EP3398194B1 - Câble ayant une couche isolante résistante au feu - Google Patents

Câble ayant une couche isolante résistante au feu Download PDF

Info

Publication number
EP3398194B1
EP3398194B1 EP16829295.1A EP16829295A EP3398194B1 EP 3398194 B1 EP3398194 B1 EP 3398194B1 EP 16829295 A EP16829295 A EP 16829295A EP 3398194 B1 EP3398194 B1 EP 3398194B1
Authority
EP
European Patent Office
Prior art keywords
silicate
cable according
cable
insulating layer
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16829295.1A
Other languages
German (de)
English (en)
Other versions
EP3398194A1 (fr
Inventor
Franck Gyppaz
Stéphanie HOAREAU
Vincent BLANC
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nexans SA
Original Assignee
Nexans SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nexans SA filed Critical Nexans SA
Publication of EP3398194A1 publication Critical patent/EP3398194A1/fr
Application granted granted Critical
Publication of EP3398194B1 publication Critical patent/EP3398194B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/295Protection against damage caused by extremes of temperature or by flame using material resistant to flame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/002Inhomogeneous material in general
    • H01B3/006Other inhomogeneous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes

Definitions

  • the present invention relates to a cable comprising at least one elongated conductive element surrounded by at least one fire-resistant insulating layer.
  • safety cables are in particular power transmission cables or low frequency transmission cables, such as control or signaling cables.
  • a significant slowdown in the progression of the flames means that much time is saved to evacuate the premises and / or to implement appropriate extinguishing means.
  • the cable In the event of a fire, the cable must be able to withstand the fire in order to operate as long as possible and limit its degradation.
  • a safety cable must also not be dangerous for its environment, that is to say not to give off toxic and / or opaque fumes when it is subjected to extreme thermal conditions.
  • a fire-resistant and halogen-free safety electric cable comprising a set of insulated electrical conductors, said set being surrounded by an outer sheath.
  • Each insulated electrical conductor is formed by an electrical conductor surrounded by an insulating layer obtained from a composition comprising a polymeric material and at least one ceramic-forming filler, said insulating layer thus being able to be converted at least superficially into ceramic state at high temperatures corresponding to fire conditions.
  • the polymeric material of this single insulating layer is chosen from a polysiloxane, an ethylene copolymer, and their mixture.
  • the aim of the present invention is to overcome the drawbacks of the techniques of the prior art by proposing in particular a cable exhibiting excellent fire resistance properties while limiting the risks of mechanical degradation of the electrical conductor (s) which compose it, even at high temperature.
  • the cable has very good fire resistance, and in particular makes it possible to significantly reduce or even avoid the formation of flaming droplets during combustion of the cable.
  • the mechanical properties of the cable of the invention are also improved thereby allowing it to continue to operate even at high temperatures.
  • the cable of the invention advantageously satisfies the conditions of standard NF C 32-070 CR1 (2001) and of standard EN50200 (2006).
  • the invention as thus defined also has the advantage of being economical since it makes it possible to significantly limit or even avoid the use of polysiloxane in the insulating layer, while having very good resistance properties. fire.
  • the first silicate of the cocktail of fillers can be a phyllosilicate, such as, for example, mica.
  • the cocktail of fillers can comprise from 20 to 40% by weight of first silicate relative to the total weight of cocktail of fillers in the polymer composition.
  • the second silicate of the cocktail of fillers can be a compound with a high specific surface area, in particular of at least 10 m 2 / g, and preferably of at least 20 m 2 / g.
  • the specific surface is conventionally determined by the BET method according to DIN ISO 9277.
  • the second silicate of the cocktail of fillers can in particular be of the lamellar type.
  • the second silicate can comprise magnesium silicate, such as for example talc.
  • the cocktail of fillers can comprise from 20 to 40% by weight of second silicate relative to the total weight of cocktail of fillers in the polymer composition.
  • the third silicate of the cocktail of fillers can be a compound comprising aluminum silicate, in particular of the lamellar type.
  • the third silicate can be chosen from montmorillonite, bentonite, kaolinite, hectorite, halloysite, and one of their mixtures.
  • a third silicate As a preferred example of a third silicate, mention may be made of a nanoclay, which may or may not be functionalized. More particularly, it can be surface treated with cations of the quaternary ammonium type.
  • the cocktail of fillers can comprise from 5 to 30% by weight of third silicate relative to the total weight of cocktail of fillers in the polymer composition.
  • the oxide of an alkaline earth metal advantageously makes it possible to improve the mechanical properties of cohesion of the insulating layer after combustion under the effect of a flame.
  • the oxide of an alkaline earth metal can be of high purity, in order to improve the electrical resistivity of the cable of the invention.
  • high purity is understood to mean an oxide of an alkaline earth metal having a purity (by calcination) of at least 96.0%, preferably at least 98.0%, and particularly preferably of at least 99.0%.
  • the oxide of an alkaline earth metal of high purity advantageously limits the presence of electrically conductive compound (s), in particular in the form of impurity (s).
  • the impurities can contain, for example, heavy metals.
  • the oxide of an alkaline earth metal can comprise at most 30 ppm of heavy metals, and preferably less than 10 ppm of heavy metals.
  • the oxide of an alkaline earth metal has a melting point of at least 1500 ° C, preferably at least 2000 ° C, and particularly preferably at least 2500 ° C.
  • the oxide of an alkaline earth metal can be a magnesium oxide (MgO).
  • the cocktail of fillers comprises 20 to 40% by weight of oxide of an alkaline earth metal relative to the total weight of cocktail of fillers in the polymer composition.
  • the polymer material of the invention comprises one or more polymer (s), the term polymer being able to be understood by any type of polymer well known to those skilled in the art such as homopolymer or copolymer (eg block copolymer, random copolymer, terpolymer , ... etc).
  • the polymer can be of the thermoplastic or elastomeric type, and can be crosslinked by techniques well known to those skilled in the art.
  • the polymer material can comprise one or more olefin polymers, and preferably one or more ethylene polymers.
  • An olefin polymer is conventionally a polymer obtained from at least one olefin monomer.
  • the polymeric material may comprise more than 30% by weight of olefin polymer (s), preferably more than 50% by weight of olefin polymer (s), preferably more than 70% by weight of polymer (s) of olefin, and particularly preferably more than 90% by weight of olefin polymer (s), relative to the total weight of polymer material in the polymer composition.
  • the polymeric material is only composed of one or more olefin polymer (s).
  • the polymeric material of the invention can comprise one or more olefin polymers chosen from linear low density polyethylene (LLDPE); very low density polyethylene (VLDPE); low density polyethylene (LDPE); medium density polyethylene (MDPE); high density polyethylene (HDPE); an ethylene-propylene elastomeric copolymer (EPM); an ethylene propylene diene monomer terpolymer (EPDM); an ethylene / vinyl ester copolymer such as an ethylene / vinyl acetate (EVA) copolymer; an ethylene-acrylate copolymer such as an ethylene-butyl acrylate (EBA) copolymer or an ethylene-methyl acrylate (EMA) copolymer; an ethylene-alpha-olefin copolymer such as an ethylene-octene copolymer (PEO) or an ethylene-butene copolymer (PEB); and one of their mixtures.
  • LLDPE linear low density polyethylene
  • the polymer material of the invention can also comprise a grafted polymer, in particular grafted with polar functions.
  • This grafted polymer advantageously makes it possible to improve the mechanical properties of cohesion of the insulating layer after combustion under the effect of a flame.
  • the grafted polymer may be an olefin polymer grafted with maleic anhydride, and in particular a polymer of ethylene grafted with maleic anhydride.
  • the polymer material may comprise from 1 to 20% by weight of said graft polymer, and preferably from 5 to 15% by weight of said graft polymer, relative to the total weight of polymer material in the polymer composition.
  • the polymeric material can comprise one or more ethylene polymer (s).
  • the polymeric material can comprise a blend of at least two different ethylene polymers, and more particularly can comprise a blend of an ethylene homopolymer and an ethylene vinyl acetate (EVA) copolymer.
  • EVA ethylene vinyl acetate
  • the polymeric material can comprise from 50 to 80% by weight of EVA and from 20 to 50% by weight of an ethylene homopolymer, relative to the total weight of polymeric material in the polymer composition.
  • the polymer composition of the invention may comprise at least 30% by weight of polymeric material, preferably at least 50% by weight of polymeric material, and preferably at least 60% by weight of polymeric material, relative to the total weight of the polymer composition.
  • the polymer composition of the invention can comprise at least 30% by weight of said cocktail of fillers relative to the total weight of the polymer composition.
  • the polymer composition can comprise at least 30% by weight of said polymeric material relative to the total weight of the polymer composition.
  • the polymer composition may have a Mooney viscosity of at least 50, and preferably at least 55.
  • the polymer composition may have a Mooney viscosity of at most 100, and preferably at most 90.
  • the Mooney viscosity (ML1 + 4, 100 ° C) is expressed in Mooney (Me) units and can be easily determined by standard NFT 43005.
  • the polymer composition may typically further include additives in an amount of 0.1 to 20 parts by weight per 100 parts by weight of polymeric material in the polymer composition.
  • the additives are well known to those skilled in the art and can for example be chosen from protection agents (eg anti-UV, anti-copper), processing agents (eg plasticizers, lubricants), pigments, and antioxidants.
  • the insulating layer of the invention surrounds the elongated conductive element, thereby forming an insulated elongated conductive element.
  • extruded layer It can be easily shaped by extrusion around the elongated conductive member. This is called an extruded layer.
  • the insulating layer is a so-called thermoplastic layer, or in other words an uncrosslinked layer.
  • non-crosslinked is understood to mean a layer in which the degree of gel according to standard ASTM D2765-01 (extraction with xylene) is at most 20%, preferably at most 10%, preferably at most 5. %, and particularly preferably 0%.
  • the insulating layer of the invention can advantageously be an electrically insulating layer.
  • the term “electrically insulating layer” is understood to mean a layer whose electrical conductivity can be at most 1.10 -9 S / m (siemens per meter) (at 25 ° C), preferably at most 1.10 -8 S / m, and preferably at most 1.10 -13 S / m (at 25 ° C).
  • the thickness of the insulating layer can range from 0.10 mm to 2.00 mm.
  • the insulating layer may be in direct physical contact with the elongated conductive member.
  • the elongated conductive element may be surrounded by the insulating layer of the invention as a single insulating layer. This is then referred to as so-called “single-layer” insulation.
  • the outer layer surrounding the inner layer then forms a so-called “bilayer” insulation.
  • the outer layer can be more particularly a layer crosslinked by techniques well known to those skilled in the art.
  • the crosslinked layer can be easily characterized by determining its degree of gel according to standard ASTM D2765-01. More particularly, said crosslinked layer can advantageously have a gel content, according to standard ASTM D2765-01 (xylene extraction), of at least 50%, preferably of at least 70%, preferably of at least 80 %, and particularly preferably at least 90%.
  • the outer layer is a crosslinked or uncrosslinked layer, based on an olefin polymer, and more particularly based on an ethylene polymer.
  • the thickness of the outer layer can range from 0.05 to 2.00 mm.
  • the thickness of the outer layer may be less than or equal to the thickness of the inner layer.
  • the invention finds a particularly advantageous, but not exclusive, application in the field of power or telecommunications cables intended to remain operational for a defined time when they are subjected to high heat and / or directly to flames.
  • the term “cable” is understood to mean an electrical and / or optical cable, intended for the transport of energy and / or the transmission of data.
  • this type of cable comprises one or more elongated conductive element (s) of the electrical and / or optical type.
  • the elongated conductor element When the elongated conductor element is of the electrical type, it may be a single conductor such as for example a metal wire, or a multiconductor such as a plurality of metal wires, twisted or not.
  • the elongated electrical conductor can be made from a metallic material chosen in particular from aluminum, an aluminum alloy, copper, a copper alloy, and one of their combinations.
  • the section (cross section) of the electrical conductor can range from 0.5 mm 2 to more than 240 mm 2 .
  • the cable may comprise at least two elongated conductive elements, each elongate conductive element being surrounded by at least the insulating layer of the invention.
  • the cable of the invention may further comprise a protective sheath surrounding one or more insulated elongated conductive element (s).
  • the protective sheath surrounds the single insulated elongate conductor element.
  • the protective sheath surrounds all of said insulated elongated conductor elements.
  • the protective sheath of the invention may be a sheath of the tubing type or of the stuffing type.
  • tubing sheath is understood to mean a sheath in the form of a tube comprising a substantially identical thickness all along said tube.
  • the tubing sheath can be more or less tightened around all of the insulated conductors so as in particular to immobilize all of said insulated conductors inside said sheath.
  • the tubing sheath is very simple and quick to produce since it requires less pressure at the exit of the extruder than that necessary for the manufacture of a stuffing sheath.
  • sensing sheath is understood to mean a sheath which fills the interstices between the insulated electrical conductors, the volumes of which are accessible.
  • the protective sheath can be conventionally based on one or more olefin polymer (s), with optionally at least one flame-retardant filler such as aluminum trihydroxide (ATH), magnesium dihydroxide (MDH), the chalk.
  • the protective sheath is a sheath called “HFFR” for the anglicism “ Halogen-Free Flame Retardant ” according to standard IEC 60754 Parts 1 and 2 (2011).
  • the cable may further comprise a stuffing element positioned along the cable between the protective sheath and the isolated elongated conductor element (s), the The stuffing element may further surround the isolated elongate conductive element (s).
  • the stuffing element is well known to those skilled in the art and may for example be based on one or more olefin polymer (s), optionally with at least one flame-retardant filler such as, for example, olefin trihydroxide. aluminum (ATH), magnesium dihydroxide (MDH), chalk.
  • the stuffing element is a so-called “HFFR” element for the anglicism “ Halogen-Free Flame Retardant” according to standard IEC 60754 Parts 1 and 2 (2011).
  • the cable of the invention does not include / preferably do not include halogenated compounds according to standard IEC 60754 Parts 1 and 2 (2011).
  • halogenated compounds can be of all kinds, such as for example fluorinated polymers or chlorinated polymers such as polyvinyl chloride (PVC), halogenated plasticizers, halogenated mineral fillers, etc.
  • the electric cable shown on the figure 1 comprises two electrical conductors 1, each electrical conductor being surrounded by a single insulating layer 2 in accordance with the invention.
  • a protective sheath 3 of the tubing type surrounds all of the two insulated electrical conductors.
  • a stuffing element 4 is positioned between the protective sheath 3 and all of the insulated electrical conductors.
  • the stuffing element 4 also surrounds all of the insulated electrical conductors.
  • the electric cable shown on the figure 2 comprises three electrical conductors 1, a first insulating layer 2a (inner layer) around each electrical conductor 1, a second insulating layer 2b (outer layer) around each first insulating layer 2a.
  • the inner layer is an insulating layer in accordance with the invention, while the outer layer is a conventional crosslinked polyethylene layer.
  • a protective sheath 3 of the tubing type surrounds all of the three insulated electrical conductors.
  • the sheath protection 3 is a conventional sheath made from a flame-retardant composition based on polyolefin.
  • the stuffing element 4 is a conventional stuffing element also made from a flame retardant composition based on polyolefin.
  • Table 1 below collates a polymer composition according to the invention with: - a polymer material consisting of three different polymers, namely: Polymer 1, Polymer 2 and Polymer 3; and - a cocktail of fillers made up of four different fillers, namely: Silicate 1, Silicate 2, Silicate 3 and Metal oxide.
  • an insulating layer in accordance with the invention was implemented in various types of cables (see Tables 2 and 3 below) in order to be tested in accordance with standards NF C 32-070 CR1 (2001) and EN50200 (2006).
  • Table 2 below groups together three cables of substantially identical structure, comprising an insulating layer obtained from the polymer composition of Table 1.
  • cables 1 to 3 in Table 2 include: - two electrical conductors surrounded respectively by a bilayer insulation, said bilayer insulation comprising an internal insulating layer according to the invention obtained from the polymer composition of Table 1, - a stuffing element surrounding the two insulated electrical conductors, and - a protective sheath of the tubing type surrounding the two insulated electrical conductors as well as the stuffing element.
  • Table 3 below groups together two cables of substantially identical structure, comprising an insulating layer obtained from the polymer composition of Table 1.
  • cables 4 and 5 in Table 3 include: - ten pairs of electrical conductors (ie twenty electrical conductors), each electrical conductor being surrounded by a bilayer insulation, said bilayer insulation comprising an internal insulating layer according to the invention obtained from the polymer composition of Table 1, - a protective sheath of the tubing type surrounding the twenty insulated electrical conductors, and - empty spaces between the protective sheath and the insulated electrical conductors.
  • the polymer composition of Table 1 is extruded, using a conventional single-screw extruder, around each electrical conductor, thus forming the internal layer of the bilayer insulation.
  • the temperature profile ranges from 90 to 200 ° C, and the extruder has eight heating zones.
  • the outer layer of the bilayer insulation of each electrical conductor is conventionally extruded around the inner layer.
  • the bilayer insulation can be extruded in two successive stages (so-called “tandem” extrusion), but it can also be extruded by co-extrusion (one and the same extrusion head).
  • Cables 1 to 3 are subjected to the test according to standard NF C 32-070 CR1 (2001), the results being collated in table 2.
  • Standard NF C 32-070 CR1 (2001) indicates in particular a fire resistance threshold. 65 minutes (min) to validate the performance.
  • Standard EN50200 (2006) indicates in particular a fire resistance threshold of 120 minutes (min) to validate the performance.

Landscapes

  • Insulated Conductors (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)

Description

  • La présente invention se rapporte à un câble comprenant au moins un élément conducteur allongé entouré par au moins une couche isolante résistante au feu.
  • Elle s'applique typiquement, mais non exclusivement, au domaine des câbles de sécurité résistant au feu, et notamment sans halogène, susceptible de fonctionner pendant un laps de temps donné dans des conditions d'incendie, sans être pour autant propagateur d'incendie ni générateur de fumées importantes.
  • Ces câbles de sécurité sont en particulier des câbles de transport d'énergie ou des câbles de transmission basse fréquence, tels que des câbles de contrôle ou de signalisation.
  • Un des enjeux majeurs de l'industrie du câble est l'amélioration du comportement et des performances des câbles dans des conditions thermiques extrêmes, notamment celles rencontrées lors d'un incendie. Pour des raisons essentiellement de sécurité, il est en effet indispensable de maximiser les capacités du câble à retarder la propagation des flammes d'une part, et à résister au feu d'autre part afin d'assurer une continuité de fonctionnement.
  • Un ralentissement significatif de la progression des flammes, c'est autant de temps gagné pour évacuer les lieux et/ou pour mettre en œuvre des moyens d'extinction appropriés. En cas d'incendie, le câble doit pouvoir résister au feu afin de fonctionner le plus longtemps possible et limiter sa dégradation. Un câble de sécurité se doit en outre de ne pas être dangereux pour son environnement, c'est-à-dire de ne pas dégager de fumées toxiques et/ou opaques lorsqu'il est soumis à des conditions thermiques extrêmes.
  • Du document EP-0 942 439 est connu un câble électrique de sécurité résistant au feu et sans halogène comportant un ensemble de conducteurs électriques isolés, ledit ensemble étant entouré par une gaine externe. Chaque conducteur électrique isolé est formé par un conducteur électrique entouré par une couche isolante obtenue à partir d'une composition comprenant une matière polymérique et au moins une charge formatrice de céramique, ladite couche isolante étant ainsi apte à se convertir au moins superficiellement en l'état de céramique à de hautes températures correspondant à des conditions d'incendie. La matière polymérique de cette unique couche isolante est choisie parmi un polysiloxane, un copolymère d'éthylène, et leur mélange.
  • Toutefois, il a été constaté que ce câble de sécurité de l'art antérieur ne présente pas des propriétés de résistance au feu optimales, et reste relativement coûteux lorsqu'un polysiloxane est choisi comme matériau isolant. US2006/068201A1 divulgue des câbles comprenant au moins un élément conducteur allongé entouré par au moins une couche isolante. La composition de la couche isolante comprend un matériau polymère et un cocktail de charges comprenant trois silicates différents.
  • Le but de la présente invention est de pallier les inconvénients des techniques de l'art antérieur en proposant notamment un câble présentant des propriétés de résistance au feu excellentes tout en limitant les risques de dégradation mécanique du ou des conducteurs électriques qui le composent, même à haute température.
  • La présente invention a pour objet un câble comprenant au moins un élément conducteur allongé entouré par au moins une couche isolante obtenue à partir d'une composition polymère comprenant un matériau polymère et un cocktail de charges, caractérisé en ce que le cocktail de charges comprend:
    • un premier silicate,
    • un deuxième silicate, le deuxième silicate étant différent du premier silicate,
    • un troisième silicate, le troisième silicate étant différent du premier silicate et du deuxième silicate, et
    • un oxyde d'un métal alcalino-terreux et en ce que le cocktail de charges comprend de 20 à 40 % en poids dudit oxyde d'un métal alcalino-terreux, par rapport au poids total de cocktail de charges dans la composition polymère.
  • Grâce à l'invention, le câble présente une très bonne résistance au feu, et permet notamment de réduire significativement voire d'éviter la formation de gouttelettes enflammées lors de la combustion du câble. Les propriétés mécaniques du câble de l'invention s'en trouvent également améliorées ce qui lui permet de continuer à fonctionner même à de hautes températures.
  • Le câble de l'invention satisfait avantageusement aux conditions de la norme NF C 32-070 CR1 (2001) et de la norme EN50200 (2006).
  • L'invention telle qu'ainsi définie présente en outre l'avantage d'être économique puisqu'elle permet de limiter de façon significative voire d'éviter l'utilisation de polysiloxane dans la couche isolante, tout en ayant de très bonnes propriétés de résistance au feu.
  • Le premier silicate
  • Le premier silicate du cocktail de charges peut être un phyllosilicate, tel que par exemple du mica.
  • Le cocktail de charges peut comprendre de 20 à 40 % en poids de premier silicate par rapport au poids total de cocktail de charges dans la composition polymère.
  • Le deuxième silicate
  • Le deuxième silicate du cocktail de charges peut être un composé avec une surface spécifique élevée, notamment d'au moins 10 m2/g, et de préférence d'au moins 20 m2/g. La surface spécifique est classiquement déterminée par la méthode B.E.T. selon la norme DIN ISO 9277.
  • Le deuxième silicate du cocktail de charges peut être notamment de type lamellaire.
  • Le deuxième silicate peut comprendre du silicate de magnésium, tel que par exemple du talc.
  • Le cocktail de charges peut comprendre de 20 à 40 % en poids de deuxième silicate par rapport au poids total de cocktail de charges dans la composition polymère.
  • Le troisième silicate
  • Le troisième silicate du cocktail de charges peut être un composé comprenant du silicate d'aluminium, notamment de type lamellaire.
  • Le troisième silicate peut être choisi parmi la montmorillonite, la bentonite, la kaolinite, l'hectorite, la halloysite, et un de leurs mélanges.
  • A titre d'exemple préféré de troisième silicate, on peut citer un nanoargile, fonctionnalisé ou non. Plus particulièrement, il peut être traité en surface par des cations du type ammonium quaternaire.
  • Le cocktail de charges peut comprendre de 5 à 30 % en poids de troisième silicate par rapport au poids total de cocktail de charges dans la composition polymère.
  • L'oxyde d'un métal alcalino-terreux
  • L'oxyde d'un métal alcalino-terreux permet avantageusement d'améliorer les propriétés mécaniques de cohésion de la couche isolante après combustion sous l'effet d'une flamme.
  • De préférence, l'oxyde d'un métal alcalino-terreux peut être de haute pureté, afin d'améliorer la résistivité électrique du câble de l'invention.
  • On entend par « haute pureté » un oxyde d'un métal alcalino-terreux ayant une pureté (par calcination) d'au moins 96,0%, de préférence d'au moins 98,0%, et de façon particulièrement préférée d'au moins 99,0%.
  • L'oxyde d'un métal alcalino-terreux de haute pureté limite de façon avantageuse la présence de composé(s) électriquement conducteur(s), notamment sous forme d'impureté(s). Les impuretés peuvent contenir par exemple des métaux lourds. De préférence, l'oxyde d'un métal alcalino-terreux peut comprendre au plus 30 ppm de métaux lourds, et de préférence moins de 10 ppm de métaux lourds.
  • Dans un mode de réalisation préféré, l'oxyde d'un métal alcalino-terreux a une température de fusion d'au moins 1500°C, de préférence d'au moins 2000°C, et de façon particulièrement préférée d'au moins 2500°C.
  • A titre d'exemple, l'oxyde d'un métal alcalino-terreux peut être un oxyde de magnésium (MgO).
  • Le cocktail de charges comprend de 20 à 40 % en poids d'oxyde d'un métal alcalino-terreux par rapport au poids total de cocktail de charges dans la composition polymère.
  • Le cocktail de charges
  • Le cocktail de charges peut comprendre, par rapport au poids total de cocktail de charges :
    • de 20 à 40 % en poids de premier silicate,
    • de 20 à 40 % en poids de deuxième silicate,
    • de 5 à 30 % en poids de troisième silicate, et
    • de 20 à 40 % en poids d'oxyde d'un métal alcalino-terreux.
    Le matériau polymère
  • Le matériau polymère de l'invention comprend un ou plusieurs polymère(s), le terme polymère pouvant s'entendre par tout type de polymère bien connu de l'homme du métier tel que homopolymère ou copolymère (e.g. copolymère séquencé, copolymère statistique, terpolymère, ...etc).
  • Le polymère peut être du type thermoplastique ou élastomère, et peut être réticulé par des techniques bien connus de l'homme du métier.
  • Dans un mode de réalisation particulier, le matériau polymère, ou en d'autres termes la matrice polymère de la composition polymère, peut comprendre un ou plusieurs polymères d'oléfine, et de préférence un ou plusieurs polymères d'éthylène. Un polymère d'oléfine est classiquement un polymère obtenu à partir d'au moins un monomère d'oléfine.
  • Plus particulièrement, le matériau polymère peut comprendre plus de 30% en poids de polymère(s) d'oléfine, de préférence plus de 50% en poids de polymère(s) d'oléfine, de préférence plus de 70% en poids de polymère(s) d'oléfine, et de façon particulièrement préférée plus de 90% en poids de polymère(s) d'oléfine, par rapport au poids total de matériau polymère dans la composition polymère. De préférence, le matériau polymère est uniquement composé d'un ou de plusieurs polymère(s) d'oléfine.
  • A titre d'exemple, le matériau polymère de l'invention peut comprendre un ou plusieurs polymères d'oléfine choisis parmi un polyéthylène linéaire basse densité (LLDPE); un polyéthylène très basse densité (VLDPE); un polyéthylène basse densité (LDPE); un polyéthylène moyenne densité (MDPE); un polyéthylène haute densité (HDPE); un copolymère élastomère d'éthylène-propylène (EPM); un terpolymère éthylène propylène diène monomère (EPDM); un copolymère d'éthylène et de vinyl ester tel qu'un copolymère d'éthylène et d'acétate de vinyl (EVA); un copolymère d'éthylène et d'acrylate tel qu'un copolymère d'éthylène et d'acrylate de butyle (EBA) ou un copolymère d'éthylène et d'acrylate de méthyle (EMA); un copolymère d'éthylène et d'alpha-oléfine tel qu'un copolymère d'éthylène et d'octène (PEO) ou un copolymère d'éthylène et de butène (PEB); et un de leurs mélanges.
  • Le matériau polymère de l'invention peut en outre comprendre un polymère greffé, notamment greffé avec des fonctions polaires.
  • Ce polymère greffé permet avantageusement d'améliorer les propriétés mécaniques de cohésion de la couche isolante après combustion sous l'effet d'une flamme.
  • A titre d'exemple, le polymère greffé peut être un polymère d'oléfine greffé anhydride maléique, et notamment un polymère d'éthylène greffé anhydride maléique.
  • Lorsqu'un polymère greffé est ajouté au matériau polymère, le matériau polymère peut comprendre de 1 à 20 % en poids dudit polymère greffé, et de préférence de 5 à 15 % en poids dudit polymère greffé, par rapport au poids total de matériau polymère dans la composition polymère.
  • Dans un mode de réalisation préféré, le matériau polymère peut comprendre un ou plusieurs polymère(s) d'éthylène.
  • Le matériau polymère peut comprendre un mélange d'au moins deux polymères d'éthylène différents, et plus particulièrement peut comprendre un mélange d'un homopolymère d'éthylène et d'un copolymère d'éthylène et d'acétate de vinyle (EVA).
  • De préférence, le matériau polymère peut comprendre de 50 à 80 % en poids d'EVA et de 20 à 50 % en poids d'un homopolymère d'éthylène, par rapport au poids total de matériau polymère dans la composition polymère.
  • La composition polymère de l'invention peut comprendre au moins 30 % en poids de matériau polymère, de préférence au moins 50 % en poids de matériau polymère, et de préférence au moins 60% en poids de matériau polymère, par rapport au poids total de la composition polymère.
  • La composition polymère
  • La composition polymère de l'invention peut comprendre au moins 30% en poids dudit cocktail de charges par rapport au poids total de la composition polymère.
  • En outre, la composition polymère peut comprendre au moins 30% en poids dudit matériau polymère par rapport au poids total de la composition polymère.
  • Afin d'optimiser la résistance au feu du câble de l'invention, la composition polymère peut avoir une viscosité Mooney d'au moins 50, et de préférence d'au moins 55. La composition polymère peut avoir une viscosité Mooney d'au plus 100, et de préférence d'au plus 90.
  • La viscosité Mooney (ML1+4, 100° C) est exprimée en unités Mooney (Me) et peut être facilement déterminée par la norme NFT 43005.
  • La composition polymère peut typiquement comprendre en outre des additifs en une quantité de 0,1 à 20 parties en poids pour 100 parties en poids de matériau polymère dans la composition polymère. Les additifs sont bien connus de l'homme du métier et peuvent être par exemple choisis parmi des agents de protection (e.g. des anti-UV, des anti-cuivre), des agents de mise en œuvre (e.g. des plastifiants, des lubrifiants), des pigments, et des antioxydants.
  • La couche isolante
  • La couche isolante de l'invention entoure l'élément conducteur allongé, formant ainsi un élément conducteur allongé isolé.
  • Elle peut être facilement mise en forme par extrusion autour de l'élément conducteur allongé. On parle alors de couche extrudée.
  • De préférence la couche isolante est une couche dite thermoplastique, ou en d'autres termes une couche non réticulée.
  • On entend par « non réticulée » une couche dont le taux de gel selon la norme ASTM D2765-01 (extraction au xylène) est d'au plus 20%, de préférence d'au plus 10%, de préférence d'au plus 5%, et de façon particulièrement préférée de 0%.
  • La couche isolante de l'invention peut être avantageusement une couche électriquement isolante.
  • Dans la présente invention, on entend par « couche électriquement isolante » une couche dont la conductivité électrique peut être d'au plus 1.10-9 S/m (siemens par mètre) (à 25°C), de préférence d'au plus 1.10-8 S/m, et de préférence d'au plus 1.10-13 S/m (à 25°C).
  • Dans un mode de réalisation particulier conforme à l'invention, l'épaisseur de couche isolante peut aller de 0,10 mm à 2,00 mm.
  • Dans un mode de réalisation préféré, la couche isolante peut être directement en contact physique avec l'élément conducteur allongé.
  • Dans un premier mode de réalisation, l'élément conducteur allongé peut être entouré par la couche isolante de l'invention en tant qu'unique couche isolante. On parle alors d'une isolation dite « monocouche ».
  • Dans un deuxième mode de réalisation, l'élément conducteur allongé peut être entouré par au moins deux couches isolantes comprenant :
    • la couche isolante de l'invention en tant que couche interne, et
    • une autre couche isolante en tant que couche externe, la couche externe entourant la couche interne.
  • La couche externe entourant la couche interne forme alors une isolation dite « bicouche ».
  • La couche externe peut être plus particulièrement une couche réticulée par des techniques bien connues de l'homme du métier.
  • Dans la présente invention, la couche réticulée peut être facilement caractérisée par la détermination de son taux de gel selon la norme ASTM D2765-01. Plus particulièrement, ladite couche réticulée peut avoir avantageusement un taux de gel, selon la norme ASTM D2765-01 (extraction au xylène), d'au moins 50%, de préférence d'au moins 70%, de préférence d'au moins 80%, et de façon particulièrement préférée d'au moins 90%.
  • De préférence, la couche externe est une couche réticulée ou non, à base d'un polymère d'oléfine, et plus particulièrement à base d'un polymère d'éthylène.
  • L'épaisseur de la couche externe peut aller de 0,05 à 2,00 mm.
  • De préférence, l'épaisseur de la couche externe peut être inférieure ou égale à l'épaisseur de la couche interne.
  • Le câble
  • L'invention trouve une application particulièrement avantageuse, mais non exclusive, dans le domaine des câbles d'énergie ou de télécommunication destinés à rester opérationnels pendant un temps défini lorsqu'ils sont soumis à de fortes chaleurs et/ou directement à des flammes.
  • Dans la présente invention, on entend par le terme « câble » un câble électrique et/ou optique, destiné au transport d'énergie et/ou à la transmission de données.
  • Plus particulièrement, ce type de câble comprend un ou plusieurs élément(s) conducteur(s) allongé(s) du type électrique et/ou optique.
  • Lorsque l'élément conducteur allongé est du type électrique, il peut être un monoconducteur tel que par exemple un fil métallique, ou un multiconducteur tel qu'une pluralité de fils métalliques, torsadés ou non.
  • Le conducteur électrique allongé peut être réalisé à partir d'un matériau métallique notamment choisi parmi l'aluminium, un alliage d'aluminium, du cuivre, un alliage de cuivre, et une de leurs combinaisons.
  • La section (transversale) du conducteur électrique peut aller de 0,5 mm2 à plus de 240 mm2.
  • Dans un mode de réalisation particulier, le câble peut comprendre au moins deux éléments conducteurs allongés, chaque élément conducteur allongé étant entouré par au moins la couche isolante de l'invention.
  • Le câble de l'invention peut en outre comprendre une gaine de protection entourant un ou plusieurs élément(s) conducteur(s) allongé(s) isolé(s).
  • En d'autres termes, lorsque le câble de l'invention comprend un seul élément conducteur allongé isolé, la gaine de protection entoure l'unique élément conducteur allongé isolé. Lorsque le câble de l'invention comprend plusieurs éléments conducteurs allongés isolés, la gaine de protection entoure l'ensemble desdits éléments conducteurs allongés isolés.
  • La gaine de protection de l'invention peut être une gaine du type tubante ou du type bourrante.
  • On entend par « gaine tubante » une gaine en forme de tube comprenant une épaisseur sensiblement identique tout le long dudit tube. La gaine tubante peut être plus ou moins serrée autour de l'ensemble des conducteurs isolés de manière notamment à immobiliser l'ensemble desdits conducteurs isolés à l'intérieur de ladite gaine.
  • La gaine tubante est très simple et rapide à réaliser puisqu'elle nécessite une pression à la sortie de l'extrudeuse moins importante que celle nécessaire à la fabrication d'une gaine bourrante.
  • On entend par « gaine bourrante » une gaine qui remplit les interstices entre les conducteurs électriques isolés dont les volumes sont accessibles.
  • La gaine de protection peut être classiquement à base d'un ou de plusieurs polymère(s) d'oléfine, avec optionnellement au moins une charge ignifugeante telle que du trihydroxyde d'aluminium (ATH), du dihydroxyde de magnésium (MDH), de la craie. De préférence, la gaine de protection est une gaine dite « HFFR » pour l'anglicisme « Halogen-Free Flame Retardant » selon la norme IEC 60754 Parties 1 et 2 (2011).
  • Lorsque le câble comprend une gaine de protection, il peut en outre comprendre un élément de bourrage positionné le long du câble entre la gaine de protection et le ou les élément(s) conducteur(s) allongé(s) isolé(s), l'élément de bourrage pouvant en outre entourer le ou les élément(s) conducteur(s) allongé(s) isolé(s).
  • L'élément de bourrage est bien connu de l'homme du métier et peut être par exemple à base d'un ou de plusieurs polymère(s) d'oléfine, avec optionnellement au moins une charge ignifugeante telle que par exemple du trihydroxyde d'aluminium (ATH), du dihydroxyde de magnésium (MDH), de la craie. De préférence, l'élément de bourrage est un élément dit « HFFR » pour l'anglicisme « Halogen-Free Flame Retardant » selon la norme IEC 60754 Parties 1 et 2 (2011).
  • Afin de garantir un câble dit HFFR pour l'anglicisme « Halogen-Free Flame Retardant », le câble de l'invention, ou en d'autres termes les éléments qui composent ledit câble tels que par exemple la gaine de protection, ne comprend/comprennent de préférence pas de composés halogénés selon la norme IEC 60754 Parties 1 et 2 (2011). Ces composés halogénés peuvent être de toutes natures, tels que par exemple des polymères fluorés ou des polymères chlorés comme le polychlorure de vinyle (PVC), des plastifiants halogénés, des charges minérales halogénées, ...etc.
  • D'autres caractéristiques et avantages de la présente invention apparaîtront à la lumière de la description d'exemples non limitatifs de câbles selon l'invention faits en référence aux figures.
    • La figure 1 représente une vue schématique en coupe transversale d'un câble électrique selon un premier mode de réalisation conforme à l'invention.
    • La figure 2 représente une vue schématique en coupe transversale d'un câble électrique selon un deuxième mode de réalisation conforme à l'invention.
  • Pour des raisons de clarté, seuls les éléments essentiels pour la compréhension de l'invention ont été représentés de manière schématique, et ceci sans respect de l'échelle.
  • Le câble électrique représenté sur la figure 1 comporte deux conducteurs électriques 1, chaque conducteur électrique étant entouré par une unique couche isolante 2 conforme à l'invention.
  • Une gaine de protection 3 de type tubante entoure l'ensemble des deux conducteurs électriques isolés.
  • Un élément de bourrage 4 est positionné entre la gaine de protection 3 et l'ensemble des conducteurs électriques isolés. L'élément de bourrage 4 entoure en outre l'ensemble des conducteurs électriques isolés.
  • Le câble électrique représenté sur la figure 2 comporte trois conducteurs électriques 1, une première couche isolante 2a (couche interne) autour de chaque conducteur électrique 1, une deuxième couche isolante 2b (couche externe) autour de chaque première couche isolante 2a.
  • La couche interne est une couche isolante conforme à l'invention, tandis que la couche externe est une couche en polyéthylène réticulée classique.
  • Une gaine de protection 3 de type tubante entoure l'ensemble des trois conducteurs électriques isolés.
  • Des espaces vides 5 sont ménagés entre la gaine de protection 3 et l'ensemble des conducteurs électriques isolés qu'elle entoure.
  • L'ensemble des couches, éléments de bourrage et gaines représentés sur les figures 1 et 2 sont des éléments obtenus par extrusion. La gaine de protection 3 est une gaine classique réalisée à partir d'une composition ignifugeante à base de polyoléfine. L'élément de bourrage 4 est un élément de bourrage classique également réalisé à partir d'une composition ignifugeante à base de polyoléfine.
  • Exemples
  • Le tableau 1 ci-dessous rassemble une composition polymère selon l'invention avec :
    - un matériau polymère constitué de trois polymères différents, à savoir : Polymère 1, Polymère 2 et Polymère 3 ; et
    - un cocktail de charges constitué de quatre charges différentes, à savoir : Silicate 1, Silicate 2, Silicate 3 et Oxyde métallique. Tableau 1
    Composition polymère Parties en poids (pcr) des constituants pour 100 parties en poids de matériau polymère dans la composition polymère % en poids des constituants dans la composition polymère % en poids des charges dans le cocktail de charges
    Matériau polymère Polymère 1 60 23,35
    Polymère 2 30 11,67
    Polymère 3 10 3.89
    Cocktail de charges Silicate 1 45 17.51 29.4
    Silicate 2 45 17,51 29,4
    Silicate 3 18 7,00 11,8
    Oxyde métallique 45 17,51 29,4
    Additifs Plastifiant 1 0,39
    Antioxydant 3 1,17
    Total 257 100 100
  • L'origine des différents constituants rassemblés dans le tableau 1 est la suivante :
    • Polymère 1 est un copolymère d'éthylène et d'acétate de vinyle (EVA), avec une densité de 0,950 g/cm3, commercialisé par la société Exxon Mobil sous la référence Elvax 2803 ;
    • Polymère 2 est un polyéthylène basse densité, avec une densité de 0,900 g/cm3, commercialisé par la société Polimeri Europa sous la référence Clearflex FFDO ;
    • Polymère 3 est un polyéthylène greffé anhydride maléique, avec une densité de 0,912 g/cm3, commercialisé par la société MPB sous la référence Cohesive LL15M ;
    • Silicate 1 est un silicate du type mica, commercialisé par la société Keyser and Mackay sous la référence Mica SX300 ;
    • Silicate 2 est un silicate lamellaire du type talc, commercialisé par la société Univar sous la référence Mistron HAR, avec une surface spécifique de 22 m2/g (méthode B.E.T. selon la norme DIN ISO 9277) ;
    • Silicate 3 est un silicate lamellaire du type montmorillonite, commercialisé par la société BYK sous la référence Cloisite 20 ;
    • Oxyde métallique est un oxyde d'un métal alcalino-terreux du type oxyde de magnésium (MgO) de grade pharmaceutique, commercialisé par la société SCORA sous la référence MgO PE leger, avec une pureté (par calcination) de 99,0%, et une température de fusion d'environ 2800°C ;
    • Plastifiant est une cire commercialisée par la société Clariant sous la référence Cire PE 520 ; et
    • Antioxydant est un antioxydant commercialisé par la société Chemtura sous la référence Naugard XL1.
  • Afin de vérifier la résistance au feu de la composition de l'invention en configuration opérationnelle, une couche isolante conforme à l'invention a été mise en œuvre dans différents types de câbles (voir tableaux 2 et 3 ci-après) afin d'être testée au regard des normes NF C 32-070 CR1 (2001) et EN50200 (2006) .
  • Le tableau 2 ci-après regroupe trois câbles de structure sensiblement identique, comprenant une couche isolante obtenue à partir de la composition polymère du tableau 1.
  • Plus particulièrement, les câbles 1 à 3 du tableau 2 comprennent :
    - deux conducteurs électriques entourés respectivement par une isolation bicouche, ladite isolation bicouche comprenant une couche isolante interne selon l'invention obtenue à partir de la composition polymère du tableau 1,
    - un élément de bourrage entourant les deux conducteurs électriques isolés, et
    - une gaine de protection du type tubante entourant les deux conducteurs électriques isolés ainsi que l'élément de bourrage. Tableau 2
    Câble 1 Câble 2 Câble 3
    Nombre de conducteurs électriques isolés 2 2 2
    Section d'un conducteur électrique en cuivre (mm2) 1,5 1,5 1,5
    Couche interne / Epaisseur (mm) Composition selon tableau 1 / 0,49 Composition selon tableau 1 / 0,50 Composition selon tableau 1 / 0,50
    Couche externe / Epaisseur (mm) HFFR1 / 0,49 HFFR1 / 0,50 HFFR1 / 0,50
    Epaisseur totale (mm) de l'isolant 0,98 1,00 1,00
    Elément de bourrage Oui : HFFR2 Oui : HFFR2 Oui : HFFR2
    Epaisseur (mm) de la gaine de protection tubante HFFR3 1,0 0,7 1,0
    Diamètre extérieur du câble électrique 3,32 3,36 3,36
    Résultat du test EN50200 (min) 120 120 120
    Test NF C 32-070 CR1 (2001) OK OK OK
  • L'origine des éléments rassemblés dans le tableau 2 est la suivante :
    • HFFR1 est une couche extrudée réticulée HFFR à base de polyoléfine, obtenue à partir de la référence SX522 commercialisée par la société AEI ;
    • HFFR2 est un élément de bourrage extrudé HFFR à base de polyoléfine(s) chargée(s), obtenu à partir de la référence FR4890 commercialisée par la société Borealis ; et
    • HFFR3 est une gaine extrudée HFFR à base de polyoléfine(s) chargée(s), obtenue à partir de la référence ECCOH 5860 commercialisée par la société Polyone.
  • Le tableau 3 ci-après regroupe deux câbles de structure sensiblement identique, comprenant une couche isolante obtenue à partir de la composition polymère du tableau 1.
  • Plus particulièrement, les câbles 4 et 5 du tableau 3 comprennent :
    - dix paires de conducteurs électriques (i.e. vingt conducteurs électriques), chaque conducteur électrique étant entouré par une isolation bicouche, ladite isolation bicouche comprenant une couche isolante interne selon l'invention obtenue à partir de la composition polymère du tableau 1,
    - une gaine de protection du type tubante entourant les vingt conducteurs électriques isolés, et
    - des espaces vides ménagés entre la gaine de protection et les conducteurs électriques isolés. Tableau 3
    Câble 4 Câble 5
    Nombre de conducteurs électriques isolés 20 20
    Section d'un conducteur électrique en cuivre (mm2) 1,0 1,0
    Couche interne / Epaisseur (mm) Composition selon tableau 1 / 0,40 Composition selon tableau 1 / 0,40
    Couche externe HFFR4 / 0,18 HFFR4 / 0,15
    Epaisseur totale (mm) de l'isolant 0,58 0,55
    Elément de bourrage Non Non
    Epaisseur (mm) de la gaine de protection tubante HFFR5 1,52 1,82
    Diamètre extérieur du câble électrique 17,00 17,39
    Résultat du test EN50200 (min) 121 121
    Test EN50200 (2006) OK OK
  • L'origine des éléments rassemblés dans le tableau 3 est la suivante :
    • HFFR4 est une couche extrudée réticulée HFFR à base de polyoléfine(s) chargée(s), obtenue à partir de la référence Casico FR 4802 commercialisée par la société Borealis ; et
    • HFFR5 est une gaine extrudée HFFR à base de polyoléfine(s), obtenue à partir de la référence Megolon S-540 commercialisée par la société Alphagary.
    Procédé de préparation
  • Dans un premier temps, la composition polymère du tableau 1 est extrudée, à l'aide d'une extrudeuse monovis classique, autour de chaque conducteur électrique, formant ainsi la couche interne de l'isolation bicouche.
  • Le profil de température va de 90 à 200 °C, et l'extrudeuse comporte huit zones de chauffe.
  • Dans un second temps, la couche externe de l'isolation bicouche de chaque conducteur électrique est extrudée classiquement autour de couche interne.
  • L'isolation bicouche peut être extrudée en deux étapes successives (extrusion dite « en tandem »), mais elle peut également être extrudée par co-extrusion (une seule et même tête d'extrusion).
  • Dans un troisième temps, le reste des éléments constitutifs des câbles 1 à 5 est extrudé successivement, à savoir :
    • l'élément de bourrage lorsqu'il existe, et
    • la gaine de protection.
    Test utilisé
  • Les câbles 1 à 3 sont soumis au test selon la norme NF C 32-070 CR1 (2001), les résultats étant rassemblés dans le tableau 2. La norme NF C 32-070 CR1 (2001) indique notamment un seuil de résistance au feu de 65 minutes (min) pour valider la performance.
  • Les câbles 4 et 5 sont soumis au test selon la norme EN50200 (2006), les résultats étant rassemblés dans le tableau 3. La norme EN50200 (2006) indique notamment un seuil de résistance au feu de 120 minutes (min) pour valider la performance.
  • Les résultats montrent clairement qu'un câble comprenant la couche isolante de l'invention, quelle que soit sa structure, permet de satisfaire avantageusement différentes normes de résistance au feu, notamment les normes NF C 32-070 CR1 (2001) et EN50200 (2006), en présentant une résistance au feu significative.

Claims (16)

  1. Câble comprenant au moins un élément conducteur allongé (1) entouré par au moins une couche isolante (2, 2a) obtenue à partir d'une composition polymère comprenant un matériau polymère et un cocktail de charges, caractérisé en ce que le cocktail de charges comprend:
    - un premier silicate,
    - un deuxième silicate, le deuxième silicate étant différent du premier silicate,
    - un troisième silicate, le troisième silicate étant différent du premier silicate et du deuxième silicate, et
    - un oxyde d'un métal alcalino-terreux, et
    en ce que le cocktail de charges comprend de 20 à 40 % en poids dudit oxyde d'un métal alcalino-terreux, par rapport au poids total de cocktail de charges dans la composition polymère.
  2. Câble selon la revendication 1, caractérisé en ce que le cocktail de charges comprend, par rapport au poids total de cocktail de charges :
    - de 20 à 40 % en poids de premier silicate,
    - de 20 à 40 % en poids de deuxième silicate,
    - de 5 à 30 % en poids de troisième silicate, et
    - de 20 à 40 % en poids d'oxyde d'un métal alcalino-terreux.
  3. Câble selon la revendication 1 ou 2, caractérisé en ce que le premier silicate est un phyllosilicate.
  4. Câble selon l'une quelconque des revendications précédentes, caractérisé en ce que le deuxième silicate est un composé comprenant du silicate de magnésium.
  5. Câble selon l'une quelconque des revendications précédentes, caractérisé en ce que le troisième silicate est un composé comprenant du silicate d'aluminium.
  6. Câble selon l'une quelconque des revendications précédentes, caractérisé en ce que l'oxyde d'un métal alcalino-terreux a une pureté (par calcination) d'au moins 96,0%, et de préférence d'au moins 98,0%.
  7. Câble selon l'une quelconque des revendications précédentes, caractérisé en ce que l'oxyde d'un métal alcalino-terreux est de l'oxyde de magnésium (MgO).
  8. Câble selon l'une quelconque des revendications précédentes, caractérisé en ce que la composition polymère comprend au moins 30% en poids dudit cocktail de charges par rapport au poids total de la composition polymère.
  9. Câble selon l'une quelconque des revendications précédentes, caractérisé en ce que le matériau polymère comprend un ou plusieurs polymère(s) d'éthylène.
  10. Câble selon l'une quelconque des revendications précédentes, caractérisé en ce que la composition polymère comprend au moins 30% en poids dudit matériau polymère par rapport au poids total de la composition.
  11. Câble selon l'une quelconque des revendications précédentes, caractérisé en ce que la composition polymère a une viscosité Mooney d'au moins 50.
  12. Câble selon l'une quelconque des revendications précédentes, caractérisé en ce que la couche isolante est une couche non réticulée.
  13. Câble selon l'une quelconque des revendications précédentes, caractérisé en ce que la couche isolante est une couche électriquement isolante.
  14. Câble selon l'une quelconque des revendications précédentes, caractérisé en ce que la couche isolante est directement en contact physique avec l'élément conducteur allongé.
  15. Câble selon l'une quelconque des revendications précédentes, caractérisé en ce que le câble comprend au moins deux éléments conducteurs allongés, chaque élément conducteur allongé étant entouré par au moins la couche isolante.
  16. Câble selon l'une quelconque des revendications précédentes, caractérisé en ce que le câble comprend en outre une gaine de protection (3) entourant un ou plusieurs élément(s) conducteur(s) allongé(s) isolé(s).
EP16829295.1A 2015-12-29 2016-12-29 Câble ayant une couche isolante résistante au feu Active EP3398194B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1563436A FR3046288B1 (fr) 2015-12-29 2015-12-29 Couche isolante resistante au feu pour cable
PCT/FR2016/053679 WO2017115052A1 (fr) 2015-12-29 2016-12-29 Couche isolante résistante au feu pour câble

Publications (2)

Publication Number Publication Date
EP3398194A1 EP3398194A1 (fr) 2018-11-07
EP3398194B1 true EP3398194B1 (fr) 2021-06-16

Family

ID=55752464

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16829295.1A Active EP3398194B1 (fr) 2015-12-29 2016-12-29 Câble ayant une couche isolante résistante au feu

Country Status (4)

Country Link
EP (1) EP3398194B1 (fr)
ES (1) ES2881290T3 (fr)
FR (1) FR3046288B1 (fr)
WO (1) WO2017115052A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3098636B1 (fr) * 2019-07-12 2023-10-13 Nexans Câble comprenant une couche résistante au feu
FR3118725B1 (fr) * 2021-01-14 2023-04-14 Nexans Câble armé résistant au feu avec une limitation de la projection de matières incandescentes
FR3119484A1 (fr) * 2021-02-03 2022-08-05 Nexans Câble électrique présentant une conductivité thermique améliorée

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI322176B (en) * 2002-10-17 2010-03-21 Polymers Australia Pty Ltd Fire resistant compositions
FR2946789B1 (fr) * 2009-06-11 2017-01-13 Nexans Cable electrique apte a assurer la continuite de distribution electrique en cas d'incendie.
KR102033211B1 (ko) * 2013-06-27 2019-10-16 엘켐 실리콘즈 프랑스 에스에이에스 특히 전선 또는 전기 케이블의 제조에 사용하기 위한 고온-가황성 폴리오가노실록산 조성물

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
ES2881290T3 (es) 2021-11-29
EP3398194A1 (fr) 2018-11-07
FR3046288A1 (fr) 2017-06-30
WO2017115052A1 (fr) 2017-07-06
FR3046288B1 (fr) 2018-04-27

Similar Documents

Publication Publication Date Title
EP2224459B1 (fr) Câble électrique à haute tension
EP2441076B1 (fr) Câble électrique apte à assurer la continuité de distribution électrique en cas d'incendie
EP1911044B1 (fr) Cable de securite resistant au feu, sensiblement plat
EP3398194B1 (fr) Câble ayant une couche isolante résistante au feu
WO2007014983A1 (fr) Cable de securite resistant au feu a une seule enveloppe isolante
FR3006494A1 (fr) Dispositif electrique a moyenne ou haute tension
EP2346931B1 (fr) Cable electrique resistant au feu
EP2319053B1 (fr) Composition ceramisable pour cable d'energie et/ou de telecommunication
EP3404673B1 (fr) Cable resistant au feu
KR102499648B1 (ko) 초고압 직류 전력케이블의 중간접속시스템
EP3764372A1 (fr) Câble comprenant une couche résistante au feu
EP2862896B1 (fr) Câble d'énergie et/ou de télécommunication comprenant une couche polymère résistante aux rayures
WO2017153658A1 (fr) Câble électrique destiné à être enterré
FR3102016A1 (fr) Accessoire pour câble à rigidité diélectrique améliorée
EP2498264B1 (fr) Câble électrique à moyenne ou haute tension
EP2535901B1 (fr) Câble moyenne ou haute tension avec gaine polyoléfine contenant des charges minérales
EP3338286A1 (fr) Gaine de protection réfléchissante pour câble
EP3544025A1 (fr) Câble électrique comprenant une couche polymérique facilement pelable
EP3799079A1 (fr) Couche réticulée pour câble
FR3029004A1 (fr) Cable electrique avec une emissivite amelioree

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180730

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190812

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1261149

Country of ref document: HK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210113

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016059470

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1403009

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210916

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1403009

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210616

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210616

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2881290

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20211129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210916

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210917

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211018

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016059470

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

26N No opposition filed

Effective date: 20220317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211229

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211229

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20221222

Year of fee payment: 7

Ref country code: DE

Payment date: 20221213

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20221221

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230228

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20161229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616