
  • the safety envelope E around the train T3 remains active preventing movement in the direction D2 of the train T2 in the corresponding zones only if the active cabin of the train T3 is the one on the right in the figures, this active cabin indicating that the train T3 moves in direction D1.
  • the invention therefore makes it possible to operate the line in degraded mode allowing trains to travel on a portion of the track in the opposite direction to the nominal traffic direction.
  • the invention makes it possible to control these movements in safety.
  • the invention is particularly well suited to an unmanned automatic metro.
  • the possibility of changing the direction of circulation of a train in a CBTC architecture is a characteristic allowing good flexibility in traffic management and optimal traffic management during the occurrence of blocking operational events in nominal mode. operating the line.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Train Traffic Observation, Control, And Security (AREA)

Description

  • L'invention a pour domaine celui des procédés de gestion de la circulation d'un train le long d'une section d'une voie ferrée, mis en œuvre par un système de signalisation du type « Communication Based Train Control » - CBTC, le système de signalisation étant propre, dans un mode nominal, à définir une route sur la section permettant la circulation du train selon une direction de circulation nominale, la route s'étendant sur une pluralité de zones successives entre un signal d'origine et un signal de destination.
  • Avec un système de signalisation du type CBTC, un train circule le long de routes qui sont tracées par un système de supervision (ATS) et ouvertes par un système d'enclenchement (CBI).
  • Une route correspond à une section de la voie ferrée, qui est parcourue selon une direction de circulation nominale prédéterminée.
  • Une section regroupe plusieurs zones successives entre un signal d'origine et un signal de destination.
  • La tendance étant de réduire le nombre de signaux de signalisation le long de la voie, la longueur des sections et par conséquent des routes augmente.
  • Pour le cas où les trains se succèdent à intervalle relativement faible, comme c'est le cas pour une ligne de métro, il est prévu que plusieurs trains peuvent circuler simultanément sur une même section.
  • Cependant, si un premier train tombe en panne sur une section, les trains qui se sont engagés sur cette même section et qui le suivent sont empêchés de poursuivre leur déplacement.
  • En effet, dans une architecture CBTC, lorsqu'un train s'engage sur une route qui lui a été ouverte par le système d'enclenchement, il doit aller jusqu'au signal de destination.
  • Ainsi, en cas d'écart à l'exploitation nominale de la ligne, un grand nombre de trains peuvent être affectés et doivent attendre que l'exploitation nominale soit reprise pour poursuivre leur déplacement selon la route sur laquelle ils se sont engagés.
  • Le document US 20171113707 A1 divulgue un procédé de gestion de la circulation d'un train le long d'une section de voie ferrée, mis en œuvre par un système de signalisation du type CBTC. Dans ce document, le système de signalisation est propre, dans un mode nominal, à définir une route sur la section de voie permettant la circulation du train selon une direction de circulation nominale, la route s'étendant sur une pluralité de zones successives entre un signal d'origine et un signal de destination. Le procédé consiste, en cas de survenue d'un évènement empêchant le train de poursuivre son déplacement le long de ladite route, à faire circuler le train selon une direction de circulation opposée à la direction de circulation nominale.
  • L'invention a donc pour but de pallier au problème précité, notamment en proposant un mode dégradé de gestion du trafic par le système de signalisation CBTC, dans lequel un train peut être autorisé à changer de direction de circulation alors qu'il s'est engagé sur une route, pour le faire ressortir de la section de voie ferrée correspondante.
  • A cet effet, l'invention a pour objet un procédé de gestion de la circulation d'un train le long d'une section d'une voie ferrée, mis en œuvre par un système de signalisation du type CBTC, le système de signalisation étant propre, dans un mode nominal, à définir une route sur la section permettant la circulation du train selon une direction de circulation nominale, la route s'étendant sur une pluralité de zones successives entre un signal d'origine et un signal de destination , le procédé consistant, en cas de survenue d'un évènement empêchant le train de poursuivre son déplacement le long de ladite route, à faire circuler le train selon une direction de circulation opposée à la direction de circulation nominale :
    • en sélectionnant une zone d'origine et un signal de sortie ;
    • en traçant, par un système de supervision du système de signalisation, une pseudo-route pour le train sur les zones successives entre la zone d'origine et le signal de sortie ;
    • en ouvrant, par un dispositif d'enclenchement du système de signalisation, la pseudo-route en associant à chaque zone entre la zone d'origine et le signal de sortie, une sous-route, chaque sous-route correspondant à la réservation de ladite zone pour ledit train dans la direction de circulation opposée;
    • en informant le train qu'il doit modifier sa direction de circulation courante pour qu'elle corresponde à la direction de circulation opposée ; et,
    • en déterminant par un contrôleur de zones du système de signalisation, une autorisation de mouvement pour le train à partir de la direction de circulation courante du train et des sous-routes ouvertes pour ledit train et en tenant compte d'une liste d'obstacles régulièrement mise à jour par le contrôleur de zones ;
    • en transmettant l'autorisation de mouvement au train pour piloter le déplacement dudit train,
    les étapes de détermination et de transmission d'une autorisation de mouvement étant itérées jusqu'à ce que le train franchisse le signal de sortie.
  • Suivant des modes particuliers de réalisation, le procédé comporte une ou plusieurs des caractéristiques suivantes :
    • la liste d'obstacles pour un train se déplaçant selon une direction de circulation courante, comporte l'ensemble des autorisations de mouvement déjà transmises aux autres trains circulant sur ladite section dans la direction opposée à la direction de circulation courante ;
    • la liste d'obstacles, pour un train se déplaçant selon une direction de circulation courante, comporte, en outre, une enveloppe de sécurité calculée par le contrôleur de zones pour un autre train non-CBTC ou CBTC non-communicant circulant sur ladite section ;
    • la liste d'obstacles, pour un train se déplaçant selon une direction de circulation courante, comporte, en outre, une enveloppe de sécurité calculée par le contrôleur de zones pour un autre train CBTC en conduite manuelle circulant sur ladite section dans la direction opposée à la direction de circulation courante, la direction de circulation dudit train CBTC en conduite manuelle étant déterminée à partir d'un identifiant de sa cabine active ;
    • le système d'enclenchement verrouille une sous-route pour un train tant que : ledit train occupe la zone associée à ladite sous-route ; ou ledit train n'occupe pas la zone associée à ladite sous-route, mais une sous-route, qui est associée à une zone qui précède, selon la direction de circulation de ladite sous-route, la zone associée à ladite sous-route, est verrouillée ;
    • le procédé comporte une étape initiale de sélection du train engagé sur la section de voie ferrée qui doit circuler selon une direction de circulation opposée à la direction de circulation nominale ;
    • le procédé comporte une étape de configuration consistant à définir chaque zone de la section de voie ferrée susceptible d'être utilisée en tant que zone d'origine d'une pseudo-route.
  • L'invention a également pour objet un système de signalisation du type CBTC pour la mise en œuvre d'un procédé de gestion de la circulation d'un train le long d'une section d'une voie ferrée conforme au procédé précédent, le système de signalisation comportant un système de supervision, un contrôleur de zones et un système d'enclenchement, le système de signalisation étant propre :
    • dans un mode nominal, à définir une route sur la section permettant la circulation du train selon une direction de circulation nominale, la route s'étendant sur une pluralité de zones successives entre un signal d'origine et un signal de destination, et
    • en cas de survenue d'un événement empêchant le train de poursuivre son déplacement le long de ladite route, à faire circuler le train selon une direction de circulation opposée à la direction de circulation nominale,
    caractérisé en ce que en cas de survenue d'un événement empêchant le train de poursuivre son déplacement le long de ladite route :
    • le système de supervision est propre à tracer une pseudo-route entre une zone d'origine et un signal de destination pour ledit train ;
    • le système d'enclenchement est propre à ouvrir une pseudo-route tracée par le système de supervision, en définissant, pour chaque zone de la pseudo-route, une sous-route réservant, pour ledit train, ladite zone dans une direction de circulation particulière ; et,
    • le contrôleur de zones est propre à tenir à jour une liste d'obstacles et à déterminer une autorisation de mouvement pour le train en tenant compte de la liste d'obstacles.
  • Suivant des modes particuliers de réalisation, le système comporte une ou plusieurs des caractéristiques suivantes :
    • la liste d'obstacles comporte des autorisations de mouvement transmises aux autres trains circulant sur la section ;
    • la liste d'obstacles comporte, en outre, des enveloppes de sécurité calculées autour de chacun des trains non-CBTC ou CBTC non-communicants, circulant sur la section ;
    • la liste d'obstacles comporte, en outre, des enveloppes de sécurité calculées autour de chacun des trains CBTC en conduite manuelle, circulant sur la section, chaque enveloppe de sécurité étant associée à un identifiant de la cabine active du train CBTC en conduite manuelle correspondant ;
    • le système de supervision est configuré de manière à définir les zones de la section de la voie ferrée susceptibles de pouvoir être utilisées en tant que zone d'origine d'une pseudo-route.
  • L'invention sera mieux comprise à l'aide de la description qui va suivre, donnée uniquement à titre d'exemple illustratif et non limitatif, et faite en se référant aux dessins annexés sur lesquels :
    • la figure 1 est une représentation schématique d'un système de signalisation CBTC propre à mettre en œuvre le procédé de gestion de la circulation d'un train selon l'invention ;
    • la figure 2 est une représentation schématique sous forme de blocs d'un mode de réalisation du procédé selon l'invention ; et,
    • les figures 3 à 9 représentent différentes étapes de l'exploitation d'une ligne, équipée du système de signalisation CBTC de la figure 1, exploitation au cours de laquelle le procédé selon l'invention est mis en œuvre.
  • La figure 1 représente un système de signalisation 10 fondé sur une architecture ATC (« Automatic Train Control ») du type « à gestion des trains basée sur la communication », aussi dénommée architecture CBTC, pour « Communication Based Train Control ». Une architecture CBTC repose sur la présence de calculateurs embarqués à bord des trains, aussi dénommés partie embarqué d'un système ATP (« Automatic Train Protection »).
  • Ainsi, dans le système de signalisation 10, le calculateur 6 du train T assure, d'une part, la couverture des besoins fonctionnels du train T, c'est-à-dire par exemple les stations à desservir, et, d'autre part, le contrôle de points de sécurité, c'est-à-dire par exemple vérifier que le train T n'a pas une vitesse excessive en un point kilométrique particulier de la ligne.
  • Ainsi, le calculateur 6 du train T détermine un certain nombre de paramètres de fonctionnement du train T et communique avec différents systèmes au sol pour permettre au train T de réaliser, en sécurité, la mission qui lui a été attribuée.
  • Le calculateur 6 est connecté à au moins une unité 7 de communication radio embarquée, propre à établir une liaison radio avec des stations de base 8 d'une infrastructure de communication sol, elle-même connectée à un réseau de communication 19 de l'architecture CBTC.
  • Au sol, le système de signalisation 10 comporte un système d'enclenchement 14, aussi dénommé CBI selon l'acronyme anglais pour « Computer Based Interlocking ». Le CBI 14 est propre à piloter les équipements à la voie, tels que des feux de signalisation, des actionneurs d'aiguillage, etc., ces équipements permettant le mouvement en sécurité des trains tout en évitant les mouvements conflictuels entre ceux-ci. Autrefois à base de relais électromécaniques, le système d'enclenchement est aujourd'hui réalisé informatiquement par des calculateurs adaptés. Le CBI 14 est situé à distance des équipements de la voie et est relié à ceux-ci par un réseau de communication 13 adapté, de préférence du type ETHERNET. Le CBI 14 comporte sur la figure 1 une mémoire de stockage 15, notamment pour le stockage des informations relatives aux sous-routes.
  • Le système de signalisation 10 comporte un contrôleur de zones 16, aussi dénommé ZC (« Zone Controller »), qui constitue la partie sol d'un système ATP (« Automatic Train Protection »). Le ZC 16 est notamment en charge, d'une part, de suivre la présence des trains sur le réseau ferroviaire et, d'autre part, dans une architecture centralisée, de fournir des autorisations de mouvement aux trains. Ces autorisations de mouvement doivent garantir la sécurité des déplacements des trains, c'est-à-dire par exemple ne pas fournir à un train une autorisation de mouvement qui le conduirait à aller au-delà du train qui le précède. Le ZC 16 comporte sur la figure 1 une mémoire de stockage 17, notamment pour le stockage des informations relatives aux obstacles à prendre en compte dans la détermination des autorisations de mouvement.
  • Le système de signalisation 10 comporte un système de supervision automatique des trains 18, aussi dénommé système ATS (« Automatic Train Supervision »). Le système ATS 18 est mis en œuvre dans un central opérationnel et comporte des interfaces homme / machine permettant à des opérateurs d'intervenir sur les différentes composantes du système de signalisation 10.
  • Le réseau ferroviaire 2 est subdivisé en sections, chaque section s'étendant entre deux signaux de signalisation et étant subdivisée en une pluralité de zones. Sur la figure 1, trois zones successives, 24, 25 et 26 sont représentées. Une section est parcourue par un train selon une direction de circulation nominale D1 prédéterminée.
  • L'occupation d'une zone est une donnée fondamentale de la sécurité ferroviaire. La détermination de cette information, connue de l'homme du métier, va maintenant être présentée de manière générale.
  • Le ZC 16 reçoit des informations d'une part d'un système primaire de détection et, d'autre part, d'un système secondaire de détection et réconcilie ces informations pour déterminer les zones occupées et libres du réseau.
  • Le système primaire de détection détermine la zone occupée par un train à partir de la position instantanée du train calculée par le calculateur embarqué de celui-ci. Par exemple, cette position est déterminée par le calculateur embarqué à partir de la détection de balises implantées le long de la voie et dont les positions géographiques sont connues, et à partir des mesures délivrées par des capteurs d'odométrie équipant le train et permettant au calculateur 6 de déterminer la distance parcourue depuis la dernière balise croisée.
  • À partir de la position instantanée, le ZC 16 détermine, au moyen d'un plan géographique du réseau identifiant chaque zone de manière unique, la zone à l'intérieur de la laquelle se trouve le train. La zone est alors placée dans l'état « occupé ». De cette manière, une première information d'occupation de chaque zone est déterminée par le ZC 16 et stockée dans la mémoire 17.
  • Le système secondaire de détection est propre à redonder le système primaire de détection, au cas où, par exemple, l'unité 7 de communication d'un train T ne fonctionnerait plus et que le ZC 16 ne puisse plus obtenir la position instantanée du train. Alors qu'un système « purement CBTC » peut fonctionner uniquement avec la détection primaire, un système secondaire de détection est nécessaire pour, d'une part, couvrir les modes de pannes de la communication bord sol pour un train CBTC et, d'autre part, permettre la circulation sur le réseau de trains non CBTC, c'est-à-dire qui ne sont pas équipés de calculateur de bord compatible avec l'architecture CBTC.
  • Par des capteurs à la voie, le système secondaire de détection est apte à détecter la présence d'un train dans une zone. Comme représenté à la figure 1, ces capteurs peuvent être des capteurs d'essieux 11 (« Axle Counter ») situés à chaque extrémité d'une zone, telle que la zone 25. Ainsi, lorsque le train T entre dans la zone 25, le capteur 11 amont (selon la direction de circulation nominale D1) permet l'incrémentation d'une unité d'un compteur d'état associé à la zone 25, à chaque détection du passage d'un essieu 4 du train T. Lorsque le train T sort de la zone 25, le capteur 11 aval permet de décrémenter d'une unité le même compteur d'état, à chaque détection du passage d'un essieu 4 du train T. Ainsi, la zone 25 est dans l'état « libre » lorsque le compteur d'état associé est égal à zéro. À défaut, la zone 25 est dans l'état « occupé ».
  • Dans un autre mode de réalisation, ces capteurs sont des circuits de voie (« Track Circuit ») permettant de détecter la présence d'un court-circuit entre les files de rails causé par la présence de l'essieu d'un train.
  • Dans ces deux modes de réalisation, le système secondaire de détection comporte, outre une pluralité de capteurs 11, une pluralité d'équipements intermédiaires 12 permettant de générer, à partir des signaux analogiques de mesure en sortie des capteurs 11, l'information d'occupation. Celle-ci est transmise via le réseau 13 au CBI 14 puis au ZC 16.
  • Le procédé 100 selon l'invention va maintenant être décrit à partir de la figure 2, d'une part, et des figures 3 à 9, d'autre part.
  • Les figures 3 à 9 illustrent différents instant du trafic sur la voie ferrée 2.
  • La voie ferrée 2 est subdivisée en sections. Trois sections A, B et C sont représentées sur les figures 3 à 9.
  • La section B comporte neuf zones successives (référencées de 20 à 28) entre les signaux de signalisation S1 et S3.
  • La zone 20, qui intègre une aiguille, possède une frontière commune avec la section A. Lorsque l'aiguille est correctement positionnée, un train peut entrer sur la section B depuis la section A.
  • La zone 20 est encadrée par les signaux S1 et S2.
  • Les sections 21 à 28 sont des sections linéaires qui se succèdent et définissent une voie de circulation des trains selon une direction de circulation nominale D1 (de gauche à droite sur les figures 3 à 9).
  • Les zones 21, 24, 26 et 28 sont plus particulièrement associées à des stations 31, 32, 33 et 34 permettant l'échange de passagers.
  • La zone 28 permet à un train de quitter la section B en s'engageant sur la section C.
  • Le section C comporte une zone 29, qui intègre une aiguille et est encadrée de deux signaux S3 et S4.
  • Dans le mode nominale d'exploitation est associée à la section B une route R, délimitée par le signal S1 en tant que signal d'origine et le signal S3 en tant que signal de destination.
  • Comme cela est illustré par la figure 3, pour la réalisation de la mission du train T2 et alors que le train T2 s'approche de la frontière entre les sections A et B, l'ATS 18 trace, pour le train T2, la route R.
  • L'ATS 18 communique cette route R au CBI 14.
  • Le CBI 14 ouvre cette route R en réservant, pour le train T2, chacune des zones 20 à 28 dans la direction de circulation nominale D1. Ainsi, pour le train T2, le CBI 14 verrouille des objets dénommés sous-routes : une sous-route associe un zone réservée pour le train T2 et une direction de circulation du train T2 sur cette zone. Les sous-routes sont mémorisées dans la mémoire 15 associé au CBI 14.
  • Le ZC 16 détermine ensuite, à partir des sous-routes verrouillées pour le train T2 et de la direction de circulation courante du train T2 correspondant à la direction de circulation nominale D1, une autorisation de mouvement. Cette autorisation de mouvement est déterminée en fonction des zones de la route R ouverte pour le train T2 qui sont occupées par d'autres trains. En l'occurrence, sur la figure 3, la zone 27 est occupée par un train T1. Le train T1 se déplace selon la direction de circulation nominale D1. Il précède le train T2 sur la section B. En conséquence, l'autorisation de mouvement délivrée au train T2 par le ZC 16 s'étend au plus loin jusqu'à la frontière entre les zones 26 et 27.
  • Comme représenté à la figure 4, et selon l'autorisation de mouvement qu'il a reçu du ZC 16, le train T2 s'engage sur la route R. Il rentre sur la section B en franchissant le signal d'origine S1. Il progresse ensuite le long de la route R.
  • A chaque fois que le train T2 franchit la frontière entre deux zones de la route R, le CBI 14 libère la sous-route associée à la zone que vient de quitter le train T2. Ainsi, sur la figure 4, lorsque le train T2 se trouve dans la zone 24, les zones 20 à 23 précédemment verrouillées sont maintenant libérées. Elles sont effacées de la mémoire 15 du CBI 14.
  • Le maintien dans l'état verrouillé d'une sous-route par le CBI 14 réunit les deux conditions suivantes :
    • le train pour lequel la route a été ouverte occupe la zone associée à la sous-route considérée ; ou
    • le train pour lequel la route a été ouverte ne se trouve pas sur la zone associée à la sous-route considérée, mais la sous-route associée à la zone qui précède, selon la direction de circulation nominale, la zone associée à la sous-route considérée est dans l'état verrouillé.
  • A contrario si l'une ou l'autre de ces deux conditions n'est pas réalisée, le CBI 14 libère la sous-route considérée.
  • En mode nominal, le train T1 devrait poursuivre son déplacement selon la direction de circulation nominale D1 et finir par quitter la section B en franchissant le signal S3. A chaque mouvement du train T1, le ZC 16 détermine les zones de la route R qui ne sont plus occupées par le train T1 et met à jour l'autorisation de mouvement du train T2. En mode nominal, le train T2 devrait donc poursuivre son déplacement le long de la route R pour sortir de la section B en franchissant le signal S3.
  • Cependant, en cas de survenue d'un évènement empêchant le train T1 de poursuivre son déplacement, le train T2 est également empêché de poursuivre son déplacement. En mode nominal, le train T2 est bloqué.
  • Un tel évènement peut être par exemple une panne du train T1 ou une personne sur la voie au niveau de la zone 28 nécessitant la coupure de l'alimentation électrique dans cette zone de sorte que le train T1 ne puisse plus poursuivre son déplacement.
  • Le procédé 100 selon l'invention est alors mis en œuvre de la façon suivante.
  • Lors de la survenu de l'évènement empêchant la poursuite de l'exploitation nominale, un opérateur décide de basculer le système de signalisation 10 dans un mode dégradé de l'exploitation de la ligne dans lequel les trains vont être autorisés à rebrousser chemin et leurs manœuvres supervisée en sécurité.
  • A l'étape 110, depuis le centre de contrôle de l'ATS 18, l'opérateur prend la main et sélectionne un train engagé sur la section de voie considérée pour lui faire changer de direction de circulation pour qu'il ressorte de la section considérée. Ainsi, comme illustré à la figure 5, l'opérateur sélectionne le train T2 pour qu'il se déplace selon une direction de circulation opposée D2, qui est la direction opposée à la direction de circulation nominale D1, pour qu'il ressorte de la section B sur laquelle il s'est engagé.
  • A l'étape 120, après avoir sélectionné un train parmi les trains devant faire demi-tour, l'opérateur sélectionne également la zone à partir de laquelle le train sélectionné va être autorisé à se déplacer selon la direction de circulation opposée D2 et le signal de destination que le train sélectionné doit franchir pour ressortir de la section sur laquelle il s'est engagé.
  • Avantageusement, les zones à partir desquels initier un changement de direction de circulation des trains sont prédéterminées. Il s'agit par exemple des zones appartenant à des sections de voies étendues sur lesquelles plusieurs trains peuvent être engagés au même instant. En général, sur une section, ces zones correspondent à des zones d'attente où un train est amené lors de la survenu d'un évènement avant que soit prise la décision de passer dans le mode dégradé. Il s'agit essentiellement des zones correspondant à des stations, tels que la zone 24.
  • Ainsi, comme représenté par des flèches sur la figure 5, l'opérateur sélectionne la zone 24 comme zone d'origine de la manœuvre et le signal S2 comme signal de destination ou de sortie.
  • Ces informations sont utilisées par l'ATC 18 qui, à l'étape 130, trace, c'est-à-dire définit, une pseudo-route entre la zone d'origine et le signal de destination sélectionnés à l'étape 120 pour le train sélectionné à l'étape 110. Il s'agit là d'une pseudo-route puisqu'une route est normalement définie entre deux signaux de signalisation, un signal d'origine et un signal de destination. C'est bien la possibilité de choisir comme origine d'une route une zone plutôt qu'un signal qui permet la gestion automatique de la manœuvre par le système de signalisation.
  • Cette pseudo-route une fois tracée est indiquée au CBI 14, qui l'ouvre à l'étape 140. Pour ce faire, le CBI 14 réserve, pour le train sélectionné, les différentes zones de la pseudo-route entre la zone d'origine (incluse) et le signal de destination, en associant à chacune de ces zones une direction de circulation correspondant à la direction de circulation opposée. Comme cela est représenté sur la figure 6 par les flèches orientées de droite à gauche, la pseudo-route PR est ouverte par le CBI 14 pour le train T2 en verrouillant les zones 21 à 24 selon la direction de circulation opposée D2.
  • Le CBI 14 mémorise et tient à jour les sous-routes correspondantes dans la mémoire 15.
  • On notera que, sur la figure 6, le train T2 se trouvant sur la zone 24, les sous-routes associées aux sections 24 à 28 de la route R initialement suivie par le train T2 restent verrouillées, les conditions de maintien étant respectées.
  • Parallèlement, à l'étape 150, l'ATS 18, après avoir tracé la pseudo-route, informe le calculateur embarqué du train sélectionné qu'il lui faut changer la direction de circulation courante du train pour qu'elle corresponde à la direction de circulation opposée. Soit le train est un train totalement automatique et le calculateur embarqué gère de lui-même ce changement de direction de circulation ; ou bien le train est piloté et le conducteur est invité à changer de cabine de manière à ce que la cabine active, qui était la cabine de tête lorsque le train se déplaçait selon la direction de circulation nominale D1, soit maintenant la cabine de tête lorsque le train se déplace selon la direction de circulation opposée D2. Ce changement de cabine active est réalisé de manière sécurisée par l'emploi d'une clé adaptée que le conducteur doit utiliser pour indiquer la cabine active.
  • Une fois le changement de cabine active validé par le calculateur de bord, celui-ci transmet l'information de direction de circulation courante du train au ZC 16.
  • Dans notre exemple, le train T2 informe donc le ZC 16 que sa direction de circulation courante est maintenant la direction D2.
  • Dans l'étape 160 suivante, le ZC 16, connaissant la direction de circulation courante du train et recevant du CBI 14 les sous-routes verrouillées pour ce train, calcule une autorisation de mouvement pour ce train. Ainsi, dans notre exemple, le ZC 16 sachant que le train T2 va maintenant circuler selon la direction D2, va périodiquement calculer une autorisation de mouvement à partir des sous-routes qui lui ont été réservées et qui correspondent à la direction de circulation opposée D2.
  • De proche en proche, les autorisations de mouvement calculées par le ZC 16 doivent permettre au train T2 d'avancer le long de la pseudo-route PR, jusqu'à franchir le signal de destination S2 et ressortir de la section B.
  • Cependant, il se peut qu'avant de débuter la manœuvre de changement de direction de circulation du train ou après que cette manœuvre a été initiée, un autre train, T3 sur les figures 5 à 9, se soit engagé sur la section B, c'est-à-dire occupe une zone de la section B et se déplace selon la direction de circulation nominale D1. Il y a donc un risque que le train T2 qui se déplace maintenant selon la direction D2 se retrouve face à face avec le train T3 qui se déplace selon la direction D1.
  • Selon le procédé 100, pour garantir la sécurité et éviter ces évènements de face à face, le ZC 16 tient compte, lorsqu'il calcule une autorisation de mouvement pour le train considéré, d'une liste d'obstacles. Cette liste d'obstacles est maintenue à jour (étape 200) par le ZC 16.
  • Pour le train T2 se déplaçant selon la direction D2, les obstacles sont définis à partir de l'ensemble des autorisations de mouvement déjà calculées et transmises pour exécution aux autres trains circulant sur la section B et se déplaçant selon la direction D1.
  • Ainsi, comme illustré à la figure 7, si une autorisation de mouvement a déjà été transmise au train T3, cette autorisation de mouvement autorisant le train T3 à aller jusqu'à l'extrémité de la section 22, référencée par le point P, alors le point P est considéré comme un obstacle pour le train T2.
  • Le ZC 16 détermine alors l'autorisation de mouvement pour le train T2 en tenant compte de la contrainte qu'il ne faut pas que le train T2, circulant selon la direction D2, soit autorisé à aller au-delà du point P. Ainsi l'autorisation de mouvement transmise au train T2 ne pourra pas s'étendre au-delà de la zone 23.
  • Cette manière de faire permet donc de garantir la sécurité du train circulant en sens contraire vis-à-vis des risques de face à face avec un train contrôlé au moyen d'autorisations de mouvement, c'est-à-dire d'un train CBTC ou compatibles avec l'architecture CBTC.
  • Cependant, si l'on souhaite que la circulation sur la voie 2 soit ouverte à des trains non CBTC, il faut également que le ZC 16 évite tout face à face entre un train circulant en sens contraire et un train non-CBTC.
  • Pour cela, le ZC 16 détermine la zone sur laquelle se situe à l'instant courant le train non-CBTC et calcule, autour de cette position instantanée, une enveloppe de sécurité E. C'est ce cas qui est représenté sur la figure 8 par le trait épais pour le train T3, considéré sur cette figure comme un train non CBTC. L'enveloppe de sécurité E déterminée par le ZC 16 pour le train T3 recouvre, à titre d'exemple, les zones 21 et 22.
  • Cette enveloppe de sécurité E constitue un obstacle dans la liste à prendre en compte pour la détermination d'une autorisation de mouvement pour le train T2 car elle limite le mouvement dans la direction D2 (mais pas la direction D1). Ainsi sur la figure 8, si l'enveloppe de sécurité E du train T3 s'étend jusqu'au point P, l'autorisation de mouvement qui va être calculée par le ZC 16 pour le train T2 ne pourra pas s'étendre au-delà du point P (selon la direction D2). On évite ainsi tout risque de face à face entre le train T2, qui est un train CBTC, et le train T3 non CBTC.
  • Une fois qu'une autorisation de mouvement a été calculée pour le train T2, elle est transmise au calculateur de bord du train T2.
  • Le calculateur de bord du train T2 pilote le train T2 conformément à cette autorisation de mouvement. Par exemple, comme cela est représenté à la figure 9, si l'autorisation de mouvement donnée au train T2 permet de s'avancer jusqu'au point P, le train T2 quitte la zone 24 et s'avance sur la zone 23.
  • On notera qu'en quittant la zone 24, les conditions de verrouillage des sous-routes de la route R, selon la direction D1, ne sont plus respectées : en ce qui concerne la sous-route associée à la zone 24 dans la direction D1, le train T2 ne se trouve plus sur cette zone et la sous-route dans la direction D1 qui précède (selon la direction D1) celle de la zone 24, à savoir la sous-route associée à la zone 23, n'est pas verrouillée. En conséquence, le CBI 14 libère la sous-route 24 pour la route R.
  • De proche en proche toutes les sous-routes de la route R sont donc libérées, les conditions de verrouillage n'étant plus respectées jusqu'à la zone 27, qui elle est verrouillée par le train T1.
  • En quittant la zone 24, les conditions de verrouillage de la sous-route de la pseudo-route PR associée à la zone 24 dans la direction D2, ne sont plus vérifiées et cette sous-route est donc libérée.
  • En revanche, le train T2 occupant maintenant la zone 23, la sous-route de la pseudo-route PR associée à la zone 23 dans la direction D2 est maintenue verrouillée. Il en va de même des sous-routes de la pseudo-route associées aux zones 22 et 21 dans la direction D2, puisque la sous-route de la zone 23, qui précède la zone 22 selon la direction D2 est verrouillée.
  • A l'étape 170, l'autorisation de mouvement calculée par le ZC 16 est transmise au train pour exécution. L'autorisation de mouvement est représentée par une flèche en pointillés sur les figures 7 et 8.
  • Tant que le train n'a pas franchi le signal de destination de la pseudo-route (étape 180), le procédé 100 réitère l'étape 160 pour mettre à jour l'autorisation de mouvement du train.
  • Ainsi, par exemple, le train T3 peut être manœuvré de manière à rebrousser chemin. A chaque déplacement du train T3, la liste des obstacles est mise à jour (étape 200) par le ZC 16, ce qui lui permet de mettre à jour une autorisation de mouvement pour le train T2.
  • De proche en proche le train T2 se déplace le long de la pseudo-route et finit par franchir le signal S2. Il quitte alors la section B. Ceci met un terme à la manœuvre et au procédé 200.
  • Un autre cas, est constitué par un train T3 qui serait un train du type CBTC mais en conduite manuelle, les mécanismes sécuritaires du système ATP étant alors shuntés. Cependant le train T3 communique au sol l'identifiant de sa cabine active.
  • L'enveloppe de sécurité E autour du train T3 reste active empêchant un mouvement selon la direction D2 du train T2 sur les zones correspondantes uniquement si la cabine active du train T3 est celle de droite sur les figures, cette cabine active indiquant que le train T3 se déplace selon la direction D1.
  • À partir du moment où la cabine active du train T3 change pour celle de gauche sur les figures, indiquant que le train T3 circule maintenant selon la direction D2, l'enveloppe de sécurité E qui empêchait le train T2 de circuler selon la direction D2 disparaît.
  • Si le train T3 du type CBTC est non-communicant (en particulier qu'il ne peut plus indiquer sa cabine active), il n'y a pas de moyen de connaître la direction de circulation du train T3. On se retrouve dans le cas de la prise en compte systématique de l'enveloppe de sécurité E comme pour un train non-CBTC. C'est donc seulement lorsque le train T3 libérera une zone, que l'enveloppe de sécurité disparaitra permettant au second train T2 de s'avancer sur cette zone par un déplacement selon la direction D2.
  • L'invention permet donc une exploitation de la ligne en mode dégradé autorisant la circulation des trains sur une portion de la voie en sens inverse de la direction de circulation nominale. L'invention permet de contrôler ces déplacements en sécurité.
  • Pour cela l'invention définit de nouveaux objets :
    • une pseudo-route définie entre un canton d'origine et un signal de destination, qui permet à l'enclenchement de définir une route alternative pour un train déjà engagé sur une route ;
    • une sous-route combinant la réservation d'une zone d'une section et d'une direction de circulation sur cette zone.
  • L'invention est particulièrement bien adaptée à un métro automatique sans pilote.
  • La possibilité d'un changement de direction de circulation d'un train dans une architecture CBTC est une caractéristique permettant une bonne flexibilité de la gestion du trafic et une gestion optimale du trafic lors de la survenue d'événements opérationnels bloquants en mode nominal d'exploitation de la ligne.

Claims (13)

  1. Procédé (100) de gestion de la circulation d'un train (T2) le long d'une section (B) d'une voie ferrée (2), mis en œuvre par un système de signalisation (10) du type CBTC, le système de signalisation étant propre, dans un mode nominal, à définir une route (R) sur la section permettant la circulation du train selon une direction de circulation nominale (D1), la route s'étendant sur une pluralité de zones successives (20 - 28) entre un signal d'origine (S1) et un signal de destination (S3), le procédé consistant, en cas de survenue d'un évènement empêchant le train (T2) de poursuivre son déplacement le long de ladite route, à faire circuler le train selon une direction de circulation opposée (D2) à la direction de circulation nominale (D1) :
    - en sélectionnant (120) une zone d'origine (24) et un signal de sortie (S2) ;
    - en traçant (130), par un système de supervision (18) du système de signalisation (10), une pseudo-route (PR) pour le train (T2) sur les zones successives entre la zone d'origine et le signal de sortie ;
    - en ouvrant (140), par un système d'enclenchement (14) du système de signalisation (10), la pseudo-route (PR) en associant à chaque zone entre la zone d'origine et le signal de sortie, une sous-route, chaque sous-route correspondant à la réservation de ladite zone pour ledit train (T2) dans la direction de circulation opposée (D2) ;
    - en informant (150) le train (T2) qu'il doit modifier sa direction de circulation courante pour qu'elle corresponde à la direction de circulation opposée (D2) ; et,
    - en déterminant (160), par un contrôleur de zones (16) du système de signalisation (10), une autorisation de mouvement pour le train (T2) à partir de la direction de circulation courante du train et des sous-routes ouvertes pour ledit train et en tenant compte d'une liste d'obstacles régulièrement mise à jour par le contrôleur de zones (16) ;
    - en transmettant (180) l'autorisation de mouvement au train (T2) pour piloter le déplacement dudit train (T2),
    les étapes de détermination (160) et de transmission (170) d'une autorisation de mouvement étant itérées jusqu'à ce que le train franchisse le signal de sortie (S2).
  2. Procédé (100) selon la revendication 1, dans lequel la liste d'obstacles pour un train (T2) se déplaçant selon une direction de circulation courante, comporte l'ensemble des autorisations de mouvement déjà transmises aux autres trains circulant sur ladite section dans la direction opposée à la direction de circulation courante.
  3. Procédé (100) selon la revendication 2, dans lequel la liste d'obstacles, pour un train (T2) se déplaçant selon une direction de circulation courante, comporte, en outre, une enveloppe de sécurité calculée par le contrôleur de zones (16) pour un autre train non-CBTC ou CBTC non-communicant circulant sur ladite section.
  4. Procédé (100) selon la revendication 2 ou la revendication 3, dans lequel la liste d'obstacles, pour un train (T2) se déplaçant selon une direction de circulation courante, comporte, en outre, une enveloppe de sécurité calculée par le contrôleur de zones (16) pour un autre train CBTC en conduite manuelle circulant sur ladite section dans la direction opposée à la direction de circulation courante, la direction de circulation dudit train CBTC en conduite manuelle étant déterminée à partir d'un identifiant d'un cabine de conduite active du train.
  5. Procédé (100) selon l'une quelconque des revendications précédentes, dans lequel lors de l'ouverture par le système d'enclenchement de la pseudo-route, le système d'enclenchement verrouille les sous-routes associées à chaque zone entre la zone d'origine et le signal de sortie.
  6. Procédé (100) selon la revendication 5, dans lequel le système d'enclenchement (14) maintient verrouillée une sous-route pour un train (T2) tant que :
    - ledit train occupe la zone associée à ladite sous-route ; ou
    - ledit train n'occupe pas la zone associée à ladite sous-route, mais une sous-route, qui est associée à une zone qui précède, selon la direction de circulation de ladite pseudo-route, la zone associée à ladite sous-route, est verrouillée.
  7. Procédé (100) selon l'une quelconque des revendications 1 à 6, comportant une étape initiale de sélection (110) du train engagé sur la section (B) de voie ferrée (2) qui doit circuler selon une direction de circulation opposée (D2) à la direction de circulation nominale (D1).
  8. Procédé (100) selon l'une quelconque des revendications 1 à 7, comportant une étape de configuration consistant à définir chaque zone de la section (B) de voie ferrée (2) susceptible d'être utilisée en tant que zone d'origine d'une pseudo-route.
  9. Système de signalisation (10) du type CBTC pour la mise en œuvre d'un procédé de gestion de la circulation d'un train (T2) le long d'une section (B) d'une voie ferrée (2) selon l'une quelconque des revendications 1 à 8, le système de signalisation comportant un système de supervision (18), un contrôleur de zones (16) et un système d'enclenchement (14), le système de signalisation étant propre :
    - dans un mode nominal, à définir une route (R) sur la section permettant la circulation du train selon une direction de circulation nominale (D1), la route s'étendant sur une pluralité de zones successives (20 - 28) entre un signal d'origine (S1) et un signal de destination (S3), et
    - en cas de survenue d'un évènement empêchant le train (T2) de poursuivre son déplacement le long de ladite route, à faire circuler le train selon une direction de circulation opposée (D2) à la direction de circulation nominale (D1),
    caractérisé en ce que, en cas de survenue d'un évènement empêchant le train (T2) de poursuivre son déplacement le long de ladite route:
    - le système de supervision (18) est propre à tracer une pseudo-route entre une zone d'origine et un signal de destination pour ledit train ;
    - le système d'enclenchement (14) est propre à ouvrir une pseudo-route tracée par le système de supervision (18), en définissant, pour chaque zone de la pseudo-route, une sous-route réservant, pour ledit train, ladite zone dans une direction de circulation particulière ; et,
    - le contrôleur de zones (16) est propre à tenir à jour une liste d'obstacles et à déterminer une autorisation de mouvement pour le train (T2) en tenant compte de la liste d'obstacles.
  10. Système de signalisation (10) selon la revendication 9, dans lequel la liste d'obstacles comporte des autorisations de mouvement transmises aux autres trains circulant sur la section (B).
  11. Système de signalisation (10) selon la revendication 9 ou la revendication 10, dans lequel la liste d'obstacles comporte, en outre, des enveloppes de sécurité calculées autour de chacun des trains non-CBTC ou CBTC non-communicants, circulant sur la section (B).
  12. Système de signalisation (10) selon la revendication 10 ou la revendication 11, dans lequel la liste d'obstacles comporte, en outre, des enveloppes de sécurité calculées autour de chacun des trains CBTC en conduite manuelle, circulant sur la section (B), chaque enveloppe de sécurité étant associée à un identifiant de la cabine active du train CBTC en conduite manuelle correspondant.
  13. Système de signalisation (10) selon l'une quelconque des revendications 9 à 12, dans lequel le système de supervision est configuré de manière à définir les zones de la section (B) de la voie ferrée (2) susceptibles de pouvoir être utilisées en tant que zone d'origine d'une pseudo-route.
EP18174146.3A 2017-05-24 2018-05-24 Procédé optimisé de gestion de la circulation d'un train et système de signalisation cbtc associé Active EP3406503B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1754618A FR3066746B1 (fr) 2017-05-24 2017-05-24 Procede optimise de gestion de la circulation d'un train et systeme de signalisation cbtc associe

Publications (2)

Publication Number Publication Date
EP3406503A1 EP3406503A1 (fr) 2018-11-28
EP3406503B1 true EP3406503B1 (fr) 2020-05-13

Family

ID=59699840

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18174146.3A Active EP3406503B1 (fr) 2017-05-24 2018-05-24 Procédé optimisé de gestion de la circulation d'un train et système de signalisation cbtc associé

Country Status (7)

Country Link
US (1) US10435053B2 (fr)
EP (1) EP3406503B1 (fr)
CN (1) CN108928368B (fr)
BR (1) BR102018010261B1 (fr)
CA (1) CA3005046A1 (fr)
FR (1) FR3066746B1 (fr)
HK (1) HK1256457A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015204437A1 (de) * 2015-03-12 2016-09-15 Siemens Aktiengesellschaft Verfahren und Vorrichtung zum Ermitteln eines Signalbegriffes für ein Schienenfahrzeug
DE102015210427A1 (de) * 2015-06-08 2016-12-08 Siemens Aktiengesellschaft Verfahren sowie Einrichtung zum Ermitteln einer Fahrerlaubnis für ein spurgebundenes Fahrzeug
FR3066746B1 (fr) * 2017-05-24 2019-07-19 Alstom Transport Technologies Procede optimise de gestion de la circulation d'un train et systeme de signalisation cbtc associe
CN111232025B (zh) * 2018-11-28 2021-06-18 比亚迪股份有限公司 临时限速管理方法、***、区域控制器和列车信号***
CN112572542B (zh) * 2019-09-30 2022-09-30 西门子交通有限责任公司 列车自动保护***以及方法
CN110920693B (zh) * 2019-11-27 2021-10-08 通号城市轨道交通技术有限公司 一种对轨旁设备进行控制的方法及装置
US11945480B2 (en) 2019-12-09 2024-04-02 Ground Transportation Systems Canada Inc. Positioning and odometry system
US11529981B2 (en) 2020-01-31 2022-12-20 Siemens Mobility, Inc. Ultra-wideband based vital train tracking
CN115158411A (zh) * 2022-09-08 2022-10-11 北京城建智控科技股份有限公司 一种基于轨道交通跨灯泡线运行方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9508681D0 (en) * 1995-04-28 1995-06-14 Westinghouse Brake & Signal Vehicle control system
GB0328202D0 (en) * 2003-12-05 2004-01-07 Westinghouse Brake & Signal Railway vehicle detection
JP5877538B2 (ja) * 2011-09-30 2016-03-08 日本信号株式会社 列車制御システム
CN102649438B (zh) * 2012-05-16 2014-10-29 上海申通地铁集团有限公司 轨道交通列车运行路径的制动点确定方法
US9522688B2 (en) * 2013-03-29 2016-12-20 Mitsubishi Heavy Industries, Ltd. On-board device, signaling system, and control method of moving vehicle
FR3018759B1 (fr) * 2014-03-19 2016-04-29 Alstom Transp Tech Procede de reinitialisation d'un equipement a la voie d'un systeme secondaire de detection
CN104943712B (zh) * 2015-06-25 2017-03-01 卡斯柯信号有限公司 一种调车监控***中调车作业通知单的自动管理方法
US11021178B2 (en) * 2015-10-24 2021-06-01 Nabil N. Ghaly Method and apparatus for autonomous train control system
CN105857350B (zh) * 2016-03-17 2017-05-31 中南大学 一种基于区间断面客流的高铁列车开行方法
FR3065699B1 (fr) * 2017-04-27 2020-08-28 Alstom Transp Tech Systeme ameliore de controle automatique des trains et procede associe
FR3066746B1 (fr) * 2017-05-24 2019-07-19 Alstom Transport Technologies Procede optimise de gestion de la circulation d'un train et systeme de signalisation cbtc associe

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3406503A1 (fr) 2018-11-28
CN108928368B (zh) 2021-12-28
HK1256457A1 (zh) 2019-09-27
CN108928368A (zh) 2018-12-04
US20180339721A1 (en) 2018-11-29
FR3066746B1 (fr) 2019-07-19
FR3066746A1 (fr) 2018-11-30
CA3005046A1 (fr) 2018-11-24
BR102018010261A2 (pt) 2018-12-18
BR102018010261B1 (pt) 2024-02-20
US10435053B2 (en) 2019-10-08

Similar Documents

Publication Publication Date Title
EP3406503B1 (fr) Procédé optimisé de gestion de la circulation d'un train et système de signalisation cbtc associé
EP3395642B1 (fr) Système amélioré de contrôle automatique des trains et procédé associé
FR3070661A1 (fr) Procede de controle de la circulation de vehicules dans un reseau
ES2321380T3 (es) Sistemas de gestion del itinerario de un vehiculo ferroviario.
FR3075742A1 (fr) Procede de reinitialisation d'un controleur de zone et systeme associe de controle automatique des trains
CN109715472B (zh) 用于轨道占用确定的***和方法
EP2923915A1 (fr) Équipement pour un système secondaire de détection à la voie et système de signalisation intégrant un tel équipement
JP6025395B2 (ja) 列車制御システム
WO2017010245A1 (fr) Train et système de sécurité de signal
CA2928591A1 (fr) Systeme et methode de navigation de vehicule
EP3225500A1 (fr) Installation de contrôle du trafic sur un reseau ferroviaire et encodeur radio associé
CA2885395C (fr) Procede de reinitialisation d'un equipement a la voie d'un systeme secondaire de detection
FR2964635A1 (fr) Procede et dispositif de generation et d'edition d'un schema de signalisation ferroviaire
CA2972298C (fr) Procede et dispositif informatise pour l'enclenchement d'un itineraire ferroviaire
CA2962887C (fr) Procede de gestion de circulation d'un vehicule ferroviaire avec protection anticollision laterale
TW202000519A (zh) 列車運行管理系統
JP7057700B2 (ja) 列車管理システム
WO2017038288A1 (fr) Système de sécurité de signal
CN110562295B (zh) 车上装置
CN117864215A (zh) 一种行车许可控制方法和无线闭塞中心
EP0576320B1 (fr) Réseau pour la circulation de véhicules automatiques
BR102018067319B1 (pt) Método para controlar a circulação de veículos em uma rede e montagem

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181217

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1256457

Country of ref document: HK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: B61L 27/00 20060101ALI20191125BHEP

Ipc: B61L 21/04 20060101AFI20191125BHEP

INTG Intention to grant announced

Effective date: 20191218

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BRESSON, MATHIEU

Inventor name: BALLESTEROS, JAVIER

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018004399

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1269876

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200615

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200914

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200913

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200814

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200813

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1269876

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602018004399

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200531

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200524

26N No opposition filed

Effective date: 20210216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220524

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230526

Year of fee payment: 6

Ref country code: FR

Payment date: 20230526

Year of fee payment: 6

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230823

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240521

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240521

Year of fee payment: 7