EP3377773B1 - Rotor for a centrifugal turbocompressor - Google Patents

Rotor for a centrifugal turbocompressor Download PDF

Info

Publication number
EP3377773B1
EP3377773B1 EP17700651.7A EP17700651A EP3377773B1 EP 3377773 B1 EP3377773 B1 EP 3377773B1 EP 17700651 A EP17700651 A EP 17700651A EP 3377773 B1 EP3377773 B1 EP 3377773B1
Authority
EP
European Patent Office
Prior art keywords
blade
track
impeller
imp
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17700651.7A
Other languages
German (de)
French (fr)
Other versions
EP3377773A1 (en
Inventor
Christian Woiczinski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Global GmbH and Co KG
Original Assignee
Siemens Energy Global GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Energy Global GmbH and Co KG filed Critical Siemens Energy Global GmbH and Co KG
Publication of EP3377773A1 publication Critical patent/EP3377773A1/en
Application granted granted Critical
Publication of EP3377773B1 publication Critical patent/EP3377773B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/284Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/04Blade-carrying members, e.g. rotors for radial-flow machines or engines
    • F01D5/043Blade-carrying members, e.g. rotors for radial-flow machines or engines of the axial inlet- radial outlet, or vice versa, type
    • F01D5/048Form or construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/04Units comprising pumps and their driving means the pump being fluid-driven
    • F04D25/045Units comprising pumps and their driving means the pump being fluid-driven the pump wheel carrying the fluid driving means, e.g. turbine blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • F04D29/444Bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape
    • F05D2250/71Shape curved
    • F05D2250/713Shape curved inflexed

Definitions

  • the invention relates to an impeller of a turbo compressor, for rotation about an axis, comprising an inlet cross section for the essentially axial inflow of a process fluid into the impeller, comprising an outlet cross section for the essentially radial exit of the process fluid from the impeller, comprising a wheel disk which has a hub-side deflection contour defined from the axial flow direction to the radial flow direction, comprising blades attached to the wheel disc defining flow channels from a leading edge to a trailing edge circumferentially over at least a portion of the flow path of the process fluid through the impeller, each blade at a span end edge proximal to the wheel disc defines a linear inner track extending in the direction of flow, such that on both sides of the inner track there are orthogonal equal distances to a blade surface on a pressure side or a suction side of the blade, with the blade defining a linear outer track extending in the direction of flow at an end edge of extension distal to the wheel disk, such that on both sides of the outer
  • turbo compressors are already from the DE 10 2013 207 220 B3 known.
  • This turbo compressor type will also referred to as a centrifugal compressor, because the process fluid being transported is accelerated radially outwards in the impeller as a result of centrifugal forces.
  • mechanical energy is added to the gas or the process fluid for the purpose of compression by means of rotating blading of the impeller.
  • the sucked-in process fluid is decelerated relative to the movement of the impeller within the flow channels of the impeller formed between the individual blades and is thus compressed to a higher pressure level in accordance with the physical laws of fluid mechanics. Since the impeller moves at a high speed, the fluid, after flowing out of the impeller, is further decelerated in the radial direction in a subsequent diffuser and is additionally compressed in this way in accordance with Bernoulli's laws.
  • the documents EP 2 020 509 A2 , EP 2189 663 A2 , JP H02 37297 U each show a generic prior art.
  • the JP 2004 027894 A shows a three-dimensional impeller blade design of a centrifugal turbomachine.
  • the JP 2014 109193 A shows an impeller of a turbo compressor with the features of the preamble of claim 1.
  • the 3-dimensional figure extending beyond the trailing edge, wheel disc and cover disc and consisting of a pressure side and a suction side is referred to as the definition surface.
  • This definition area of the blade which is described by means of the angular distribution on the wheel disk and the cover disk and the blade thickness distribution, is used for the purpose of order processing. Within certain limits, sub-areas are extracted from this definition area - depending on the wheel disc and cover disc geometry - and used in an individual impeller design.
  • Geometric information such as axial, radial, tangential or circumferential direction always refers to an axis of rotation of the impeller, unless the reference is stated otherwise.
  • the invention has set itself the task of further developing an impeller for a turbo compressor in such a way that the efficiency is improved compared to conventional impellers for the same purpose.
  • relative blade lengths chosen by the invention allows the positions of the inner track and the outer track to be related in terms of their respective relative distances or proximity to the leading edge and trailing edge.
  • the invention offers an advantageous geometry of impellers both for so-called closed impellers (impellers with a cover disk) and for so-called open impellers that do not have a cover disk.
  • the preferred embodiment of the invention are impellers having a shroud defining the flow passages adjacent the blade span edges and attached to the blades in the region of the blade span edges.
  • the explanations that are made here for closed impellers and in part refer to a shroud also apply to open impellers that do not have a shroud.
  • the linear inner track extends along an end edge of the vanes that extends distally from the wheel disk between the leading edge and the trailing edge.
  • the open flow channels of the open impeller adjoin a stator contour, closing the openings distal to the wheel disc, so that the flow-related boundary conditions are similar for the purposes of the invention.
  • the geometry according to the invention is particularly advantageous when the progression of the meridional angle falls monotonously between 10% and 90% of the relative blade length of the outer track.
  • the findings of the invention indicate that the efficiency of the impeller can be increased if, in contrast to the inner track, the outer track does not have a local extremum in the angle profile along the relative blade length.
  • the maximum difference between the inner track and the outer track for a specific position along the relative blade lengths of the meridional angle is between 10° and 25°. It is the particular finding of the invention that the meridional angle distribution on the inner track and the outer track differ significantly. With the maximum In this context, difference does not mean the highest possible difference, but rather the highest difference that actually occurs. The invention therefore provides that there is an actual maximum difference of between 10° and 25° between the inner track and the outer track.
  • the aerodynamic efficiency is particularly advantageous if, as provided according to the invention, the location of the maximum difference between the inner track and the outer track is in the range between 15% and 45% of the relative blade length.
  • the trailing edge of the blades is not inclined relative to a meridional plane. Accordingly, it is proposed that the trailing edge of the blade encloses an angle with a meridional plane of between 0° and 5°.
  • the invention provides that the blade leading edge forms an angle of between 35° to 45°, preferably 41°, with a radial plane. Accordingly, the leading edge of the blade is set back somewhat compared to the inflow into the impeller.
  • a particularly advantageous development of the invention provides that the course of the meridional angle of the inner track has a turning point between 40% and 80% of the relative blade length.
  • the geometry recognized as being advantageous in this way contributes to a further improvement in the efficiency of the flow mechanics on the blade of the impeller according to the invention.
  • the profile of a blade thickness distribution of the outer track should preferably be monotonically increasing in the direction of flow.
  • the blade thickness distribution on the inner track can be chosen to be essentially constant.
  • figure 1 shows an axial top view of an impeller IMP according to the invention, comprising a cover disk COV, blades B and a wheel disk HW.
  • the axis of rotation X is indicated, about which the impeller rotates along a direction of rotation ROT during operation.
  • a meridional section II-II along a meridional plane MPL is indicated in a radial direction, which in figure 2 is reproduced.
  • the individual blades B each have a pressure side PRS and a suction side SCS. in the in figure 1 In the axial top view shown, the viewer can see the leading edge LE of the blade B.
  • each blade B has a linear inner track IT extending in the direction of flow on an end edge IE that is proximal to the wheel disk HW, in such a way that the same orthogonal distances to a blade surface on the pressure side PRS or the suction side SCS of the blade B are present on both sides of the inner track.
  • Each blade B has a line extending in the direction of flow on an end edge OE that is distal to the wheel disk HW Outer track on, such that on both sides of the outer track are orthogonally equal distances to the blade surface on the pressure side PRS and to the suction side SCS.
  • These corresponding inner tracks and outer tracks on the blades can also be defined in such a way that these tracks are each the set of center points of circles inscribed in the blade profiles.
  • the figure 3 shows the course of the meridional angle for the inner track IT and the outer track OT in the upper part of the diagram as a function of the relative blade length BLL and in the lower part of the diagram the derivation of the meridional angle MA ⁇ according to the relative blade length BL for the inner track IT and the outer track OT.
  • the blade leading edge LE forms an angle LEA of 41° with a radial plane RP.
  • leading edge of shovel B is set back a little bit.
  • the diagram of figure 4 shows the blade thickness distribution as a curve over the relative blade length BLL for the inner track IT and the outer track OT.
  • FIG. 5 shows details of such a sharpening on a leading edge of a wheel disk or cover disk in a schematic circumferential tangential section from a radial perspective.
  • the example shown there is dimensioned as follows: parameter wheel disk cover disk SDS 2.42mm SRS 3.73mm LZ 11.2mm 12.0mm LU 4.7mm 2.5mm SU 3.1mm 1.8mm
  • FIGs of Figures 3 and 4 each show a curve that continues on both sides beyond the 0% or 100% position of the relative blade length BLL.
  • This is a definition surface that is bounded by the inner and outer extension end edges OE, IE, the leading edge LE and the trailing edge TE of the blade B in the specific impeller.
  • the findings according to the invention regarding the distribution of the meridional angle MA for a blade B, also in connection with the blade thickness distribution for the inner track IT and the outer track OT, apply essentially independently of the section from this definition area provided certain limits are not exceeded. Within limits, this area can also be extrapolated.
  • the description of the blades B by means of the distribution of the meridional angle MA and the thickness distribution over the extent of the blades B in the direction of flow or the relative blade length BLL leads to a three-dimensional surface when the blade profiles spanned by the inner track and the outer track are connected by means of the thickness distribution by means of straight lines in space, which can be produced by means of a flank milling process.
  • the three-dimensional blade spanned by means of so-called control lines between the outer and inner blade profiles is fundamentally preferred, with a geometry other than a straight line also being conceivable in accordance with the invention, for example an arc defined by a polygon or splines and vertices.
  • the design of the blade B of an impeller IMP according to the invention is as follows figure 3 suggest that between about 10% and 90% of the relative blade length BLL there is a local extremum LEX of the meridional angle MA of the inner track IT.
  • This local extremum LEX is preferably between 25% and 45% of the relative blade length BLL.
  • there is a difference in the meridional angle MA between the inner track IT and the outer track OT which increases to a maximum difference DLTM along the relative blade length, this actual maximum difference being between 10° and 25°.
  • this maximum difference DLTM occurs in the range between 15% and 45% of the relative blade length BLL.
  • the mean extent of the trailing edge TE of the blade B is at an angle with a meridional plane MPL of about 0° includes or is parallel to this meridional plane MPL.
  • This angular deviation from the meridional plane MPL of the trailing edge TE should preferably be less than 5°.
  • Another particularly preferred embodiment of the invention shown in the exemplary embodiment provides that the profile of the meridional angle MA of the inner track IT has a turning point TP in the range between 40% and 80% of the relative blade length BLL.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

Die Erfindung betrifft ein Laufrad eines Turboverdichters, zur Rotation um eine Achse, umfassend einen Eintrittsquerschnitt zur im wesentlichen axialen Einströmung eines Prozessfluids in das Laufrad, umfassend einen Austrittsquerschnitt zum im wesentlichen radialen Austritt des Prozessfluids aus dem Laufrad, umfassend eine Radscheibe, die eine nabenseitige Umlenkkontur von der axialen Strömungsrichtung in die radiale Strömungsrichtung definiert, umfassend an der Radscheibe angebrachte Schaufeln, die zumindest über einen Teil des Strömungspfades des Prozessfluids durch das Laufrad Strömungskanäle von einer Eintrittskante bis zu einer Austrittskante in Umfangsrichtung definieren, wobei jede Schaufel an einer zur Radscheibe proximalen Erstreckungsendkante eine in Strömungsrichtung sich erstreckende linienhafte Innenspur definiert, derart, dass beidseitig der Innenspur orthogonal gleiche Abstände zu einer Schaufeloberfläche auf einer Druckseite bzw. einer Saugseite der Schaufel vorliegen, wobei die Schaufel an einer zur Radscheibe distalen Erstreckungsendkante eine sich in Strömungsrichtung erstreckende linienhafte Außenspur definiert, derart, dass beidseitig der Außenspur orthogonal gleiche Abstände zu der Schaufeloberfläche auf der Druckseite und zu der Saugseite der Schaufel vorliegen, wobei eine relative Schaufellänge für jede Position auf einer Spur, die eine Innenspur oder Außenspur ist, jeweils definiert sind als Anteil der stromaufwärts dieser Position befindlichen Schaufellänge zu der gesamten Schaufellänge der betreffenden Spur, nämlich Innenspur oder Außenspur, wobei ein Meridionalwinkel für jede Position einer Spur definiert ist als der stromaufwärts eingeschlossene Winkel zwischen einer Meridionalebene durch diese Position und einer Tangente an der Spur.The invention relates to an impeller of a turbo compressor, for rotation about an axis, comprising an inlet cross section for the essentially axial inflow of a process fluid into the impeller, comprising an outlet cross section for the essentially radial exit of the process fluid from the impeller, comprising a wheel disk which has a hub-side deflection contour defined from the axial flow direction to the radial flow direction, comprising blades attached to the wheel disc defining flow channels from a leading edge to a trailing edge circumferentially over at least a portion of the flow path of the process fluid through the impeller, each blade at a span end edge proximal to the wheel disc defines a linear inner track extending in the direction of flow, such that on both sides of the inner track there are orthogonal equal distances to a blade surface on a pressure side or a suction side of the blade, with the blade defining a linear outer track extending in the direction of flow at an end edge of extension distal to the wheel disk, such that on both sides of the outer track orthogonally equal distances to the blade surface on the pressure side and to the suction side of the blade are present, wherein a relative blade length for each position on a track that is an inner track or outer track, are respectively defined as the fraction of the upstream of that position blade length located to the total blade length of the relevant track, namely inner track or outer track, where a meridional angle for each position of a track is defined as the upstream included angle between a meridional plane through that position and a tangent to the track.

Gattungsgemäße Turboverdichter sind bereits aus der
DE 10 2013 207 220 B3 bekannt. Dieser Turboverdichtertyp wird auch als Zentrifugalverdichter bezeichnet, weil das beförderte Prozessfluid in Folge von Fliehkräften nach radial außen in dem Laufrad beschleunigt wird. Grundsätzlich wird dem Gas bzw. dem Prozessfluid zum Zwecke der Verdichtung mittels einer rotierenden Beschaufelung des Laufrades mechanische Energie zugefügt. Das angesaugte Prozessfluid wird innerhalb der zwischen den einzelnen Schaufeln ausgebildeten Strömungskanäle des Laufrades relativ zur Bewegung des Laufrades verzögert und somit gemäß den physikalischen Gesetzen der Strömungsmechanik auf ein höheres Druckniveau verdichtet. Da sich das Laufrad mit einer hohen Drehzahl bewegt, wird das Fluid nach Abströmung aus dem Laufrad in radialer Richtung in einem anschließenden Diffusor weiter verzögert und gemäß der Gesetze von Bernoulli auf diese Weise zusätzlich verdichtet.
Generic turbo compressors are already from the
DE 10 2013 207 220 B3 known. This turbo compressor type will Also referred to as a centrifugal compressor, because the process fluid being transported is accelerated radially outwards in the impeller as a result of centrifugal forces. In principle, mechanical energy is added to the gas or the process fluid for the purpose of compression by means of rotating blading of the impeller. The sucked-in process fluid is decelerated relative to the movement of the impeller within the flow channels of the impeller formed between the individual blades and is thus compressed to a higher pressure level in accordance with the physical laws of fluid mechanics. Since the impeller moves at a high speed, the fluid, after flowing out of the impeller, is further decelerated in the radial direction in a subsequent diffuser and is additionally compressed in this way in accordance with Bernoulli's laws.

Die Dokumente EP 2 020 509 A2 , EP 2189 663 A2 , JP H02 37297 U zeigen jeweils einen gattungsgemäßen Stand der Technik. Die JP 2004 027894 A zeigt eine dreidimensionale Laufradschaufelgestaltung einer Radialturbomaschine. Die JP 2014 109193 A zeigt ein Laufrad eines Turboverdichters mit den Merkmalen der Präambel von Anspruch 1.The documents EP 2 020 509 A2 , EP 2189 663 A2 , JP H02 37297 U each show a generic prior art. The JP 2004 027894 A shows a three-dimensional impeller blade design of a centrifugal turbomachine. The JP 2014 109193 A shows an impeller of a turbo compressor with the features of the preamble of claim 1.

In derartigen Fluidenergiemaschinen treten stets unvermeidbare strömungsmechanische Verluste auf. Die Verringerung dieser Verluste ist ein Optimierungsproblem, in dessen Bearbeitung darauf geachtet wird, dass insbesondere keine Ablösungen der Strömung von der Schaufel bzw. sonstiger Laufradoberflächen auftreten. Das Ergebnis dieser Optimierungsaufgabe wird in der Regel bzgl. der Schaufel in einer sogenannten Winkelverteilung und Dickenverteilung über die Lauflänge der Schaufel an Rad- und Deckscheibe beschrieben. Diese zweidimensionalen Profile an der Rad- und Deckscheibe werden geometrisch verbunden, beispielweise mittels Geraden, die auch als "Regelgeraden" bezeichnet werden. Die im Ergebnis erhaltene dreidimensionale Figur kann im Flankenfräsverfahren hergestellt werden. Um zu vermeiden, dass ein derartiger Entwurfsaufwand für jede nur geringfügig andere Verdichtungsaufgabe vollständig abgearbeitet werden muss, wird eine derartige Schaufel geometrisch zunächst größer entworfen, als diese in der Regel eingesetzt wird. Diese, über die Grenzen von Eintrittskante, Austrittskante, Radscheibe und Deckscheibe hinausgehende 3-dimensionale Figur bestehend aus einer Druckseite und einer Saugseite wird als Definitionsfläche bezeichnet. Zum Zwecke der Auftragsbearbeitung wird diese Definitionsfläche der Schaufel verwendet, die mittels der Winkelverteilung an der Radscheibe und der Deckscheibe und der Schaufeldickenverteilung beschrieben ist. Aus dieser Definitionsfläche werden in bestimmten Grenzen Teilflächen - je nach Radscheiben- und Deckscheibengeometrie - extrahiert und in einem individuellen Laufradentwurf verwendet.In such fluid energy machines, unavoidable flow-mechanical losses always occur. The reduction of these losses is an optimization problem, in the processing of which care is taken to ensure that the flow does not detach from the blade or other impeller surfaces. The result of this optimization task is usually described with regard to the blade in a so-called angle distribution and thickness distribution over the running length of the blade on the wheel and cover disc. These two-dimensional profiles on the wheel and cover disk are connected geometrically, for example by means of straight lines, which are also referred to as "rule lines". The three-dimensional figure obtained as a result can be produced using the flank milling method. In order to avoid such a design effort having to be processed completely for every only slightly different compression task, such a blade is initially designed geometrically larger than it is usually is used. These, beyond the limits of leading edge, The 3-dimensional figure extending beyond the trailing edge, wheel disc and cover disc and consisting of a pressure side and a suction side is referred to as the definition surface. This definition area of the blade, which is described by means of the angular distribution on the wheel disk and the cover disk and the blade thickness distribution, is used for the purpose of order processing. Within certain limits, sub-areas are extracted from this definition area - depending on the wheel disc and cover disc geometry - and used in an individual impeller design.

Geometrische Angaben, wie axial, radial, tangential oder Umfangsrichtung beziehen sich stets auf eine Rotationsachse des Laufrades, sofern die Bezugnahme nicht anders angegeben ist.Geometric information such as axial, radial, tangential or circumferential direction always refers to an axis of rotation of the impeller, unless the reference is stated otherwise.

Die Erfindung hat es sich zur Aufgabe gemacht, ein Laufrad für einen Turboverdichter derart weiterzubilden, dass der Wirkungsgrad gegenüber herkömmlichen Laufrädern für gleichen Einsatzzweck verbessert ist.The invention has set itself the task of further developing an impeller for a turbo compressor in such a way that the efficiency is improved compared to conventional impellers for the same purpose.

Zur Lösung der erfindungsgemäßen Aufgabe wird vorgeschlagen, dass im Bereich zwischen 10% bis 90% der relativen Schaufellänge ein lokales Extremum des Meridionalwinkels der Innenspur vorliegt und dass die Schaufeleintrittskante einen Winkel zwischen 35° bis 45° mit einer Radialebene ausbildet.To achieve the object according to the invention, it is proposed that there be a local extremum of the meridional angle of the inner track in the range between 10% and 90% of the relative blade length and that the blade leading edge forms an angle of between 35° and 45° with a radial plane.

Es hat sich gezeigt, dass die von der Erfindung erkannte vorteilhafte Geometrie der Schaufeln eines Laufrades zu einem besonders guten Wirkungsgrad führt, weil insbesondere eine nur geringe Ablösung im Vergleich zu herkömmlichen Geometrien des Prozessfluids im Betrieb von den Laufradoberflächen erfolgt.It has been shown that the advantageous geometry of the blades of an impeller recognized by the invention leads to a particularly good degree of efficiency because, in particular, there is only little detachment of the process fluid from the impeller surfaces during operation compared to conventional geometries.

Die von der Erfindung gewählte Definition von relativen Schaufellängen ermöglicht die In-Bezug-Setzung von Positionen der Innenspur und der Außenspur hinsichtlich der jeweiligen verhältnismäßigen Abstände bzw. Nähe zu der Eintrittskante und Austrittskante.The definition of relative blade lengths chosen by the invention allows the positions of the inner track and the outer track to be related in terms of their respective relative distances or proximity to the leading edge and trailing edge.

Grundsätzlich bietet die Erfindung eine vorteilhafte Geometrie von Laufrädern sowohl für sogenannte geschlossene Laufräder (Laufräder mit einer Deckscheibe) und für sogenannte offene Laufräder, die keine Deckscheibe aufweisen. Die bevorzugte Ausführungsform der Erfindung sind Laufräder mit einer Deckscheibe, die die Strömungskanäle an den Erstreckungsendkanten der Schaufeln angrenzend definiert und im Bereich der Erstreckungsendkanten der Schaufeln an den Schaufeln angebracht wird. Die Ausführungen, die hier für geschlossene Laufräder gemacht sind und sich teilweise auf eine Deckscheibe beziehen, gelten auch für offene Laufräder, die keine Deckscheibe aufweisen. Die linienhafte Innenspur erstreckt sich hierbei entlang einer von der Radscheibe aus distalen Erstreckungsendkante der Schaufeln zwischen der Eintrittskante und der Austrittskante. Die offenen Strömungskanäle des offenen Laufrades grenzen im Betrieb an eine Statorkontur die zur Radscheibe distale Öffnungen verschließend an, so dass die strömungstechnischen Randbedingungen für Belange der Erfindung ähnlich sind.In principle, the invention offers an advantageous geometry of impellers both for so-called closed impellers (impellers with a cover disk) and for so-called open impellers that do not have a cover disk. The preferred embodiment of the invention are impellers having a shroud defining the flow passages adjacent the blade span edges and attached to the blades in the region of the blade span edges. The explanations that are made here for closed impellers and in part refer to a shroud also apply to open impellers that do not have a shroud. The linear inner track extends along an end edge of the vanes that extends distally from the wheel disk between the leading edge and the trailing edge. During operation, the open flow channels of the open impeller adjoin a stator contour, closing the openings distal to the wheel disc, so that the flow-related boundary conditions are similar for the purposes of the invention.

Besonders vorteilhaft wird die erfindungsgemäße Geometrie, wenn der Verlauf des Meridionalwinkels zwischen 10% bis 90% der relativen Schaufellänge der Außenspur monoton fallend ist. Die Erkenntnisse der Erfindung weisen darauf hin, dass die Effizienz des Laufrades gesteigert werden kann, wenn im Gegensatz zu der Innenspur, die Außenspur kein lokales Extremum im Winkelverlauf entlang der relativen Schaufellänge aufweist.The geometry according to the invention is particularly advantageous when the progression of the meridional angle falls monotonously between 10% and 90% of the relative blade length of the outer track. The findings of the invention indicate that the efficiency of the impeller can be increased if, in contrast to the inner track, the outer track does not have a local extremum in the angle profile along the relative blade length.

Erfindungsgemäß ist vorgesehen, dass im Bereich zwischen 10% und 90% der relativen Schaufellängen die maximale Differenz zwischen der Innenspur und der Außenspur für eine bestimmte Position entlang der relativen Schaufellängen des Meridionalwinkels zwischen 10° und 25° beträgt. Hierbei ist es die besondere Erkenntnis der Erfindung, dass die Meridionalwinkelverteilung auf der Innenspur und der Außenspur sich signifikant unterscheiden. Mit der maximalen Differenz ist in diesem Zusammenhang nicht die höchst mögliche Differenz gemeint, sondern die höchste tatsächlich auftretende Differenz. Die Erfindung sieht also vor, dass eine tatsächliche maximale Differenz auftritt, die zwischen 10° und 25° zwischen der Innenspur und der Außenspur beträgt. Besonders vorteilhaft ist die strömungstechnische Effizienz, wenn wie erfindungsgemäß vorgesehen der Ort der maximalen Differenz zwischen Innenspur und Außenspur im Bereich zwischen 15% bis 45% der relativen Schaufellänge liegt.According to the invention, in the range between 10% and 90% of the relative blade lengths, the maximum difference between the inner track and the outer track for a specific position along the relative blade lengths of the meridional angle is between 10° and 25°. It is the particular finding of the invention that the meridional angle distribution on the inner track and the outer track differ significantly. With the maximum In this context, difference does not mean the highest possible difference, but rather the highest difference that actually occurs. The invention therefore provides that there is an actual maximum difference of between 10° and 25° between the inner track and the outer track. The aerodynamic efficiency is particularly advantageous if, as provided according to the invention, the location of the maximum difference between the inner track and the outer track is in the range between 15% and 45% of the relative blade length.

Eine andere vorteilhafte Weiterbildung der Erfindung sieht vor, dass die Austrittskante der Schaufeln jeweils gegenüber einer Meridionalebene nicht geneigt ist. Dementsprechend wird vorgeschlagen, dass die Austrittskante der Schaufel einen Winkel mit einer Meridionalebene zwischen 0° bis 5° einschließt. Die Sollvorgabe, dass die Austrittskante der Schaufel in einer Meridionalebene liegt, wird in der Fachwelt auch als rake = 0 bezeichnet.Another advantageous development of the invention provides that the trailing edge of the blades is not inclined relative to a meridional plane. Accordingly, it is proposed that the trailing edge of the blade encloses an angle with a meridional plane of between 0° and 5°. The target specification that the trailing edge of the blade lies in a meridional plane is also referred to as rake=0 in the technical world.

Die Erfindung sieht vor, dass die Schaufeleintrittskante einen Winkel zwischen 35°bis 45°, bevorzugt 41° mit einer Radialebene ausbildet. Die Eintrittskante der Schaufel befindet sich dementsprechend etwas zurückversetzt gegenüber der Einströmung in den Impeller.The invention provides that the blade leading edge forms an angle of between 35° to 45°, preferably 41°, with a radial plane. Accordingly, the leading edge of the blade is set back somewhat compared to the inflow into the impeller.

Eine besonders vorteilhafte Weiterbildung der Erfindung sieht vor, dass der Verlauf des Meridionalwinkels der Innenspur einen Wendepunkt zwischen 40% bis 80% der relativen Schaufellänge aufweist. Die in dieser Weise als vorteilhaft erkannte Geometrie trägt zur weiteren Effizienzverbesserung der Strömungsmechanik an der Schaufel des erfindungsgemäßen Laufrades bei.A particularly advantageous development of the invention provides that the course of the meridional angle of the inner track has a turning point between 40% and 80% of the relative blade length. The geometry recognized as being advantageous in this way contributes to a further improvement in the efficiency of the flow mechanics on the blade of the impeller according to the invention.

Es hat sich gezeigt, dass im Bereich zwischen 10% bis 90% der relativen Schaufellänge der Verlauf einer Schaufeldickenverteilung der Außenspur in Strömungsrichtung bevorzugt monoton steigend ausgebildet sein sollte. In einer weiteren vorteilhaften Weiterbildung kann die Schaufeldickenverteilung auf der Innenspur im Wesentlichen konstant gewählt werden.It has been shown that in the range between 10% and 90% of the relative blade length, the profile of a blade thickness distribution of the outer track should preferably be monotonically increasing in the direction of flow. In another beneficial In a further development, the blade thickness distribution on the inner track can be chosen to be essentially constant.

Im Folgenden sind einige vorteilhafte Ausgestaltungen der Erfindung aufgelistet (1.-8.), die einzeln oder beliebig aber fachmännisch sinnvoll miteinander kombiniert den Erfolg der Erfindung verbessern:

  1. 1. Eine andere vorteilhafte Weiterbildung der Erfindung sieht vor, dass der Meridionalwinkel der Außenspur sich im Definitionsbereich zwischen -20% (noch außerhalb der eigentlichen Schaufel) bis +20% um weniger als 5% ändert. Das heißt in anderen Worten, dass die Krümmung der Außenspur in diesem Bereich nahezu konstant ist.
  2. 2. Eine andere vorteilhafte Weiterbildung der Erfindung sieht vor, dass der Winkelverlauf der Außenspur kein ausgeprägtes lokales Extremum zeigt. Der Begriff "lokales Extremum" meint hier ein Extremum im mathematischen Sinne (also die 1. Ableitung der Winkelverteilung wird Null entspricht hier dem Begriff "lokales Extremum"). Der Meridionalwinkel kann bevorzugt am Schaufeleintritt maximal sein.
  3. 3. Eine andere vorteilhafte Weiterbildung der Erfindung sieht vor, dass ein "lokales Extremum" (gemeint hier ein Extremum im mathematischen Sinne (also die 1. Ableitung der Winkelverteilung wird Null entspricht hier dem Begriff "lokales Extremum")) im Bereich der Schaufelaustrittskante (95%-100% relativen Schaufellänge), bevorzugt unmittelbar an der Schaufelaustrittskante auftritt, so dass die Winkeländerung Null wird.
  4. 4. Eine andere vorteilhafte Weiterbildung der Erfindung sieht vor, dass der Bereich der größten Winkeländerung der Außenspur zwischen -20% und +20% liegt. Bevorzugt wird stromabwärts die Winkeländerung umgekehrt bzw. zurückgenommen. Auf diese Weise wird Last aus der Deckscheibenströmung herausgenommen, so dass im weiteren Verlauf Strömungsablösungen vermieden werden.
  5. 5. Eine andere vorteilhafte Weiterbildung der Erfindung sieht vor, dass ab ca. 70 % der meridionalen Erstreckung der Außenspur sich der Winkel nur noch um weniger als 5% bevorzugt weniger als 3% ändert.
  6. 6. Eine andere vorteilhafte Weiterbildung der Erfindung sieht vor, dass eine im Meridionalschnitt nach vorn geneigte Eintrittskante, mit 41° Neigung, dafür sorgt, dass sich die meridionalen Erstreckungen von Innen- und Außenspur nicht mehr so stark voneinander unterscheiden. Hierdurch wird die Strömung an Rad- und Deckscheibe gleichmäßiger belastet.
  7. 7. Eine andere vorteilhafte Weiterbildung der Erfindung sieht vor, dass der Meridionalwinkel der Außenspur, abgesehen vom identischen Winkel an der Schaufelaustrittskante, stets größer ist als der der Innenspur.
  8. 8. Eine andere vorteilhafte Weiterbildung der Erfindung sieht vor, dass die bevorzugte maximale Winkeldifferenz zwischen Innen- und Außenspur von 10°-25° im Bereich einer meridionalen Erstreckung von 25% - 35% vorliegt.
A number of advantageous configurations of the invention are listed below (1.-8.), which improve the success of the invention individually or in any desired but expertly meaningful combination with one another:
  1. 1. Another advantageous development of the invention provides that the meridional angle of the outer track changes by less than 5% in the definition range between -20% (still outside the actual blade) to +20%. In other words, this means that the curvature of the outer track is almost constant in this area.
  2. 2. Another advantageous development of the invention provides that the angular course of the outer track does not show any pronounced local extremum. The term "local extremum" here means an extremum in the mathematical sense (ie the 1st derivative of the angular distribution becomes zero here corresponds to the term "local extremum"). The meridional angle can preferably be maximum at the blade inlet.
  3. 3. Another advantageous development of the invention provides that a "local extremum" (meaning here an extremum in the mathematical sense (i.e. the 1st derivative of the angular distribution becomes zero corresponds here to the term "local extremum")) in the area of the blade trailing edge ( 95%-100% relative blade length), preferably occurs directly at the blade trailing edge, so that the change in angle becomes zero.
  4. 4. Another advantageous development of the invention provides that the area of the greatest change in angle of the outer track is between -20% and +20%. The change in angle is preferably reversed or withdrawn downstream. In this way, load is removed from the shroud flow taken out so that flow separations are avoided in the further course.
  5. 5. Another advantageous development of the invention provides that from about 70% of the meridional extension of the outer track, the angle changes by less than 5%, preferably less than 3%.
  6. 6. Another advantageous development of the invention provides that a leading edge inclined forwards in the meridional section, with an inclination of 41°, ensures that the meridional extensions of the inner and outer tracks no longer differ so greatly from one another. As a result, the flow at the wheel and cover disc is loaded more evenly.
  7. 7. Another advantageous development of the invention provides that the meridional angle of the outer track, apart from the identical angle at the blade trailing edge, is always greater than that of the inner track.
  8. 8. Another advantageous development of the invention provides that the preferred maximum angle difference between the inner and outer tracks of 10°-25° is in the area of a meridional extension of 25%-35%.

Im Folgenden ist die Erfindung anhand eines speziellen Ausführungsbeispiels unter Bezugnahme auf Zeichnungen und Diagramme näher verdeutlicht. Es zeigen:

Figur 1
eine Sicht auf ein erfindungsgemäßes Laufrad mit teilweise geschnittener Deckscheibe in axialer Richtung,
Figur 2
einen Meridionalschnitt entlang der Rotationsachse durch eine schematische Darstellung eines Laufrades gemäß dem Schnitt II-II in Figur 1,
Figur 3
in synoptischer Wiedergabe eine Meridionalwinkelverteilung entlang der relativen Schaufellänge sowie der Veränderung des Meridionalwinkels entlang der relativen Schaufellänge.
Figur 4
eine Schaufeldickenverteilung entlang der relativen Schaufellänge.
Figur 5
eine Detaildarstellung einer Eintrittskante als schematischer Umfangstangentialschnitt aus radialer Sicht.
The invention is explained in more detail below using a specific exemplary embodiment with reference to drawings and diagrams. Show it:
figure 1
a view of an impeller according to the invention with a partially cut cover disk in the axial direction,
figure 2
a meridional section along the axis of rotation through a schematic representation of an impeller according to section II-II in figure 1 ,
figure 3
a synoptic representation of a meridional angle distribution along the relative blade length and the change in the meridional angle along the relative blade length.
figure 4
a blade thickness distribution along the relative blade length.
figure 5
a detailed view of a leading edge as a schematic circumferential tangential section from a radial perspective.

Figur 1 zeigt eine axiale Draufsicht auf ein erfindungsgemä-ßes Laufrad IMP, umfassend eine Deckscheibe COV, Schaufeln B und eine Radscheibe HW. In der Mitte der Radscheibe HW ist die Drehachse X angegeben, um die sich das Laufrad im Betrieb entlang einer Rotationsrichtung ROT dreht. In eine Radialrichtung ist prinzipiell ein Meridionalschnitt II-II entlang einer Meridionalebene MPL angegeben, der in Figur 2 wiedergegeben ist. Die einzelnen Schaufeln B weisen jeweils eine Druckseite PRS und eine Saugseite SCS auf. In der in Figur 1 dargestellten axialen Draufsicht zeigt sich dem Betrachter die Eintrittskante LE der Schaufel B. Dort, wo die Deckscheibe COV in Figur 1 weggeschnitten ist, ist eine Außenspur OT strichpunktiert an der äußeren Erstreckungsendkante OE der Schaufel B wiedergegeben. Direkt an der Radscheibe HW an der inneren Erstreckungsendkante IE, die sich proximal zur Radscheibe HW befindet, ist ebenfalls strichpunktiert eine Innenspur IT dargestellt. Diese Sachverhalte lassen sich auch an der Figur 2 nachvollziehen. Jede Schaufel B weist an einer zur Radscheibe HW proximalen Erstreckungsendkante IE eine in Strömungsrichtung sich erstreckende linienhafte Innenspur IT auf, derart, dass beidseitig der Innenspur orthogonal gleiche Abstände zu einer Schaufeloberfläche auf der Druckseite PRS bzw. der Saugseite SCS der Schaufel B vorliegen. Jede Schaufel B weist an einer zur Radscheibe HW distalen Erstreckungsendkante OE eine sich in Strömungsrichtung erstreckende linienhafte Außenspur auf, derart, dass beidseitig der Außenspur orthogonal gleiche Abstände zu der Schaufeloberfläche auf der Druckseite PRS und zu der Saugseite SCS vorliegen. Diese entsprechenden Innenspuren und Außenspuren an den Schaufeln lassen sich auch derart definieren, dass diese Spuren jeweils die Menge der Mittelpunkte von in den Schaufelprofilen eingeschriebener Kreise sind. figure 1 shows an axial top view of an impeller IMP according to the invention, comprising a cover disk COV, blades B and a wheel disk HW. In the center of the wheel disk HW, the axis of rotation X is indicated, about which the impeller rotates along a direction of rotation ROT during operation. In principle, a meridional section II-II along a meridional plane MPL is indicated in a radial direction, which in figure 2 is reproduced. The individual blades B each have a pressure side PRS and a suction side SCS. in the in figure 1 In the axial top view shown, the viewer can see the leading edge LE of the blade B. There, where the cover disk COV in figure 1 is cut away, an outer trace OT is shown in phantom at the outer span end edge OE of blade B. An inner track IT is also shown in dot-dash lines directly on the wheel disk HW at the inner extension end edge IE, which is located proximal to the wheel disk HW. These facts can also be figure 2 comprehend. Each blade B has a linear inner track IT extending in the direction of flow on an end edge IE that is proximal to the wheel disk HW, in such a way that the same orthogonal distances to a blade surface on the pressure side PRS or the suction side SCS of the blade B are present on both sides of the inner track. Each blade B has a line extending in the direction of flow on an end edge OE that is distal to the wheel disk HW Outer track on, such that on both sides of the outer track are orthogonally equal distances to the blade surface on the pressure side PRS and to the suction side SCS. These corresponding inner tracks and outer tracks on the blades can also be defined in such a way that these tracks are each the set of center points of circles inscribed in the blade profiles.

Die Figur 3 zeigt jeweils in Abhängigkeit von der relativen Schaufellänge BLL im oberen Diagrammbereich den Verlauf des Meridionalwinkels für die Innenspur IT und die Außenspur OT und im unteren Diagrammbereich die Ableitung des Meridionalwinkels MA` nach der relativen Schaufellänge BL für die Innenspur IT und die Außenspur OT.The figure 3 shows the course of the meridional angle for the inner track IT and the outer track OT in the upper part of the diagram as a function of the relative blade length BLL and in the lower part of the diagram the derivation of the meridional angle MA` according to the relative blade length BL for the inner track IT and the outer track OT.

Die Schaufeleintrittskante LE bildet hier einen Winkel LEA von 41° mit einer Radialebene RP aus. Die Eintrittskante der Schaufel B befindet sich dementsprechend etwas zurückversetzt.Here, the blade leading edge LE forms an angle LEA of 41° with a radial plane RP. Correspondingly, leading edge of shovel B is set back a little bit.

Das Diagramm der Figur 4 zeigt die Schaufeldickenverteilung als Verlauf über die relative Schaufellänge BLL für die Innenspur IT und die Außenspur OT.The diagram of figure 4 shows the blade thickness distribution as a curve over the relative blade length BLL for the inner track IT and the outer track OT.

Hierbei ist zu berücksichtigen, dass abweichend von diesem Verlauf eine Zuschärfung der Eintrittskanten und Austrittskanten der Schaufeln ausgelegt wird. Beispielhaft zeigt Figur 5 Details zu einer solchen Zuschärfung an einer Eintrittskante einer Radscheibe bzw. Deckscheibe in einem schematischen Umfangstangentialschnitt aus radialer Sicht. Das dort gezeigte Beispiel ist derart dimensioniert: Parameter Radscheibe Deckscheibe SDS 2.42 mm SRS 3.73 mm LZ 11.2 mm 12.0 mm LU 4.7 mm 2.5 mm SU 3.1 mm 1.8 mm It must be taken into account here that, deviating from this course, the leading edges and trailing edges of the blades are designed to be sharpened. By way of example, FIG. 5 shows details of such a sharpening on a leading edge of a wheel disk or cover disk in a schematic circumferential tangential section from a radial perspective. The example shown there is dimensioned as follows: parameter wheel disk cover disk SDS 2.42mm SRS 3.73mm LZ 11.2mm 12.0mm LU 4.7mm 2.5mm SU 3.1mm 1.8mm

Hierbei bedeuten:

  • SDS: Schaufeldicke Deckscheibe COV,
  • SRS: Schaufeldicke Radscheibe HW
  • LZ: Länge der Zuschärfung
  • LU: Übergangsdicke
  • SU: Übergangslänge.
Here mean:
  • SDS: blade thickness cover disk COV,
  • SRS: blade thickness wheel disk HW
  • LZ: length of sharpening
  • LU: transition thickness
  • SU: transition length.

Diese Parameter sind skalierbar, so dass eine Anwendung auf andere Schaufeldicken möglich ist.These parameters are scalable so that they can be applied to other blade thicknesses.

Die Diagramme der Figuren 3 und 4 zeigen jeweils einen Verlauf, der beidseitig über die 0%- bzw. 100%-Position der relativen Schaufellänge BLL hinaus fortgesetzt ist. Hierbei handelt es sich um eine Definitionsfläche, die in dem konkreten Laufrad von der inneren und äußeren Erstreckungsendkante OE, IE, der Eintrittskante LE und der Austrittskante TE der Schaufel B jeweils begrenzt wird. Die erfindungsgemäßen Erkenntnisse über die Verteilung des Meridionalwinkels MA für eine Schaufel B auch in Verbindung mit der Schaufeldickenverteilung für die Innenspur IT und die Außenspur OT gelten im Wesentlichen unabhängig von dem Ausschnitt aus dieser Definitionsfläche sofern gewisse Grenzen nicht überschritten werden. In Grenzen kann auch eine Extrapolation dieser Fläche erfolgen. Die Beschreibung der Schaufeln B mittels der Verteilung des Meridionalwinkels MA und der Dickenverteilung über die Erstreckung der Schaufeln B in Strömungsrichtung bzw. die relative Schaufellänge BLL führt bei einer Verbindung der von der Innenspur und der Außenspur mittels der Dickenverteilung aufgespannten Schaufelprofile mittels Geraden zu einer dreidimensionalen Fläche im Raum, die mittels eines Flankenfräsverfahrens hergestellt werden kann. Grundsätzlich bevorzugt ist die mittels sogenannter Regelgeraden zwischen den äußeren und inneren Schaufelprofilen aufgespannte dreidimensionale Schaufel, wobei grundsätzlich auch eine andere Geometrie als eine Gerade erfindungsgemäß denkbar ist, beispielsweise ein Bogen, der mittels eines Polygons oder Splines und Stützpunkten definiert ist.The diagrams of Figures 3 and 4 each show a curve that continues on both sides beyond the 0% or 100% position of the relative blade length BLL. This is a definition surface that is bounded by the inner and outer extension end edges OE, IE, the leading edge LE and the trailing edge TE of the blade B in the specific impeller. The findings according to the invention regarding the distribution of the meridional angle MA for a blade B, also in connection with the blade thickness distribution for the inner track IT and the outer track OT, apply essentially independently of the section from this definition area provided certain limits are not exceeded. Within limits, this area can also be extrapolated. The description of the blades B by means of the distribution of the meridional angle MA and the thickness distribution over the extent of the blades B in the direction of flow or the relative blade length BLL leads to a three-dimensional surface when the blade profiles spanned by the inner track and the outer track are connected by means of the thickness distribution by means of straight lines in space, which can be produced by means of a flank milling process. The three-dimensional blade spanned by means of so-called control lines between the outer and inner blade profiles is fundamentally preferred, with a geometry other than a straight line also being conceivable in accordance with the invention, for example an arc defined by a polygon or splines and vertices.

Damit diese so definierte allgemeine Fläche, die auch als Definitionsfläche oder auch als Maximalfläche bezeichnet wird, für unterschiedliche Verdichtungsaufgaben bzw. Laufräder IMP verwendet werden kann, werden mittels Meridionalschnitten aus dieser Definitionsfläche Teilflächen extrahiert zum Zwecke der Verwendung in einem Laufradentwurf. Die erfindungsgemäße Definitionsfläche eignet sich insofern für einen Einsatzbereich des spezifischen Durchfluss Ψ = V/u * d2 2 zwischen 0,05 bis 0,16, wobei bedeutet:

  • V: Volumenstrom in Kubikmeter pro Sekunde
  • U: Umfangsgeschwindigkeit in Meter pro Sekunde
  • d2: Laufraddurchmesser in Meter.
So that this general area defined in this way, which is also referred to as a definition area or also as a maximum area, can be used for different compression tasks or impellers IMP, partial areas are extracted from this definition area by means of meridional sections for the purpose of use in an impeller design. In this respect, the definition surface according to the invention is suitable for an application range of the specific flow rate Ψ=V/u*d 2 2 between 0.05 and 0.16, where:
  • V: Flow rate in cubic meters per second
  • U: peripheral speed in meters per second
  • d 2 : impeller diameter in meters.

Die erfindungsgemäße Ausgestaltung der Schaufel B eines Impellers IMP sieht nach Figur 3 vor, dass zwischen etwa 10% bis 90% der relativen Schaufellänge BLL ein lokales Extremum LEX des Meridionalwinkels MA der Innenspur IT vorliegt. Bevorzugt liegt dieses lokale Extremum LEX zwischen 25% bis 45% der relativen Schaufellänge BLL. Besonders bevorzugt ist - wie in Figur 3, erstes Diagramm dargestellt - der Verlauf des Meridionalwinkels MA für die Außenspur OT zwischen 10% bis 90% der relativen Schaufellänge monoton fallend. Erfindungsgemäß gibt es zwischen der Innenspur IT und der Außenspur OT eine Differenz im Meridionalwinkel MA, die zu einer maximalen Differenz DLTM entlang der relativen Schaufellänge anwächst, wobei diese tatsächlich vorliegende maximale Differenz, zwischen 10° und 25° beträgt. Weiter erfindungsgemäß tritt diese maximale Differenz DLTM im Bereich zwischen 15% bis 45% der relativen Schaufellänge BLL auf. Besonders bevorzugt weisen die Innenspur IT und die Außenspur OT im Bereich der Austrittskante TE - also bei 100% der relativen Schaufellänge BLL - den gleichen Meridionalwinkel MA auf. Hieraus ergibt sich, dass die mittlere Erstreckung der Austrittskante TE der Schaufel B einen Winkel mit einer Meridionalebene MPL von etwa 0° einschließt bzw. zu dieser Meridionalebene MPL parallel ist. Bevorzugt sollte diese Winkelabweichung zu der Meridionalebene MPL der Austrittskante TE geringer als 5° sein. Eine weitere besonders bevorzugte und in dem Ausführungsbeispiel gezeigte Ausführung der Erfindung sieht vor, dass im Bereich zwischen 40% bis 80% der relativen Schaufellänge BLL der Verlauf des Meridionalwinkels MA der Innenspur IT einen Wendepunkt TP aufweist.The design of the blade B of an impeller IMP according to the invention is as follows figure 3 suggest that between about 10% and 90% of the relative blade length BLL there is a local extremum LEX of the meridional angle MA of the inner track IT. This local extremum LEX is preferably between 25% and 45% of the relative blade length BLL. Is particularly preferred - as in figure 3 , first diagram shown - the progression of the meridional angle MA for the outer track OT between 10% and 90% of the relative blade length monotonically decreasing. According to the invention, there is a difference in the meridional angle MA between the inner track IT and the outer track OT, which increases to a maximum difference DLTM along the relative blade length, this actual maximum difference being between 10° and 25°. According to the invention, this maximum difference DLTM occurs in the range between 15% and 45% of the relative blade length BLL. Particularly preferably, the inner track IT and the outer track OT in the area of the trailing edge TE—that is, at 100% of the relative blade length BLL - the same meridional angle MA. From this it follows that the mean extent of the trailing edge TE of the blade B is at an angle with a meridional plane MPL of about 0° includes or is parallel to this meridional plane MPL. This angular deviation from the meridional plane MPL of the trailing edge TE should preferably be less than 5°. Another particularly preferred embodiment of the invention shown in the exemplary embodiment provides that the profile of the meridional angle MA of the inner track IT has a turning point TP in the range between 40% and 80% of the relative blade length BLL.

Claims (8)

  1. Impeller (IMP) of a turbo compressor (TCO), for rotation about an axis (X), comprising an inlet cross section (IN) for the substantially axial inflow of a process fluid (PF) into the impeller (IMP),
    comprising an outlet cross section (EX) for the substantially radial exit of the process fluid (PF) from the impeller (IMP), comprising a wheel disc (HW) which defines a hub-side deflection contour from the axial flow direction into the radial flow direction,
    comprising blades (B) which are attached to the wheel disc (HW)
    and define flow channels (FC) from a leading edge (LE) as far as a trailing edge (TE) in the circumferential direction at least over a part of the flow path of the process fluid (PF) through the impeller (IMP),
    each blade (B) defining a linear inner track (IT) extending in the flow direction on a proximal extent end edge (IE) with respect to the wheel disc (HW), in such a way that there are orthogonally identical spacings from a blade surface on a pressure side (PRS) and a suction side (SCS) of the blade (B) on both sides of the inner track,
    the blade (B) on a distal extent end edge (OE) with respect to the wheel disc (HW) defining a linear outer track extending in the flow direction, in such a way that there are orthogonally identical spacings from the blade surface on the pressure side (PRS) and on the suction side (SCS) of the blade (B) on both sides of the outer track (OT),
    a relative blade length (BLL) for each position on a track (T) which is an inner track (IT) or outer track (OT) being defined in each case as a proportion of the blade length situated upstream of this position with respect to the total blade length of the relevant track (T), namely the inner track (IT) or the outer track (OT),
    a meridional angle (MA) for each position of a track (T) being defined as the angle enclosed upstream between a meridional plane (MPL) through this position and a tangent on the track (T),
    there being a local extreme (LEX) of the meridional angle (MA) of the inner track (IT) in the range between 10% and 90% of the relative blade length (BLL),
    the blade leading edge (LE) configuring an angle (LEA) of between 35° and 45° with a radial plane (RP),
    characterized in that,
    in the range between 10% and 90% of the relative blade lengths (BLL), the maximum difference (DLTM) between the inner track (IT) and the outer track (OT) for a certain position along the relative blade lengths (BLL) of the meridional angle (MA) is between 10° and 25°, the maximum difference (DLTM) between the inner track (IT) and the outer track (OT) along the relative blade lengths (BLL) of the meridional angle (MA) lying in the range between 15% and 45% of the relative blade lengths (BLL).
  2. Impeller (IMP) according to Claim 1, the local extreme (LEX) of the profile of the meridional angle (MA) of the inner track (IT) lying between 25% and 45% of the relative blade length (BLL).
  3. Impeller (IMP) according to Claim 1, the profile of the meridional angle (MA) decreasing monotonically between 10% and 90% of the relative blade length (BLL) of the outer track (OT) .
  4. Impeller (IMP) according to Claim 1, the impeller (IMP) having a cover disc (COV) which defines the flow channels (FC) adjacently with respect to the extent end edges (OE), and is attached to the blades (B) in the region of the extent end edges (OE).
  5. Impeller (IMP) according to Claim 1, the mean extent of the trailing edge (TE) of the blade (B) enclosing an angle with a meridional plane (MPL) of between 0° and 5°, preferably being 0°.
  6. Impeller (IMP) according to Claim 1, the profile of the meridional angle (MA) of the inner track (IT) having an inflection point (TP) between 40% and 80% of the relative blade length (BLL).
  7. Impeller (IMP) according to Claim 1, the profile of a blade thickness distribution (BT) of the outer track (OT) increasing monotonically in the flow direction in the region between 10% and 90% of the relative blade lengths (BLL).
  8. Impeller (IMP) according to Claim 1, the blade leading edge (LE) configuring an angle (LEA) of 41° with a radial plane (RP).
EP17700651.7A 2016-02-09 2017-01-13 Rotor for a centrifugal turbocompressor Active EP3377773B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP16154853.2A EP3205883A1 (en) 2016-02-09 2016-02-09 Rotor for a centrifugal turbocompressor
PCT/EP2017/050626 WO2017137207A1 (en) 2016-02-09 2017-01-13 Impeller wheel for a centrifugal turbocompressor

Publications (2)

Publication Number Publication Date
EP3377773A1 EP3377773A1 (en) 2018-09-26
EP3377773B1 true EP3377773B1 (en) 2023-05-31

Family

ID=55345728

Family Applications (2)

Application Number Title Priority Date Filing Date
EP16154853.2A Withdrawn EP3205883A1 (en) 2016-02-09 2016-02-09 Rotor for a centrifugal turbocompressor
EP17700651.7A Active EP3377773B1 (en) 2016-02-09 2017-01-13 Rotor for a centrifugal turbocompressor

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP16154853.2A Withdrawn EP3205883A1 (en) 2016-02-09 2016-02-09 Rotor for a centrifugal turbocompressor

Country Status (3)

Country Link
US (1) US10865803B2 (en)
EP (2) EP3205883A1 (en)
WO (1) WO2017137207A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017223791A1 (en) 2017-12-27 2019-06-27 Siemens Aktiengesellschaft Shaft seal arrangement of a turbomachine, turbomachine
GB2576565B (en) 2018-08-24 2021-07-14 Rolls Royce Plc Supercritical carbon dioxide compressor
GB2576564B (en) * 2018-08-24 2021-01-13 Rolls Royce Plc Supercritical carbon dioxide compressor
GB201813819D0 (en) 2018-08-24 2018-10-10 Rolls Royce Plc Turbomachinery
CN112154260B (en) * 2018-12-19 2022-10-14 三菱重工发动机和增压器株式会社 Nozzle vane
WO2020206918A1 (en) * 2019-04-08 2020-10-15 中山宜必思科技有限公司 Backward centrifugal fan
CN110259721A (en) * 2019-06-13 2019-09-20 西北工业大学 A kind of centrifugal-flow compressor impeller with high pressure ratio
US11421702B2 (en) 2019-08-21 2022-08-23 Pratt & Whitney Canada Corp. Impeller with chordwise vane thickness variation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014109193A (en) * 2012-11-30 2014-06-12 Hitachi Ltd Centrifugal fluid machine

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0237297U (en) * 1988-09-01 1990-03-12
JP2004027894A (en) * 2002-06-24 2004-01-29 Mitsubishi Heavy Ind Ltd Open impeller
EP2020509B1 (en) * 2007-08-03 2014-10-15 Hitachi, Ltd. Centrifugal compressor, impeller and operating method of the same
US8475131B2 (en) * 2008-11-21 2013-07-02 Hitachi Plant Technologies, Ltd. Centrifugal compressor
DE102013207220B3 (en) 2013-04-22 2014-09-18 Siemens Aktiengesellschaft turbomachinery
WO2016151689A1 (en) * 2015-03-20 2016-09-29 三菱重工業株式会社 Centrifugal compressor and supercharger comprising same
ITUB20153620A1 (en) * 2015-09-15 2017-03-15 Nuovo Pignone Tecnologie Srl IMPELLER FOR TURBOMACCHINA WITH HIGH RIGIDITY, TURBOMACCHINA INCLUDING THAT IMPELLER AND PRODUCTION METHOD
DE102015012259A1 (en) * 2015-09-19 2016-04-07 Daimler Ag Turbine wheel for a turbine of an exhaust gas turbocharger
US20180142557A1 (en) * 2016-11-19 2018-05-24 Borgwarner Inc. Turbocharger impeller blade stiffeners and manufacturing method
JP6806551B2 (en) * 2016-12-14 2021-01-06 株式会社豊田中央研究所 Centrifugal compressor, turbocharger

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014109193A (en) * 2012-11-30 2014-06-12 Hitachi Ltd Centrifugal fluid machine

Also Published As

Publication number Publication date
WO2017137207A1 (en) 2017-08-17
EP3377773A1 (en) 2018-09-26
EP3205883A1 (en) 2017-08-16
US10865803B2 (en) 2020-12-15
US20190032671A1 (en) 2019-01-31

Similar Documents

Publication Publication Date Title
EP3377773B1 (en) Rotor for a centrifugal turbocompressor
EP2025945B1 (en) Flow working machine with ring canal wall fitting
EP1875045B1 (en) Turbine wheel
EP2096316B1 (en) Housing structuring for axial compressor in the hub area
EP1953344B1 (en) Turbine blade
DE102007056953B4 (en) Turbomachine with Ringkanalwandausnehmung
EP1918529A2 (en) Turbomachine with adjustable stator vanes
EP2921716B1 (en) stator blade GROUP
EP2761137B1 (en) Blade of a row of rotor blades or stator blades for use in a turbomachine
WO2008046389A1 (en) Assembly for influencing a flow by means of geometries influencing the boundary layer
EP1774179A1 (en) Compressor blade and production and use of a compressor blade
EP2947270B1 (en) Rotor series group
EP2194232A2 (en) Turbo engine with side wall boundary layer barrier
EP2003292A2 (en) Blade shroud with overhang
EP2275643B1 (en) Engine blade with excess front edge loading
DE3835622A1 (en) RADIAL COMPRESSORS
EP2913479B1 (en) Tandem blades of a turbo-machine
EP2410131A2 (en) Rotor of a turbomachine
EP3358135B1 (en) Contouring of a blade row platform
EP3521562B1 (en) Blade of a turbomachine
DE102017128093A1 (en) Impeller for use in a turbomachine
EP4306770A1 (en) Rotor blade for a rotor blade assembly of a turbomachine and rotor blade assembly
EP4089264A1 (en) Gas turbine blade arrangement
EP3760871A1 (en) Diffuser for a turbomachine
EP3315720A2 (en) Compressor rotor of a fluid flow machine

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180618

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210312

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20221222

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017014756

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1571085

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230831

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230930

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231002

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017014756

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240129

Year of fee payment: 8

Ref country code: CH

Payment date: 20240202

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

26N No opposition filed

Effective date: 20240301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240123

Year of fee payment: 8

Ref country code: FR

Payment date: 20240125

Year of fee payment: 8