EP3364254A1 - Shock-absorbing mechanical device, in particular for clockmaking - Google Patents

Shock-absorbing mechanical device, in particular for clockmaking Download PDF

Info

Publication number
EP3364254A1
EP3364254A1 EP17156420.6A EP17156420A EP3364254A1 EP 3364254 A1 EP3364254 A1 EP 3364254A1 EP 17156420 A EP17156420 A EP 17156420A EP 3364254 A1 EP3364254 A1 EP 3364254A1
Authority
EP
European Patent Office
Prior art keywords
movable member
flip
stop
movable
mechanical device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP17156420.6A
Other languages
German (de)
French (fr)
Other versions
EP3364254B1 (en
Inventor
Anthony Krüttli
David Chabloz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Patek Philippe SA Geneve
Original Assignee
Patek Philippe SA Geneve
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patek Philippe SA Geneve filed Critical Patek Philippe SA Geneve
Priority to CH00178/17A priority Critical patent/CH713473A2/en
Priority to EP17156420.6A priority patent/EP3364254B1/en
Publication of EP3364254A1 publication Critical patent/EP3364254A1/en
Application granted granted Critical
Publication of EP3364254B1 publication Critical patent/EP3364254B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B43/00Protecting clockworks by shields or other means against external influences, e.g. magnetic fields
    • G04B43/002Component shock protection arrangements
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B11/00Click devices; Stop clicks; Clutches
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B3/00Normal winding of clockworks by hand or mechanically; Winding up several mainsprings or driving weights simultaneously
    • G04B3/04Rigidly-mounted keys, knobs or crowns
    • G04B3/048Operation exclusively by axial movement of a push-button, e.g. for chronographs

Definitions

  • the present invention relates to a shockproof mechanical device, in particular for watchmaking.
  • the present invention further provides a method of making such a mechanical device.
  • the movable member is for example a rocker or a member guided in translation.
  • the or each said movable element may be a rocker or a member guided in translation.
  • rocker in the present invention a rocker proper or any similar pivoting member such as a lever or a finger.
  • support refers to direct or indirect support.
  • the first flip-flop B is held in abutment against a fixed or movable stop T by the additional flip-flops B1, B2.
  • the additional flip-flops B1, B2 are themselves held in abutment against the first flip-flop B by springs respective S1, S2 (cf. figure 1 ) or by a single spring S connecting the additional flip-flops B1, B2 (cf. figure 2 ).
  • a single spring S it can be in one piece with one of the additional latches B1, B2 to act on the other additional latch as shown in FIG. figure 2 .
  • the latter could have its own spring which would press against the stop T.
  • the flip-flops B, B1, B2 are typically rigid and are rotatable about centers (more exactly around axes) respectively distinct C, C1, C2 which are fixed relative to a support on which is mounted the mechanical device.
  • Said support is for example the fixed frame of the watch mechanism or a mobile frame mounted on this fixed frame.
  • the first flip-flop B Under the action of an external member (not shown) the first flip-flop B can leave its position where it bears against the stop T and move with it the additional flip-flops B1, B2 by overcoming the force of the spring or springs S, S1, S2 to fulfill a particular function and / or disable the function it filled when it was in abutment against the stop T.
  • R b is the distance between the center of mass G and the center of rotation C of the first flip-flop B
  • R 1 the distance between the center of mass G1 and the center of rotation C1 of the additional flip-flop B1
  • R 2 the distance between the center of mass G2 and the center of rotation C2 of the other additional flip-flop B2.
  • L b1 is the distance (lever arm) between the center of rotation C of the first flip-flop B and the action line D1 of the reaction-action forces exerted between the first flip-flop B and the additional flip-flop B1
  • L 1 the distance between the center of rotation C1 of the additional rocker B1 and said line of action D1
  • L b2 the distance between the center of rotation C of the first flip-flop B and the action line D2 of the action-reaction forces exerted between the first flip-flop B and the additional flip-flop B2
  • L 2 the distance between the center of rotation C2 of the additional flip-flop B2 and said right-hand d action D2.
  • each flip-flop B, B1, B2 is defined as being the angle oriented between the half-axis (O, x) and the half-line starting from the center of rotation of the rocker and passing through its center of mass.
  • designates the direction (including the direction) of any linear shock received by the mechanical device and the clock mechanism comprising it.
  • the angle ⁇ is an angle oriented between the half-axis (O, x) and the vector at representing the acceleration of the shock.
  • the half-axis (O, x) is parallel to the line joining the center of rotation C and the center of mass G of the first flip-flop B, but it could be otherwise.
  • the force of the springs S1, S2, S in the present invention is not taken into account. These are considered to serve only to position, in the absence of shock, the first flip-flop B against the stop T and the additional flip-flops B1, B2 against the first flip-flop B.
  • the geometry, the mass and the position of the additional flip-flops B1, B2 are therefore chosen so that during any linear shock (whatever its direction ⁇ and its intensity) tending to move the first flip-flop B away from the stop T , one or more moments are exercised by the set of additional flip-flops B1, B2 on the first flip-flop B under the effect of the shock, according to one of the configurations a), b) and c) above, this moment or the sum of these moments maintaining the first flip-flop B against the stop T.
  • the 1 M 2 at .
  • the 2 M b at . m b . R b . sin ⁇ - ⁇ b and where is the norm of the vector acceleration at shock.
  • Example 1 Example 2 R b 0.66 mm 0.4 mm m b 100 mg 80 mg ⁇ b 180 ° 70 ° R 1 0.49 mm 1 mm m 1 390 mg 120 mg ⁇ 1 240 ° 130 ° L 1 0.48 mm 0.48 mm L b1 0.88 mm 0.88 mm R 2 0.27 mm 1 mm m 2 150 mg 30 mg ⁇ 2 120 ° 10 ° L 2 0.79 mm 0.79 mm L b2 0.3 mm 0.3 mm
  • the A1 and A2 curves figures 3 and 4 represent, respectively for the numerical examples 1 and 2 above, the total moment M, in Nmm, received by the first flip-flop B under the effect of the shock as a function of the direction ⁇ of said shock and for an acceleration equal to 1 g (9.81 m / s 2 ).
  • This total moment M is equal to M 1 + M 2 - M b cumulated with the conditional executions (I5) and (I6) above.
  • the total moment M is strictly positive regardless of the direction ⁇ of the shock, which implies that the first latch B always remains in contact with the stop T.
  • a safety factor, c that is to say that the total moment M is always greater than a predefined value, for example equal to 0.2 Nmm, illustrated by the circles A3 and A4.
  • the stop T can be mobile.
  • the figure 5 illustrates an example of application of the mechanical device according to the first embodiment of the invention, wherein the stop T is a drive wheel and the first lever B is a clutch rocker carrying a clutch wheel B ' which meshes with the drive wheel T when the clutch lever B is in its engaged position.
  • the additional flip-flops B1, B2 make it possible to maintain the meshing between the wheels B 'and T even in the event of a linear impact. Such meshing is prestressed. It can operate thanks to the flexibility given by the spring S.
  • the clutch lever B could be in abutment against a fixed stop positioned so that the wheels B 'and T mesh with each other.
  • the stop T is a cam and the rocker B has a feeler or cam follower. The device according to the invention is then dimensioned on the basis of the most unfavorable angular position of the cam.
  • the figure 6 shows a mechanical device, in particular for a watch mechanism, according to a second embodiment of the invention.
  • a single additional flip-flop B1 is provided and the centers of rotation C, C1 and mass G, G1 of the first flip-flop B and the additional flip-flop B1 are (in plan view from above) aligned all four. on a straight line D.
  • This additional flip-flop B1 is subjected to the action of a spring S1 and plates the first flip-flop B against the stop T.
  • condition I5 is applicable by giving N the value 1, the moment M i being calculated in the same way as for one or the other of the additional flip-flops B1, B2 of the first embodiment.
  • this second embodiment has the advantage of having only one additional flip-flop.
  • it requires a precise alignment of the centers of rotation C, C1 and mass G, G1 of the first flip-flop B and of the additional flip-flop B1 so that the additional flip-flop B1 can act on the first flip-flop B in all directions of rotation. shock tending to move the first flip-flop B from the stop T.
  • the flip-flops B, B1, B2 are mounted around physical axes of rotation, in a conventional manner. These latches could nevertheless be mounted around virtual axes of rotation, by means of flexible guide systems.
  • the figure 7 shows a variant of the second embodiment in which the additional rocker B1 is connected to a fixing portion F by an elastic blade E allowing the rotation of the additional rocker B1 around a virtual axis, represented by the center of rotation C1, located about 1/3 of the length of the E blade.
  • the figure 8 shows a mechanical device, in particular for a watch mechanism, according to a third embodiment of the invention.
  • the rocker B is held in abutment against the stop T, and is prevented from losing contact with the stop T in the event of a linear shock, not by an additional rocker but by a pusher element P1 guided by translation.
  • the pusing element P1 is guided in translation for example by elastic strips E1 which also fulfill a return function tending to apply the pusing element P1 against the rocker B.
  • the geometry, the mass and the position of the pusher element P1 are chosen so that during any linear shock at (Whatever its direction ⁇ and intensity) tending to move the flip-flop B from the stop T, the pusher element P1 exerts on the latch B (with respect to the center of rotation C of the latter) a moment antagonistic and superior to the one exerted by the shock directly on the rocker B, thus maintaining the rocker B in abutment against the stop T.
  • This can be expressed by the following inequality: The b 1 . m 1 . cos ⁇ 1 - ⁇ > m b . R b .
  • ⁇ b and m 1 are the respective masses of the flip-flop B and the pusher element P1
  • R b is the distance between the center of mass G and the center of rotation C of the flip-flop B
  • ⁇ b is the angular position , as measured previously, of the flip-flop B
  • is the direction (including the direction), measured as before, of any linear shock received
  • L b1 is the distance (lever arm) between the center of rotation C of the rocker B and the line of action of the action-reaction forces exerted between the flip-flop B and the pusing element P1
  • ⁇ 1 is the angular position of the pusher element P1, that is to say the angle oriented between the half-axis (O, x) of the mark (O, x, y) and the force of action exerted by the pusher element P1 on the latch B, this action force being parallel to the direction of movement Dp of the push element P1.
  • the angle between the displacement direction Dp of the pusing element P1 and the straight line D 'passing through the center of rotation C and the center of mass G of the rocker B must be an angle right so that the push member P1 can act on the rocker B in all directions of shock tending to move the flip-flop B of the stop T.
  • the push member P1 can be used several push elements, to like the additional flip-flops B1, B2 of the first embodiment.
  • the above equation I4 'combined with the conditional execution I5' is applicable by analogy. It is also possible to use one or more push elements and one or more additional rockers.
  • the figure 9 shows a mechanical device, in particular for a watch mechanism, according to a fourth embodiment of the invention.
  • flip-flop B is replaced by a member H guided in translation for example by elastic strips E2 which also fulfill a return function tending to apply the member H against the stop T.
  • the member H is for example a pusher element of a watch mechanism.
  • a flip-flop B1 subjected to the action of a return spring S1 acts on the member H to hold it against the abutment T in the event of a linear impact.
  • the geometry, the mass and the position of the rocker B1 are chosen so that during any linear shock at (Whatever its direction ⁇ and its intensity) tending to move the organ H away from the stop T, the rocker B1 exerts on the organ H under the effect of the shock an antagonistic force and greater than that which exerts the shock directly on the member H, thus maintaining the member H bearing against the stop T.
  • This can be expressed by the following inequality: R 1 . m 1 . sin ⁇ - ⁇ 1 The 1 > m h .
  • ⁇ h and m 1 are the respective masses of the member H and the flip-flop B1
  • R 1 is the distance between the center of mass G1 and the center of rotation C1 of the flip-flop B1
  • ⁇ 1 is the angular position, measured as before, of the flip-flop B1
  • is the direction (including the direction), measured as before, of any linear shock received
  • L 1 is the distance (lever arm) between the center of rotation C1 of the flip-flop B1 and the action-force of the action-reaction forces exerted between the latch B1 and the member H
  • ⁇ h is the angular position of the member H, that is to say the angle oriented between the half-axis (O, x) of the reference (O, x, y) and the force exerted by the member H on the latch B1, this force being parallel to the direction of movement D h of the member H.
  • the angle between the direction of movement D h of the member H and the line D1 'passing through the center of rotation C1 and the center of mass G1 of the flip-flop B1 must be a right angle so that the flip-flop B1 can act on the member H in all directions of shock tending to move the member H away from the stop T. avoid having to precisely position the flip-flop B1 can use several flip-flops, like the additional flip-flops B1, B2 of the first embodiment.
  • one or more push elements of the type of the element P1 of the third embodiment can be used.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electric Clocks (AREA)
  • Vibration Dampers (AREA)

Abstract

Dispositif mécanique comprenant un organe mobile (B) tel qu'une bascule, une butée (T) fixe ou mobile et un dispositif de maintien (B1, B2, S1, S2) pour maintenir l'organe mobile (B) en appui contre la butée (T). Le dispositif de maintien comprend au moins un élément mobile (B1, B2), tel qu'une bascule, en appui contre l'organe mobile (B). Les géométrie(s), masse(s) et position(s) de l'au moins un élément mobile (B1, B2) sont telles que, lors de tout choc linéaire tendant à éloigner l'organe mobile (B) de la butée (T), l'au moins un élément mobile (B1, B2) exerce sur l'organe mobile (B) sous l'effet du choc une action antagoniste à l'action exercée par le choc sur l'organe mobile (B), cette action antagoniste maintenant l'organe mobile (B) contre la butée (T).Mechanical device comprising a movable member (B) such as a rocker, a stop (T) fixed or movable and a holding device (B1, B2, S1, S2) for holding the movable member (B) in abutment against the stop (T). The holding device comprises at least one movable element (B1, B2), such as a rocker, bearing against the movable member (B). The geometry (s), mass (s) and position (s) of the at least one movable element (B1, B2) are such that, during any linear shock tending to move the movable member (B) away from the stop (T), the at least one movable member (B1, B2) exerts on the movable member (B) under the effect of the shock an action that is antagonistic to the action exerted by the impact on the movable member (B) this antagonistic action now the movable member (B) against the stop (T).

Description

La présente invention concerne un dispositif mécanique antichoc, notamment pour l'horlogerie.The present invention relates to a shockproof mechanical device, in particular for watchmaking.

Dans l'horlogerie on utilise souvent des organes mobiles, en particulier des bascules, en appui contre des butées fixes ou mobiles telles que des cames ou roues.In watchmaking, mobile members are often used, in particular flip-flops, resting against fixed or moving stops such as cams or wheels.

La plupart de ces organes mobiles sont sensibles aux chocs. Pour les bascules, cela est dû à leur balourd. Par conséquent, lorsque la montre reçoit un choc il peut arriver que l'organe mobile perde le contact avec la butée ce qui peut avoir des conséquences négatives sur le fonctionnement ou le réglage de la montre.Most of these moving parts are shock sensitive. For the scales, this is due to their imbalance. Therefore, when the watch receives a shock it may happen that the movable member loses contact with the stop which may have negative consequences on the operation or the setting of the watch.

La présente invention vise à remédier à cet inconvénient et propose à cette fin un dispositif mécanique comprenant :

  • un organe mobile ;
  • une butée fixe ou mobile ; et
  • un dispositif de maintien pour maintenir l'organe mobile en appui contre la butée,
caractérisé en ce que le dispositif de maintien comprend au moins un élément mobile en appui contre l'organe mobile et en ce que les géométrie(s), masse(s) et position(s) de l'au moins un élément mobile sont telles que, lors de tout choc linéaire tendant à éloigner l'organe mobile de la butée, l'au moins un élément mobile exerce sur l'organe mobile sous l'effet du choc une action antagoniste à l'action exercée par le choc sur l'organe mobile, cette action antagoniste maintenant l'organe mobile contre la butée.The present invention aims to remedy this drawback and proposes for this purpose a mechanical device comprising:
  • a movable member;
  • a fixed or movable stop; and
  • a holding device for holding the movable member in abutment against the stop,
characterized in that the holding device comprises at least one movable element bearing against the movable member and in that the geometry (s), mass (s) and position (s) of the at least one movable element are such that that, during any linear shock tending to move the movable member away from the abutment, the at least one movable element exerts on the movable member under the effect of the shock an action that is antagonistic to the action exerted by the shock on the movable member, this antagonistic action now the movable member against the stop.

La présente invention propose en outre un procédé de réalisation d'un tel dispositif mécanique.The present invention further provides a method of making such a mechanical device.

L'organe mobile est par exemple une bascule ou un organe guidé en translation. De même, le ou chaque dit élément mobile peut être une bascule ou un élément guidé en translation.The movable member is for example a rocker or a member guided in translation. Similarly, the or each said movable element may be a rocker or a member guided in translation.

Par le terme « bascule » on entend dans la présente invention une bascule proprement dite ou tout organe pivotant similaire tel qu'un levier ou un doigt.By the term "rocker" is meant in the present invention a rocker proper or any similar pivoting member such as a lever or a finger.

Par ailleurs, le terme « appui » s'entend d'un appui direct ou indirect.In addition, the term "support" refers to direct or indirect support.

D'autres caractéristiques et avantages de la présente invention apparaîtront à la lecture de la description détaillée suivante faite en référence aux dessins annexés dans lesquels :

  • la figure 1 est une vue plane de dessus d'un dispositif mécanique selon un premier mode de réalisation de l'invention ;
  • la figure 2 est une vue plane de dessus d'une variante du dispositif mécanique selon le premier mode de réalisation de l'invention ;
  • les figures 3 et 4 sont des diagrammes de valeurs de moments de force obtenus avec deux exemples numériques du dispositif mécanique selon le premier mode de réalisation de l'invention ;
  • la figure 5 est une vue plane de dessus d'un dispositif mécanique selon un exemple d'application du premier mode de réalisation de l'invention ;
  • la figure 6 est une vue plane de dessus d'un dispositif mécanique selon un deuxième mode de réalisation de l'invention ;
  • la figure 7 est une vue plane de dessus d'un dispositif mécanique selon une variante du deuxième mode de réalisation de l'invention ;
  • la figure 8 est une vue plane de dessus d'un dispositif mécanique selon un troisième mode de réalisation de l'invention ; et
  • la figure 9 est une vue plane de dessus d'un dispositif mécanique selon un quatrième mode de réalisation de l'invention.
Other features and advantages of the present invention will appear on reading the following detailed description given with reference to the accompanying drawings in which:
  • the figure 1 is a plan view from above of a mechanical device according to a first embodiment of the invention;
  • the figure 2 is a plan view from above of a variant of the mechanical device according to the first embodiment of the invention;
  • the figures 3 and 4 are diagrams of values of moments of force obtained with two numerical examples of the mechanical device according to the first embodiment of the invention;
  • the figure 5 is a plan view from above of a mechanical device according to an exemplary application of the first embodiment of the invention;
  • the figure 6 is a plan view from above of a mechanical device according to a second embodiment of the invention;
  • the figure 7 is a plan view from above of a mechanical device according to a variant of the second embodiment of the invention;
  • the figure 8 is a plan view from above of a mechanical device according to a third embodiment of the invention; and
  • the figure 9 is a plan view from above of a mechanical device according to a fourth embodiment of the invention.

En référence à la figure 1, un dispositif mécanique, notamment pour un mécanisme horloger, selon un premier mode de réalisation de l'invention comprend une première bascule B et deux bascules supplémentaires B1, B2. La première bascule B est maintenue en appui contre une butée T fixe ou mobile par les bascules supplémentaires B1, B2. Les bascules supplémentaires B1, B2 sont elles-mêmes maintenues en appui contre la première bascule B par des ressorts respectifs S1, S2 (cf. figure 1) ou par un unique ressort S reliant les bascules supplémentaires B1, B2 (cf. figure 2). Dans le cas d'un unique ressort S, celui-ci peut être en une seule pièce avec l'une des bascules supplémentaires B1, B2 pour agir sur l'autre bascule supplémentaire comme représenté à la figure 2. En plus du ou des ressorts S, S1, S2 positionnant les bascules supplémentaires B1, B2 contre la première bascule B, cette dernière pourrait avoir son propre ressort qui la plaquerait contre la butée T.With reference to the figure 1 , a mechanical device, in particular for a watch mechanism, according to a first embodiment of the invention comprises a first flip-flop B and two additional flip-flops B1, B2. The first flip-flop B is held in abutment against a fixed or movable stop T by the additional flip-flops B1, B2. The additional flip-flops B1, B2 are themselves held in abutment against the first flip-flop B by springs respective S1, S2 (cf. figure 1 ) or by a single spring S connecting the additional flip-flops B1, B2 (cf. figure 2 ). In the case of a single spring S, it can be in one piece with one of the additional latches B1, B2 to act on the other additional latch as shown in FIG. figure 2 . In addition to the spring or springs S, S1, S2 positioning the additional flip-flops B1, B2 against the first flip-flop B, the latter could have its own spring which would press against the stop T.

Les bascules B, B1, B2 sont typiquement rigides et sont rotatives autour de centres (plus exactement autour d'axes) respectifs distincts C, C1, C2 qui sont fixes par rapport à un support sur lequel est monté le dispositif mécanique. Ledit support est par exemple le bâti fixe du mécanisme horloger ou un bâti mobile monté sur ce bâti fixe.The flip-flops B, B1, B2 are typically rigid and are rotatable about centers (more exactly around axes) respectively distinct C, C1, C2 which are fixed relative to a support on which is mounted the mechanical device. Said support is for example the fixed frame of the watch mechanism or a mobile frame mounted on this fixed frame.

Sous l'action d'un organe extérieur (non représenté) la première bascule B peut quitter sa position où elle est en appui contre la butée T et déplacer avec elle les bascules supplémentaires B1, B2 en vainquant la force du ou des ressorts S, S1, S2 pour remplir une fonction particulière et/ou désactiver la fonction qu'elle remplissait lorsqu'elle était en appui contre la butée T.Under the action of an external member (not shown) the first flip-flop B can leave its position where it bears against the stop T and move with it the additional flip-flops B1, B2 by overcoming the force of the spring or springs S, S1, S2 to fulfill a particular function and / or disable the function it filled when it was in abutment against the stop T.

Sur la figure 1 ont été représentés les centres de masse G, G1, G2 et les centres de rotation C, C1, C2 des bascules B, B1, B2. On appelle Rb la distance entre le centre de masse G et le centre de rotation C de la première bascule B, R1 la distance entre le centre de masse G1 et le centre de rotation C1 de la bascule supplémentaire B1 et R2 la distance entre le centre de masse G2 et le centre de rotation C2 de l'autre bascule supplémentaire B2. Ces distances Rb, R1, R2 sont toutes non nulles, en d'autres termes les bascules B, B1, B2 présentent chacune un balourd. On appelle aussi Lb1 la distance (bras de levier) entre le centre de rotation C de la première bascule B et la droite d'action D1 des forces d'action-réaction exercées entre la première bascule B et la bascule supplémentaire B1, L1 la distance entre le centre de rotation C1 de la bascule supplémentaire B1 et ladite droite d'action D1, Lb2 la distance entre le centre de rotation C de la première bascule B et la droite d'action D2 des forces d'action-réaction exercées entre la première bascule B et l'autre bascule supplémentaire B2, et L2 la distance entre le centre de rotation C2 de la bascule supplémentaire B2 et ladite droite d'action D2. Dans un repère (O, x, y) on définit la position angulaire βb, β1, β2 de chaque bascule B, B1, B2, respectivement, comme étant l'angle orienté entre le demi-axe (O, x) et la demi-droite partant du centre de rotation de la bascule et passant par son centre de masse. Par ailleurs, on désigne par α la direction (y compris le sens) de tout choc linéaire reçu par le dispositif mécanique et le mécanisme horloger le comprenant. L'angle α est un angle orienté entre le demi-axe (O, x) et le vecteur a représentant l'accélération du choc. Dans l'exemple représenté, le demi-axe (O, x) est parallèle à la droite joignant le centre de rotation C et le centre de masse G de la première bascule B, mais il pourrait en être autrement.On the figure 1 the centers of mass G, G1, G2 and the centers of rotation C, C1, C2 of the flip-flops B, B1, B2 have been represented. R b is the distance between the center of mass G and the center of rotation C of the first flip-flop B, R 1 the distance between the center of mass G1 and the center of rotation C1 of the additional flip-flop B1 and R 2 the distance between the center of mass G2 and the center of rotation C2 of the other additional flip-flop B2. These distances R b , R 1 , R 2 are all non-zero, in other words the latches B, B1, B2 each have an unbalance. Also called L b1 is the distance (lever arm) between the center of rotation C of the first flip-flop B and the action line D1 of the reaction-action forces exerted between the first flip-flop B and the additional flip-flop B1, L 1 the distance between the center of rotation C1 of the additional rocker B1 and said line of action D1, L b2 the distance between the center of rotation C of the first flip-flop B and the action line D2 of the action-reaction forces exerted between the first flip-flop B and the additional flip-flop B2, and L 2 the distance between the center of rotation C2 of the additional flip-flop B2 and said right-hand d action D2. In a frame (O, x, y), the angular position β b , β 1 , β 2 of each flip-flop B, B1, B2, respectively, is defined as being the angle oriented between the half-axis (O, x) and the half-line starting from the center of rotation of the rocker and passing through its center of mass. Furthermore, α designates the direction (including the direction) of any linear shock received by the mechanical device and the clock mechanism comprising it. The angle α is an angle oriented between the half-axis (O, x) and the vector at representing the acceleration of the shock. In the example shown, the half-axis (O, x) is parallel to the line joining the center of rotation C and the center of mass G of the first flip-flop B, but it could be otherwise.

Les bascules supplémentaires B1, B2 servent à empêcher la première bascule B de perdre le contact avec la butée T lors d'un choc linéaire. L'effet d'un choc linéaire sur chacune des bascules B, B1, B2 dépend de la position du centre de masse de la bascule et de la direction α du choc. Le choc exerce en effet au centre de masse de la bascule une force qui se traduit en un moment de force par rapport au centre de rotation de la bascule. En fonction de la direction α du choc, deux cas sont possibles pour le dispositif illustré à la figure 1 :

  1. 1) Le choc produit sur la première bascule B un moment tendant à plaquer la première bascule B contre la butée T. La direction α du choc est donc favorable et il n'y a pas de risque que la première bascule B s'éloigne de la butée T. Dans l'exemple de la figure 1, ce cas correspond à un angle α compris entre 0° et 180°.
  2. 2) Le choc produit sur la première bascule B un moment tendant à éloigner la première bascule B de la butée T. La direction α du choc est donc défavorable et ce sont les bascules supplémentaires B1, B2, ou seulement l'une d'entre elles, qui, sous l'effet du choc, maintiennent la première bascule B contre la butée T. Dans l'exemple de la figure 1, ce cas correspond à un angle α compris entre 180° et 360°. La configuration où la direction α du choc est neutre pour la première bascule B (c'est-à-dire égale à 180° ou 360° dans l'exemple de la figure 1) est considérée comme comprise dans ce cas. Les bascules supplémentaires B1, B2 peuvent aussi agir, bien entendu, dans le cas 1).
The additional flip-flops B1, B2 serve to prevent the first flip-flop B from losing contact with the stop T during a linear shock. The effect of a linear shock on each of the latches B, B1, B2 depends on the position of the center of mass of the rocker and the direction of the shock. The shock in fact exerts at the center of mass of the rocker a force which is translated into a moment of force relative to the center of rotation of the rocker. Depending on the direction α of the shock, two cases are possible for the device illustrated in FIG. figure 1 :
  1. 1) The shock produced on the first latch B a moment tending to press the first latch B against the stop T. The direction α of the shock is therefore favorable and there is no risk that the first latch B away from the stop T. In the example of the figure 1 this case corresponds to an angle α between 0 ° and 180 °.
  2. 2) The shock produced on the first flip-flop B a moment tending to move the first flip-flop B from the stop T. The direction of the shock is therefore unfavorable and it is the additional flip-flops B1, B2, or only one of them, which, under the effect of the shock, keep the first rocker B against the stop T. In the example of the figure 1 this case corresponds to an angle α of between 180 ° and 360 °. The configuration where the direction α of the shock is neutral for the first flip-flop B (that is to say equal to 180 ° or 360 ° in the example of the figure 1 ) is considered to be included in this case. The additional flip-flops B1, B2 can also act, of course, in the case 1).

Dans un but de simplification il n'est pas tenu compte de la force des ressorts S1, S2, S dans la présente invention. Ceux-ci sont considérés comme servant uniquement à positionner, en l'absence de choc, la première bascule B contre la butée T et les bascules supplémentaires B1, B2 contre la première bascule B.For the purpose of simplification, the force of the springs S1, S2, S in the present invention is not taken into account. These are considered to serve only to position, in the absence of shock, the first flip-flop B against the stop T and the additional flip-flops B1, B2 against the first flip-flop B.

Dans le cas 2) ci-dessus, trois sous-cas sont possibles en fonction de la direction α du choc :

  1. a) Sous l'effet du choc les deux bascules supplémentaires B1, B2 agissent sur la première bascule B pour maintenir cette dernière contre la butée T. Chaque bascule supplémentaire B1, B2 exerce donc un moment sur la première bascule B et la somme de ces deux moments (par rapport au centre de rotation de la première bascule B) est antagoniste et supérieure au moment qu'exerce directement le choc sur la première bascule B. Cette configuration peut s'exprimer de la manière suivante : L b 1 . m 1 . R 1 . sin α β 1 L 1 + L b 2 . m 2 . R 2 . sin α β 2 L 2 > m b . R b . sin α β b
    Figure imgb0001
    où m1, m2 et mb sont les masses respectives des bascules supplémentaires B1, B2 et de la première bascule B, et α, βb, β1, β2, R1, R2, L1, L2, Rb, Lb1, Lb2 sont les grandeurs définies plus haut.
  2. b) Sous l'effet du choc seule la bascule supplémentaire B1 agit sur la première bascule B pour maintenir cette dernière contre la butée T, l'autre bascule supplémentaire B2 étant entraînée par le choc dans le sens qui l'éloigne de la première bascule B (sens horaire sur la figure 1). La bascule supplémentaire B1 exerce donc sur la première bascule B un moment (par rapport au centre de rotation de la première bascule B) antagoniste et supérieur à celui qu'exerce directement le choc. Cette configuration peut s'exprimer de la manière suivante : L b 1 . m 1 . R 1 . sin α β 1 L 1 > m b . R b . sin α β b
    Figure imgb0002
  3. c) Sous l'effet du choc seule la bascule supplémentaire B2 agit sur la première bascule B pour maintenir cette dernière contre la butée T, l'autre bascule supplémentaire B1 étant entraînée par le choc dans le sens qui l'éloigne de la première bascule B (sens horaire sur la figure 1). La bascule supplémentaire B2 exerce donc sur la première bascule B un moment (par rapport au centre de rotation de la première bascule B) antagoniste et supérieur à celui qu'exerce directement le choc. Cette configuration peut s'exprimer de la manière suivante : L b 2 . m 2 . R 2 . sin α β 2 L 2 > m b . R b . sin α β b
    Figure imgb0003
In case 2) above, three sub-cases are possible depending on the direction α of the shock:
  1. a) Under the effect of the shock the two additional flip-flops B1, B2 act on the first flip-flop B to hold it against the stop T. Each additional flip-flop B1, B2 thus exerts a moment on the first flip-flop B and the sum of these two moments (relative to the center of rotation of the first flip-flop B) is antagonistic and greater than the moment that the shock directly exerts on the first flip-flop B. This configuration can be expressed as follows: The b 1 . m 1 . R 1 . sin α - β 1 The 1 + The b 2 . m 2 . R 2 . sin α - β 2 The 2 > m b . R b . sin α - β b
    Figure imgb0001
    where m 1 , m 2 and m b are the respective masses of the additional flip-flops B1, B2 and the first flip-flop B, and α, β b , β 1 , β 2 , R 1 , R 2 , L 1 , L 2 , R b , L b1 , L b2 are the quantities defined above.
  2. b) Under the effect of the shock only the additional rocker B1 acts on the first rocker B to maintain it against the stop T, the other additional rocker B2 being driven by the shock in the direction that away from the first rocker B (clockwise on the figure 1 ). The additional flip-flop B1 thus exerts on the first flip-flop B a moment (with respect to the center of rotation of the first flip-flop B) that is antagonistic and greater than that which the shock exerts directly. This configuration can be expressed as follows: The b 1 . m 1 . R 1 . sin α - β 1 The 1 > m b . R b . sin α - β b
    Figure imgb0002
  3. c) Under the effect of the shock only the additional rocker B2 acts on the first rocker B to maintain the latter against the stop T, the other additional rocker B1 being driven by the shock in the direction that away from the first rocker B (clockwise on the figure 1 ). The additional flip-flop B2 thus exerts on the first flip-flop B a moment (with respect to the center of rotation of the first flip-flop B) that is antagonistic and greater than that exerted directly by the shock. This configuration can be expressed as follows: The b 2 . m 2 . R 2 . sin α - β 2 The 2 > m b . R b . sin α - β b
    Figure imgb0003

Dans la présente invention on choisit donc la géométrie, la masse et la position des bascules supplémentaires B1, B2 pour que lors de tout choc linéaire (quelles que soient sa direction α et son intensité) tendant à éloigner la première bascule B de la butée T, un ou des moments soient exercés par l'ensemble de bascules supplémentaires B1, B2 sur la première bascule B sous l'effet du choc, selon l'une des configurations a), b) et c) ci-dessus, ce moment ou la somme de ces moments maintenant la première bascule B contre la butée T. Ceci peut être exprimé par l'inéquation suivante : M 1 + M 2 M b > 0

Figure imgb0004
avec : M 1 = 0 si M 1 < 0
Figure imgb0005
M 2 = 0 s i M 2 < 0
Figure imgb0006
où : M 1 = a . L b 1 . m 1 . R 1 . sin α β 1 L 1
Figure imgb0007
M 2 = a . L b 2 . m 2 . R 2 . sin α β 2 L 2
Figure imgb0008
M b = a . m b . R b . sin α β b
Figure imgb0009
et où a est la norme du vecteur accélération a du choc.In the present invention, the geometry, the mass and the position of the additional flip-flops B1, B2 are therefore chosen so that during any linear shock (whatever its direction α and its intensity) tending to move the first flip-flop B away from the stop T , one or more moments are exercised by the set of additional flip-flops B1, B2 on the first flip-flop B under the effect of the shock, according to one of the configurations a), b) and c) above, this moment or the sum of these moments maintaining the first flip-flop B against the stop T. This can be expressed by the following inequality: M 1 + M 2 - M b > 0
Figure imgb0004
with: M 1 = 0 if M 1 < 0
Figure imgb0005
M 2 = 0 s i M 2 < 0
Figure imgb0006
or : M 1 = at . The b 1 . m 1 . R 1 . sin α - β 1 The 1
Figure imgb0007
M 2 = at . The b 2 . m 2 . R 2 . sin α - β 2 The 2
Figure imgb0008
M b = at . m b . R b . sin α - β b
Figure imgb0009
and where is the norm of the vector acceleration at shock.

Il existe une multitude d'agencements permettant d'obtenir l'effet souhaité. Deux exemples numériques sont présentés ci-dessous en relation avec le premier mode de réalisation illustré à la figure 1. Exemple 1 Exemple 2 Rb 0.66 mm 0.4 mm mb 100 mg 80 mg βb 180° 70° R1 0.49 mm 1 mm m1 390 mg 120 mg β1 240° 130° L1 0.48 mm 0.48 mm Lb1 0.88 mm 0.88 mm R2 0.27 mm 1 mm m2 150 mg 30 mg β2 120° 10° L2 0.79 mm 0.79 mm Lb2 0.3 mm 0.3 mm There are a multitude of arrangements to achieve the desired effect. Two numerical examples are presented below in connection with the first embodiment illustrated in FIG. figure 1 . Example 1 Example 2 R b 0.66 mm 0.4 mm m b 100 mg 80 mg β b 180 ° 70 ° R 1 0.49 mm 1 mm m 1 390 mg 120 mg β 1 240 ° 130 ° L 1 0.48 mm 0.48 mm L b1 0.88 mm 0.88 mm R 2 0.27 mm 1 mm m 2 150 mg 30 mg β 2 120 ° 10 ° L 2 0.79 mm 0.79 mm L b2 0.3 mm 0.3 mm

Les courbes A1 et A2 des figures 3 et 4 représentent, respectivement pour les exemples numériques 1 et 2 ci-dessus, le moment total M, en Nmm, reçu par la première bascule B sous l'effet du choc en fonction de la direction α dudit choc et pour une accélération a égale à 1 g (9,81 m/s2). Ce moment total M est égal à M1 + M2 - Mb cumulé aux exécutions conditionnelles (I5) et (I6) ci-dessus. Comme on peut le voir sur ces figures 3 et 4, le moment total M est strictement positif quelle que soit la direction α du choc, ce qui implique que la première bascule B reste toujours en contact avec la butée T. Dans le choix des valeurs numériques on peut même prévoir un facteur de sécurité, c'est-à-dire imposer que le moment total M soit toujours supérieur à une valeur prédéfinie, par exemple égale à 0.2 Nmm, illustrée par les cercles A3 et A4.The A1 and A2 curves figures 3 and 4 represent, respectively for the numerical examples 1 and 2 above, the total moment M, in Nmm, received by the first flip-flop B under the effect of the shock as a function of the direction α of said shock and for an acceleration equal to 1 g (9.81 m / s 2 ). This total moment M is equal to M 1 + M 2 - M b cumulated with the conditional executions (I5) and (I6) above. As can be seen from these figures 3 and 4 , the total moment M is strictly positive regardless of the direction α of the shock, which implies that the first latch B always remains in contact with the stop T. In the choice of numerical values one can even provide a safety factor, c that is to say that the total moment M is always greater than a predefined value, for example equal to 0.2 Nmm, illustrated by the circles A3 and A4.

Il va de soi que le nombre de bascules supplémentaires n'est pas limité à deux mais peut être plus grand. L'inéquation I4 peut en effet être généralisée ainsi : i = 1 N M i M b > 0

Figure imgb0010
avec M i = 0 si M i < 0
Figure imgb0011
où Mi, calculé pour chaque bascule supplémentaire de la même manière que pour les bascules B1 et B2 précédemment décrites, représente le moment (par rapport au centre de rotation de la première bascule B) appliqué à la première bascule B par chaque bascule supplémentaire sous l'effet du choc, et où N est le nombre de bascules supplémentaires.It goes without saying that the number of additional flip-flops is not limited to two but can be larger. I4 inequality can indeed be generalized as follows: Σ i = 1 NOT M i - M b > 0
Figure imgb0010
with M i = 0 if M i < 0
Figure imgb0011
where M i , calculated for each additional flip-flop in the same manner as for the flip-flops B1 and B2 described above, represents the moment (relative to the center of rotation of the first flip-flop B) applied to the first flip-flop B by each additional flip-flop under the effect of shock, and where N is the number of additional flip-flops.

Comme déjà indiqué, la butée T peut être mobile. La figure 5 illustre un exemple d'application du dispositif mécanique selon le premier mode de réalisation de l'invention, dans lequel la butée T est une roue d'entraînement et la première bascule B est une bascule d'embrayage portant une roue d'embrayage B' qui engrène avec la roue d'entraînement T lorsque la bascule d'embrayage B est dans sa position embrayée. Les bascules supplémentaires B1, B2 permettent de maintenir l'engrènement entre les roues B' et T même en cas de choc linéaire. Un tel engrènement est précontraint. Il peut fonctionner grâce à la flexibilité donnée par le ressort S. En variante, la bascule d'embrayage B pourrait être en appui contre une butée fixe positionnée pour que les roues B' et T engrènent l'une avec l'autre. Dans d'autres exemples d'application, la butée T est une came et la bascule B comporte un palpeur ou suiveur de came. Le dispositif selon l'invention est alors dimensionné sur la base de la position angulaire la plus défavorable de la came.As already indicated, the stop T can be mobile. The figure 5 illustrates an example of application of the mechanical device according to the first embodiment of the invention, wherein the stop T is a drive wheel and the first lever B is a clutch rocker carrying a clutch wheel B ' which meshes with the drive wheel T when the clutch lever B is in its engaged position. The additional flip-flops B1, B2 make it possible to maintain the meshing between the wheels B 'and T even in the event of a linear impact. Such meshing is prestressed. It can operate thanks to the flexibility given by the spring S. Alternatively, the clutch lever B could be in abutment against a fixed stop positioned so that the wheels B 'and T mesh with each other. In other examples of application, the stop T is a cam and the rocker B has a feeler or cam follower. The device according to the invention is then dimensioned on the basis of the most unfavorable angular position of the cam.

La figure 6 montre un dispositif mécanique, notamment pour un mécanisme horloger, selon un deuxième mode de réalisation de l'invention. Dans ce deuxième mode de réalisation une seule bascule supplémentaire B1 est prévue et les centres de rotation C, C1 et de masse G, G1 de la première bascule B et de la bascule supplémentaire B1 sont (en vue plane de dessus) alignés tous les quatre sur une droite D. Cette bascule supplémentaire B1 est soumise à l'action d'un ressort S1 et plaque la première bascule B contre la butée T. La géométrie et la masse de la bascule supplémentaire B1 sont choisies pour que lors de tout choc linéaire (quelles que soient sa direction et son intensité) tendant à éloigner la première bascule B de la butée T, la bascule supplémentaire B1 exerce sur la première bascule B sous l'effet du choc un moment de force antagoniste et supérieur à celui qu'exerce le choc directement sur la première bascule B, maintenant ainsi la première bascule B contre la butée T. L'inéquation I4' ci-dessus combinée avec l'exécution conditionnelle I5' est applicable dans ce deuxième mode de réalisation en donnant à N la valeur 1, le moment Mi étant calculé de la même manière que pour l'une ou l'autre des bascules supplémentaires B1, B2 du premier mode de réalisation.The figure 6 shows a mechanical device, in particular for a watch mechanism, according to a second embodiment of the invention. In this second embodiment a single additional flip-flop B1 is provided and the centers of rotation C, C1 and mass G, G1 of the first flip-flop B and the additional flip-flop B1 are (in plan view from above) aligned all four. on a straight line D. This additional flip-flop B1 is subjected to the action of a spring S1 and plates the first flip-flop B against the stop T. The geometry and mass of the additional flip-flop B1 are chosen so that during any linear shock (whatever its direction and intensity) tending to move the first flip-flop B from the stop T, the additional flip-flop B1 exerts on the first flip-flop B under the effect of the shock a moment of antagonistic force and greater than that exerted by the shock directly on the first flip-flop B, thus maintaining the first flip-flop B against the stop T. The inequation I4 'above combined with the execution In this second embodiment, condition I5 'is applicable by giving N the value 1, the moment M i being calculated in the same way as for one or the other of the additional flip-flops B1, B2 of the first embodiment.

Par rapport au premier mode de réalisation, ce deuxième mode de réalisation présente l'avantage de ne comporter qu'une bascule supplémentaire. Par contre, il nécessite un alignement précis des centres de rotation C, C1 et de masse G, G1 de la première bascule B et de la bascule supplémentaire B1 pour que la bascule supplémentaire B1 puisse agir sur la première bascule B dans toutes les directions de choc tendant à éloigner la première bascule B de la butée T.Compared to the first embodiment, this second embodiment has the advantage of having only one additional flip-flop. On the other hand, it requires a precise alignment of the centers of rotation C, C1 and mass G, G1 of the first flip-flop B and of the additional flip-flop B1 so that the additional flip-flop B1 can act on the first flip-flop B in all directions of rotation. shock tending to move the first flip-flop B from the stop T.

Dans les exemples illustrés aux figures 1, 2, 5 et 6 les bascules B, B1, B2 sont montées autour d'axes de rotation physiques, de manière classique. Ces bascules pourraient néanmoins être montées autour d'axes de rotation virtuels, au moyen de systèmes de guidage flexible. A titre d'illustration, la figure 7 montre une variante du deuxième mode de réalisation dans laquelle la bascule supplémentaire B1 est reliée à une partie de fixation F par une lame élastique E permettant la rotation de la bascule supplémentaire B1 autour d'un axe virtuel, représenté par le centre de rotation C1, situé à environ 1/3 de la longueur de la lame E.In the examples illustrated in Figures 1, 2 , 5 and 6 the flip-flops B, B1, B2 are mounted around physical axes of rotation, in a conventional manner. These latches could nevertheless be mounted around virtual axes of rotation, by means of flexible guide systems. As an illustration, the figure 7 shows a variant of the second embodiment in which the additional rocker B1 is connected to a fixing portion F by an elastic blade E allowing the rotation of the additional rocker B1 around a virtual axis, represented by the center of rotation C1, located about 1/3 of the length of the E blade.

La figure 8 montre un dispositif mécanique, notamment pour un mécanisme horloger, selon un troisième mode de réalisation de l'invention. Dans ce troisième mode de réalisation, la bascule B est maintenue en appui contre la butée T, et est empêchée de perdre le contact avec la butée T en cas de choc linéaire, non pas par une bascule supplémentaire mais par un élément poussoir P1 guidé en translation. L'élément poussoir P1 est guidé en translation par exemple par des lames élastiques E1 qui remplissent en outre une fonction de rappel tendant à appliquer l'élément poussoir P1 contre la bascule B. La géométrie, la masse et la position de l'élément poussoir P1 sont choisies pour que lors de tout choc linéaire a (quelles que soient sa direction α et son intensité) tendant à éloigner la bascule B de la butée T, l'élément poussoir P1 exerce sur la bascule B (par rapport au centre de rotation C de cette dernière) un moment antagoniste et supérieur à celui qu'exerce le choc directement sur la bascule B, maintenant ainsi la bascule B en appui contre la butée T. Ceci peut s'exprimer par l'inéquation suivante : L b 1 . m 1 . cos β 1 α > m b . R b . sin α β b

Figure imgb0012
où mb et m1 sont les masses respectives de la bascule B et de l'élément poussoir P1, Rb est la distance entre le centre de masse G et le centre de rotation C de la bascule B, βb est la position angulaire, mesurée comme précédemment, de la bascule B, α est la direction (y compris le sens), mesurée comme précédemment, de tout choc linéaire reçu, Lb1 est la distance (bras de levier) entre le centre de rotation C de la bascule B et la droite d'action des forces d'action-réaction exercées entre la bascule B et l'élément poussoir P1, et β1 est la position angulaire de l'élément poussoir P1, c'est-à-dire l'angle orienté entre le demi-axe (O, x) du repère (O, x, y) et la force d'action exercée par l'élément poussoir P1 sur la bascule B, cette force d'action étant parallèle à la direction de déplacement Dp de l'élément poussoir P1.The figure 8 shows a mechanical device, in particular for a watch mechanism, according to a third embodiment of the invention. In this third embodiment, the rocker B is held in abutment against the stop T, and is prevented from losing contact with the stop T in the event of a linear shock, not by an additional rocker but by a pusher element P1 guided by translation. The pusing element P1 is guided in translation for example by elastic strips E1 which also fulfill a return function tending to apply the pusing element P1 against the rocker B. The geometry, the mass and the position of the pusher element P1 are chosen so that during any linear shock at (Whatever its direction α and intensity) tending to move the flip-flop B from the stop T, the pusher element P1 exerts on the latch B (with respect to the center of rotation C of the latter) a moment antagonistic and superior to the one exerted by the shock directly on the rocker B, thus maintaining the rocker B in abutment against the stop T. This can be expressed by the following inequality: The b 1 . m 1 . cos β 1 - α > m b . R b . sin α - β b
Figure imgb0012
where m b and m 1 are the respective masses of the flip-flop B and the pusher element P1, R b is the distance between the center of mass G and the center of rotation C of the flip-flop B, β b is the angular position , as measured previously, of the flip-flop B, α is the direction (including the direction), measured as before, of any linear shock received, L b1 is the distance (lever arm) between the center of rotation C of the rocker B and the line of action of the action-reaction forces exerted between the flip-flop B and the pusing element P1, and β 1 is the angular position of the pusher element P1, that is to say the angle oriented between the half-axis (O, x) of the mark (O, x, y) and the force of action exerted by the pusher element P1 on the latch B, this action force being parallel to the direction of movement Dp of the push element P1.

Dans l'exemple de la figure 8 où un seul élément poussoir P1 est prévu, l'angle entre la direction de déplacement Dp de l'élément poussoir P1 et la droite D' passant par le centre de rotation C et le centre de masse G de la bascule B doit être un angle droit pour que l'élément poussoir P1 puisse agir sur la bascule B dans toutes les directions de choc tendant à éloigner la bascule B de la butée T. Pour éviter de devoir positionner précisément l'élément poussoir P1 on peut utiliser plusieurs éléments poussoirs, à l'instar des bascules supplémentaires B1, B2 du premier mode de réalisation. L'inéquation I4' ci-dessus combinée avec l'exécution conditionnelle I5' est applicable par analogie. On peut aussi utiliser à la fois un ou plusieurs éléments poussoirs et une ou plusieurs bascules supplémentaires.In the example of the figure 8 where only one pusing element P1 is provided, the angle between the displacement direction Dp of the pusing element P1 and the straight line D 'passing through the center of rotation C and the center of mass G of the rocker B must be an angle right so that the push member P1 can act on the rocker B in all directions of shock tending to move the flip-flop B of the stop T. To avoid having to precisely position the push member P1 can be used several push elements, to like the additional flip-flops B1, B2 of the first embodiment. The above equation I4 'combined with the conditional execution I5' is applicable by analogy. It is also possible to use one or more push elements and one or more additional rockers.

La figure 9 montre un dispositif mécanique, notamment pour un mécanisme horloger, selon un quatrième mode de réalisation de l'invention. Dans ce quatrième mode de réalisation la bascule B est remplacée par un organe H guidé en translation par exemple par des lames élastiques E2 qui remplissent en outre une fonction de rappel tendant à appliquer l'organe H contre la butée T. L'organe H est par exemple un élément poussoir d'un mécanisme horloger. Une bascule B1 soumise à l'action d'un ressort de rappel S1 agit sur l'organe H pour le maintenir contre la butée T en cas de choc linéaire. Plus précisément, la géométrie, la masse et la position de la bascule B1 sont choisies pour que lors de tout choc linéaire a (quelles que soient sa direction α et son intensité) tendant à éloigner l'organe H de la butée T, la bascule B1 exerce sur l'organe H sous l'effet du choc une force antagoniste et supérieure à celle qu'exerce le choc directement sur l'organe H, maintenant ainsi l'organe H en appui contre la butée T. Ceci peut s'exprimer par l'inéquation suivante : R 1 . m 1 . sin α β 1 L 1 > m h . cos β h α

Figure imgb0013
où mh et m1 sont les masses respectives de l'organe H et de la bascule B1, R1 est la distance entre le centre de masse G1 et le centre de rotation C1 de la bascule B1, β1 est la position angulaire, mesurée comme précédemment, de la bascule B1, α est la direction (y compris le sens), mesurée comme précédemment, de tout choc linéaire reçu, L1 est la distance (bras de levier) entre le centre de rotation C1 de la bascule B1 et la droite d'action des forces d'action-réaction exercées entre la bascule B1 et l'organe H, et βh est la position angulaire de l'organe H, c'est-à-dire l'angle orienté entre le demi-axe (O, x) du repère (O, x, y) et la force exercée par l'organe H sur la bascule B1, cette force étant parallèle à la direction de déplacement Dh de l'organe H.The figure 9 shows a mechanical device, in particular for a watch mechanism, according to a fourth embodiment of the invention. In this fourth embodiment, flip-flop B is replaced by a member H guided in translation for example by elastic strips E2 which also fulfill a return function tending to apply the member H against the stop T. The member H is for example a pusher element of a watch mechanism. A flip-flop B1 subjected to the action of a return spring S1 acts on the member H to hold it against the abutment T in the event of a linear impact. More specifically, the geometry, the mass and the position of the rocker B1 are chosen so that during any linear shock at (Whatever its direction α and its intensity) tending to move the organ H away from the stop T, the rocker B1 exerts on the organ H under the effect of the shock an antagonistic force and greater than that which exerts the shock directly on the member H, thus maintaining the member H bearing against the stop T. This can be expressed by the following inequality: R 1 . m 1 . sin α - β 1 The 1 > m h . cos β h - α
Figure imgb0013
where m h and m 1 are the respective masses of the member H and the flip-flop B1, R 1 is the distance between the center of mass G1 and the center of rotation C1 of the flip-flop B1, β 1 is the angular position, measured as before, of the flip-flop B1, α is the direction (including the direction), measured as before, of any linear shock received, L 1 is the distance (lever arm) between the center of rotation C1 of the flip-flop B1 and the action-force of the action-reaction forces exerted between the latch B1 and the member H, and β h is the angular position of the member H, that is to say the angle oriented between the half-axis (O, x) of the reference (O, x, y) and the force exerted by the member H on the latch B1, this force being parallel to the direction of movement D h of the member H.

Dans l'exemple de la figure 9 où une seule bascule B1 est prévue, l'angle entre la direction de déplacement Dh de l'organe H et la droite D1' passant par le centre de rotation C1 et le centre de masse G1 de la bascule B1 doit être un angle droit pour que la bascule B1 puisse agir sur l'organe H dans toutes les directions de choc tendant à éloigner l'organe H de la butée T. Pour éviter de devoir positionner précisément la bascule B1 on peut utiliser plusieurs bascules, à l'instar des bascules supplémentaires B1, B2 du premier mode de réalisation. En alternative à la bascule B1 ou aux bascules, ou en plus de cette ou ces bascules, un ou des éléments poussoirs du type de l'élément P1 du troisième mode de réalisation peut être employé.In the example of the figure 9 where a single flip-flop B1 is provided, the angle between the direction of movement D h of the member H and the line D1 'passing through the center of rotation C1 and the center of mass G1 of the flip-flop B1 must be a right angle so that the flip-flop B1 can act on the member H in all directions of shock tending to move the member H away from the stop T. avoid having to precisely position the flip-flop B1 can use several flip-flops, like the additional flip-flops B1, B2 of the first embodiment. As an alternative to the flip-flop B1 or the flip-flops, or in addition to this or these flip-flops, one or more push elements of the type of the element P1 of the third embodiment can be used.

Claims (14)

Dispositif mécanique comprenant : - un organe mobile (B ; H) ; - une butée (T) fixe ou mobile ; et - un dispositif de maintien (B1, B2, S1, S2, S ; P1, E1) pour maintenir l'organe mobile (B ; H) en appui contre la butée (T), caractérisé en ce que le dispositif de maintien comprend au moins un élément mobile (B1, B2 ; P1) en appui contre l'organe mobile (B ; H) et en ce que les géométrie(s), masse(s) et position(s) de l'au moins un élément mobile (B1, B2 ; P1) sont telles que, lors de tout choc linéaire tendant à éloigner l'organe mobile (B ; H) de la butée (T), l'au moins un élément mobile (B1, B2 ; P1) exerce sur l'organe mobile (B ; H) sous l'effet du choc une action antagoniste à l'action exercée par le choc sur l'organe mobile (B ; H), cette action antagoniste maintenant l'organe mobile (B ; H) contre la butée (T).Mechanical device comprising: a movable member (B; H); - a stop (T) fixed or movable; and a holding device (B1, B2, S1, S2, S, P1, E1) for holding the movable member (B; H) in abutment with the stop (T), characterized in that the holding device comprises at least one movable element (B1, B2; P1) bearing against the movable member (B; H) and in that the geometry (s), mass (s) and position ( s) of the at least one movable element (B1, B2; P1) are such that, during any linear impact tending to move the movable member (B; H) away from the stop (T), the at least one movable member (B1, B2; P1) exerts on the movable member (B; H) under the effect of the shock an action that is antagonistic to the action exerted by the impact on the movable member (B; H), this action antagonist now the movable member (B; H) against the stop (T). Dispositif mécanique selon la revendication 1, caractérisé en ce que l'organe mobile (B) est une bascule.Mechanical device according to claim 1, characterized in that the movable member (B) is a rocker. Dispositif mécanique selon la revendication 1, caractérisé en ce que l'organe mobile (H) est un élément guidé en translation.Mechanical device according to claim 1, characterized in that the movable member (H) is a member guided in translation. Dispositif mécanique selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le dispositif de maintien comprend plusieurs dits éléments mobiles (B1, B2).Mechanical device according to any one of claims 1 to 3, characterized in that the holding device comprises a plurality of said movable elements (B1, B2). Dispositif mécanique selon l'une quelconque des revendications 1 à 4, caractérisé en ce que l'au moins un élément mobile (B1, B2) comprend au moins une bascule.Mechanical device according to any one of claims 1 to 4, characterized in that the at least one movable element (B1, B2) comprises at least one rocker. Dispositif mécanique selon la revendication 5, caractérisé en ce que l'au moins un élément mobile (B1, B2) comprend au moins deux bascules.Mechanical device according to claim 5, characterized in that the at least one movable element (B1, B2) comprises at least two latches. Dispositif mécanique selon la revendication 5, caractérisé en ce que l'au moins un élément mobile (B1, B2) comprend au moins deux bascules dont les centres de rotation (C1, C2) sont, en vue plane de dessus, différents l'un de l'autre ou les uns des autres.Mechanical device according to claim 5, characterized in that the at least one movable element (B1, B2) comprises at least two latches whose centers of rotation (C1, C2) are, in plane view from above, different from one another. from each other or from each other. Dispositif mécanique selon l'une quelconque des revendications 1 à 7, caractérisé en ce que l'organe mobile (B) est une première bascule et en ce que l'au moins un élément mobile comprend une bascule supplémentaire (B1) dont le centre de rotation (C1) et le centre de masse (G1) sont, en vue plane de dessus, alignés avec le centre de rotation (C) et le centre de masse (G) de la première bascule (B) lorsque la première bascule (B) est maintenue en appui contre la butée (T) par le dispositif de maintien.Mechanical device according to any one of claims 1 to 7, characterized in that the movable member (B) is a first latch and in that the at least one movable element comprises an additional latch (B1) whose center of rotation (C1) and the center of mass (G1) are, in plan view from above, aligned with the center of rotation (C) and the center of mass (G) of the first flip-flop (B) when the first latch (B ) is held in abutment against the stop (T) by the holding device. Dispositif mécanique selon l'une quelconque des revendications 1 à 8, caractérisé en ce que l'au moins un élément mobile (P1) comprend au moins un élément poussoir guidé en translation.Mechanical device according to any one of claims 1 to 8, characterized in that the at least one movable element (P1) comprises at least one pusher element guided in translation. Dispositif mécanique selon l'une quelconque des revendications 1 à 9, caractérisé en ce que le ou chaque dit élément mobile (B1, B2 ; P1) est rigide.Mechanical device according to any one of claims 1 to 9, characterized in that the or each said movable element (B1, B2; P1) is rigid. Dispositif mécanique selon l'une quelconque des revendications 1 à 10, caractérisé en ce que l'organe mobile (B ; H) est rigide.Mechanical device according to any one of claims 1 to 10, characterized in that the movable member (B; H) is rigid. Mécanisme horloger comprenant un dispositif mécanique selon l'une quelconque des revendications 1 à 11.Clock mechanism comprising a mechanical device according to any one of claims 1 to 11. Mécanisme horloger selon la revendication 12, caractérisé en ce que l'organe mobile (B) est une bascule d'embrayage.Clock mechanism according to claim 12, characterized in that the movable member (B) is a clutch rocker. Procédé de réalisation d'un dispositif mécanique comprenant : - un organe mobile (B ; H) ; - une butée (T) fixe ou mobile ; et - un dispositif de maintien (B1, B2, S1, S2, S ; P1, E1) pour maintenir l'organe mobile (B ; H) en appui contre la butée (T), caractérisé en ce que le dispositif de maintien comprend au moins un élément mobile (B1, B2 ; P1) en appui contre l'organe mobile (B ; H) et en ce qu'on choisit les géométrie(s), masse(s) et position(s) de l'au moins un élément mobile (B1, B2 ; P1) pour que, lors de tout choc linéaire tendant à éloigner l'organe mobile (B ; H) de la butée (T), l'au moins un élément mobile (B1, B2 ; P1) exerce sur l'organe mobile (B ; H) sous l'effet du choc une action antagoniste à l'action exercée par le choc sur l'organe mobile (B ; H), cette action antagoniste maintenant l'organe mobile (B ; H) contre la butée (T).A method of producing a mechanical device comprising: a movable member (B; H); - a stop (T) fixed or movable; and a holding device (B1, B2, S1, S2, S, P1, E1) for holding the movable member (B; H) in abutment with the stop (T), characterized in that the holding device comprises at least one movable element (B1, B2; P1) bearing against the movable member (B; H) and in that the geometry (s), mass (s) are selected and position (s) of the at least one movable member (B1, B2; P1) so that, during any linear impact tending to move the movable member (B; H) away from the stop (T), the at least one at least one movable member (B1, B2; P1) exerts on the movable member (B; H) under the effect of the shock an action that is antagonistic to the action exerted by the impact on the movable member (B; H), this antagonistic action now the movable member (B; H) against the stop (T).
EP17156420.6A 2017-02-16 2017-02-16 Shock-absorbing mechanical device, in particular for clockmaking Active EP3364254B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CH00178/17A CH713473A2 (en) 2017-02-16 2017-02-16 Anti-shock mechanical device, in particular for watchmaking.
EP17156420.6A EP3364254B1 (en) 2017-02-16 2017-02-16 Shock-absorbing mechanical device, in particular for clockmaking

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH00178/17A CH713473A2 (en) 2017-02-16 2017-02-16 Anti-shock mechanical device, in particular for watchmaking.
EP17156420.6A EP3364254B1 (en) 2017-02-16 2017-02-16 Shock-absorbing mechanical device, in particular for clockmaking

Publications (2)

Publication Number Publication Date
EP3364254A1 true EP3364254A1 (en) 2018-08-22
EP3364254B1 EP3364254B1 (en) 2020-04-22

Family

ID=65323819

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17156420.6A Active EP3364254B1 (en) 2017-02-16 2017-02-16 Shock-absorbing mechanical device, in particular for clockmaking

Country Status (2)

Country Link
EP (1) EP3364254B1 (en)
CH (1) CH713473A2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1184396B (en) * 1960-03-31 1964-12-31 Licentia Gmbh Mechanical locking device for moving parts of electrical switchgear
US6486758B1 (en) * 2000-11-21 2002-11-26 Eaton Corporation Shock-resistant circuit breaker with inertia lock
EP2945029A1 (en) * 2014-05-15 2015-11-18 Patek Philippe SA Genève Chronograph locking device (Device for a clock piece)

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1184396B (en) * 1960-03-31 1964-12-31 Licentia Gmbh Mechanical locking device for moving parts of electrical switchgear
US6486758B1 (en) * 2000-11-21 2002-11-26 Eaton Corporation Shock-resistant circuit breaker with inertia lock
EP2945029A1 (en) * 2014-05-15 2015-11-18 Patek Philippe SA Genève Chronograph locking device (Device for a clock piece)

Also Published As

Publication number Publication date
CH713473A2 (en) 2018-08-31
EP3364254B1 (en) 2020-04-22

Similar Documents

Publication Publication Date Title
CH712105A2 (en) Resonator clock mechanism.
EP3545367A2 (en) Flexibly guided rotary resonator maintained by a free escapement with pallet
EP2690507B1 (en) Holorological hairspring
EP2450757B1 (en) Anti-tripping device for escapement mechanism
WO2015049090A1 (en) Clockwork movement and timepiece including such a movement
CH705238B1 (en) Inertia adjustable pendulum to clockwork.
CH710691A2 (en) Isochronous timepiece resonator.
EP3364254A1 (en) Shock-absorbing mechanical device, in particular for clockmaking
EP3435173A1 (en) Mechanical movement with isochronous rotary resonator, which is not position-sensitive
CH713117B1 (en) Lockable rotating bezel watch case.
EP3037893B1 (en) Micromechanical or clock component with flexible guidance
EP2977833B1 (en) Accurate positioning of a timepiece bridge
EP1960843B1 (en) Timepiece movement
EP2781971A1 (en) Structure of a clockwork mechanism
CH705075B1 (en) Shock protection and adjustable clock adjustment method.
CH714319A2 (en) Device for guiding in translation of a mobile component.
CH708741A2 (en) Corrector device for a timepiece.
CH713389A1 (en) System linking a tree to a room.
EP2843483A1 (en) Date mechanism
EP3707564B1 (en) Horological assembly comprising a horological component and a device for guiding the translation of a mobile component
EP4348358A1 (en) Perpetual date display system with secular year correction
CH715864B1 (en) Blocking device for a watch movement.
EP4325301A1 (en) Timepiece mechanism comprising a rotary timepiece member and a device with a predetermined angular stiffness
WO2023170161A1 (en) Bridge for guiding a balance of a timepiece
FR3008200A1 (en) EXHAUST FOR WATCHPIECES WITH CAGE-FREE TOURBILLON

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181228

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1253241

Country of ref document: HK

RIC1 Information provided on ipc code assigned before grant

Ipc: G04B 43/00 20060101ALI20191126BHEP

Ipc: G04B 11/00 20060101AFI20191126BHEP

Ipc: G04B 3/04 20060101ALI20191126BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200113

RIN1 Information on inventor provided before grant (corrected)

Inventor name: CHABLOZ, DAVID

Inventor name: KRUETTLI, ANTHONY

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017015002

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1260939

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200515

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: MICHELI AND CIE SA, CH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200822

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200723

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200824

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1260939

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017015002

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170216

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231222

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231220

Year of fee payment: 8

Ref country code: GB

Payment date: 20240108

Year of fee payment: 8

Ref country code: CH

Payment date: 20240301

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422