EP3403027B1 - Auswerte- und regelungsverfahren für mehrstoffbrenner - Google Patents

Auswerte- und regelungsverfahren für mehrstoffbrenner Download PDF

Info

Publication number
EP3403027B1
EP3403027B1 EP16831482.1A EP16831482A EP3403027B1 EP 3403027 B1 EP3403027 B1 EP 3403027B1 EP 16831482 A EP16831482 A EP 16831482A EP 3403027 B1 EP3403027 B1 EP 3403027B1
Authority
EP
European Patent Office
Prior art keywords
combustion
parameters
burner
fuel
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16831482.1A
Other languages
English (en)
French (fr)
Other versions
EP3403027A1 (de
Inventor
Markus Vogelbacher
Hubert Keller
Patrick Waibel
Jörg Matthes
Hans-Peter Friedrich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ci-Tec GmbH
Karlsruher Institut fuer Technologie KIT
Original Assignee
Ci-Tec GmbH
Karlsruher Institut fuer Technologie KIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ci-Tec GmbH, Karlsruher Institut fuer Technologie KIT filed Critical Ci-Tec GmbH
Priority to PL16831482T priority Critical patent/PL3403027T3/pl
Publication of EP3403027A1 publication Critical patent/EP3403027A1/de
Application granted granted Critical
Publication of EP3403027B1 publication Critical patent/EP3403027B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/50Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/008Incineration of waste; Incinerator constructions; Details, accessories or control therefor adapted for burning two or more kinds, e.g. liquid and solid, of waste being fed through separate inlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/08Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • F27B7/20Details, accessories, or equipment peculiar to rotary-drum furnaces
    • F27B7/42Arrangement of controlling, monitoring, alarm or like devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • F27D99/0033Heating elements or systems using burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2207/00Control
    • F23G2207/10Arrangement of sensing devices
    • F23G2207/101Arrangement of sensing devices for temperature
    • F23G2207/1015Heat pattern monitoring of flames
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2209/00Specific waste
    • F23G2209/28Plastics or rubber like materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2209/00Specific waste
    • F23G2209/28Plastics or rubber like materials
    • F23G2209/281Tyres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2229/00Flame sensors
    • F23N2229/20Camera viewing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • F27D21/02Observation or illuminating devices
    • F27D2021/026Observation or illuminating devices using a video installation

Definitions

  • the invention relates to an evaluation and control method for multi-fuel burners and an evaluation and control arrangement for carrying out the method.
  • raw materials In the cement industry, especially in the field of clinker production, raw materials first have to be thermally converted.
  • the thermal conversion of raw material to clinker takes place with the help of a rotary kiln.
  • the thermal energy at the different points of the cement plant is made available by multi-fuel burners, which make it possible to increase the proportion of alternative fuels (e.g. fluff, plastic chips, tire fluff or animal meal), thereby reducing costs and reducing emissions.
  • alternative fuels e.g. fluff, plastic chips, tire fluff or animal meal
  • EP 1 364 164 A1 which shows the preamble of claim 1, discloses a measuring device for flame observation during a combustion process.
  • the measuring device comprises a recording unit which is optically connected to imaging devices and processes optical measuring signals with the aid of data processing.
  • the DE 10 2006 060 869 A1 describes a method for regulating the operation of a rotary kiln burner, wherein various state variables of the burner flame are evaluated and the control variables of the burner are set as a function thereof.
  • a first embodiment of an evaluation and control method according to the invention is carried out with a multi-fuel burner for alternative fuels, which has a measuring and control arrangement which has an infrared camera which is assigned to a burner mouth of the multi-fuel burner. Furthermore, the multi-fuel burner is assigned a data processing unit and a regulation and control unit, which are operatively connected to one another and to the infrared camera.
  • a current firing image in the infrared spectral range is recorded with the infrared camera during a firing process, the firing image showing image data of a recording section which comprises the burner mouth and which contains substitute fuel particles.
  • step b) the image data of the firing image are sent to the data processing unit and there in step c) with the data processing unit the substitute fuel particles as well as the size and position of a majority or all of the particles are determined from the image data.
  • step d) Current characteristic firing parameters are then determined in step d) from the data recorded in step c) and these are compared with predetermined target firing parameters.
  • step e) if the current characteristic firing parameters deviate from the target firing parameters in the regulating and control unit, the regulating and / or control parameters that correlate with the characteristic firing parameters are adjusted, and the characteristic firing parameters are changed until the current characteristic Firing parameters correspond to the target firing parameters.
  • the method can be carried out continuously, for which purpose the aforementioned steps a) to e) are repeated continuously.
  • combustion of substitute fuel can be comprehensively monitored, measured and evaluated and used to evaluate the combustion.
  • the entire period of combustion i.e. H. from the entry of the fuel into the burner, the exit of the fuel from the burner mouth, its flight behavior up to the combustion of the substitute fuel in the combustion chamber.
  • a fuel changes from a cold, unignited state to an ignition within the burner and finally, ideally, burns completely. Some fuels do not burn or only partially - this can also be detected with the method according to the invention, so that the burning behavior of substitute fuels can be better understood and the proportion in a burning process can be increased significantly.
  • “Burning parameters” or also combustion parameters in the sense of the invention are all image-based parameters that can be recorded from the image data or the recording by the infrared camera or determined by the subsequent evaluation.
  • the firing parameters describe the state or can describe the state of the combustion map current and over a certain time.
  • "Regulation and / or control parameters” in the sense of the invention are all known manipulated variables which can serve to set the burner and to have a lasting influence on the combustion process.
  • the invention relates to an evaluation and control method, which may include a pilot control with regard to the fuel composition.
  • Adapting the firing parameters in the sense of the invention means that the firing parameters can be approximated to target specifications. They therefore form dynamic values that change constantly and ideally approximate target values.
  • the term “current” can always be seen at a specific time and changes or adapts over time. Current values at a first point in time with certain burner settings can easily be different from current values at a second point in time with certain burner settings.
  • the "combustion process” in the sense of the invention is every ignition and combustion process as well as every leakage and flight behavior of substitute fuel.
  • a “burning pattern” in the sense of the invention shows a picture of the entire combustion process - thus fuel supply from the burner mouth, ignition behavior of the fuel and its combustion behavior.
  • the required evaluation and control parameters in one embodiment being able to be set manually by displaying the camera image in a control center and the determined firing parameters.
  • the control or regulation can also take place automatically, for which purpose the firing parameters by the inventive Procedures can be gradually adapted using the evaluation and control unit.
  • the resulting parameters or firing parameters determined from an imaging method can be used for regulating or controlling the firing process, as a result of which the burner parameters can be further adapted.
  • the changing fuel properties are shown in the infrared camera recordings, among other things, by intensity differences within the recording, dynamic changes over time and by model deviations.
  • various parameters are used, for example to map the differences in intensity and dynamic changes in the particle positions over time and to perform further calculations.
  • the invention can provide that for determining or detecting or also segmenting the substitute fuel particles from image data of one or more images, one or more parameters of temperature, intensity, amount of speed, direction of speed and probable position of a particle on the basis of previously known temperature or probability - or speed models is determined and further a speed of the burning process is determined from image data of two or more images.
  • the models used are based on process knowledge that corresponds to a knowledge of combustion processes known to the person skilled in the art and results from the area of application of the combustion.
  • a method can preferably be used, according to which image preprocessing initially takes place, in which contrast-enhancing image processing methods are initially applied to a single image and a reduction to a region of interest takes place, in which, for example, a majority of the particles are statistically suspected becomes.
  • segmentation takes place after this image preprocessing.
  • a texture filter is placed over the region of interest, after which a further segmentation according to particles or particle agglomerations can take place.
  • further properties to be checked such as e.g. B. size, position, distance to the burner mouth, etc. can be seen.
  • the aforementioned properties can also be checked separately and, if the specifications for the properties are not met the region will be removed from the segmentation.
  • temporal filtering of the image data for example temporal mean value filter
  • the segmentation of the fuel on the basis of individual images and the segmentation on the basis of the temporal filtering of an image sequence can advantageously be combined, for example with the aid of a maximum a posteriori estimate, in order to achieve an improvement in the segmentation accuracy.
  • a parameter extraction can take place. Properties of individual particles can be calculated based on the segmentation in individual images (e.g. size, distance to the next particle, location / position, agglomeration yes / no). On the basis of the segmentation of temporally filtered image data and on the basis of the combination of both segmentations, further parameters can be determined mathematically. A normal distribution (mean and standard deviation) for the presence of fuel can be calculated for each image column. Based on these distributions, the mean flight path of the fuel and the distribution behavior or scattering behavior of the fuel in the flight phase can be calculated.
  • the invention provides that one or more characteristic combustion parameters such as position, size, distribution, mean flight path, time of combustion, distribution behavior or scattering behavior of the substitute fuel particles in the combustion chamber can be selected. Additional information which can be used for an analysis of the combustion process within the combustion chamber is advantageously determined from the image data.
  • the invention provides that in a step c ') further parameters which supplement the characteristic combustion parameters are determined from the image data, such as, for example, agglomerations of the substitute fuel particles or also a probability of residence of the substitute fuel particles in a burner combustion chamber , Furthermore, a time of combustion of the substitute fuel particles after leaving the burner mouth or an impact position or an impact time of the substitute fuel particles in a solid bed in the burner chamber can be determined. The distribution of the replacement fuel particles during a flight phase of the same can also be determined from the image data. The method can thus serve to monitor a combustion process safely and comprehensively and to obtain a large amount of data about different fuel components and compositions.
  • At least one regulation and / or control parameter such as primary air quantity, secondary air quantity, proportion of the alternative fuel, angle of a pneumodeflector or swirl of the air (also called “swirl”) can be set.
  • These manipulated variables can preferably influence the firing process; for suitable settings u. a. Empirical values used.
  • the invention can provide that current and stored recorded burning parameters can be compared with predetermined target burning parameters based on the infrared camera recordings and subsequent image processing.
  • the burning behavior can be determined from this and this can be evaluated according to predetermined criteria.
  • quality criteria for various materials - for example, the percentage of free lime is one such quality criterion for fired clinker.
  • the temperature in the furnace or in certain areas in the furnace or a desired flight behavior or a time of combustion can be used as a quality criterion and also serve as target parameters.
  • the combustion state can also be taken into account directly if, for. B. should be prevented that substitute fuel ends up in the combustion bed.
  • the target parameters can also be adapted accordingly.
  • the target parameters can only be used to a limited extent for the evaluation. However, if, for example, a deviation from a desired combustion time or a deviation from the desired mean flight curve is to be used for the evaluation, the target parameters can also be included in the evaluation.
  • One embodiment of the invention provides that an evaluation and subsequent evaluation can be carried out. This information can be used to find out properties of different fuel compositions and to make predictions about their combustion process.
  • the fuel can advantageously be detected with the aid of the infrared camera recording and properties such as the exit and flight behavior, which is divided into a flight curve, material scatter during the flight and a landing zone, be derived.
  • the time of combustion of the particles can also be determined.
  • a look at the alternative fuel component can be taken and an assessment of the spreading behavior can be made.
  • the properties of the fuel and the characteristic combustion parameters can be monitored almost in real time and changes can be reacted to at an early stage. Different control strategies can be used to further increase the proportion of alternative fuels.
  • the invention offers the advantage that, as a result of the monitoring, an overall higher proportion of alternative fuels in the overall fuel can be used for industrial combustion processes without having a negative influence on the overall combustion process and ultimately on the product quality.
  • exit and flight behavior of substitute fuels in industrial multi-fuel burners can advantageously be analyzed by the invention on the basis of images from infrared cameras, since this type of evaluation and control arrangement can detect a combustion process state in a timely manner by using the method according to the invention.
  • Fig. 1 shows the monitoring arrangement 10 a multi-fuel burner 1 with a combustion chamber 2 and a burner mouth 3.
  • the combustion chamber 2 is preceded by an infrared camera 4, which can record a recording section A.
  • the infrared camera 4 is operatively connected to a data processing unit 6 via data lines 9.
  • This has a memory 6a in which the parameters, values and models required for the evaluation and control or regulation are stored.
  • the data processing unit 6 is connected to the control and regulation unit 7. This in turn is operatively connected to the burner 1, so that the regulation and control unit 7 can influence the burning parameters of the burning process by changing or adapting the control and regulation parameters.
  • Fig. 2 The recording area A of the infrared camera 4 is shown schematically, a flame 11 extending from the burner mouth 3 into the combustion chamber 2. Substitute fuel particles 5 are present within this flame 11 and are carried out of the burner mouth 3 in a certain trajectory F. After a certain time, which depends on the nature and the material of the substitute fuel used, these particles 5 burn or residues of the substitute fuel fall to the bottom of the combustion chamber 2 and form a solid bed 8.
  • FIG. 3 An exemplary distribution of the substitute fuel particles 5 is shown schematically, the particles 5 flying out of the burner mouth 3 into the burner chamber 2 within a jet-shaped trajectory F with a mean trajectory F '.
  • the particles 5 can move alone or also form agglomerations 5 '.
  • Burner mouth 3 coal areas K.
  • the multi-fuel burner 1 shown has, for example, two fuel feeds. A feeder for the alternative fuel arranged in the center of the burner mouth. Another fuel supply is located coaxially around the substitute fuel supply arranged in the middle and serves as a supply for the standard fuel coal. Two feeds are necessary because coal and substitute fuels are often burned together.
  • the coal areas K show the areas in which the coal exits the burner and then burns in the furnace.
  • FIG. 3 shows a diagram of a combustion with a certain proportion of coal, so that the coal areas K form.
  • the 4a to 4f show photographic images of an infrared camera 4 for various settings of the burner 1.
  • the flame 11 extends from the burner mouth 3 into the burner chamber 2, in which the particles 5 are located.
  • the particles 5 are shown in dark, almost black gray; the flame 11 can be seen there in medium gray.
  • the six individual photographic images of the 4a to 4f represent a sequence of an ongoing burning process, with various pre-settings being made on the burner 1, which lead to the different burning patterns.
  • the settings of burner 1 are the parameters EBS (percentage of substitute fuel in percent), the pressure of the pneumodeflector in mbar and a swirl (also called "swirl").
  • the swirl or air swirl is unitless and in the following numerical example relates to a setting on the burner 1 and can be between a value 1 and a value 9.
  • Fig. 5 shows a photograph of the recording area for an exemplary burner setting.
  • a distribution can be calculated from the position and the size of the particles 5, from which their flight path F and also an average flight path 5 'can be determined.
  • the maximum exit angle W of the total fuel at the burner mouth 3 in Fig. 5 can be analyzed by means of two lines W on the left and right of the burner mouth 3).
  • the drawn rectangle denotes a region of interest R, to which the image analysis is limited, in which area the particles 5 are "searched for" and analyzed.
  • the Fig. 6 shows an already processed image, which makes it possible to take a look at the alternative fuel content (particle 5) and to assess its scattering behavior. Building on this picture, e.g. B. individual particles 5 can be detected. Here, only the area in front of the burner mouth 3, ie in a realistic flight area of the fuel, is considered.
  • a kind of hit list can be created, as in Fig. 7 to see.
  • the particles 5 are determined and their properties, such as size, position and distribution, can be further processed by calculation, as in Fig. 7 shown.
  • the individual particle detections of substitute fuel particles are marked as small crosses. From these detections, a column-wise estimate for the location of the fuel can also be carried out, the mean value (thick crosses in the middle) and the standard deviation (crosses above and below the mean values) being formed for a small number of columns of the particle detections. A normal distribution is derived from this.
  • the Dimensions on the graph axes correspond to those of a so-called region of interest. Fig.
  • the substitute fuel particles 5 can be detected by means of the infrared camera 4 and with the aid of an imaging method.
  • parameters can be determined which are suitable for characterizing the exit flight behavior of the particles 5. These parameters can then easily be input into the control of the multi-fuel burner 1 and implemented by the control and regulation unit 7.
  • the imaging method preferably uses camera technology that is sensitive in the infrared spectrum.
  • Infrared technology offers the particular advantage that smoke formation and other image components that are obstructive in the visible spectrum are not recorded, but only the image components that also reflect in the infrared spectrum, such as particles 5 or other solids, and their behavior in combustion chamber 2 can be monitored and evaluated ,

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Control Of Combustion (AREA)
  • Regulation And Control Of Combustion (AREA)

Description

  • Die Erfindung betrifft ein Auswerte- und Regelungsverfahren für Mehrstoffbrenner und eine Auswerte- und Regelungsanordnung zur Durchführung des Verfahrens.
  • In der Zementindustrie, vor allem im Bereich der Klinkerherstellung müssen Rohmaterialien zunächst thermisch umgewandelt werden. Die thermische Umwandlung von Rohmaterial zum Klinker erfolgt dabei mithilfe eines Drehrohrofens. Die thermische Energie an den unterschiedlichen Stellen der Zementanlage wird durch Mehrstoffbrenner zur Verfügung gestellt, die es ermöglichen, den Anteil alternativer Brennstoffe (z. B. Fluff, Plastikschnipsel, Reifenflusen oder Tiermehl) zu erhöhen und so Kosten zu senken und Emissionen zu reduzieren.
  • Bisher konnte der Anteil von Ersatzbrennstoffen am Gesamtbrennstoff nicht stabil bei hohen Anteilen (>70%) gehalten werden, da alternative Brennstoffe Eigenschaften wie einen stark schwankenden Feuchtegehalt haben, der einen großen Einfluss auf die Verbrennung und die erzeugten Brenngase und das Endprodukt haben. Herabfallender, nicht vollständig verbrannter Brennstoff landet bei diesem Herstellungsprozess direkt im Reaktionsbereich der Rohmaterialien und wirkt sich dadurch sogar direkt auf den chemischen Umwandlungsprozess und damit auf das entsprechende Endprodukt aus. Für einen konstant hohen Anteil an alternativen Brennstoffen ist eine dauerhafte Überwachung des Brennstoffes und des Prozesszustandes notwendig. Bisher vorhandene Messsysteme konnten den Prozesszustand nur zeitverzögert erfassen, was einen schnellen Eingriff bei schwankenden Brennstoff-Eigenschaften nicht möglich macht. So sind zum Beispiel sich ändernde Brennstoffeigenschaften im Brennstoffflugverhalten mit Kameras im visuell sichtbaren Wellenlängenbereich, wie sie häufig zu Prozessüberwachungsleitständen verwendet werden, nicht zu erkennen.
  • Aus EP 1 364 164 A1 , welche den Oberbegriff des Anspruchs 1 zeigt, ist eine Messvorrichtung zur Flammenbeobachtung während eines Brennprozesses offenbart. Die Messvorrichtung umfasst eine Aufnahmeeinheit, die optisch mit Abbildungsvorrichtungen verbunden ist und optische Messsignale mit Hilfe einer Datenverarbeitung weiterverarbeitet.
  • Die DE 10 2006 060 869 A1 beschreibt ein Verfahren zur Regelung des Betriebs eines Drehofenbrenners, wobei verschiedene Zustandsgrößen der Brennerflamme ausgewertet werden und in Abhängigkeit davon die Stellgrößen des Brenners eingestellt werden.
  • In US 2007/264 604 A1 ist eine Brennanlage gezeigt, die an einem Brenner angeordnete optische Sensoren und eine mit der Anlage verbundene Datenverarbeitungseinheit aufweist.
  • Ausgehend von diesem Stand der Technik ist es Aufgabe der vorliegenden Erfindung, ein verbessertes Auswerte- und Regelungsverfahren für Mehrstoffbrenner bereitzustellen, um den Anteil an Ersatzbrennstoffen erhöhen bzw. hoch halten zu können.
  • Diese Aufgabe wird durch ein Auswerte- und Regelungsverfahren mit den Merkmalen des Anspruchs 1 gelöst.
  • Weiterbildungen bzw. bevorzugte Ausführungsformen des Auswerte- und Regelungsverfahrens sind in den Unteransprüchen ausgeführt.
  • Eine erste Ausführungsform eines erfindungsgemäßen Auswerte- und Regelungsverfahrens wird mit einem Mehrstoffbrenner für alternative Brennstoffe ausgeführt, der eine Mess- und Regelungsanordnung aufweist, die eine Infrarotkamera hat, die einem Brennermund des Mehrstoffbrenners zugeordnet ist. Ferner ist dem Mehrstoffbrenner eine Datenverarbeitungseinheit und eine Regelungs- und Steuerungseinheit zugeordnet, die miteinander und mit der Infrarotkamera operativ verbunden sind.
  • In einem Schritt a) wird mit der Infrarotkamera während eines Brennvorganges ein aktuelles Brennbild im Infrarotspektralbereich aufgenommen, wobei das Brennbild Bilddaten eines Aufnahmeabschnittes, der den Brennermund umfasst und der Ersatzbrennstoff-Partikel enthält, zeigt.
  • In dem nachfolgenden Schritt b) werden die Bilddaten des Brennbildes an die Datenverarbeitungseinheit gesendet und dort werden in Schritt c) mit der Datenverarbeitungseinheit aus den Bilddaten die Ersatzbrennstoff-Partikel sowie Größe und Position einer Mehrzahl oder auch aller Partikel ermittelt.
  • Aus den in Schritt c) erfassten Daten werden in Schritt d) hiernach aktuelle charakteristische Brennparameter bestimmt und diese werden mit vorgegebenen Soll-Brennparametern verglichen.
  • Ferner wird in Schritt e) bei Abweichen der aktuellen charakteristischen Brennparameter von den Soll-Brennparametern in der Regelungs- und Steuerungseinheit die Regelungs- und/oder Steuerungsparameter angepasst, die mit den charakteristischen Brennparametern korrelieren, und dadurch die charakteristischen Brennparameter geändert, bis die aktuellen charakteristischen Brennparameter den Soll-Brennparametern entsprechen.
  • Schließlich kann das Verfahren kontinuierlich ausgeführt werden, wozu die vorgenannten Schritte a) bis e) kontinuierlich wiederholt werden.
  • Mittels des Verfahrens kann eine Verbrennung von Ersatzbrennstoff umfänglich überwacht, vermessen und ausgewertet und zur Bewertung der Verbrennung genutzt werden. Dabei kann der gesamte Zeitraum der Verbrennung, d. h. von Eintritt des Brennstoffes in den Brenner, Austritt des Brennstoffes aus dem Brennermund, dessen Flugverhalten bis hin zu Verbrennung des Ersatzbrennstoffes im Brennraum, beobachtet werden.
  • Dabei geht ein Brennstoff von einem kalten, ungezündeten Zustand zu einer Zündung innerhalb des Brenners über und verbrennt schließlich, im Idealfall vollständig. Manche Brennstoffe verbrennen nicht oder nur teilweise - auch dies kann mit dem erfindungsgemäßen Verfahren detektiert werden, so dass das Brennverhalten von Ersatzbrennstoffen besser verstanden werden kann und der Anteil in einem Brennprozess wesentlich erhöht werden kann.
  • "Brennparameter" oder auch Verbrennungsparameter im Sinne der Erfindung sind alle bildbasierten Kenngrößen, die aus den Bilddaten bzw. der Aufnahme durch die Infrarotkamera aufgenommen bzw. durch die nachfolgende Auswertung bestimmt werden können. Die Brennparameter beschreiben den Zustand bzw. können den Zustand der Verbrennung aktuell und über eine bestimmte Zeit abbilden. "Regelungs- und/oder Steuerungsparameter" im Sinne der Erfindung sind alle bekannten Stellgrößen, die dazu dienen können, den Brenner einzustellen und den Brennprozess nachhaltig zu beeinflussen.
  • Die Erfindung betrifft ein Auswerte- und Regelungsverfahren, wobei eine Vorsteuerung bezüglich der Brennstoffzusammensetzung beinhaltet sein kann.
  • "Anpassen der Brennparameter" bedeutet im Sinne der Erfindung, dass die Brennparameter an Sollvorgaben angenähert werden können. Sie bilden daher dynamische Werte, die sich ständig ändern und sich im Idealfall Sollvorgaben annähern. Der Begriff "aktuell" ist immer zu einer bestimmten Zeit zu sehen, und ändert sich im Laufe der Zeit bzw. passt sich an. Aktuelle Werte zu einem ersten Zeitpunkt bei bestimmten Brennereinstellungen können ohne weiteres anders sein als aktuelle Werte zu einem zweiten Zeitpunkt bei bestimmten Brennereinstellungen. Der "Brennvorgang" im Sinne der Erfindung ist jeder Zünd- und Verbrennungsvorgang sowie jedes Austritt- und Flugverhalten von Ersatzbrennstoff. Ein "Brennbild" im Sinne der Erfindung zeigt ein Bild des gesamten Verbrennungsvorgangs - so Brennstoffzuführung aus dem Brennermund, Zündungsverhalten des Brennstoffes und dessen Verbrennungsverhalten.
  • Mit dem erfindungsgemäßen Auswerte- und Regelungsverfahren wird es möglich, durch die erfindungsgemäße Verwendung einer Infrarotkamera einen Brenner während des Brennvorgangs nahezu nahtlos zu überwachen. Die Verbrennungsgase werden beim Einsatz einer Infrarotkamera mit speziellem Spektralfilter sehr viel durchlässiger für Strahlung (quasi fast transparent). Dadurch ist es erst möglich den Brennstoff in den Aufnahmen zu erkennen. Bei Messung im visuellen Spektralbereich würde die Flamme den Blick auf den Ersatzbrennstoff versperren. Daher bietet die Kamera Einblick in den Verbrennungsprozess, indem die vorhandenen Verbrennungsgase durch die Erfassung mittels Infrarot und damit Erfassung eines nicht unmittelbar sichtbaren Partikelanteils aufgezeigt werden. Es kann ermöglicht werden, die Veränderung der Brennstoffeigenschaften nachzuvollziehen und im Bedarfsfall sofort zu korrigieren. Es kann händisch geregelt bzw. gesteuert werden, wobei durch Anzeigen des Kamerabildes in einem Leitstand und der bestimmten Brennparameter die erforderlichen Auswerte- und Regelungsparameter in einer Ausführungsform manuell eingestellt werden können. Alternativ kann die Steuerung bzw. Regelung auch automatisch erfolgen, wozu die Brennparameter durch das erfindungsgemäße Verfahren mittels der Auswerte- und Regelungseinheit nach und nach angepasst werden können.
  • Die aus einem bildgebenden Verfahren bestimmten resultierenden Kenngrößen bzw. Brennparameter können für eine Regelung bzw. Steuerung des Brennprozesses verwendet werden, wodurch die Brennerparameter weiter angepasst werden können. Die sich ändernden Brennstoffeigenschaften zeigen sich in den Infrarotkameraaufnahmen unter anderem durch Intensitätsunterschiede innerhalb der Aufnahme, dynamische Änderungen über die Zeit und durch Modellabweichungen. Hierzu werden verschiedene Parameter verwendet, um beispielsweise die Intensitätsunterschiede und dynamischen Änderungen der Partikelpositionen über die Zeit abzubilden und weiteren Berechnungen zuzuführen. So kann die Erfindung vorsehen, dass zum Ermitteln bzw. Detektieren oder auch Segmentieren der Ersatzbrennstoff-Partikel aus Bilddaten eines oder mehrerer Bildes/Bilder ein oder mehrere Parameter Temperatur, Intensität, Geschwindigkeitsbetrag, Geschwindigkeitsrichtung und wahrscheinlicher Position eines Partikels aufgrund vorbekannter Temperatur- bzw. Wahrscheinlichkeits- bzw. Geschwindigkeitsmodellen bestimmt wird und ferner aus Bilddaten zweier oder mehr Bilder eine Geschwindigkeit des Brennprozesses bestimmt wird. Die verwendeten Modelle basieren auf Prozesswissen, dass einem dem Fachmann vorbekannten Wissen über Verbrennungsprozesse entspricht und sich aus dem Anwendungsbereich der Verbrennung ergibt.
  • Verschiedene Bildverarbeitungsverfahren können eingesetzt werden. Dabei kann bevorzugt ein Verfahren verwendet werden, nach dem zunächst eine Bildvorverarbeitung stattfindet, in der auf einem Einzelbild zunächst kontrastverstärkende Bildverarbeitungsverfahren angewendet werden und eine Reduzierung auf eine Interessensregion ("Region of Interest") stattfindet, in der bspw. eine Mehrzahl der Partikel statistisch vermutet wird.
  • Nach dieser Bildvorverarbeitung erfolgt eine so genannte Segmentierung. Über die Interessensregion wird ein Texturfilter gelegt, wonach eine weitergehende Segmentierung nach Partikeln oder Partikelagglomerationen stattfinden kann. Hierbei gibt es die Möglichkeit, dass bereits eine Region aus der Segmentierung entfernt wird, wenn in dieser weitere, zu prüfende Eigenschaften, wie z. B. Größe, Position, Entfernung zum Brennermund, etc. zu sehen sind. Auch können in bestimmten Regionen die vorgenannten Eigenschaften separat überprüft werden und, falls die Vorgaben zu den Eigenschaften nicht erfüllt werden, die Region aus der Segmentierung entfernt werden. Weiter besteht die Möglichkeit, zeitliche Filterungen der Bilddaten durchzuführen (z.B. zeitlicher Mittelwertfilter), um Bildbereiche mit Brennstoff von anderen Bildbereichen deutlicher abgrenzen zu können. Die Segmentierung des Brennstoffs auf Basis von Einzelbildern und die Segmentierung auf Basis der zeitlichen Filterung einer Bildsequenz können in vorteilhafter Weise, beispielsweise mit Hilfe einer Maximum-A-Posteriori-Schätzung kombiniert werden, um eine Verbesserung der Segmentierungsgenauigkeit zu erzielen.
  • Nach dieser Segmentierung kann eine Kenngrößenextraktion erfolgen. Es können Eigenschaften einzelner Partikel auf Basis der Segmentierung in Einzelbildern berechnet werden (z.B. Größe, Abstand zum nächsten Partikel, Aufenthaltsort/Position, Agglomeration ja/nein). Auf Basis der Segmentierung zeitlich gefilterter Bilddaten und auf Basis der Kombination aus beiden Segmentierungen können weitere Kenngrößen rechnerisch bestimmt werden. Es kann für jede Bildspalte eine Normalverteilung (Mittelwert und Standardabweichung) für den Aufenthalt von Brennstoff berechnet werden. Auf Basis dieser Verteilungen lassen sich dann unter anderem die mittlere Flugbahn des Brennstoffs und das Verteilungsverhalten bzw. Streuverhalten des Brennstoffs in der Flugphase berechnen.
  • Die Erfindung sieht vor, dass einer oder mehrere charakteristische Brennparameter wie Position, Größe, Verteilung, mittlere Flugbahn, Verbrennungszeitpunkt, Verteilungsverhalten bzw. Streuverhalten der Ersatzbrennstoff-Partikel im Brennraum ausgewählt werden können. Vorteilhaft werden aus den Bilddaten zusätzliche Informationen bestimmt, die für eine Analyse des Brennvorgangs innerhalb des Brennraumes genutzt werden können.
  • Die Erfindung sieht ferner in einer Weiterführung vor, dass in einem Schritt c') aus den Bilddaten weitere, die charakteristischen Brennparameter ergänzende Kenngrößen bestimmt werden, wie bspw. Agglomerationen der Ersatzbrennstoff-Partikel oder auch eine Aufenthaltswahrscheinlichkeit der Ersatzbrennstoff-Partikel in einem Brennraum des Brenners. Ferner kann ein Verbrennungszeitpunkt der Ersatzbrennstoffpartikel nach Verlassen des Brennermundes bzw. eine Auftreffposition bzw. eine Auftreffzeit der Ersatzbrennstoff-Partikel in einem Feststoffbett in dem Brennerraum festgestellt werden. Auch die Verteilung der Ersatzbrennstoff-Partikel während einer Flugphase derselben kann aus den Bilddaten bestimmt werden. Das Verfahren kann somit dazu dienen, einen Brennvorgang sicher und umfassend zu überwachen und eine Menge Daten über verschiedene Brennstoffanteile und -zusammensetzungen zu erhalten.
  • Ferner kann für die Regelung bzw. Steuerung des Brenners zumindest ein Regelungs- und/oder Steuerungsparameter wie Primärluftmenge, Sekundärluftmenge, Anteil des Ersatzbrennstoffes, Winkel eines Pneumodeflektors bzw. Verdrallung der Luft (auch "swirl" genannt) eingestellt werden. Vorzugsweise können diese Stellgrößen den Brennprozess beeinflussen; für geeignete Einstellungen werden u. a. Erfahrungswerte genutzt.
  • Neben einer Überwachung und Regelung des Brennvorganges kann die Erfindung vorsehen, dass auf Grundlage der Infrarot-Kameraaufnahmen und einer anschließenden Bildverarbeitung aktuelle und gespeicherte erfasste Brennparameter mit vorbestimmen Soll-Brennparametern verglichen werden können. Daraus kann das Brennverhalten bestimmt werden und dieses nach vorbestimmten Kriterien bewertet werden. So gibt es für verschiedene Materialien Qualitätskriterien - bspw. ist für gebrannten Klinker der Anteil von Freikalk ein solches Qualitätskriterium. Ferner kann auch die Temperatur im Ofen bzw. an bestimmten Bereichen im Ofen oder ein gewünschtes Flugverhalten oder ein Verbrennungszeitpunkt als Qualitätskriterium herangezogen werden und zudem als Sollparameter dienen. Ferner kann auch direkt der Verbrennungszustand berücksichtigt werden, wenn z. B. verhindert werden soll, dass Ersatzbrennstoff im Brennbett landet. Hierzu können auch die Soll-Parameter entsprechend angepasst werden.
  • Da sich das tatsächliche Verbrennungsverhalten allein anhand der berechneten Brennparameter zeigt, können die Soll-Parameter alleine nur bedingt zur Bewertung herangezogen werden. Wenn jedoch bspw. eine Abweichung von einem gewünschten Verbrennungszeitpunkt oder eine Abweichung von der gewünschten mittleren Flugkurve zur Bewertung genutzt werden soll, können auch die Soll-Parameter Eingang in die Bewertung finden.
  • In einer Ausführungsform der Erfindung ist vorgesehen, dass eine Auswertung und anschließende Bewertung durchgeführt werden kann. Diese Informationen können genutzt werden, um Eigenschaften verschiedener Brennstoffzusammensetzungen herauszufinden und Voraussagen über deren Verbrennungsprozess zu treffen.
  • Vorteilhaft kann mithilfe der Infrarotkamera-Aufnahme der Brennstoff detektiert werden und es können Eigenschaften wie beispielsweise das Austritts-und Flugverhalten, das sich in einer Flugkurve, Materialstreuung während des Flugs und einer Landezone aufteilt, abgeleitet werden. Auch der Verbrennungszeitpunkt der Partikel kann bestimmt werden. Es kann ein Blick auf den alternativen Brennstoffanteil geworfen werden und somit eine Beurteilung des Streuverhaltens erfolgen. Hierdurch können die Eigenschaften des Brennstoffs und die charakteristischen Brennparameter nahezu in Echtzeit überwacht werden und frühzeitig mit Änderungen reagiert werden. Unterschiedliche Regelungsstrategien können angewandt werden, um den Anteil an alternativen Brennstoffen noch weiter zu erhöhen. Im Gesamten bietet die Erfindung den Vorteil, dass durch die Überwachung ein insgesamt höherer Anteil an alternativen Brennstoffen am Gesamtbrennstoff für industrielle Verbrennungsprozesse verwendet werden kann, ohne einen negativen Einfluss auf den Brennprozess insgesamt und letztendlich auf die Produktqualität zu haben.
  • Vorteilhaft kann durch die Erfindung das Austritts- und Flugverhalten von Ersatzbrennstoffen bei industriellen Mehrstoffbrennern auf Basis von Aufnahmen von Infrarotkameras analysiert werden, da diese Art der Auswerte- und Regelungsanordnung einen Brennprozesszustand durch Verwendung des erfindungsgemäßen Verfahrens zeitnah erfassen kann.
  • Weitere Ausführungsformen sowie einige der Vorteile, die mit diesen und weiteren Ausführungsformen verbunden sind, werden durch die nachfolgende ausführliche Beschreibung unter Bezug auf die begleitenden Figuren deutlich und besser verständlich. Gegenstände oder Teile derselben, die im Wesentlichen gleich oder ähnlich sind, können mit denselben Bezugszeichen versehen sein. Die Figuren sind lediglich eine schematische Darstellung einer Ausführungsform der Erfindung.
  • Dabei zeigen:
  • Fig. 1
    eine schematische Ansicht einer erfindungsgemäßen Überwachungsanordnung,
    Fig. 2
    eine schematische Seitenansicht eines Aufnahmeabschnitts der Infrarot-Kamera mit detektierten Ersatzbrennstoff-Partikeln,
    Fig. 3
    eine schematische Ansicht einer Verteilung der Ersatzbrennstoff-Partikel,
    Fig. 4a-f
    fotografische Ansicht eines Brennermundes mit austretenden ErsatzbrennstoffPartikeln bei unterschiedlichen Brennereinstellungen,
    Fig. 5
    eine fotografische Ansicht einer bildbearbeiteten Aufnahme,
    Fig. 6
    eine bearbeitete fotografische Aufnahme mit erfassten Partikeln, und
    Fig. 7
    einen Graphen mit der Verteilung der Partikel.
  • In Fig. 1 zeigt die Überwachungsanordnung 10 einen Mehrstoffbrenner 1 mit einem Brennraum 2 sowie einem Brennermund 3. Dem Brennraum 2 ist eine Infrarotkamera 4 vorgeordnet, die einen Aufnahmeabschnitt A aufnehmen kann. Die Infrarotkamera 4 ist über Datenleitungen 9 operativ mit einer Datenverarbeitungseinheit 6 verbunden. Diese weist einen Speicher 6a auf, in dem die für die Auswertung und Steuerung bzw. Regelung erforderlichen Parameter, Werte und Modelle gespeichert sind. Ferner ist die Datenverarbeitungseinheit 6 mit der Steuerungs- und Regelungseinheit 7 verbunden. Diese wiederum ist operativ mit dem Brenner 1 verbunden, so dass die Regelung-und Steuerungseinheit 7 durch ändern bzw. anpassen von Steuerungs- und Regelungsparametern Einfluss auf die Brennparameter des Brennprozesses nehmen kann.
  • In Fig. 2 ist der Aufnahmebereich A der Infrarotkamera 4 schematisch dargestellt, wobei sich eine Flamme 11 aus dem Brennermund 3 in den Brennraum 2 hinein erstreckt. Innerhalb dieser Flamme 11 liegen Ersatzbrennstoff-Partikel 5 vor, die in einer bestimmten Flugbahn F aus dem Brennermund 3 hinaus getragen werden. Nach einer bestimmten Zeit, die von der Beschaffenheit und dem Material des jeweilig verwendeten Ersatzbrennstoffes abhängt, verbrennen diese Partikel 5 bzw. Reste des Ersatzbrennstoffes fallen auf den Boden des Brennraumes 2 und bilden ein Feststoffbett 8.
  • In Fig. 3 ist eine beispielhafte Verteilung der Ersatzbrennstoff-Partikel 5 schematisch dargestellt, wobei die Partikel 5 innerhalb einer strahlförmigen Flugbahn F mit einer mittleren Flugbahn F' aus dem Brennermund 3 heraus in den Brennerraum 2 fliegen. Die Partikel 5 können sich alleine bewegen oder auch Agglomerationen 5' bilden. Ferner bilden sich am Brennermund 3 Kohlebereiche K. Der dargestellte Mehrstoffbrenner 1 hat beispielsweisezwei Brennstoffzuführungen. Eine mittig im Brennermund angeordnete Zuführung für den Ersatzbrennstoff. Eine weitere Brennstoffzuführung befindet sich koaxial um die in der Mitte angeordnete Ersatzbrennstoffzuführung und dient als Zuführung für den Standardbrennstoff Kohle. Es sind zwei Zuführungen notwendig, da oft Kohle und Ersatzbrennstoffe gemeinsam verbrannt werden. Die Kohlebereiche K zeigen die Bereiche, in denen die Kohle aus dem Brenner austritt und dann im Ofen verbrennt. Sie verbrennt recht schnell, so dass der Bereich K im Vergleich zu dem langsamer verbrennenden Ersatzbrennstoff seitlich direkt vor dem Brennermund liegt. Wird keine Kohle verbrannt, z. B. wenn 100% Ersatzbrennstoff verwendet wird, gibt es keinen Kohlebereich K. Fig. 3 zeigt ein Schema einer Verbrennung mit einem gewissen Anteil Kohle, so dass sich die Kohlebereiche K ausbilden.
  • Die Fig. 4a bis 4f zeigen fotografische Aufnahmen einer Infrarotkamera 4 für verschiedene Einstellungen des Brenners 1. Aus dem Brennermund 3 erstreckt sich die Flamme 11 in den Brennerraum 2 hinein, worin sich die Partikel 5 befinden. In den Infrarotaufnahmen zeigen sich die Partikel 5 in dunklem, fast schwarzen Grau; die Flamme 11 ist dort herum in mittlerem Grau zu sehen.
  • Die sechs fotografischen Einzelbilder der Fig. 4a bis 4f stellen eine Folge eines laufenden Brennprozesses dar, wobei am Brenner 1 verschiedene Voreinstellungen vorgenommen wurden, die zu den unterschiedlichen Brennbildern führen. Die Einstellungen des Brenners 1 sind hierbei die Parameter EBS (Anteil des Ersatzbrennstoffes in Prozent), der Druck des Pneumodeflektors in mbar sowie eine Verdrallung (auch "swirl" genannt). Die Verdrallung oder auch Luftverwirbelung ist einheitslos und bezieht sich im nachfolgenden Zahlenbeispiel auf eine Einstellung an dem Brenner 1 und kann zwischen einem Wert 1 und einem Wert 9 liegen. Diese drei Parameter sind in der folgenden Tabelle kurz zusammengefasst, und zeigen, wie mittels der Parametereinstellungen ein Partikelstrahl in seiner Flugbahn beeinflusst und auch fokussiert werden kann.
    Fig. EBS [%] Druck Pneumodeflektor [mbar] Swirl
    4a 60 40 2
    4b 65 40 4
    4c 100 40 4
    4d 60 40 8
    4e 65 200 4
    4f 100 200 4
  • Mittels eines bildgebenden Verfahren, das u. a. auf der Auswertung verschiedener Größen, wie der Temperatur, der Helligkeit, Intensität der Flamme 11 sowie einer allgemeinen Verteilung der Partikel 5 im Infrarotbereich basiert, können Größe sowie Position und damit die einzelnen Partikel 5 selbst (die als kleine Kreuze dargestellt sind) erfasst werden, wie Fig. 5 zeigt, eine fotografische Aufnahme des Aufnahmebereichs für eine beispielhafte Brennereinstellung. Aus der Position und der Größe der Partikel 5 lässt sich eine Verteilung errechnen, woraus ihre Flugbahn F und auch eine mittlere Flugbahn 5' bestimmt werden kann. Daneben können auch der maximale Austrittswinkel W des Gesamtbrennstoffs am Brennermund 3 (in Fig. 5 mittels zweier Linien W links und rechts des Brennermundes 3 dargestellt) analysiert werden. Das eingezeichnete Rechteck bezeichnet eine Interessenregion R, auf die sich in der Bildanalyse beschränkt wird, wobei in diesem Bereich nach den Partikeln 5 "gesucht" und analysiert wird.
  • Die Fig. 6 zeigt ein bereits verarbeitetes Bild, das es ermöglicht, einen Blick auf den alternativen Brennstoffanteil (Partikel 5) und eine Beurteilung deren Streuverhaltens zu werfen. Aufbauend auf diesem Bild können z. B. einzelne Partikel 5 detektiert werden. Hierbei wird nur der Bereich vor dem Brennermund 3, d. h. in einem realistischen Flugbereich des Brennstoffes, betrachtet.
  • Werden diese Partikeldetektionen über einen längeren Zeitraum beobachtet, kann eine Art Trefferliste erstellt werden, wie in Fig. 7 zu sehen. Die Partikel 5 sind bestimmt und ihre Eigenschaften, wie Größe, Position und Verteilung können rechnerisch weiter verarbeitet werden, wie in Fig. 7 dargestellt. Die einzelnen Partikeldetektionen von Ersatzbrennstoffpartikeln sind als kleine Kreuze gekennzeichnet. Aus diesen Detektionen kann des Weiteren eine spaltenweise Schätzung für den Aufenthaltsort des Brennstoffes durchgeführt werden, wobei für eine kleine Anzahl an Spalten der Partikeldetektionen wird der Mittelwert (dicke Kreuze mittig) und die Standardabweichung (Kreuze oberhalb und unterhalb der Mittelwerte) gebildet. Daraus wird jeweils eine Normalverteilung abgeleitet. Die Abmessungen an den Graphenachsen entsprechen denen einer sogenannten Interessensregion oder auch "region of interest". Fig. 7 zeigt einen Ausschnitt aus einer solchen Interessensregion und die mittels Gaußabschätzung ermittelten Verläufe (Linien G) von ausgewählten Schätzungen innerhalb der Interessensregion R, die den zugehörigen Mittelwerten und oberhalb und unterhalb davon dem 1σ-Intervall dieser Schätzungen der Partikeldetektionen entsprechen. Die kontinuierlichen Kurven stellen geschätzte Normalverteilungen für den Aufenthaltsort von Partikeln in der jeweiligen Spalte dar (auf Basis der Mittelwerte und Standardabweichungen). Mit Hilfe der Detektionen kann in einem weiteren Schritt auch eine Flugbahnschätzung durchgeführt werden. Aus dem Graphen kann daher auf die Flugbahn F und die mittlere Flugbahn F' der Partikel 5 geschlossen werden.
  • Zur kamerabasierten Erfassung des Austritts-und Flugverhaltens von Ersatzbrennstoffpartikeln eines industriellen Mehrstoffbrenners 1 sowie dessen Regelung und Steuerung kann mittels der Infrarotkamera 4 und unter zu Hilfenahme eines bildgebenden Verfahrens die Ersatzbrennstoff-Partikel 5 detektiert werden.
  • Auf Grund der berechneten bildbasierten Kenngrößen der Ersatzbrennstoff-Partikel 5, können Kenngrößen ermittelt werden, die sich zur Charakterisierung des Austritts-Flugverhaltens der Partikel 5 eignen. Diese Kenngrößen können hiernach ohne weiteres in die Regelung des Mehrstoffbrenners 1 Eingang finden und von der Steuerungs- und Regelungseinheit 7 umgesetzt werden.
  • Vorteilhaft ist insbesondere, dass mittels des bildgebenden Verfahrens vorzugsweise eine Kameratechnologie eingesetzt wird, die im Infrarotspektrum sensitiv ist. Die Infrarot-Technik bietet hierbei den besonderen Vorteil, dass Rauchbildung sowie weitere im sichtbaren Spektrum hinderliche Bildanteile nicht erfasst werden, sondern nur die ebenfalls im Infrarotspektrum reflektierenden Bildbestandteile, wie Partikel 5 oder andere Feststoffe erfasst und deren Verhalten im Brennraum 2 überwacht und bewertet werden können.
  • BEZUGSZEICHENLISTE
  • 1
    Mehrstoffbrenner
    2
    Brennraum
    3
    Brennermund
    4
    Infrarotkamera
    5
    Ersatzbrennstoff-Partikel
    5'
    Agglomerationen
    6
    Datenverarbeitungseinheit
    6a
    Speicher
    7
    Regelungs- und Steuerungseinheit
    8
    Feststoffbett
    9
    Datenleitungen
    10
    Überwachungsanordnung
    11
    Flamme
    A
    Aufnahmeabschnitt
    F
    Flugbahn
    F'
    Mittlere Flugbahn
    K
    Kohlebereich
    R
    Interessensregion
    G
    Linie der Gaußabschätzung
    W
    Austrittswinkel

Claims (6)

  1. Auswerte- und Regelungsverfahren eines Mehrstoffbrenners für alternative Brennstoffe, der eine Mess- und Regelungsanordnung (10) aufweist, die
    - eine Infrarotkamera (4), die einem Brennermund (3) des Mehrstoffbrenners (1) zugeordnet ist,
    - eine Datenverarbeitungseinheit (6),
    - und eine Regelungs- und Steuerungseinheit (7) aufweist,
    wobei die Datenverarbeitungseinheit (6) mit der Regelungs- und Steuerungseinheit (7) und der Infrarotkamera (4) operativ verbunden ist,
    umfassend die Schritte
    a) mittels der Infrarotkamera (4) während eines Brennvorganges Aufnehmen eines aktuellen Brennbildes im Infrarotspektralbereich, wobei das Brennbild Bilddaten eines Aufnahmeabschnittes (A), der den Brennermund (3) umfasst und der Ersatzbrennstoff-Partikel (5) enthält, zeigt, gekennzeichnet durch die weiteren Schritte:
    b) Senden der Bilddaten des Brennbildes an die Datenverarbeitungseinheit (6),
    c) mittels der Datenverarbeitungseinheit (6) aus den Bilddaten Ermitteln der Ersatzbrennstoff-Partikel (5) und Ermitteln der Größe und Position zumindest einer Mehrzahl der Partikel (5),
    d) aus den in Schritt c) ermittelten Daten Bestimmen aktueller charakteristischer Brennparameter und Vergleichen derselben mit vorgegebenen Soll-Brennparametern,
    e) bei Abweichen der aktuellen charakteristischen Brennparameter von den Soll-Brennparametern in der Regelungs- und Steuerungseinheit (7) Anpassen von Regelungs- und/oder Steuerungsparametern, die mit den charakteristischen Brennparametern korrelieren, und dadurch Ändern der charakteristischen Brennparameter, bis die aktuellen charakteristischen Brennparameter den Soll-Brennparametern entsprechen,
    f) kontinuierliches Wiederholen der vorgenannten Schritte a) bis e).
  2. Verfahren nach Anspruch 1,
    wobei in Schritt c)
    zum Ermitteln von Ersatzbrennstoff-Partikeln (5) aus Bilddaten zumindest eines Bildes zumindest ein Parameter aus der Gruppe von Temperatur, Intensität, Geschwindigkeitsbetrag, Geschwindigkeitsrichtung und wahrscheinlicher Position eines Partikels (5) aufgrund vorbekannter Temperatur- und/oder Wahrscheinlichkeits- und/oder Geschwindigkeitsmodelle bestimmt wird.
  3. Verfahren nach Anspruch 1 oder 2,
    wobei
    der zumindest eine charakteristische Brennparameter aus der Gruppe Position, Größe, Verteilung, mittlere Flugbahn, Verbrennungszeitpunkt, Verteilungsverhalten und/oder Streuverhalten der Ersatzbrennstoff-Partikel (5) im Brennraum (2) ausgewählt ist.
  4. Verfahren nach zumindest einem der Ansprüche 1 bis 3,
    umfassend den Schritt
    c') aus den Bilddaten ferner Bestimmen
    - von Agglomerationen 5' der Ersatzbrennstoff-Partikel (5), und/oder
    - einer Aufenthaltswahrscheinlichkeit der Ersatzbrennstoff-Partikel (5) in einem Brennraum (2) des Brenners (1), und/oder
    - Verbrennungszeitpunktes der Ersatzbrennstoff-Partikel (5) nach Verlassen des Brennermundes (3), und/oder
    - Feststellen einer Auftreffposition und/oder einer Auftreffzeit der Ersatzbrennstoff-Partikel (5) in einem Feststoffbett (8) in dem Brennerraum (2), und/oder
    - einer Verteilung der Ersatzbrennstoff-Partikel (5) während einer Flugphase.
  5. Verfahren nach zumindest einem der Ansprüche 1 bis 4,
    wobei
    in Schritt e) für eine Regelung und/oder Steuerung an dem Brenner (1) zumindest ein Regelungs- und/oder Steuerungsparameter aus der Gruppe von Primärluftmenge, Sekundärluftmenge, Druck eines Pneumodeflektors und/oder Verdrallung der Luft einstellbar ist.
  6. Verfahren nach zumindest einem der Ansprüche 1 bis 5,
    umfassend den Schritt
    e') Vergleichen von aktuellen und gespeicherten bestimmten Brennparametern mit vorbestimmen Soll-Brennparametern, daraus Bestimmen eines Brennverhaltens und Bewerten des Brennverhaltens nach vorbestimmten Kriterien.
EP16831482.1A 2016-01-15 2016-12-22 Auswerte- und regelungsverfahren für mehrstoffbrenner Active EP3403027B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL16831482T PL3403027T3 (pl) 2016-01-15 2016-12-22 Sposób oceny i regulacji dla palnika wielopaliwowego

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016000290.5A DE102016000290A1 (de) 2016-01-15 2016-01-15 Auswerte- und Regelungsverfahren für Mehrstoffbrenner und Auswerte- und Regelungsanordnung dafür
PCT/EP2016/002165 WO2017121449A1 (de) 2016-01-15 2016-12-22 Auswerte- und regelungsverfahren für mehrstoffbrenner und auswerte- und regelungsanordnung dafür

Publications (2)

Publication Number Publication Date
EP3403027A1 EP3403027A1 (de) 2018-11-21
EP3403027B1 true EP3403027B1 (de) 2020-01-29

Family

ID=57890766

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16831482.1A Active EP3403027B1 (de) 2016-01-15 2016-12-22 Auswerte- und regelungsverfahren für mehrstoffbrenner

Country Status (4)

Country Link
EP (1) EP3403027B1 (de)
DE (1) DE102016000290A1 (de)
PL (1) PL3403027T3 (de)
WO (1) WO2017121449A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6446733B1 (ja) * 2018-05-30 2019-01-09 三菱重工環境・化学エンジニアリング株式会社 ガス旋回状態判定システム及びガス化溶融炉
WO2023180199A1 (de) * 2022-03-21 2023-09-28 thyssenkrupp Polysius GmbH Verfahren zum betreiben eines brenners eines drehrohrofens
BE1030366B1 (de) * 2022-03-21 2023-10-16 Thyssenkrupp Ind Solutions Ag Verfahren zum Betreiben eines Brenners eines Drehrohrofens

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2578834B1 (fr) * 1985-03-13 1992-01-03 Fives Cail Babcock Procede et dispositif de conduite d'une installation de fabrication de clinker de ciment
SE456192B (sv) * 1985-05-31 1988-09-12 Svenska Traeforskningsinst Sett att meta torrsubstans i rokgasen i lutatervinningsaggregat i anleggningar for framstellning av pappersmassa
US4814868A (en) * 1987-10-02 1989-03-21 Quadtek, Inc. Apparatus and method for imaging and counting moving particles
US5774176A (en) * 1995-01-13 1998-06-30 Applied Synergistics, Inc. Unburned carbon and other combustibles monitor
ATE293232T1 (de) * 2001-03-02 2005-04-15 Powitec Intelligent Tech Gmbh Messvorrichtung, insbesondere zur flammenbeobachtung während eines verbrennungsprozesses
DE102005008893B4 (de) * 2005-02-26 2007-04-19 Forschungszentrum Karlsruhe Gmbh Verfahren zur Erhöhung des Gebindedurchsatzes in Drehrohranlagen
DE102006060869A1 (de) * 2006-12-22 2008-06-26 Khd Humboldt Wedag Gmbh Verfahren zur Regelung des Betriebes eines Drehofenbrenners
CN102859340B (zh) * 2009-12-16 2015-08-05 Abb研究有限公司 光学火焰传感器
WO2015038245A1 (en) * 2013-09-13 2015-03-19 Clearsign Combustion Corporation Transient control of a combustion reaction

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102016000290A1 (de) 2017-07-20
EP3403027A1 (de) 2018-11-21
PL3403027T3 (pl) 2020-06-15
WO2017121449A1 (de) 2017-07-20

Similar Documents

Publication Publication Date Title
DE102014212246B3 (de) Verfahren und Vorrichtung zur Qualitätssicherung
EP3403027B1 (de) Auswerte- und regelungsverfahren für mehrstoffbrenner
EP2365890B1 (de) Verfahren und vorrichtung zur überwachung eines an einem werkstück durchzuführenden laserbearbeitungsvorgangs sowie laserbearbeitungskopf mit einer derartigen vorrichtung
DE102015212837A1 (de) Verfahren zur Überwachung eines Prozesses zur pulverbettbasierten additiven Herstellung eines Bauteils und Anlage, die für ein solches Verfahren geeignet ist
EP2920515B1 (de) Cfd-simulation eines feuerraums mit mehreren brennern mit getrennter berücksichtigung der von den jeweiligen brennern stammenden brennstoff- und luftanteile
DE102017202824A1 (de) Anlage zur Herstellung von Zementklinker und Verfahren zum Betreiben einer solchen Anlage
DE102007032665A1 (de) Verfahren und Vorrichtung zur Durchführung einer Brennprüfung an einem Prüfling
EP3475073B1 (de) Holzwerkstoffplatten-pressvorrichtung und verfahren zum überwachen einer holzwerkstoffplatten-pressvorrichtung
DE102016200324A1 (de) Verfahren zum Ermitteln einer Konzentration wenigstens eines Werkstoffs in einem Pulver für ein additives Herstellverfahren
EP1048900A1 (de) Verfahren und Vorrichtung zum Steuern der Verbrennung von Brennstoff mit variablem Heizwert
EP1529182A1 (de) Verfahren zur überwachung eines thermodynamischen prozesses
EP2064490B1 (de) Verfahren zur charakterisierung der abgasausbrandqualität in verbrennungsanlagen
DE3823494C2 (de) Verfahren und Vorrichtung zur Feuerungsdiagnose und dessen Ergebnisse verwendende Feuerungsregelung
EP1407248B1 (de) Video-rauchdetektionssystem und verfahren zu dessen überprüfung
WO2020193137A1 (de) VERFAHREN ZUR GROBKLASSIFIZIERUNG DER PARTIKELGRÖßENVERTEILUNG EINES SCHÜTTGUTS
EP2055376B1 (de) Verfahren zur Erkennung und Bewertung des Gutbetts in Drehrohrreaktoren
DE102016212486A1 (de) Verfahren und Einrichtung zur Kategorisierung einer Bruchfläche eines Bauteils
AT523807B1 (de) Verfahren zur Staubniederhaltung bei Brechern mit Sprüheinrichtungen
WO2019048601A1 (de) Automatische früherkennung von rauch, russ und feuer mit erhöhter erkennungssicherheit
EP3865771A2 (de) Verfahren zum betreiben einer feuerungsanlage
DE102011085677A1 (de) Verfahren und Vorrichtung zur Überwachung eines an einem Werkstück vorzunehmenden Laserbearbeitungsvorgangs
EP1320733A1 (de) Verfahren und vorrichtung zur ermittlung einer temperaturverteilung von schüttgut
WO2019025564A1 (de) Musterbasierte gasqualitätsüberwachung mittels raman-spektroskopie
EP3244192B1 (de) Verfahren zur steuerung einer prüfkammer
EP4405659A1 (de) VERFAHREN UND VORRICHTUNG ZUR BESTIMMUNG EINES PARAMETERS EINER GRÖßENVERTEILUNG EINES GEMISCHS, ANLAGE ZUR HERSTELLUNG VON WERKSTOFFPLATTEN UND COMPUTERPROGRAMMPRODUKT

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180328

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190704

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1228764

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016008598

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200621

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200529

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200430

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016008598

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20201030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201222

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502016008598

Country of ref document: DE

Owner name: KARLSRUHER INSTITUT FUER TECHNOLOGIE, DE

Free format text: FORMER OWNERS: CI-TEC GMBH, 76135 KARLSRUHE, DE; KARLSRUHER INSTITUT FUER TECHNOLOGIE, 76131 KARLSRUHE, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502016008598

Country of ref document: DE

Owner name: CI-TEC - GESELLSCHAFT FUER KOMMUNIKATIONS- UND, DE

Free format text: FORMER OWNERS: CI-TEC GMBH, 76135 KARLSRUHE, DE; KARLSRUHER INSTITUT FUER TECHNOLOGIE, 76131 KARLSRUHE, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20221222

Year of fee payment: 7

Ref country code: FR

Payment date: 20221219

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20221215

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230103

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20221230

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231214

Year of fee payment: 8

Ref country code: AT

Payment date: 20231214

Year of fee payment: 8