EP3402642B1 - Process and cutting system for slicing a piece of semi-conductor or ceramic material, with a cutting wire and abrasive particles. - Google Patents

Process and cutting system for slicing a piece of semi-conductor or ceramic material, with a cutting wire and abrasive particles. Download PDF

Info

Publication number
EP3402642B1
EP3402642B1 EP17704395.7A EP17704395A EP3402642B1 EP 3402642 B1 EP3402642 B1 EP 3402642B1 EP 17704395 A EP17704395 A EP 17704395A EP 3402642 B1 EP3402642 B1 EP 3402642B1
Authority
EP
European Patent Office
Prior art keywords
wire
piece
cutting
cut
damping layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17704395.7A
Other languages
German (de)
French (fr)
Other versions
EP3402642A1 (en
Inventor
Jean-Daniel PENOT
Nastasja GRILLET
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP3402642A1 publication Critical patent/EP3402642A1/en
Application granted granted Critical
Publication of EP3402642B1 publication Critical patent/EP3402642B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/04Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by tools other than rotary type, e.g. reciprocating tools
    • B28D5/045Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by tools other than rotary type, e.g. reciprocating tools by cutting with wires or closed-loop blades

Definitions

  • the invention relates to a method and a system for wire cutting a piece of semiconductor material (for example silicon, germanium, or a III-V or II-VI semiconductor material) or else of ceramic (for example sapphire, SiC), respectively according to the preambles of claims 1 and 8.
  • semiconductor material for example silicon, germanium, or a III-V or II-VI semiconductor material
  • ceramic for example sapphire, SiC
  • Wire cutting is used in many fields, in particular for slicing fragile and very hard materials such as semiconductor materials (used in the fields of microelectronics, optoelectronics or photovoltaics) or ceramics, or for cutting stones, for example marble rocks.
  • wire cutting of a material it is known to use a wire which is wound multiple times (hundreds, even thousands of times) around several wire guides, typically between two and four wire guides. There is thus obtained, between the wire guides, a "sheet of wires", or “sheet”, formed by a certain number of strands of the same cutting wire, which make it possible to cut the part into several slices.
  • the wire guides are rotatable and cause the wire to rotate during cutting.
  • Guide grooves are etched in the wire guides in order to guarantee a predefined spacing between the “wires” of the web (that is to say between the strands of the cutting wire), which determines the thickness of the slices to be cut.
  • Wire cutting using a web is widely used in fields making use of semiconductor materials, in particular in the field of photovoltaics, to manufacture wafers or wafers of semiconductor material, for example made of silicon.
  • Wire cutting requires the use of an abrasive element intended to create chips of material by abrasion during cutting. There are two techniques of wire cutting, depending on whether the abrasive element is free or linked to the wire.
  • the first cutting technique uses abrasive particles or abrasive grains, for example made of silicon carbide (SiC), which are integrated into a solution such as polyethylene glycol (PEG) forming a cutting liquid. or "slurry".
  • This abrasive liquid mixture is poured onto a wire, for example a steel wire, and envelops the latter with a liquid film containing abrasive particles. The passage of the wire surrounded by this abrasive film in a material to be cut causes the material to be cut.
  • abrasive bonded uses a wire on the surface of which abrasive particles, generally diamond or silicon carbide, are fixed. This type of cutting is commonly called “diamond wire cutting”.
  • the arrow F1 indicates the direction of cutting.
  • the wire 1 is driven in a translational movement in the direction x at a speed of the order of 20 m / s.
  • this movement is preferably oscillating: it alternates a first outward movement (from left to right on the figure 1 ) and a second return movement (from right to left on the figure 1 ), each movement typically having a duration of around thirty seconds.
  • This oscillating regime including back and forth thread, is commonly called “ back and forth ". It is represented by the double arrow F2 on the figure 1 .
  • the wire can be animated with a scrolling movement in one direction in the direction x. One-way scrolling is used more for slurry cutting.
  • the mechanical strength of a wafer 6, or wafer can be characterized by a so-called "four point" bending test.
  • this test uses for example four parallel loading bars including two upper bars 7A, 7B (that is to say placed above the wafer 6 to be tested) mobile and two lower bars 8A, 8B (that is that is to say placed below the plate 6 to be tested) fixed, the spacing between the upper bars 7A, 7B being less than that between the lower bars 8A, 8B.
  • the two upper bars 7A, 7B descend at a constant speed so as to cause the plate 6 to bend, the mechanical stress applied increasing until leading to a rupture of the plate 6. This rupture is triggered in the area 60 of the wafer 6 which undergoes the strongest mechanical stress, constituted by the central strip located between the two upper bars 7A, 7B.
  • the plate 6 can be arranged in two different configurations during the bending test. In the first configuration, as shown in the figure 3A , the loading bars are parallel to the x direction of the wire during cutting. In the second configuration, as shown in the figure 3B , the loading bars are perpendicular to the x direction of the wire during cutting.
  • the four-point bending test is passed to a statistical batch of plates, containing at least twenty plates. Tests were carried out according to the first configuration with a first batch of platelets and according to the second configuration with a second batch of platelets. The figure 4 shows the results of these tests and represents the percentage of fractured platelets in the batch, on the ordinate, as a function of the mechanical stress at break applied, on the abscissa. It is noted that the wafers tested by bending tests according to the first configuration, represented by the curve C1, have a lower mechanical resistance than those tested by bending tests according to the second configuration, represented by the curve C2. In other words, the plates applied during the bending tests parallel to the direction F2 of the cutting wire are less robust than those used during bending tests perpendicular to the direction F2 of the cutting wire.
  • a known solution consists in subjecting the wafers to a chemical etching attack with the aim of reducing or to remove all or part of the surface defects of the wafers.
  • This solution has the disadvantage of consuming material during the chemical attack.
  • the wafers remain fragile during the handling operations carried out between the end of the cutting and the chemical etching operation.
  • Another known solution consists in reducing the size of the diamonds of the diamond cutting wire.
  • this solution only slightly improves the mechanical resistance of the inserts and significantly reduces the cutting speed.
  • the present invention improves the situation.
  • the invention relates to a process for slicing a piece of semiconductor material or ceramic, using a cutting wire and abrasive particles, in which the wire is driven in translation in at at least one direction and, during its translational movement, it enters the workpiece to be cut by a penetration face of said workpiece, and there is a damping layer facing said penetration face of the workpiece to be cut in such a way so that, before entering the part, the wire passes through the damping layer, where according to the invention the damping layer covers the penetrating face.
  • the wire being driven in translation in an alternating back-and-forth movement and penetrating into the part to be cut alternately by two opposite penetration faces, there are two damping layers opposite the two faces of penetration respectively.
  • the mechanical weakness of the cut slices in particular with a diamond wire, or with a bonded abrasive, carrying abrasive particles (or abrasive grains) on its surface, is greatly reduced.
  • This has the effect of attenuating the deteriorating effect of the abrasive particles when the wire enters the part to be cut, inside the cutting groove, by a penetration face of the latter.
  • the damping layer is spaced from the penetration face by a distance less than or equal to 2 cm, advantageously less than or equal to 1 cm, and preferably less than or equal to 0.5 cm.
  • the damping layer has a thickness greater than three times the average diameter of the abrasive particles, advantageously greater than five times the average diameter of the abrasive particles.
  • the thickness of the damping layer can also be less than 2 cm, advantageously less than 1 cm, and preferably less than 0.5 cm.
  • the damping layer can be made of at least one of the materials of the group comprising polymers having a hardness greater than 90 MPa and a modulus of elasticity greater than 2 GPa, in particular hardened epoxy resins and PMMA, materials semiconductors, advantageously silicon, ceramics having a hardness less than 8 on the Mohs scale, in particular a silica.
  • the cushioning layer can be a flat plate.
  • the damping layer is a plate whose shape is adapted to match that of the penetrating face.
  • the damping layer is fixed to the penetration face of the part, for example by bonding by means an adhesive layer having a thickness which is advantageously less than or equal to 20 ⁇ m.
  • the part to be cut being integral with a cutting table by means of an assembly element
  • the damping layer is fixed either to the cutting table or to the assembly element.
  • the damping layer can be deposited on the penetration face of the part, by a layer deposition technique, in particular by sputtering or by another deposition treatment.
  • the at least one cushioning layer preferably two cushioning layers, can extend over at least 40%, or even at least 60%, or even at least 80%, even over 100%, or even over 100% of the height of the part to be cut, this height being measured perpendicular or substantially perpendicular to the cutting wire.
  • the invention also relates to a system for slicing a piece of semiconductor material or ceramic using a cutting wire and abrasive particles, comprising a device for driving the wire in translation in the at least one direction, the wire penetrating into the workpiece to be cut by at least one penetration face of said workpiece during its movement, and comprising at least one damping layer disposed opposite said penetration face of the workpiece to be cut such that, before entering the part, the wire passes through the damping layer, where according to the invention the damping layer covers the penetrating face.
  • a three-dimensional orthogonal coordinate system is represented on the figures 1 , 5 , 6 and 8 , the z axis corresponding to the vertical.
  • the invention relates to the cutting into slices of a piece 2 of fragile (that is to say macroscopically elastic until rupture) and hard (that is to say a hardness greater than or equal to 5) material.
  • hard that is to say a hardness greater than or equal to 5
  • semiconductor material for example in silicon, germanium, III-V semiconductor, II-VI semiconductor or other
  • ceramic for example in sapphire, SiC or other
  • a cutting wire and abrasive particles can in particular be used for the manufacture of wafers of semiconductor material, for example silicon.
  • the piece to be cut 2 is a silicon brick, of parallelepiped shape, intended to be cut into slices (or wafers or wafers).
  • the connecting element 3, or "beam”, here has the shape of a beam. It is a sacrificial element intended to be at least partially cut during the cutting into slices of part 2. It can be is in hard polymer, for example of the Epoxy family, or in any other suitable material (ceramic , graphite). It is fixed to the cutting table 4 by means of a hanging device. The piece to be cut 2 is fixed to the assembly element 3, for example by gluing, by means of a bonding or interface layer 10 in glue. The part 2 can be secured to the assembly element 3 by all or part of one of its faces. On the example of the figure 5 , the part 2 is glued to the assembly element 3 over the entire surface of its face 20C, parallel to the plane (x, y). As a variant, the assembly element 3 could be narrower than the part 2 in the direction x.
  • the assembly comprising the three integral parts, namely table 4, the element 3 and the part to be cut 2, constitutes a first entity, or a first, kinematic sub-assembly.
  • the cutting wire 1 is here a bonded abrasive wire, carrying abrasive particles fixed to its surface.
  • the wire is for example steel.
  • the particles abrasives are here in diamond.
  • Wire 1 constitutes a second kinematic entity (or kinematic sub-assembly).
  • the wire drive and guide device comprises in a known manner several wire guides, for example three wire guides 12A-12C.
  • the wire 1 is here wound multiple times (hundreds, even thousands of times) around these wire guides 12A-12C and thus forms a "sheet of wires", or “sheet”, formed by a number of strands of the same cutting wire 1.
  • This sheet allows the piece 2 to be cut simultaneously into a large number of slices.
  • the wire guides are rotary and cause the web of wires (or strands of wire) 1 to rotate during cutting. They are adapted to animate the wire 1 of an oscillating movement comprising back and forth movements, as represented by the arrow F2. Guide grooves are etched in the wire guides in order to guarantee a predefined spacing between the strands of wire of the sheet, which determines the thickness of the slices to be cut.
  • the second displacement or drive device (not shown) is intended to drive in relative translation the two kinematic entities with respect to each other.
  • the second displacement device is arranged to move the assembly (or first kinematic entity) of the table 4, of the element 3 and of the part 2 in a translational movement in the direction z, down on the figure 8 , as shown by arrow F3, the wire 1 (or second kinematic entity) being concomitantly maintained at the same height along z.
  • the direction of translation F3 is opposite to the direction of cutting F1.
  • a relative translational movement of the piece to be cut 2 and of the cutting wire 1, in the direction z allows the wire 1 to pass through the part 2 while sinking therein and to cut it in the plane (z, x).
  • the assembly of the table 4, of the element 3 and of the part 2 (or first kinematic entity) is kept fixed (at the same height along z) and the second drive device is arranged to drive the wire 1 (or second kinematic entity) in translation in the direction z in the direction of the cut F1.
  • the two damping layers 9A, 9B are intended to attenuate the damaging effect of the diamond wire on the two opposite edges of the cut edges by which the wire 1 enters the part 2, inside the cut groove, respectively each forward movement and each return movement.
  • the inventors have discovered that the reduction in the mechanical resistance of the wafers cut by a diamond wire originates from damage at these two opposite edges of the wafer or cut wafer, and not from surface defects thereof. .
  • This damage is caused by the diamond wire, during its penetration inside the cutting groove by the two opposite faces 20A and 20B, called “penetration faces", of the part 2, respectively with each forward movement and with each wire return movement 1.
  • the damping layers 9A, 9B are arranged, arranged, facing these opposite penetration faces 20A, 20B of the workpiece 2 so that, before entering the workpiece 2 by a penetration face 20A (or 20B), the wire 1 passes through the corresponding damping layer 9A (or 9B), at each forward movement and at each return movement of the wire 1, during its oscillating movement represented by the arrow F2.
  • the arrangement of the damping layers 9A, 9B facing the penetration faces 20A, 20B allows the wire 1, driven here in a back-and-forth movement in translation, to pass through a damping layer 9A (or 9B) before entering the workpiece 2 by the penetration face 20A (respectively 20B).
  • the two damping layers 9A, 9B serve to mitigate the deteriorating or damaging effects of the diamond wire 1 when it enters the part 2 by one or the other of the two penetration faces 20A, 20B.
  • each damping layer 9A, 9B consists of a flat plate. This has the shape of a flat parallelepiped whose dimensions along z and y are identical or substantially identical to the corresponding dimensions, along z and y, of the corresponding penetration face 20A, 20B (that is to say arranged opposite).
  • the damping layer 9A (9B) thus covers the whole of the corresponding penetration face 20A (20B).
  • the thickness “e” of the damping layer 9A (9B), in the direction x, must be sufficient to absorb the impact energy between the abrasive particles (or abrasive grains) integral with the wire 1 and the cut piece 2 , when the wire 1, driven by the oscillating movement F2 along x, enters the part 2 via the face 20A (respectively 20B). Thanks to this, it avoids degrading the edges in the z direction of the slices cut from the part 2.
  • the thickness of each damping layer 9A, 9B is greater than three times the average diameter of the abrasive particles (or abrasive grains) of wire 1, preferably greater than five times the average diameter of the abrasive particles of wire 1.
  • This average diameter is generally indicated by the manufacturer of the wire.
  • the average size, or average diameter, of the abrasive particles is 10 ⁇ m.
  • the minimum thickness e min of the damping layers 9A, 9B is therefore in this case equal to 30 ⁇ m, preferably 50 ⁇ m.
  • the thickness e of the damping layers 9A (9B) must also not be too great in order to avoid certain drawbacks such as fouling, overheating or wear of the wire.
  • the maximum thickness e max of the damping layers 9A, 9B is therefore advantageously equal to 2 cm, advantageously still equal to 1 cm, preferably equal to 0.5 cm.
  • the damping layers 9A, 9B cover the penetration faces 20A and 20B to be protected from the part 2.
  • the damping layers 9A, 9B are joined, pressed against the penetration faces 20A, 20B respectively and are fixed thereto, for example by gluing by means of a layer of glue 11A, 11B.
  • the thickness of this adhesive layer 11A, 11B is advantageously less than or equal to 20 ⁇ m.
  • the glue used here is analogous to that used for gluing the piece to be cut 2 to the assembly element 3.
  • a first alternative embodiment, represented on the figure 7A differs from the embodiment of the figure 5 by the fact that the damping layers 9A, 9B covering the penetration faces to be protected 20A, 20B of the part 2 are fixed to the assembly element 3, for example by gluing. More specifically, a peripheral edge of one of the faces of the damping layer 9A (or 9B) is fixed to a side opposite the assembly element 3.
  • a second alternative embodiment, shown on the figure 7D differs from the embodiment of the figure 5 by the fact that the damping layers 9A, 9B covering the penetration faces to be protected 20A, 20B of the part 2 are fixed to the cutting table 4, for example by gluing. More precisely, each damping element 9A (or 9B) is fixed by its edge to the face of the table 4 supporting the assembly element 3.
  • the example outside the scope of the invention of the figure 6 differs from that of the figure 5 essentially by the fact that the damping layers 9A, 9B are not joined to the faces 20A and 20B of the part 2, but are slightly spaced therefrom by a distance d. So that the damping layer 9A (9B) can nevertheless play its role of shock absorber, shock or impact absorber, this distance d is less than or equal to a maximum distance advantageously equal to 2 cm, advantageously still equal at 1cm, preferably equal to 0.5cm.
  • the damping layers 9A, 9B are fixed to the cutting table 4, by their edge. The fixing can be carried out by gluing, using layers of adhesive 12A, 12B.
  • a variant outside the scope of the invention shown in the figure 7B differs from the example of the figure 6 by the fact that the damping layers 9A, 9B, separated from the faces 20A, 20B, are fixed to the assembly element 3.
  • FIG. 7E differs from the embodiment of the figure 5 by the fact that the piece to be cut 2 is of cylindrical shape.
  • the damping layers 9A, 9B are in contact with the cylindrical outer surface of the part 2, only along a tangential line, parallel to the axis of the cylinder, and fixed for example by gluing to the cutting table 4 by their slice.
  • the plates constituting the damping layers 9A, 9B could have a non-planar shape, adapted to match that of the protective face to be protected ( figures 7F and 7G ).
  • the damping layers 9A, 9B are plates which are attached and arranged opposite the penetration faces to be protected from the workpiece 2, or against them , or at a distance d from these, keeping in mind that according to the invention, the damping layer covers a penetration face of the part to be cut.
  • the damping layers 9A, 9B are layers deposited on the faces to be protected of the part 2 by a layer deposition technique, for example by sputtering or by another suitable treatment (for example vacuum deposit or coating). Note that the application of these damping layers does not require precision, finesse or purity.
  • FIG 7F there is shown a first example of implementation of this embodiment, in which the piece to be cut 2 is cylindrical. Two damping layers 9A and 9B are deposited respectively on the two penetration faces, in the form of a half-cylinder, of the part 2.
  • FIG 7G a second example of implementation has been shown, in which the part to cut 2 is parallelepiped. Two damping layers 9A and 9B are deposited respectively on the two opposite faces 20A, 20B of the part 2.
  • the cutting system comprises two damping layers to protect the two penetration faces of the part to be cut. This is due to the fact that, the wire being driven in an oscillating movement comprising back and forth movements, it penetrates inside the part, in the cutting groove, by two opposite penetration faces of the part.
  • the wire being driven in an oscillating movement comprising back and forth movements, it penetrates inside the part, in the cutting groove, by two opposite penetration faces of the part.
  • a single damping layer 9A disposed facing the single penetration face of the part to be cut, is necessary.
  • One such embodiment is shown in the figure 7H .
  • the invention also relates to a process for slicing the part 2 using the cutting wire 1, in which the damping layers 9A, 9B are placed facing the penetration faces to be protected of the part 2, that is to say those by which the wire 1 is intended to penetrate when it is driven in an oscillating movement back and forth.
  • the damping layers 9A, 9B can be added plates or layers deposited by a layer deposition technique.
  • the damping layers 9A, 9B are fixed either to the piece to be cut 2, or to the assembly element 3, or to the cutting table 4.
  • the fixing is advantageously carried out by collage.
  • the damping layers 9A, 9B are placed either at least partially against the corresponding penetration faces 20A, 20B, or at a distance strictly greater than zero from these penetration faces 20A, 20B.
  • the damping layers 9A, 9B are deposited on the penetration faces 20A, 20B of the piece to be cut 2 by a layer deposition technique.
  • the table 4, the assembly element 3 and the piece to be cut 2 are assembled in translation along z, here downwards, in the direction indicated by the arrow F3, relatively wire 1 which remains at the same height along z.
  • the wire 1 (or the ply) is driven in translation in an oscillating movement along x, represented by the double arrow F2, comprising back and forth movements in the direction x.
  • the wire 1 penetrates into the part 2, that is to say into the cutting groove dug in the part 2, alternately by the penetrating face 20A and by the penetrating face 20B of the part 2.
  • the wire 1 Before entering part 2 through each of these penetration faces 20A (20B), the wire 1 passes through the corresponding damping layer 9A (respectively 9B), placed nearby. Thanks to this, the damaging effect of the abrasive wire 1 at the level of the penetration faces 20A, 20B of the part 2 is greatly attenuated, absorbed.
  • the layers constituting the damping layers 9A, 9B are deposited on the penetration faces to be protected 20A, 20B of the part to be cut 2 by a known layer deposition technique.
  • the wire is driven in a one-way movement and therefore penetrates into the part 2 by a single penetrating face
  • a single damping layer facing this penetrating face, said layer covering the face of penetration according to the invention, or being positioned at a distance d from the latter, but outside the scope of the invention.
  • the cushioning layer is either added or deposited by a layer deposition technique.
  • the invention could also be applied to a free abrasive cutting, or to a slurry, using a cutting liquid containing abrasive particles and a cutting wire with a smooth or almost smooth surface, for example made of steel.
  • a wafer is provided, in particular a wafer, of semiconductor material or ceramic, obtained by the implementation of the cutting process as just described.
  • At least one damping layer 9A, 9B extend over at least 40% of the height h of the part 2 to be cut, this height being measured parallel or substantially parallel to the z axis or to the direction of the cut F1, that is to say perpendicular or substantially perpendicular to the cutting wire or to the direction of the cutting wire .
  • At least one damping layer 9A, 9B extend over at least 60% of the height h of the part 2 to be cut, or even over at least 80 % of the height h of the piece 2 to be cut, or even over 100% of the height h of the piece 2 to be cut, or even more than 100% of the height h of the piece 2 to be cut.
  • At least the projection of a damping layer 9A, 9B, preferably each projection of the damping layers 9A, 9B, on the part in the direction of the cutting wire extends over at least 40% of the height h of the part 2 to be cut, this height being measured parallel or substantially parallel to the axis z or to the direction of the cutting F1, that is to say say perpendicular or substantially perpendicular to the cutting wire or to the direction of the cutting wire.
  • At least the projection of a damping layer 9A, 9B, preferably each projection of the damping layers 9A, 9B, on the workpiece in the direction of the cutting wire extends over at least 60% of the height h of the part 2 to be cut, or even on the minus 80% of the height h of the part 2 to be cut, or even over 100% of the height h of the part 2 to be cut.
  • At least one damping layer 9A, 9B are cut simultaneously with the part 2, either during the whole cutting time of the part 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)

Description

Domaine technique de l'inventionTechnical field of the invention

L'invention concerne un procédé et un système de découpe filaire d'une pièce en matériau semi-conducteur (par exemple en silicium, en germanium, ou en un matériau semi-conducteur III-V ou II-VI) ou bien en céramique (par exemple saphir, SiC), respectivement selon les préambules des revendications 1 et 8.The invention relates to a method and a system for wire cutting a piece of semiconductor material (for example silicon, germanium, or a III-V or II-VI semiconductor material) or else of ceramic ( for example sapphire, SiC), respectively according to the preambles of claims 1 and 8.

État de la techniqueState of the art

Un tel procédé et un tel système sont connus par exemple du document US2004/0255924A1 . La découpe filaire est utilisée dans de nombreux domaines, notamment pour la découpe en tranches de matériaux fragiles et très durs tels que les matériaux semi-conducteurs (utilisés dans les domaines de la microélectronique, de l'optoélectronique ou du photovoltaïque) ou des céramiques, ou encore pour la découpe de pierres, par exemple des roches de marbre.Such a method and such a system are known for example from the document US2004 / 0255924A1 . Wire cutting is used in many fields, in particular for slicing fragile and very hard materials such as semiconductor materials (used in the fields of microelectronics, optoelectronics or photovoltaics) or ceramics, or for cutting stones, for example marble rocks.

Pour la découpe filaire d'un matériau, il est connu d'utiliser un fil qui est enroulé de multiples fois (des centaines, voire des milliers de fois) autour de plusieurs guide-fils, typiquement entre deux et quatre guide-fils. On obtient ainsi, entre les guide-fils, une « nappe de fils », ou « nappe », formée par un certain nombre de brins du même fil de découpe, qui permettent de découper la pièce en plusieurs tranches. Les guide-fils sont rotatifs et entraînent en rotation le fil lors de la découpe. Des gorges de guidage sont gravées dans les guide-fils afin de garantir un espacement prédéfini entre les «fils» de la nappe (c'est-à-dire entre les brins du fil de découpe), qui détermine l'épaisseur des tranches à découper.For the wire cutting of a material, it is known to use a wire which is wound multiple times (hundreds, even thousands of times) around several wire guides, typically between two and four wire guides. There is thus obtained, between the wire guides, a "sheet of wires", or "sheet", formed by a certain number of strands of the same cutting wire, which make it possible to cut the part into several slices. The wire guides are rotatable and cause the wire to rotate during cutting. Guide grooves are etched in the wire guides in order to guarantee a predefined spacing between the “wires” of the web (that is to say between the strands of the cutting wire), which determines the thickness of the slices to be cut.

La découpe filaire à l'aide d'une nappe est largement utilisée dans les domaines faisant usage de matériaux semi-conducteurs, notamment dans le domaine du photovoltaïque, pour fabriquer des tranches ou plaquettes ou « wafers » de matériau semi-conducteur, par exemple en silicium.Wire cutting using a web is widely used in fields making use of semiconductor materials, in particular in the field of photovoltaics, to manufacture wafers or wafers of semiconductor material, for example made of silicon.

La découpe filaire requiert de faire appel à un élément abrasif destiné à créer des copeaux de matière par abrasion lors de la découpe. Il existe deux techniques de découpe filaire, selon que l'élément abrasif est libre ou bien lié au fil.Wire cutting requires the use of an abrasive element intended to create chips of material by abrasion during cutting. There are two techniques of wire cutting, depending on whether the abrasive element is free or linked to the wire.

La première technique de découpe, dite « à abrasif libre », utilise des particules abrasives ou grains abrasifs, par exemple en carbure de silicium (SiC), qui sont intégrés dans une solution telle que du polyéthylène glycol (PEG) formant un liquide de coupe ou « slurry ». Ce mélange liquide abrasif est déversé sur un fil, par exemple un fil d'acier, et enveloppe celui-ci d'un film liquide contenant des particules abrasives. Le passage du fil entouré par ce film abrasif dans un matériau à découper entraîne la découpe du matériau.The first cutting technique, known as "free abrasive", uses abrasive particles or abrasive grains, for example made of silicon carbide (SiC), which are integrated into a solution such as polyethylene glycol (PEG) forming a cutting liquid. or "slurry". This abrasive liquid mixture is poured onto a wire, for example a steel wire, and envelops the latter with a liquid film containing abrasive particles. The passage of the wire surrounded by this abrasive film in a material to be cut causes the material to be cut.

La deuxième technique de découpe, dite à « à abrasif lié », utilise un fil sur la surface duquel des particules abrasives, généralement en diamant ou en carbure de silicium, sont fixées. Ce type de découpe est couramment appelé « découpe par fil diamanté ».The second cutting technique, called "abrasive bonded", uses a wire on the surface of which abrasive particles, generally diamond or silicon carbide, are fixed. This type of cutting is commonly called "diamond wire cutting".

La figure 1 représente schématiquement un système de découpe filaire, à l'aide d'un fil de découpe 1, d'une pièce 2 telle qu'une brique de silicium. La pièce 2 est assemblée à une table de découpe 4 par l'intermédiaire d'un élément d'assemblage sacrificiel 3, ou «beam», ayant généralement la forme d'une poutre, la pièce 2 étant solidarisée par collage 5 à cet élément 3. Lors de la découpe, un mouvement de translation relative de la pièce à découper 2 et du fil de découpe 1, selon une direction z, permet au fil 1 de traverser la pièce 2 en s'y enfonçant et de la découper dans un plan (z,x). Ce mouvement de translation relative peut être obtenu de deux façons :

  • soit en maintenant l'assemblage de la table 4, de l'élément 3 et de la pièce 2 fixe et en entraînant le fil 1 en translation selon la direction z, dans un premier sens ;
  • soit en maintenant le fil 1 à une même hauteur selon z et en entraînant l'assemblage de la table 4, de l'élément 3 et de la pièce 2 en translation selon la direction z, dans un deuxième sens opposé au premier.
The figure 1 schematically represents a wired cutting system, using a cutting wire 1, of a part 2 such as a silicon brick. The part 2 is assembled to a cutting table 4 by means of a sacrificial assembly element 3, or “beam”, generally having the shape of a beam, the part 2 being secured by gluing 5 to this element 3. During cutting, a relative translational movement of the piece to be cut 2 and of the cutting wire 1, in a direction z, allows the wire 1 to pass through the part 2 by sinking therein and to cut it in a plane (z, x). This relative translation movement can be obtained in two ways:
  • either by maintaining the assembly of the table 4, the element 3 and the part 2 fixed and driving the wire 1 in translation in the direction z, in a first direction;
  • either by keeping the wire 1 at the same height along z and causing the assembly of the table 4, the element 3 and the part 2 in translation in the direction z, in a second direction opposite to the first.

Sur la figure 1, la flèche F1 désigne le sens de la découpe.On the figure 1 , the arrow F1 indicates the direction of cutting.

Lors de la découpe, concomitamment à la translation relative du fil 1 et de la pièce 2, le fil 1 est animé d'un mouvement de translation selon la direction x à une vitesse de l'ordre de 20 m/s. En cas d'utilisation d'un fil diamanté, ce mouvement est préférentiellement oscillant : il alterne un premier déplacement aller (de la gauche vers la droite sur la figure 1) et un deuxième déplacement retour (de la droite vers la gauche sur la figure 1), chaque déplacement ayant typiquement une durée de l'ordre d'une trentaine de secondes. Ce régime oscillant, comportant des allers-retours du fil, est couramment qualifié de « back and forth». Il est représenté par la double flèche F2 sur la figure 1. De façon alternative, le fil peut être animé d'un mouvement de défilement en sens unique selon la direction x. Le défilement en sens unique est plutôt utilisé pour la découpe au slurry.During cutting, concomitantly with the relative translation of the wire 1 and of the part 2, the wire 1 is driven in a translational movement in the direction x at a speed of the order of 20 m / s. If a diamond wire is used, this movement is preferably oscillating: it alternates a first outward movement (from left to right on the figure 1 ) and a second return movement (from right to left on the figure 1 ), each movement typically having a duration of around thirty seconds. This oscillating regime, including back and forth thread, is commonly called " back and forth ". It is represented by the double arrow F2 on the figure 1 . Alternatively, the wire can be animated with a scrolling movement in one direction in the direction x. One-way scrolling is used more for slurry cutting.

La découpe au fil diamanté, plus récente que la découpe au slurry, tend à se développer car elle permet d'augmenter la vitesse de coupe et offre donc une meilleure productivité. Toutefois, elle présente l'inconvénient majeur de réduire la résistance mécanique des tranches découpées. Cela s'avère gênant en particulier pour la fabrication des plaquettes ou wafers de matériau semi-conducteur, destinées à être manipulées par la suite.Cutting with diamond wire, more recent than slurry cutting, tends to develop because it increases the cutting speed and therefore offers better productivity. However, it has the major drawback of reducing the mechanical strength of the cut slices. This is particularly troublesome for the manufacture of wafers or wafers of semiconductor material, intended to be handled subsequently.

La résistance mécanique d'un wafer 6, ou plaquette, peut être caractérisée par un essai de flexion dite « quatre points ». En référence à la figure 2, cet essai utilise par exemple quatre barres de chargement parallèles dont deux barres supérieures 7A, 7B (c'est-à-dire placées au-dessus de la plaquette 6 à tester) mobiles et deux barres inférieures 8A, 8B (c'est-à-dire placées au-dessous de la plaquette 6 à tester) fixes, l'écartement entre les barres supérieures 7A, 7B étant moindre que celui entre les barres inférieures 8A, 8B. Lors de l'essai, les deux barres supérieures 7A, 7B descendent à vitesse constante de manière à provoquer une flexion de la plaquette 6, la contrainte mécanique appliquée augmentant jusqu'à aboutir à une rupture de la plaquette 6. Cette rupture se déclenche dans la zone 60 de la plaquette 6 qui subit la contrainte mécanique la plus forte, constituée par la bande centrale située entre les deux barres supérieures 7A, 7B.The mechanical strength of a wafer 6, or wafer, can be characterized by a so-called "four point" bending test. With reference to the figure 2 , this test uses for example four parallel loading bars including two upper bars 7A, 7B (that is to say placed above the wafer 6 to be tested) mobile and two lower bars 8A, 8B (that is that is to say placed below the plate 6 to be tested) fixed, the spacing between the upper bars 7A, 7B being less than that between the lower bars 8A, 8B. During the test, the two upper bars 7A, 7B descend at a constant speed so as to cause the plate 6 to bend, the mechanical stress applied increasing until leading to a rupture of the plate 6. This rupture is triggered in the area 60 of the wafer 6 which undergoes the strongest mechanical stress, constituted by the central strip located between the two upper bars 7A, 7B.

La plaquette 6 peut être disposée selon deux configurations différentes lors de l'essai de flexion. Dans la première configuration, telle que représentée sur la figure 3A, les barres de chargement sont parallèles à la direction x du fil pendant la découpe. Dans la deuxième configuration, telle que représentée sur la figure 3B, les barres de chargement sont perpendiculaires à la direction x du fil pendant la découpe.The plate 6 can be arranged in two different configurations during the bending test. In the first configuration, as shown in the figure 3A , the loading bars are parallel to the x direction of the wire during cutting. In the second configuration, as shown in the figure 3B , the loading bars are perpendicular to the x direction of the wire during cutting.

Afin de caractériser la résistance des plaquettes découpées à l'aide d'un système de découpe utilisant un fil diamanté, on fait passer l'essai de flexion quatre points à un lot statistique de plaquettes, contenant au moins une vingtaine de plaquettes. Des essais ont été réalisés selon la première configuration avec un premier lot de plaquettes et selon la deuxième configuration avec un deuxième lot de plaquettes. La figure 4 montre les résultats de ces essais et représente le pourcentage de plaquettes fracturées du lot, en ordonnées, en fonction de la contrainte mécanique à rupture appliquée, en abscisses. On constate que les plaquettes testées par des essais de flexion selon la première configuration, représentées par la courbe C1, présentent une résistance mécanique plus faible que celles testées par des essais de flexion selon la deuxième configuration, représentées par la courbe C2. Autrement dit, les plaquettes sollicitées lors des essais de flexion parallèlement à la direction F2 du fil de découpe sont moins robustes que celles sollicitées lors des essais de flexion perpendiculairement à la direction F2 du fil de découpe.In order to characterize the resistance of the plates cut using a cutting system using a diamond wire, the four-point bending test is passed to a statistical batch of plates, containing at least twenty plates. Tests were carried out according to the first configuration with a first batch of platelets and according to the second configuration with a second batch of platelets. The figure 4 shows the results of these tests and represents the percentage of fractured platelets in the batch, on the ordinate, as a function of the mechanical stress at break applied, on the abscissa. It is noted that the wafers tested by bending tests according to the first configuration, represented by the curve C1, have a lower mechanical resistance than those tested by bending tests according to the second configuration, represented by the curve C2. In other words, the plates applied during the bending tests parallel to the direction F2 of the cutting wire are less robust than those used during bending tests perpendicular to the direction F2 of the cutting wire.

Dans l'état de l'art, cette différence de comportement des plaquettes selon que la direction de sollicitation est parallèle ou perpendiculaire à la direction du fil de découpe est attribuée à des défauts de surface, tels que des microfissures, engendrés par la découpe à la surface des plaquettes, ces défauts de surface présentant a priori des structures différentes parallèlement et perpendiculairement à la direction du fil.In the state of the art, this difference in behavior of the inserts depending on whether the direction of stress is parallel or perpendicular to the direction of the cutting wire is attributed to surface defects, such as microcracks, caused by the cutting to the surface of the wafers, these surface defects a priori having different structures parallel and perpendicular to the direction of the wire.

Afin d'améliorer la résistance mécanique des plaquettes, notamment leur résistance à la rupture en cas de sollicitation mécanique parallèlement à la direction du fil de découpe, une solution connue consiste à faire subir aux plaquettes une attaque chimique de gravure dans le but de réduire ou de supprimer tout ou partie des défauts de surface des plaquettes. Cette solution présente l'inconvénient de consommer de la matière lors de l'attaque chimique. En outre, les plaquettes demeurent fragiles pendant les opérations de manutention réalisées entre la fin de la découpe et l'opération de gravure chimique.In order to improve the mechanical resistance of the wafers, in particular their resistance to breakage in the event of mechanical stress parallel to the direction of the cutting wire, a known solution consists in subjecting the wafers to a chemical etching attack with the aim of reducing or to remove all or part of the surface defects of the wafers. This solution has the disadvantage of consuming material during the chemical attack. In addition, the wafers remain fragile during the handling operations carried out between the end of the cutting and the chemical etching operation.

Une autre solution connue consiste à réduire la taille des diamants du fil de découpe diamanté. Toutefois, cette solution n'améliore que faiblement la résistance mécanique des plaquettes et réduit de façon importante la vitesse de coupe.Another known solution consists in reducing the size of the diamonds of the diamond cutting wire. However, this solution only slightly improves the mechanical resistance of the inserts and significantly reduces the cutting speed.

La présente invention vient améliorer la situation.The present invention improves the situation.

Objet de l'inventionSubject of the invention

A cet effet, l'invention concerne un procédé de découpe en tranches d'une pièce en matériau semi-conducteur ou en céramique, à l'aide d'un fil de découpe et de particules abrasives, dans lequel le fil est entraîné en translation dans au moins un sens et, lors de son déplacement en translation, il pénètre dans la pièce à découper par une face de pénétration de ladite pièce, et on dispose une couche d'amortissement en regard de ladite face de pénétration de la pièce à découper de telle sorte que, avant de pénétrer dans la pièce, le fil traverse la couche d'amortissement, où selon l'invention la couche d'amortissement recouvre la face de pénétration.To this end, the invention relates to a process for slicing a piece of semiconductor material or ceramic, using a cutting wire and abrasive particles, in which the wire is driven in translation in at at least one direction and, during its translational movement, it enters the workpiece to be cut by a penetration face of said workpiece, and there is a damping layer facing said penetration face of the workpiece to be cut in such a way so that, before entering the part, the wire passes through the damping layer, where according to the invention the damping layer covers the penetrating face.

Dans un mode de réalisation particulier, le fil étant entraîné en translation dans un mouvement alternatif d'aller-retour et pénétrant dans la pièce à découper alternativement par deux faces de pénétration opposées, on dispose deux couches d'amortissement en regard des deux faces de pénétration respectivement.In a particular embodiment, the wire being driven in translation in an alternating back-and-forth movement and penetrating into the part to be cut alternately by two opposite penetration faces, there are two damping layers opposite the two faces of penetration respectively.

Grâce à la ou aux deux couches d'amortissement, la faiblesse mécanique des tranches découpées, notamment avec un fil diamanté, ou à abrasif lié, portant des particules abrasives (ou grains abrasifs) à sa surface, est fortement réduite. Celle-ci a pour effet d'atténuer l'effet détériorant des particules abrasives lorsque le fil pénètre dans la pièce à découper, à l'intérieur du sillon de découpe, par une face de pénétration de celle-ci. En effet, contre toute attente et contrairement aux hypothèses de l'art antérieur sur la cause de cette faiblesse mécanique, les inventeurs ont découvert que la diminution de la résistance mécanique des tranches découpées à l'aide d'un fil et de particules abrasives, notamment à l'aide d'un fil « diamanté » (c'est-à-dire d'un fil portant des particules abrasives fixées à sa surface), est due à un endommagement des tranches le long du ou des bords de celle-ci généré par les particules abrasives lors de la pénétration du fil dans la pièce à découper par une face de pénétration. Le fil n'étant pas parfaitement aligné avec le sillon de découpe, du fait de vibrations ou de légers désalignements dans le système de découpe, des particules abrasives heurtent l'entrée de la pièce en cours de découpage, au niveau de la face de pénétration de celle-ci, que deviendra un bord de la tranche découpée. Ces impacts le long du ou des bords de la tranche fragilisent cette tranche et réduisent sa tenue ou résistance mécanique. La ou les couches d'amortissement permettent d'atténuer fortement ces impacts au niveau de la pièce à découper.Thanks to the two damping layers, the mechanical weakness of the cut slices, in particular with a diamond wire, or with a bonded abrasive, carrying abrasive particles (or abrasive grains) on its surface, is greatly reduced. This has the effect of attenuating the deteriorating effect of the abrasive particles when the wire enters the part to be cut, inside the cutting groove, by a penetration face of the latter. In fact, against all odds and contrary to the assumptions of the prior art on the cause of this mechanical weakness, the inventors have discovered that the reduction in the mechanical resistance of the slices cut using a wire and abrasive particles, in particular using a “diamond” wire (that is to say a wire carrying abrasive particles fixed to its surface), is due to damage to the slices along the edge or edges thereof. ci generated by the abrasive particles during the penetration of the wire into the workpiece by a penetration face. As the wire is not perfectly aligned with the cutting groove, due to vibrations or slight misalignments in the cutting system, abrasive particles strike the entry of the part being cut, at the penetration face of it, that will become an edge of the cut slice. These impacts along the edge or edges of the wafer weaken this wafer and reduce its strength or mechanical resistance. The layer (s) of damping make it possible to strongly attenuate these impacts at the level of the part to be cut.

Dans un exemple hors du cadre de l'invention, la couche d'amortissement est écartée de la face de pénétration d'une distance inférieure ou égale à 2 cm, avantageusement inférieure ou égale 1 cm, et préférentiellement inférieure ou égale à 0,5 cm.In an example outside the scope of the invention, the damping layer is spaced from the penetration face by a distance less than or equal to 2 cm, advantageously less than or equal to 1 cm, and preferably less than or equal to 0.5 cm.

Avantageusement, la couche d'amortissement a une épaisseur supérieure à trois fois le diamètre moyen des particules abrasives, avantageusement supérieure à cinq fois le diamètre moyen des particules abrasives. L'épaisseur de la couche d'amortissement peut être également inférieure à 2 cm, avantageusement inférieure à 1 cm, et préférentiellement inférieure à 0,5 cm.Advantageously, the damping layer has a thickness greater than three times the average diameter of the abrasive particles, advantageously greater than five times the average diameter of the abrasive particles. The thickness of the damping layer can also be less than 2 cm, advantageously less than 1 cm, and preferably less than 0.5 cm.

La couche d'amortissement peut être réalisée en l'un au moins des matériaux du groupe comprenant des polymères ayant une dureté supérieure à 90 MPa et un module d'élasticité supérieur à 2 GPa, notamment des résines époxydes durcies et du PMMA, des matériaux semi-conducteurs, avantageusement du silicium, des céramiques ayant une dureté inférieure à 8 sur l'échelle de Mohs, notamment une silice.The damping layer can be made of at least one of the materials of the group comprising polymers having a hardness greater than 90 MPa and a modulus of elasticity greater than 2 GPa, in particular hardened epoxy resins and PMMA, materials semiconductors, advantageously silicon, ceramics having a hardness less than 8 on the Mohs scale, in particular a silica.

La couche d'amortissement peut être une plaque plane.The cushioning layer can be a flat plate.

Avantageusement, la couche d'amortissement est une plaque dont la forme est adaptée pour épouser celle de la face de pénétration.Advantageously, the damping layer is a plate whose shape is adapted to match that of the penetrating face.

Dans un mode de réalisation particulier, la couche d'amortissement est fixée à la face de pénétration de la pièce, par exemple par collage au moyen d'une couche de colle ayant une épaisseur qui est avantageusement inférieure ou égale à 20 µm.In a particular embodiment, the damping layer is fixed to the penetration face of the part, for example by bonding by means an adhesive layer having a thickness which is advantageously less than or equal to 20 μm.

En variante, la pièce à découper étant solidaire d'une table de découpe par l'intermédiaire d'un élément d'assemblage, on fixe la couche d'amortissement soit à la table de découpe, soit à l'élément d'assemblage.As a variant, the part to be cut being integral with a cutting table by means of an assembly element, the damping layer is fixed either to the cutting table or to the assembly element.

On peut déposer la couche d'amortissement sur la face de pénétration de la pièce, par une technique de déposition de couche, notamment par pulvérisation cathodique ou par un autre traitement de dépôt.The damping layer can be deposited on the penetration face of the part, by a layer deposition technique, in particular by sputtering or by another deposition treatment.

L'au moins une couche d'amortissement, de préférence deux couches d'amortissement, peuvent s'étendre sur au moins 40%, voire sur au moins 60%, voire sur au moins 80%, voire sur 100%, voire sur plus de 100% de la hauteur de la pièce à découper, cette hauteur étant mesurée perpendiculairement ou sensiblement perpendiculairement au fil de découpe.The at least one cushioning layer, preferably two cushioning layers, can extend over at least 40%, or even at least 60%, or even at least 80%, even over 100%, or even over 100% of the height of the part to be cut, this height being measured perpendicular or substantially perpendicular to the cutting wire.

L'invention concerne aussi un système de découpe en tranches d'une pièce en matériau semi-conducteur ou en céramique à l'aide d'un fil de découpe et de particules abrasives, comportant un dispositif d'entraînement du fil en translation dans au moins un sens, le fil pénétrant dans la pièce à découper par au moins une face de pénétration de ladite pièce lors de son déplacement, et comprenant au moins une couche d'amortissement disposée en regard de ladite face de pénétration de la pièce à découper de telle sorte que, avant de pénétrer dans la pièce, le fil traverse la couche d'amortissement, où selon l'invention la couche d'amortissement recouvre la face de pénétration.The invention also relates to a system for slicing a piece of semiconductor material or ceramic using a cutting wire and abrasive particles, comprising a device for driving the wire in translation in the at least one direction, the wire penetrating into the workpiece to be cut by at least one penetration face of said workpiece during its movement, and comprising at least one damping layer disposed opposite said penetration face of the workpiece to be cut such that, before entering the part, the wire passes through the damping layer, where according to the invention the damping layer covers the penetrating face.

Avantageusement, le système de découpe comprend tout ou partie des caractéristiques additionnelles suivantes :

  • le dispositif d'entraînement du fil est agencé pour entraîner ledit fil en translation dans un mouvement alternatif d'aller-retour lors duquel le fil pénètre dans la pièce à découper alternativement par deux faces de pénétration opposées, et en ce qu'il comprend deux couches d'amortissement en regard des deux faces de pénétration respectivement ;
  • la couche d'amortissement recouvre la face de pénétration ou, dans un exemple hors du cadre de l'invention, est écartée de la face de pénétration d'une distance inférieure ou égale à 2 cm, avantageusement inférieure ou égale à 1 cm, et préférentiellement inférieure ou égale à 0,5 cm ;
  • la couche d'amortissement a une épaisseur supérieure à trois fois le diamètre moyen des particules abrasives, avantageusement supérieure à cinq fois le diamètre moyen des particules abrasives, avantageusement encore une épaisseur inférieure à 2 cm, avantageusement inférieure à 1 cm, et préférentiellement inférieure à 0,5 cm ;
  • la couche d'amortissement est réalisée en l'un au moins des matériaux du groupe comprenant des polymères ayant une dureté supérieure à 90 MPa et un module d'élasticité supérieur à 2 GPa, notamment des résines époxydes durcies et du PMMA, des matériaux semi-conducteurs, des céramiques ayant une dureté inférieure à 8 sur l'échelle de Mohs, notamment une silice ;
  • la couche d'amortissement est une plaque plane ou dont la forme est adaptée pour épouser celle de la face de pénétration ;
  • la couche d'amortissement peut être fixée à la face de pénétration de la pièce, avantageusement par collage au moyen d'une couche de colle ayant avantageusement encore une épaisseur inférieure ou égale à 20 µm ;
  • il comprend une table de découpe et un élément d'assemblage, la pièce à découper étant solidarisée à la table de découpe par l'intermédiaire de l'élément d'assemblage, et la couche d'amortissement est fixée soit à la table de découpe, soit à l'élément d'assemblage ;
  • on dépose la couche d'amortissement sur la face de pénétration de la pièce, par une technique de déposition de couche, notamment par pulvérisation cathodique ou par un autre traitement de dépôt sous vide ;
  • il comprend, en cours de découpe d'une pièce, une première entité cinématique comportant une table de découpe solidaire de la pièce à découper par l'intermédiaire d'un élément d'assemblage, et une deuxième entité cinématique comportant le fil de coupe, et un dispositif d'entraînement destiné à entraîner en translation relative les deux entités cinématiques l'une par rapport à l'autre ;
  • l'au moins une couche d'amortissement, de préférence deux couches d'amortissement, peuvent s'étendre sur au moins 40%, voire au moins 60%, voire au moins 80%, voire 100%, voire plus de 100% de la hauteur de la pièce à découper, cette hauteur étant mesurée perpendiculairement ou sensiblement perpendiculairement au fil de découpe.
Advantageously, the cutting system includes all or part of the following additional characteristics:
  • the wire drive device is arranged to drive said wire in translation in a reciprocating movement back and forth during which the wire enters the part to be cut alternately by two faces of opposite penetration, and in that it comprises two damping layers opposite the two penetration faces respectively;
  • the damping layer covers the penetrating face or, in an example outside the scope of the invention, is spaced from the penetrating face by a distance less than or equal to 2 cm, advantageously less than or equal to 1 cm, and preferably less than or equal to 0.5 cm;
  • the damping layer has a thickness greater than three times the average diameter of the abrasive particles, advantageously greater than five times the average diameter of the abrasive particles, advantageously still a thickness less than 2 cm, advantageously less than 1 cm, and preferably less than 0.5 cm;
  • the damping layer is made of at least one of the materials of the group comprising polymers having a hardness greater than 90 MPa and a modulus of elasticity greater than 2 GPa, in particular hardened epoxy resins and PMMA, semi materials -conductive, ceramics having a hardness less than 8 on the Mohs scale, in particular silica;
  • the damping layer is a flat plate or whose shape is adapted to match that of the penetrating face;
  • the damping layer can be fixed to the penetration face of the part, advantageously by gluing by means of a layer of adhesive advantageously still having a thickness less than or equal to 20 μm;
  • it includes a cutting table and an assembly element, the part to be cut being secured to the cutting table by means of the assembly element, and the damping layer is fixed either to the cutting table , or to the assembly element;
  • the damping layer is deposited on the penetration face of the part, by a layer deposition technique, in particular by sputtering or other vacuum deposition treatment;
  • it comprises, during the cutting of a part, a first kinematic entity comprising a cutting table secured to the part to be cut by means of an assembly element, and a second kinematic entity comprising the cutting wire, and a drive device intended to drive in relative translation the two kinematic entities with respect to each other;
  • the at least one damping layer, preferably two damping layers, can extend over at least 40%, or even at least 60%, even at least 80%, even 100%, even more than 100% of the height of the piece to be cut, this height being measured perpendicular or substantially perpendicular to the cutting wire.

Description sommaire des dessinsBrief description of the drawings

L'invention sera mieux comprise à l'aide de la description suivante d'un mode de réalisation particulier du procédé et du système de découpe filaire de l'invention, en référence aux dessins annexés sur lesquels :

  • La figure 1 représente un schéma d'une partie du système de découpe et d'une pièce à découper, selon l'art antérieur ;
  • La figure 2 représente un schéma d'une plaquette de silicium lors d'un essai de flexion ;
  • Les figures 3A et 3B représentent une vue de dessus de la plaquette de silicium de la figure 2 lors d'un essai de flexion selon une première configuration et lors d'un essai de flexion selon une deuxième configuration, respectivement ;
  • La figure 4 représente des résultats d'essais de flexion d'un premier lot de plaquettes testées avec la première configuration de la figure 3A et d'un deuxième lot de plaquettes testées avec la deuxième configuration de la figure 3B ;
  • La figure 5 représente un premier exemple de réalisation du système de découpe de l'invention ;
  • Les figures 6, 7B, 7C et 7E représente des exemples hors du cadre de l'invention;
  • Les figures 7A, 7D, et 7F à 7H représentent d'autres modes de réalisation de système de découpe de l'invention ;
  • La figure 8 représente un schéma d'un dispositif d'entraînement et de guidage d'un fil de découpe en tranches d'une pièce.
The invention will be better understood with the aid of the following description of a particular embodiment of the method and of the wire cutting system of the invention, with reference to the appended drawings in which:
  • The figure 1 represents a diagram of a part of the cutting system and of a part to be cut, according to the prior art;
  • The figure 2 shows a diagram of a silicon wafer during a bending test;
  • The Figures 3A and 3B represent a top view of the silicon wafer of the figure 2 during a bending test according to a first configuration and during a bending test according to a second configuration, respectively;
  • The figure 4 represents results of bending tests of a first batch of wafers tested with the first configuration of the figure 3A and a second batch of platelets tested with the second configuration of the figure 3B ;
  • The figure 5 shows a first embodiment of the cutting system of the invention;
  • The Figures 6, 7B, 7C and 7E represents examples outside the scope of the invention;
  • The Figures 7A, 7D, and 7F at 7H represent other embodiments of the cutting system of the invention;
  • The figure 8 shows a diagram of a device for driving and guiding a cutting wire into slices of a part.

Description détaillée de modes de réalisation particuliers de l'inventionDetailed description of particular embodiments of the invention

D'emblée, on notera que, par souci de clarté, les éléments identiques ou correspondants représentés sur les différentes figures portent les mêmes références.From the outset, it will be noted that, for the sake of clarity, the identical or corresponding elements represented in the different figures bear the same references.

Un repère tridimensionnel orthogonal est représenté sur les figures 1, 5, 6 et 8, l'axe z correspondant à la verticale.A three-dimensional orthogonal coordinate system is represented on the figures 1 , 5 , 6 and 8 , the z axis corresponding to the vertical.

L'invention concerne la découpe en tranches d'une pièce 2 en matériau fragile (c'est-à-dire macroscopiquement élastique jusqu'à rupture) et dur (c'est-à-dire d'une dureté supérieure ou égale à 5 sur l'échelle de Mohs), en particulier en matériau semi-conducteur (par exemple en silicium, germanium, semi-conducteur III-V, semi-conducteur II-VI ou autre) ou en céramique (par exemple en saphir, SiC ou autre), à l'aide d'un fil de découpe et de particules abrasives. Elle peut notamment être utilisée pour la fabrication de plaquettes de matériau semi-conducteur, par exemple en silicium.The invention relates to the cutting into slices of a piece 2 of fragile (that is to say macroscopically elastic until rupture) and hard (that is to say a hardness greater than or equal to 5) material. on the Mohs scale), in particular in semiconductor material (for example in silicon, germanium, III-V semiconductor, II-VI semiconductor or other) or ceramic (for example in sapphire, SiC or other), using a cutting wire and abrasive particles. It can in particular be used for the manufacture of wafers of semiconductor material, for example silicon.

Dans un premier exemple de réalisation particulier de l'invention, représenté sur la figure 5, le système de découpe d'une pièce 2 comprend les éléments suivants :

  • un fil de découpe 1 ;
  • une table de découpe 4 ;
  • un élément d'assemblage, ou « beam », 3 ;
  • un premier dispositif d'entraînement et de guidage du fil ;
  • un deuxième dispositif d'entraînement en translation de la table de découpe 4 ;
  • deux couches d'amortissement, ou éléments amortisseurs, 9A, 9B.
In a first particular embodiment of the invention, shown in the figure 5 , the system for cutting a part 2 comprises the following elements:
  • a cutting wire 1;
  • a cutting table 4;
  • an assembly element, or “beam”, 3;
  • a first wire drive and guide device;
  • a second drive device for translating the cutting table 4;
  • two damping layers, or damping elements, 9A, 9B.

Dans un premier exemple de réalisation, représenté sur la figure 5, la pièce à découper 2 est une brique de silicium, de forme parallélépipédique, destinée à être découpée en tranches (ou plaquettes ou wafers).In a first example of embodiment, represented on the figure 5 , the piece to be cut 2 is a silicon brick, of parallelepiped shape, intended to be cut into slices (or wafers or wafers).

L'élément d'assemblage 3, ou « beam », a ici la forme d'une poutre. Il s'agit d'un élément sacrificiel destiné à être au moins partiellement découpé lors de la découpe en tranches de pièce 2. Il peut être est en polymère dur, par exemple de la famille des Epoxy, ou en tout autre matériau adapté (céramique, graphite). Il est fixé à la table de découpe 4 au moyen d'un dispositif d'accroche. La pièce à découper 2 est fixée à l'élément d'assemblage 3, par exemple par collage, par l'intermédiaire d'une couche de liaison ou d'interface 10 en colle. La pièce 2 peut être solidarisée à l'élément d'assemblage 3 par tout ou partie de l'une de ses faces. Sur l'exemple de la figure 5, la pièce 2 est collée à l'élément d'assemblage 3 sur toute la surface de sa face 20C, parallèle au plan (x, y). En variante, l'élément d'assemblage 3 pourrait être moins large que la pièce 2 selon la direction x.The connecting element 3, or "beam", here has the shape of a beam. It is a sacrificial element intended to be at least partially cut during the cutting into slices of part 2. It can be is in hard polymer, for example of the Epoxy family, or in any other suitable material (ceramic , graphite). It is fixed to the cutting table 4 by means of a hanging device. The piece to be cut 2 is fixed to the assembly element 3, for example by gluing, by means of a bonding or interface layer 10 in glue. The part 2 can be secured to the assembly element 3 by all or part of one of its faces. On the example of the figure 5 , the part 2 is glued to the assembly element 3 over the entire surface of its face 20C, parallel to the plane (x, y). As a variant, the assembly element 3 could be narrower than the part 2 in the direction x.

Lors de la découpe, la pièce à découper 2 est donc solidarisée à la table de découpe 4 par l'intermédiaire de l'élément d'assemblage 3. L'assemblage comportant les trois pièces solidaires, à savoir la table 4, l'élément 3 et la pièce à découper 2, constitue une première entité, ou un premier sous-ensemble, cinématique.During cutting, the part to be cut 2 is therefore secured to the cutting table 4 by means of the assembly element 3. The assembly comprising the three integral parts, namely table 4, the element 3 and the part to be cut 2, constitutes a first entity, or a first, kinematic sub-assembly.

Le fil de découpe 1 est ici un fil à abrasif lié, portant des particules abrasives fixées à sa surface. Le fil est par exemple en acier. Les particules abrasives sont ici en diamant. Le fil 1 constitue une deuxième entité cinématique (ou sous-ensemble cinématique).The cutting wire 1 is here a bonded abrasive wire, carrying abrasive particles fixed to its surface. The wire is for example steel. The particles abrasives are here in diamond. Wire 1 constitutes a second kinematic entity (or kinematic sub-assembly).

En référence à la figure 8, le dispositif d'entraînement et de guidage du fil comprend de façon connue plusieurs guide-fil, par exemple trois guide-fils 12A-12C. Le fil 1 est ici enroulé de multiples fois (des centaines, voire des milliers de fois) autour de ces guide-fils 12A-12C et forme ainsi une « nappe de fils », ou « nappe », formée par un certain nombre de brins du même fil de découpe 1. Cette nappe permet de découper la pièce 2 simultanément en un grand nombre de tranches. Les guide-fils sont rotatifs et entraînent en rotation la nappe de fils (ou de brins de fil) 1 lors de la découpe. Ils sont adaptés pour animer le fil 1 d'un mouvement oscillant comprenant des allers-retours, comme représenté par la flèche F2. Des gorges de guidage sont gravées dans les guide-fils afin de garantir un espacement prédéfini entre les brins de fil de la nappe, qui détermine l'épaisseur des tranches à découper.With reference to the figure 8 , the wire drive and guide device comprises in a known manner several wire guides, for example three wire guides 12A-12C. The wire 1 is here wound multiple times (hundreds, even thousands of times) around these wire guides 12A-12C and thus forms a "sheet of wires", or "sheet", formed by a number of strands of the same cutting wire 1. This sheet allows the piece 2 to be cut simultaneously into a large number of slices. The wire guides are rotary and cause the web of wires (or strands of wire) 1 to rotate during cutting. They are adapted to animate the wire 1 of an oscillating movement comprising back and forth movements, as represented by the arrow F2. Guide grooves are etched in the wire guides in order to guarantee a predefined spacing between the strands of wire of the sheet, which determines the thickness of the slices to be cut.

Le deuxième dispositif de déplacement, ou d'entraînement, (non représenté) est destiné à entraîner en translation relative les deux entités cinématiques l'une par rapport à l'autre. Dans une première forme de réalisation, le deuxième dispositif de déplacement est agencé pour déplacer l'assemblage (ou première entité cinématique) de la table 4, de l'élément 3 et de la pièce 2 dans un mouvement de translation selon la direction z, vers le bas sur la figure 8, comme représenté par la flèche F3, le fil 1 (ou deuxième entité cinématique) étant concomitamment maintenu à une même hauteur selon z. Le sens de translation F3 est opposé au sens de découpe F1. Ainsi, lors de la découpe, un mouvement de translation relative de la pièce à découper 2 et du fil de découpe 1, selon la direction z, permet au fil 1 de traverser la pièce 2 en s'y enfonçant et de la découper dans le plan (z, x). Dans une deuxième forme de réalisation, l'assemblage de la table 4, de l'élément 3 et de la pièce 2 (ou première entité cinématique) est maintenu fixe (à même hauteur selon z) et le deuxième dispositif d'entraînement est agencé pour entraîner le fil 1 (ou deuxième entité cinématique) en translation selon la direction z dans le sens de la découpe F1.The second displacement or drive device (not shown) is intended to drive in relative translation the two kinematic entities with respect to each other. In a first embodiment, the second displacement device is arranged to move the assembly (or first kinematic entity) of the table 4, of the element 3 and of the part 2 in a translational movement in the direction z, down on the figure 8 , as shown by arrow F3, the wire 1 (or second kinematic entity) being concomitantly maintained at the same height along z. The direction of translation F3 is opposite to the direction of cutting F1. Thus, during cutting, a relative translational movement of the piece to be cut 2 and of the cutting wire 1, in the direction z, allows the wire 1 to pass through the part 2 while sinking therein and to cut it in the plane (z, x). In a second embodiment, the assembly of the table 4, of the element 3 and of the part 2 (or first kinematic entity) is kept fixed (at the same height along z) and the second drive device is arranged to drive the wire 1 (or second kinematic entity) in translation in the direction z in the direction of the cut F1.

Les deux couches d'amortissement 9A, 9B sont destinées à atténuer l'effet endommageant du fil diamanté sur les deux bords opposés des tranches découpées par lesquels le fil 1 pénètre dans la pièce 2, à l'intérieur du sillon de découpe, respectivement à chaque mouvement aller et à chaque mouvement retour. En effet, les inventeurs ont découvert que la diminution de la résistance mécanique des plaquettes découpées par un fil diamanté a pour origine un endommagement au niveau de ces deux bords opposés de la plaquette ou tranche découpée, et non des défauts de surface de celle-ci. Cet endommagement est causé par le fil diamanté, lors de sa pénétration à l'intérieur du sillon de découpe par les deux faces opposées 20A et 20B, dites « faces de pénétration », de la pièce 2, respectivement à chaque mouvement aller et à chaque mouvement retour du fil 1.The two damping layers 9A, 9B are intended to attenuate the damaging effect of the diamond wire on the two opposite edges of the cut edges by which the wire 1 enters the part 2, inside the cut groove, respectively each forward movement and each return movement. Indeed, the inventors have discovered that the reduction in the mechanical resistance of the wafers cut by a diamond wire originates from damage at these two opposite edges of the wafer or cut wafer, and not from surface defects thereof. . This damage is caused by the diamond wire, during its penetration inside the cutting groove by the two opposite faces 20A and 20B, called "penetration faces", of the part 2, respectively with each forward movement and with each wire return movement 1.

Les couches d'amortissement 9A, 9B sont disposées, agencées, en regard de ces faces de pénétration opposées 20A, 20B de la pièce à découper 2 de telle sorte que, avant de pénétrer dans la pièce 2 par une face de pénétration 20A (ou 20B), le fil 1 traverse la couche d'amortissement correspondante 9A (ou 9B), à chaque déplacement aller et à chaque déplacement retour du fil 1, lors de son mouvement oscillant représenté par la flèche F2. Autrement dit, l'agencement des couches d'amortissement 9A, 9B en regard des faces de pénétration 20A, 20B permet au fil 1, animé ici d'un mouvement de va-et-vient en translation, de traverser une couche d'amortissement 9A (ou 9B) avant de pénétrer dans la pièce à découper 2 par la face de pénétration 20A (respectivement 20B). Ainsi, les deux couches d'amortissement 9A, 9B servent à atténuer les effets détériorant ou endommageant du fil diamanté 1 lorsqu'il pénètre dans la pièce 2 par l'une ou l'autre des deux faces de pénétration 20A, 20B.The damping layers 9A, 9B are arranged, arranged, facing these opposite penetration faces 20A, 20B of the workpiece 2 so that, before entering the workpiece 2 by a penetration face 20A (or 20B), the wire 1 passes through the corresponding damping layer 9A (or 9B), at each forward movement and at each return movement of the wire 1, during its oscillating movement represented by the arrow F2. In other words, the arrangement of the damping layers 9A, 9B facing the penetration faces 20A, 20B allows the wire 1, driven here in a back-and-forth movement in translation, to pass through a damping layer 9A (or 9B) before entering the workpiece 2 by the penetration face 20A (respectively 20B). Thus, the two damping layers 9A, 9B serve to mitigate the deteriorating or damaging effects of the diamond wire 1 when it enters the part 2 by one or the other of the two penetration faces 20A, 20B.

Dans l'exemple de réalisation de la figure 5, chaque couche d'amortissement 9A, 9B est constituée d'une plaque plane. Celle-ci présente une forme de parallélépipède plat dont les dimensions selon z et y sont identiques ou sensiblement identiques aux dimensions correspondantes, selon z et y, de la face de pénétration 20A, 20B correspondante (c'est-à-dire disposée en regard). La couche d'amortissement 9A (9B) recouvre ainsi la totalité de la face de pénétration 20A (20B) correspondante.In the example of realization of the figure 5 , each damping layer 9A, 9B consists of a flat plate. This has the shape of a flat parallelepiped whose dimensions along z and y are identical or substantially identical to the corresponding dimensions, along z and y, of the corresponding penetration face 20A, 20B (that is to say arranged opposite). The damping layer 9A (9B) thus covers the whole of the corresponding penetration face 20A (20B).

L'épaisseur « e » de la couche d'amortissement 9A (9B), selon la direction x, doit être suffisante pour absorber l'énergie du choc entre les particules abrasives (ou grains abrasifs) solidaires du fil 1 et la pièce découpée 2, lorsque le fil 1, animé du mouvement oscillant F2 selon x, pénètre dans la pièce 2 par la face 20A (respectivement 20B). Grâce à cela, on évite de dégrader les bords selon la direction z des tranches découpées dans la pièce 2. En pratique, l'épaisseur de chaque couche d'amortissement 9A, 9B est supérieure à trois fois le diamètre moyen des particules abrasives (ou grains abrasifs) du fil 1, de préférence supérieure à cinq fois le diamètre moyen des particules abrasives du fil 1. Ce diamètre moyen est généralement indiqué par le fabricant du fil. Typiquement, dans le cas de la fabrication de plaquettes de silicium destinées par exemple à des applications photovoltaïques, la taille moyenne, ou diamètre moyen, des particules abrasives est de 10 µm. L'épaisseur minimale emin des couches d'amortissement 9A, 9B est donc dans ce cas égale à 30 µm, de préférence 50 µm.The thickness “e” of the damping layer 9A (9B), in the direction x, must be sufficient to absorb the impact energy between the abrasive particles (or abrasive grains) integral with the wire 1 and the cut piece 2 , when the wire 1, driven by the oscillating movement F2 along x, enters the part 2 via the face 20A (respectively 20B). Thanks to this, it avoids degrading the edges in the z direction of the slices cut from the part 2. In practice, the thickness of each damping layer 9A, 9B is greater than three times the average diameter of the abrasive particles (or abrasive grains) of wire 1, preferably greater than five times the average diameter of the abrasive particles of wire 1. This average diameter is generally indicated by the manufacturer of the wire. Typically, in the case of the manufacture of silicon wafers intended for example for photovoltaic applications, the average size, or average diameter, of the abrasive particles is 10 μm. The minimum thickness e min of the damping layers 9A, 9B is therefore in this case equal to 30 μm, preferably 50 μm.

L'épaisseur e des couches d'amortissement 9A (9B) ne doit pas non plus être trop importante afin d'éviter certains inconvénients tels qu'un encrassement, un échauffement ou une usure du fil. L'épaisseur maximale emax des couches d'amortissement 9A, 9B est donc avantageusement égale à 2 cm, avantageusement encore égale à 1 cm, préférentiellement égale à 0,5 cm.The thickness e of the damping layers 9A (9B) must also not be too great in order to avoid certain drawbacks such as fouling, overheating or wear of the wire. The maximum thickness e max of the damping layers 9A, 9B is therefore advantageously equal to 2 cm, advantageously still equal to 1 cm, preferably equal to 0.5 cm.

Les couches d'amortissement 9A (9B) peuvent être constituées de l'un des matériaux suivants :

  • des polymères ayant une dureté supérieure à 90 MPa et un module d'élasticité supérieur à 2 GPa, notamment des résines époxydes durcies et du PMMA,
  • des matériaux semi-conducteurs, par exemple le silicium,
  • des céramiques ayant une dureté inférieure à 8 sur l'échelle de Mohs, notamment une silice ;
  • un composé ou en agglomérat comportant plusieurs des matériaux mentionnés ci-dessus.
The damping layers 9A (9B) can be made of one of the following materials:
  • polymers with a hardness greater than 90 MPa and a modulus of elasticity greater than 2 GPa, in particular hardened epoxy resins and PMMA,
  • semiconductor materials, for example silicon,
  • ceramics having a hardness less than 8 on the Mohs scale, in particular a silica;
  • a compound or agglomerate comprising several of the materials mentioned above.

Un tel choix de matériau pour réaliser les couches d'amortissement 9A, 9B permet de satisfaire les critères et/ou contraintes suivants :

  • ne pas endommager le fil diamanté (un matériau détériorant les particules abrasives, ou grains abrasifs, ou bien le revêtement du fil - par contact direct ou par génération de copeaux abrasifs susceptibles d'endommager le liant entre l'âme du fil et les grains abrasifs - est à bannir, ce qui exclut les matériaux très durs, d'une dureté sur l'échelle de Mohs supérieure à 8) ;
  • être peu onéreux, du fait du caractère sacrificiel de ces couches d'amortissement 9A, 9B ;
  • posséder une usinabilité analogue ou meilleure que celle de la pièce à découper 2, afin de ne pas ralentir la découpe et éviter une baisse de productivité de l'opération de découpe de la pièce 2 (ce qui, dans le cas de la découpe d'une pièce en silicium exclut les matériaux trop durs, ayant une dureté supérieure à 8 sur l'échelle de Mohs) ;
  • lors de la découpe au fil diamanté, ne pas produire de copeaux qui adhèrent au fil et limitent de ce fait la vitesse de coupe ; plus précisément, les copeaux de la couche d'amortissement 9A (ou 9B) générés par la découpe au fil diamanté ne doivent adhérer ni aux grains abrasifs ou particules abrasives (car cela aurait pour effet de réduire le pouvoir abrasif du fil), ni au fil dans les interstices entre les grains abrasifs (car cela aurait pour effet de diminuer la capacité du fil à extraire des copeaux du sillon creusé dans la pièce découpée 2 et d'échauffer le système), ce qui exclut notamment les métaux et polymères mous ou des verres standards.
Such a choice of material for producing the damping layers 9A, 9B makes it possible to satisfy the following criteria and / or constraints:
  • not to damage the diamond wire (a material deteriorating the abrasive particles, or abrasive grains, or the coating of the wire - by direct contact or by generation of abrasive chips likely to damage the binder between the core of the wire and the abrasive grains - is to be banned, which excludes very hard materials, with a hardness on the Mohs scale greater than 8);
  • be inexpensive, due to the sacrificial nature of these damping layers 9A, 9B;
  • have a similar or better machinability than that of the piece to be cut 2, so as not to slow down the cutting and avoid a drop in productivity of the cutting operation of the piece 2 (which, in the case of cutting of a silicon part excludes too hard materials, having a hardness greater than 8 on the Mohs scale);
  • when cutting with diamond wire, do not produce chips that adhere to the wire and thereby limit the cutting speed; more precisely, the chips of the damping layer 9A (or 9B) generated by the cutting with the diamond wire must not adhere either to the abrasive grains or abrasive particles (as this would have the effect of reducing the abrasiveness of the wire), nor to the wire in the interstices between the abrasive grains (because this would have the effect of reducing the capacity of the wire to extract chips from the groove dug in the cut piece 2 and to heat the system), which in particular excludes metals and soft polymers or standard glasses.

Dans l'exemple de réalisation représenté sur la figure 5, les couches d'amortissement 9A, 9B, selon l'invention, recouvrent les faces de pénétration 20A et 20B à protéger de la pièce 2. Autrement dit, les couches d'amortissement 9A, 9B sont accolées, plaquées contre les faces de pénétration 20A, 20B respectivement et sont fixées à celles-ci, par exemple par collage au moyen d'une couche de colle 11A, 11B. L'épaisseur de cette couche de colle 11A, 11B est avantageusement inférieure ou égale à 20 µm. La colle utilisée est ici analogue à celle utilisée pour coller la pièce à découper 2 à l'élément d'assemblage 3.In the embodiment shown in the figure 5 , the damping layers 9A, 9B, according to the invention, cover the penetration faces 20A and 20B to be protected from the part 2. In other words, the damping layers 9A, 9B are joined, pressed against the penetration faces 20A, 20B respectively and are fixed thereto, for example by gluing by means of a layer of glue 11A, 11B. The thickness of this adhesive layer 11A, 11B is advantageously less than or equal to 20 μm. The glue used here is analogous to that used for gluing the piece to be cut 2 to the assembly element 3.

Une première variante de réalisation, représentée sur la figure 7A, diffère de l'exemple de réalisation de la figure 5 par le fait que les couches d'amortissement 9A, 9B recouvrant les faces de pénétration à protéger 20A, 20B de la pièce 2 sont fixées à l'élément d'assemblage 3, par exemple par collage. Plus précisément, un bord périphérique de l'une des faces de la couche d'amortissement 9A (ou 9B) est fixé à un côté en regard de l'élément d'assemblage 3.A first alternative embodiment, represented on the figure 7A , differs from the embodiment of the figure 5 by the fact that the damping layers 9A, 9B covering the penetration faces to be protected 20A, 20B of the part 2 are fixed to the assembly element 3, for example by gluing. More specifically, a peripheral edge of one of the faces of the damping layer 9A (or 9B) is fixed to a side opposite the assembly element 3.

Une deuxième variante de réalisation, représentée sur la figure 7D, diffère de l'exemple de réalisation de la figure 5 par le fait que les couches d'amortissement 9A, 9B recouvrant les faces de pénétration à protéger 20A, 20B de la pièce 2 sont fixées à la table de découpe 4, par exemple par collage. Plus précisément, chaque élément amortisseur 9A (ou 9B) est fixé par sa tranche à la face de la table 4 supportant l'élément d'assemblage 3.A second alternative embodiment, shown on the figure 7D , differs from the embodiment of the figure 5 by the fact that the damping layers 9A, 9B covering the penetration faces to be protected 20A, 20B of the part 2 are fixed to the cutting table 4, for example by gluing. More precisely, each damping element 9A (or 9B) is fixed by its edge to the face of the table 4 supporting the assembly element 3.

L'exemple hors du cadre de l'invention de la figure 6 diffère de celui de la figure 5 essentiellement par le fait que les couches d'amortissement 9A, 9B ne sont pas accolées aux faces 20A et 20B de la pièce 2, mais sont légèrement écartées de celles-ci d'une distance d. Pour que la couche d'amortissement 9A (9B) puisse néanmoins jouer son rôle d'amortisseur, d'absorbeur de chocs ou d'impacts, cette distance d est inférieure ou égale à une distance maximale avantageusement égale à 2 cm, avantageusement encore égale à 1cm, de préférence égale à 0,5 cm. Sur la figure 6, les couches d'amortissement 9A, 9B sont fixées à la table de découpe 4, par leur tranche. La fixation peut être réalisée par collage, au moyen de couches de colle 12A, 12B.The example outside the scope of the invention of the figure 6 differs from that of the figure 5 essentially by the fact that the damping layers 9A, 9B are not joined to the faces 20A and 20B of the part 2, but are slightly spaced therefrom by a distance d. So that the damping layer 9A (9B) can nevertheless play its role of shock absorber, shock or impact absorber, this distance d is less than or equal to a maximum distance advantageously equal to 2 cm, advantageously still equal at 1cm, preferably equal to 0.5cm. On the figure 6 , the damping layers 9A, 9B are fixed to the cutting table 4, by their edge. The fixing can be carried out by gluing, using layers of adhesive 12A, 12B.

Une variante hors du cadre de l'invention représentée sur la figure 7B diffère de l'exemple de la figure 6 par le fait que les couches d'amortissement 9A, 9B, écartées des faces 20A, 20B, sont fixées à l'élément d'assemblage 3.A variant outside the scope of the invention shown in the figure 7B differs from the example of the figure 6 by the fact that the damping layers 9A, 9B, separated from the faces 20A, 20B, are fixed to the assembly element 3.

Un autre exemple hors du cadre de l'invention, représenté sur la figure 7E, diffère de l'exemple de réalisation de la figure 5 par le fait que la pièce à découper 2 est de forme cylindrique. Les couches d'amortissement 9A, 9B sont en contact avec la surface extérieure cylindrique de la pièce 2, seulement le long d'une ligne tangentielle, parallèle à l'axe du cylindre, et fixées par exemple par collage à la table de découpe 4 par leur tranche. En variante, les plaques constituant les couches d'amortissement 9A, 9B pourraient avoir une forme non plane, adaptée pour épouser celle de la face de protection à protéger (figures 7F et 7G).Another example outside the scope of the invention, shown in the figure 7E , differs from the embodiment of the figure 5 by the fact that the piece to be cut 2 is of cylindrical shape. The damping layers 9A, 9B are in contact with the cylindrical outer surface of the part 2, only along a tangential line, parallel to the axis of the cylinder, and fixed for example by gluing to the cutting table 4 by their slice. As a variant, the plates constituting the damping layers 9A, 9B could have a non-planar shape, adapted to match that of the protective face to be protected ( figures 7F and 7G ).

Dans les exemples qui viennent d'être décrits en référence aux figures 5, 6 (analogue à 7C), 7A, 7B, 7D et 7E, les couches d'amortissement 9A, 9B sont des plaques qui sont rapportées et disposées en regard des faces de pénétration à protéger de la pièce à découper 2, soit contre celles-ci, soit à une distance d de celles-ci, en gardant à l'esprit que selon l'invention, la couche d'amortissement recouvre une face de pénétration de la pièce à découper. Dans un autre mode de réalisation, les couches d'amortissement 9A, 9B sont des couches déposées sur les faces à protéger de la pièce 2 par une technique de déposition de couche, par exemple par pulvérisation cathodique ou par un autre traitement adéquat (par exemple dépôt sous vide ou enduction). Notons que l'apposition de ces couches d'amortissement ne requiert ni précision, ni finesse, ni pureté. Sur la figure 7F, on a représenté un premier exemple de mise en œuvre de ce mode de réalisation, dans lequel la pièce à découper 2 est cylindrique. Deux couches d'amortissement 9A et 9B sont déposées respectivement sur les deux faces de pénétration, en forme de demi-cylindre, de la pièce 2. Sur la figure 7G, on a représenté un deuxième exemple de mise en œuvre, dans lequel la pièce à découper 2 est parallélépipédique. Deux couches d'amortissement 9A et 9B sont déposées respectivement sur les deux faces opposées 20A, 20B de la pièce 2.In the examples which have just been described with reference to figures 5, 6 (analogous to 7C), 7A, 7B, 7D and 7E, the damping layers 9A, 9B are plates which are attached and arranged opposite the penetration faces to be protected from the workpiece 2, or against them , or at a distance d from these, keeping in mind that according to the invention, the damping layer covers a penetration face of the part to be cut. In another embodiment, the damping layers 9A, 9B are layers deposited on the faces to be protected of the part 2 by a layer deposition technique, for example by sputtering or by another suitable treatment (for example vacuum deposit or coating). Note that the application of these damping layers does not require precision, finesse or purity. On the figure 7F , there is shown a first example of implementation of this embodiment, in which the piece to be cut 2 is cylindrical. Two damping layers 9A and 9B are deposited respectively on the two penetration faces, in the form of a half-cylinder, of the part 2. On the figure 7G , a second example of implementation has been shown, in which the part to cut 2 is parallelepiped. Two damping layers 9A and 9B are deposited respectively on the two opposite faces 20A, 20B of the part 2.

Dans la description qui précède, le système de découpe comprend deux couches d'amortissement pour protéger les deux faces de pénétration de la pièce à découper. Cela est dû au fait que, le fil étant animé d'un mouvement oscillant comportant des allers-retours, il pénètre à l'intérieur de la pièce, dans le sillon de découpe, par deux faces de pénétration opposées de la pièce. En variante, on pourrait utiliser un fil de découpe animé d'un mouvement de translation dans un seul sens. Dans ce cas, une seule couche d'amortissement 9A, disposée en regard de l'unique face de pénétration de la pièce à découper, est nécessaire. Un tel exemple de réalisation est représenté sur la figure 7H.In the above description, the cutting system comprises two damping layers to protect the two penetration faces of the part to be cut. This is due to the fact that, the wire being driven in an oscillating movement comprising back and forth movements, it penetrates inside the part, in the cutting groove, by two opposite penetration faces of the part. Alternatively, one could use a cutting wire with a translational movement in one direction. In this case, a single damping layer 9A, disposed facing the single penetration face of the part to be cut, is necessary. One such embodiment is shown in the figure 7H .

L'invention concerne aussi un procédé de découpe en tranches de la pièce 2 à l'aide du fil de découpe 1, dans lequel on dispose les couches d'amortissement 9A, 9B en regard des faces de pénétration à protéger de la pièce 2, c'est-à-dire celles par lesquelles le fil 1 est destiné à pénétrer lorsqu'il est entraîné dans un mouvement oscillant d'allers-retours.The invention also relates to a process for slicing the part 2 using the cutting wire 1, in which the damping layers 9A, 9B are placed facing the penetration faces to be protected of the part 2, that is to say those by which the wire 1 is intended to penetrate when it is driven in an oscillating movement back and forth.

Les couches d'amortissement 9A, 9B peuvent être des plaques rapportées ou des couches déposées par une technique de déposition de couche.The damping layers 9A, 9B can be added plates or layers deposited by a layer deposition technique.

Dans le premier cas (plaques rapportées), on fixe les couches d'amortissement 9A, 9B soit à la pièce à découper 2, soit à l'élément d'assemblage 3, soit à la table de découpe 4. La fixation est avantageusement réalisée par collage. On dispose les couches d'amortissement 9A, 9B soit au moins partiellement contre les faces de pénétration correspondantes 20A, 20B, soit à une distance strictement supérieur à zéro de ces faces de pénétration 20A, 20B.In the first case (added plates), the damping layers 9A, 9B are fixed either to the piece to be cut 2, or to the assembly element 3, or to the cutting table 4. The fixing is advantageously carried out by collage. The damping layers 9A, 9B are placed either at least partially against the corresponding penetration faces 20A, 20B, or at a distance strictly greater than zero from these penetration faces 20A, 20B.

Dans le deuxième cas (couches déposées), on dépose les couches d'amortissement 9A, 9B sur les faces de pénétration 20A, 20B de la pièce à découper 2 par une technique de déposition de couche.In the second case (deposited layers), the damping layers 9A, 9B are deposited on the penetration faces 20A, 20B of the piece to be cut 2 by a layer deposition technique.

Lors de la découpe, on entraîne l'assemblage de la table 4, de l'élément d'assemblage 3 et de la pièce à découper 2 en translation selon z, ici vers le bas, dans le sens indiqué par la flèche F3, relativement au fil 1 qui reste à la même hauteur selon z. Concomitamment, on entraîne le fil 1 (ou la nappe) en translation dans un mouvement oscillant selon x, représenté par la double flèche F2, comportant des allers-retours dans la direction x. Lors de ces allers-retours, le fil 1 pénètre dans la pièce 2, c'est-à-dire dans le sillon de découpe creusé dans la pièce 2, alternativement par la face de pénétration 20A et par la face de pénétration 20B de la pièce 2. Avant de pénétrer dans la pièce 2 par chacune de ces faces de pénétration 20A (20B), le fil 1 traverse la couche d'amortissement 9A (respectivement 9B) correspondante, disposée à proximité. Grâce à cela, l'effet endommageant du fil abrasif 1 au niveau des faces de pénétration 20A, 20B de la pièce 2 est fortement atténué, amorti.During cutting, the table 4, the assembly element 3 and the piece to be cut 2 are assembled in translation along z, here downwards, in the direction indicated by the arrow F3, relatively wire 1 which remains at the same height along z. Concomitantly, the wire 1 (or the ply) is driven in translation in an oscillating movement along x, represented by the double arrow F2, comprising back and forth movements in the direction x. During these round trips, the wire 1 penetrates into the part 2, that is to say into the cutting groove dug in the part 2, alternately by the penetrating face 20A and by the penetrating face 20B of the part 2. Before entering part 2 through each of these penetration faces 20A (20B), the wire 1 passes through the corresponding damping layer 9A (respectively 9B), placed nearby. Thanks to this, the damaging effect of the abrasive wire 1 at the level of the penetration faces 20A, 20B of the part 2 is greatly attenuated, absorbed.

Dans un autre mode de réalisation, on dépose sur les faces de pénétration à protéger 20A, 20B de la pièce à découper 2 des couches constituant les couches d'amortissement 9A, 9B, par une technique de déposition de couche connue.In another embodiment, the layers constituting the damping layers 9A, 9B are deposited on the penetration faces to be protected 20A, 20B of the part to be cut 2 by a known layer deposition technique.

Dans le cas où le fil est animé d'un mouvement en sens unique et pénètre donc dans la pièce 2 par une seule face de pénétration, on dispose une seule couche d'amortissement en regard de cette face de pénétration, ladite couche recouvrant la face de pénétration selon l'invention, ou étant positionnée à une distance d de celle-ci, mais hors du cadre de l'invention. La couche d'amortissement est soit rapportée soit déposée par une technique de déposition de couche.In the case where the wire is driven in a one-way movement and therefore penetrates into the part 2 by a single penetrating face, there is a single damping layer facing this penetrating face, said layer covering the face of penetration according to the invention, or being positioned at a distance d from the latter, but outside the scope of the invention. The cushioning layer is either added or deposited by a layer deposition technique.

L'invention pourrait également s'appliquer à une découpe à abrasif libre, ou au slurry, utilisant un liquide de découpe contenant des particules abrasives et un fil de découpe à surface lisse ou quasi-lisse par exemple en acier.The invention could also be applied to a free abrasive cutting, or to a slurry, using a cutting liquid containing abrasive particles and a cutting wire with a smooth or almost smooth surface, for example made of steel.

En dehors du cadre de l'invention, une tranche est fournie, notamment une plaquette, en matériau semi-conducteur ou en céramique, obtenue par la mise en œuvre du procédé de découpe tel qu'il vient d'être décrit.Outside the scope of the invention, a wafer is provided, in particular a wafer, of semiconductor material or ceramic, obtained by the implementation of the cutting process as just described.

Avantageusement, dans tous les modes de réalisation et/ou toutes les variantes, au moins une couche d'amortissement 9A, 9B, de préférence deux couches d'amortissement 9A, 9B, s'étendent sur au moins 40% de la hauteur h de la pièce 2 à découper, cette hauteur étant mesurée parallèlement ou sensiblement parallèlement à l'axe z ou au sens de la découpe F1, c'est-à-dire perpendiculairement ou sensiblement perpendiculairement au fil de découpe ou à la direction du fil de découpe. De préférence encore, au moins une couche d'amortissement 9A, 9B, de préférence deux couches d'amortissement 9A, 9B, s'étendent sur au moins 60% de la hauteur h de la pièce 2 à découper, voire sur au moins 80% de la hauteur h de la pièce 2 à découper, voire sur 100% de la hauteur h de la pièce 2 à découper, voire encore sur plus de 100% de la hauteur h de la pièce 2 à découper.Advantageously, in all the embodiments and / or all the variants, at least one damping layer 9A, 9B, preferably two damping layers 9A, 9B, extend over at least 40% of the height h of the part 2 to be cut, this height being measured parallel or substantially parallel to the z axis or to the direction of the cut F1, that is to say perpendicular or substantially perpendicular to the cutting wire or to the direction of the cutting wire . More preferably, at least one damping layer 9A, 9B, preferably two damping layers 9A, 9B, extend over at least 60% of the height h of the part 2 to be cut, or even over at least 80 % of the height h of the piece 2 to be cut, or even over 100% of the height h of the piece 2 to be cut, or even more than 100% of the height h of the piece 2 to be cut.

Avantageusement encore, dans tous les modes de réalisation et/ou toutes les variantes, au moins la projection d'une couche d'amortissement 9A, 9B, de préférence chaque projection des couches d'amortissement 9A, 9B, sur la pièce selon la direction du fil de découpe s'étend sur au moins 40% de la hauteur h de la pièce 2 à découper, cette hauteur étant mesurée parallèlement ou sensiblement parallèlement à l'axe z ou au sens de la découpe F1, c'est-à-dire perpendiculairement ou sensiblement perpendiculairement au fil de découpe ou à la direction du fil de découpe. De préférence encore, au moins la projection d'une couche d'amortissement 9A, 9B, de préférence chaque projection des couches d'amortissement 9A, 9B, sur la pièce selon la direction du fil de découpe s'étend sur au moins 60% de la hauteur h de la pièce 2 à découper, voire sur au moins 80% de la hauteur h de la pièce 2 à découper, voire sur 100% de la hauteur h de la pièce 2 à découper.Advantageously also, in all the embodiments and / or all the variants, at least the projection of a damping layer 9A, 9B, preferably each projection of the damping layers 9A, 9B, on the part in the direction of the cutting wire extends over at least 40% of the height h of the part 2 to be cut, this height being measured parallel or substantially parallel to the axis z or to the direction of the cutting F1, that is to say say perpendicular or substantially perpendicular to the cutting wire or to the direction of the cutting wire. More preferably, at least the projection of a damping layer 9A, 9B, preferably each projection of the damping layers 9A, 9B, on the workpiece in the direction of the cutting wire extends over at least 60% of the height h of the part 2 to be cut, or even on the minus 80% of the height h of the part 2 to be cut, or even over 100% of the height h of the part 2 to be cut.

Avantageusement encore, dans tous les modes de réalisation et/ou toutes les variantes, au moins une couche d'amortissement 9A, 9B, de préférence deux couches d'amortissement 9A, 9B, sont découpées simultanément à la pièce 2, soit pendant toute la durée de la découpe de la pièce 2.Advantageously also, in all the embodiments and / or all the variants, at least one damping layer 9A, 9B, preferably two damping layers 9A, 9B, are cut simultaneously with the part 2, either during the whole cutting time of the part 2.

Claims (15)

  1. Method for cutting a piece (2) of semiconductive material or of ceramic into wafers, using a cutting wire (1) and abrasive particles, wherein the wire (1) is driven in translation in at least one direction (F2) and, upon its displacement in translation (F2), it penetrates into the piece to be cut (2) by at least one penetration face (20A, 20B) of said piece (2), and a damping layer (9A, 9B) is disposed facing said penetration face (20A, 20B) of the piece to be cut (2) so that, before penetrating into the piece (2), the wire (1) passes through the damping layer (9A, 9B), characterized in that the damping layer (9A, 9B) covers the penetration face (20A, 20B).
  2. Method according to Claim 1, characterized in that the wire (1) being driven in translation in a go-return reciprocating movement and penetrating into the piece to be cut (2) alternately through two opposing penetration faces (20A, 20B), two damping layers (9A, 9B) are disposed facing the two penetration faces respectively.
  3. Method according to one of the preceding claims, characterized in that the damping layer (9A, 9B):
    - has a thickness (e) greater than three times the average diameter of the abrasive particles, advantageously greater than five times the average diameter of the abrasive particles, and advantageously less than 2 cm, more advantageously less than 1 cm, and preferentially less than 0.5 cm; and/or
    - is produced in at least one of the materials from the group comprising polymers having a hardness greater than 90 MPa and a modulus of elasticity greater than 2 GPa, notably hardened epoxy resins and PMMA, semiconductive materials, advantageously silicon, ceramics having a hardness less than 8 on the Mohs scale, notably a silica.
  4. Method according to one of the preceding claims, characterized in that the damping layer (9A, 9B) is a flat sheet and/or a sheet whose form is adapted to closely follow that of the penetration face.
  5. Method according to one of the preceding claims, characterized:
    - in that the damping layer (9A, 9B) is fixed to the penetration face (20A, 20B) of the piece (2), advantageously by bonding by means of a layer of glue (11A, 11B) having a thickness more advantageously less than or equal to 20 pm; or
    - in that the damping layer (9A, 9B) is deposited on the penetration face (20A, 20B) of the piece (2), by a layer deposition technique, notably by cathode sputtering or by another deposition treatment.
  6. Method according to one of Claims 1 to 4, characterized in that, the piece to be cut (2) being secured to a cutting table (4) via an assembly element (3), the damping layer (9A, 9B) is fixed either to the cutting table (4), or to the assembly element (3).
  7. Method according to one of the preceding claims, characterized in that the at least one damping layer (9A, 9B), preferably two damping layers (9A, 9B), extend over at least 40%, even over at least 60%, even over at least 80%, even over 100%, even over more than 100% of the height (h) of the piece (2) to be cut, this height being measured at right angles or substantially at right angles to the cutting wire.
  8. System for cutting a piece of semiconductive material or of ceramic into wafers using a cutting wire (1) and abrasive particles, comprising a device (12A-12C) for driving the wire in translation in at least one direction (F2), the wire (1) penetrating into the piece to be cut (2) by at least one penetration face (20A, 20B) of said piece (2) upon its displacement, and comprising at least one damping layer (9A, 9B) disposed facing said penetration face (20A, 20B) of the piece to be cut (2) so that, before penetrating into the piece (2), the wire (1) passes through the damping layer (9A, 9B), characterized in that the damping layer (9A, 9B) covers the penetration face (20A, 20B).
  9. System according to Claim 8, characterized in that the device (12A-12C) driving the wire (1) is arranged to drive said wire in translation in a go-return reciprocating movement during which the wire (1) penetrates into the piece to be cut alternately through two opposing penetration faces, and in that it comprises two damping layers (9A, 9B) facing the two penetration faces (20A, 20B) respectively.
  10. System according to Claim 8 or 9, characterized in that the damping layer (9A, 9B):
    - has a thickness greater than three times the average diameter of the abrasive particles, advantageously greater than five times the average diameter of the abrasive particles, more advantageously a thickness less than 2 cm, advantageously less than 1 cm, and preferentially less than 0.5 cm; and/or
    - is produced in at least one of the materials from the group comprising polymers having a hardness greater than 90 MPa and a modulus of elasticity greater than 2 GPa, notably hardened epoxy resins and PMMA, semiconductive materials, ceramics having a hardness less than 8 on the Mohs scale, notably a silica.
  11. System according to one of Claims 8 to 10, characterized in that the damping layer (9A, 9B) is a flat sheet or a sheet whose form is adapted to closely follow that of the penetration face (20A, 20B) .
  12. System according to one of Claims 8 to 11, characterized:
    - in that the damping layer (9A, 9B) is fixed to the penetration face (20A, 20B) of the piece (2), advantageously by bonding by means of a layer of glue (11A, 11B) more advantageously having a thickness less than or equal to 20 pm; and/or
    - in that the damping layer is deposited on the penetration face of the piece, by a layer deposition technique, notably by cathode sputtering or by another vacuum deposition treatment.
  13. System according to one of Claims 8 to 12, characterized in that it comprises a cutting table (4) and an assembly element (3), the piece to be cut (2) being secured to the cutting table (4) via the assembly element, and in that the damping layer is fixed either to the cutting table, or to the assembly element.
  14. System according to one of Claims 8 to 13, characterized in that it comprises, during the cutting of a piece, a first kinematic entity comprising a cutting table secured to the piece to be cut via an assembly element, and a second kinematic entity comprising the cutting wire, and a driving device intended to drive the two kinematic entities in relative translation relative to one another.
  15. System according to one of Claims 8 to 14, characterized in that the at least one damping layer (9A, 9B), preferably two damping layers (9A, 9B), extend over at least 40%, even at least 60%, even at least 80%, even 100%, even more than 100% of the height (h) of the piece (2) to be cut, this height being measured at right angles or substantially at right angles to the cutting wire.
EP17704395.7A 2016-01-14 2017-01-16 Process and cutting system for slicing a piece of semi-conductor or ceramic material, with a cutting wire and abrasive particles. Active EP3402642B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1650287A FR3046737B1 (en) 2016-01-14 2016-01-14 METHOD AND SYSTEM FOR CUTTING A WORKPIECE OF A SEMICONDUCTOR OR CERAMIC MATERIAL USING A CUTTING WIRE AND ABRASIVE PARTICLES
PCT/EP2017/050821 WO2017121900A1 (en) 2016-01-14 2017-01-16 Method and system for slicing a piece made of a semiconductor material or ceramic, using a cutting wire and abrasive particles

Publications (2)

Publication Number Publication Date
EP3402642A1 EP3402642A1 (en) 2018-11-21
EP3402642B1 true EP3402642B1 (en) 2020-05-27

Family

ID=55752500

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17704395.7A Active EP3402642B1 (en) 2016-01-14 2017-01-16 Process and cutting system for slicing a piece of semi-conductor or ceramic material, with a cutting wire and abrasive particles.

Country Status (3)

Country Link
EP (1) EP3402642B1 (en)
FR (1) FR3046737B1 (en)
WO (1) WO2017121900A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1203966C (en) * 2001-10-17 2005-06-01 株式会社新王磁材 Cutting method using wire saw, wire saw device, and method of mfg. rareearth magnet
DE102006033699B4 (en) * 2006-07-20 2009-07-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Wire saw with controllable wire field
DE102010049472A1 (en) * 2009-10-27 2011-06-09 Meyer Burger Ag Wire saw for cutting e.g. single crystal ingots of raw silicon for producing silicon wafer utilized for manufacturing computer chip in semiconductor industry, has stripping bars attached to wire field over breadth of field cutting surface
WO2012070167A1 (en) * 2010-11-24 2012-05-31 三菱電機株式会社 Wire discharge apparatus and semiconductor wafer manufacturing method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3402642A1 (en) 2018-11-21
WO2017121900A1 (en) 2017-07-20
FR3046737B1 (en) 2018-06-29
FR3046737A1 (en) 2017-07-21

Similar Documents

Publication Publication Date Title
FR2957190A1 (en) PROCESS FOR PRODUCING A MULTILAYER STRUCTURE WITH THERMOMECHANICAL EFFECT DETOURAGE
FR2842650A1 (en) Fabrication of substrates for optics, electronics, or optoelectronics, by implanting atomic species beneath front face of ingot to create zone of weakness, bonding support, and directly detaching portion of top layer bonded to support
FR2957189A1 (en) METHOD OF MAKING A MULTILAYER STRUCTURE WITH POST GRINDING.
FR2880184A1 (en) Semiconductor structure, e.g. bonded silicon-on-insulator structure, trimming method, involves etching edge of plate after fixing plate on another plate, to form pedestal, and thinning former plate to pedestal, to provide thin part
EP1634685A2 (en) Thin electronic chip in glass for electronic component and manufacturing process
EP1756864B9 (en) Method for making chips
EP2564414A1 (en) Device and method for mechanically texturing a silicon wafer intended to comprise a photovoltaic cell, and resulting silicon wafer
EP3402642B1 (en) Process and cutting system for slicing a piece of semi-conductor or ceramic material, with a cutting wire and abrasive particles.
CH699476B1 (en) A method of manufacturing a silicon timepiece component.
EP2511951A1 (en) Method for recycling a source substrate
EP2397530A1 (en) Gluing method with calibrated thickness between at least two substrates
EP4309216A1 (en) Method for transferring a layer of a heterostructure
FR3037189A1 (en) MECHANICAL SEPARATION METHOD FOR DOUBLE LAYER TRANSFER
EP2676288B1 (en) Method for producing a substrate holder
EP3503166A1 (en) Plate trimming method
EP2777070B1 (en) Method for obtaining a heterogeneous substrate for the production of semiconductors, and corresponding substrate
EP3159916B1 (en) Method for thinning samples
EP3424663B1 (en) Wire cutting support for bonded abrasives comprising an assembly of different materials, system comprising such a support and wire cutting methods
FR2959596A1 (en) DETOURING SLURRY
EP3699952A1 (en) Method for transferring a thin film from a substrate to a flexible support
WO2024052619A1 (en) Method for thinning a composite structure carried by a polycrystalline sic carrier substrate, with reduced warpage
WO2024052617A1 (en) Method for manufacturing a structure for transferring chips
EP1066926A1 (en) Method of polishing at least one face of a silicium based workpiece
WO2000045428A1 (en) Method for levelling the edge of a semiconductor wafer and corresponding levelling machine

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180706

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191211

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017017266

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1274104

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200615

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20200527

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200928

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200828

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200927

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200827

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1274104

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20201228

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017017266

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20210118

Year of fee payment: 5

26N No opposition filed

Effective date: 20210302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210112

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210116

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210116

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210116

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220131

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602017017266

Country of ref document: DE

REG Reference to a national code

Ref country code: NO

Ref legal event code: MMEP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220131

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527