EP3362590B1 - Series of electrolysis cells for the production of aluminium comprising means for balancing the magnetic fields at the end of the line - Google Patents

Series of electrolysis cells for the production of aluminium comprising means for balancing the magnetic fields at the end of the line Download PDF

Info

Publication number
EP3362590B1
EP3362590B1 EP16855008.5A EP16855008A EP3362590B1 EP 3362590 B1 EP3362590 B1 EP 3362590B1 EP 16855008 A EP16855008 A EP 16855008A EP 3362590 B1 EP3362590 B1 EP 3362590B1
Authority
EP
European Patent Office
Prior art keywords
cells
row
series
electrolysis
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16855008.5A
Other languages
German (de)
French (fr)
Other versions
EP3362590A4 (en
EP3362590A1 (en
Inventor
Benoit BARDET
Olivier Martin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rio Tinto Alcan International Ltd
Original Assignee
Rio Tinto Alcan International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rio Tinto Alcan International Ltd filed Critical Rio Tinto Alcan International Ltd
Publication of EP3362590A1 publication Critical patent/EP3362590A1/en
Publication of EP3362590A4 publication Critical patent/EP3362590A4/en
Application granted granted Critical
Publication of EP3362590B1 publication Critical patent/EP3362590B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/16Electric current supply devices, e.g. bus bars
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/20Automatic control or regulation of cells

Definitions

  • the invention relates to the production of aluminum by igneous electrolysis, namely by electrolysis of alumina in solution in a bath of molten cryolite, called an electrolyte bath, according to the well-known Hall-Héroult process.
  • the invention particularly relates to the balancing of the magnetic field of the series of electrolysis cells, typically of rectangular shape and arranged transversely.
  • the factories for the production of aluminum by igneous electrolysis contain a large number of electrolysis cells - typically several hundred - arranged in line, and electrically connected in series using bonding conductors, so as to form two or more lines. which are electrically linked together by connecting conductors.
  • the cells which are rectangular in shape, can be oriented either longitudinally (i.e. so that their major axis is parallel to the longitudinal axis of the rows), or transversely (i.e. say so that their major axis is perpendicular to the longitudinal axis of the lines).
  • the French patent application FR 2425 482 (corresponding to the American patent US 4169 034 ) in the name of Aluminum Pechiney, describes an aluminum smelter comprising at least two parallel parallel rows of cells in which the magnetic field generated by the current flowing in the neighboring row of cells is compensated by means of at least one independent correcting conductor passing on the side of the tanks, along all the cells of the series and crossed by a direct current of correction.
  • the file arrangement of the electrolysis cells has the advantage of simplifying the configuration of the connecting conductors and standardizing the map of magnetic fields.
  • the presence of connecting conductors between the lines disturbs the uniformity of the map of the magnetic fields of the end cells of each line.
  • connection conductors for series of cells arranged longitudinally intended to limit the disturbances caused by these connection conductors.
  • intensities of this type of cell generally do not exceed 100 kA.
  • EP 0 342 033 and Chinese CN 2 477 650 describe arrangements of connection conductors applicable to the series of cells arranged transversely intended to limit the disturbances caused by these connection conductors. These documents relate to series of electrolysis cells provided with cells intended for intensities of the order of 300 kA.
  • the patent FR 2 868 436 (corresponding to the American patent US 7,513,979 ) in the name of Aluminum Pechiney describes a series of two rows of cells arranged transversely and provided with at least one correction conductor along the inside of the rows, with a particular arrangement of the correction conductor consisting in making a transverse section running along along its length, the first end cell of the line at a determined distance and traversed by a current flowing from the inside to the outside of the lines of cells.
  • Such an arrangement makes it possible to satisfactorily compensate for the magnetic field generated by the connection conductors in a small number of end cells (approximately 1 to 3) while a greater number of end cells (approximately 1 to 10 ) are disturbed by the magnetic field generated by the connecting conductors. Consequently, a large number of end-of-queue cells remain unstable and difficult to operate.
  • the Applicant has therefore sought economically and technically satisfactory solutions for balancing the magnetic fields of the end cells of the lines, and in particular of series of cells formed from long rectangular cells, arranged transversely.
  • the Applicant has noted that, in the absence of a magnetic balancing circuit for the end-of-line cells as defined above, the end cells of the lines are especially affected by an additional mean vertical magnetic field ⁇ Bz, when the cells in the central portion of the lines are correctly balanced magnetically.
  • the invention thus aims to maintain the additional vertical field ⁇ Bz within a range limited by a minimum value and a maximum value around a target value close to zero.
  • the Applicant has had the idea of placing said first electrical conductor near the notoriously unstable end cells of the row of cells so as to be able to circulate in said first electrical conductor an electric current making it possible to compensate for the magnetic field produced in particular connecting conductors between the lines, and balancing the magnetic fields at the level of the cells of the end electrolysis cells.
  • the first electrical conductor extending along the row of cells extends parallel or substantially parallel to the longitudinal axis of the row of cells.
  • the conductor extends in the immediate vicinity of the cell line, so that its impact on the magnetic field in nearby cells is maximized, and typically has a distance of less than 5 meters and advantageously less than 3 meters.
  • This configuration makes it possible in particular to substantially limit the vertical magnetic field Bz in these end cells.
  • the use of such a magnetic balancing circuit of the end-of-queue cells also allows fine adjustment of the magnetic balancing thanks to the additional adjustable parameters which it provides.
  • the first electrical conductor is traversed during the operation of the series by a direct current for magnetic balancing of the end-of-line cells.
  • the first electrical conductor extends continuously along a plurality of adjacent cells of the end portion for which an imbalance of the vertical magnetic field due to the presence of the connecting conductor is observed.
  • Such an end portion of the first row of cells typically comprises from 3 to 10 cells, and preferably from 6 to 8 cells.
  • the first electrical magnetic balancing conductor advantageously extends over a length at least equal to three times the distance between two cells (the distance between two cells being the distance between the median longitudinal axes of two adjacent electrolysis cells, typically correspond to 5 to 10 meters).
  • connection conductor no longer constitutes a destabilizing element for the electrolysis cells arranged beyond the tenth cell starting from the first end cell, due to the large distance between these cells and the connection conductor.
  • magnetic balancing means of the known end cells may have already been installed and correctly balance the first end cell.
  • the first magnetic balancing electrical conductor may not extend along this first end cell.
  • the balancing electric current generated by passing a vertical magnetic field opposite the vertical magnetic field generated by the current d through the first electric conductor. electrolysis passing through the connection conductor.
  • the magnetic balancing circuit of the end of line cells comprises a second electrical conductor parallel to the first electrical conductor of magnetic balancing of the end of line cells.
  • This second parallel electrical conductor participates in the closure of the magnetic balancing circuit and potentially in the production of a magnetic balancing circuit comprising a plurality of loops in series. Also, this second electrical conductor is traversed by the electric balancing current flowing in the opposite direction with respect to the electric balancing current flowing in the first electric conductor.
  • This second electrical conductor is advantageously arranged so as to improve the magnetic configuration of the end cells of the first row or of the second row, and at a minimum so that its possible negative impact on the magnetic balancing of the cells end is minimized and less than the positive impact of the first electrical conductor.
  • the second electrical conductor extends along the first row of cells only opposite the end portion of the first row of cells, the first and the second electrical conductor extending along opposite sides of the first row of cells.
  • the vertical magnetic field generated by the circulation of the same electric balancing current, in the opposite direction, on the other side of the cell line, in the second electrical conductor then adds to the vertical magnetic field generated by the circulation of an electric balancing current in the first conductor electric to counter the destabilizing vertical magnetic field generated by the current flowing in the connection conductor.
  • the second electrical conductor extends on the same side of the first row of cells as the first electrical conductor, the distance between the first electrical conductor and the first row of cells being less than a distance between the second electrical conductor and the first row of cells.
  • the vertical magnetic fields generated by the circulation of the balancing electric current in the opposite direction in the first and second electrical conductors oppose each other, but with less intensity for the vertical magnetic field generated by the circulation of the balancing electric current in the second electrical conductor than in the first electrical conductor, at the level of the end-of-line cells along from which the first electrical conductor extends.
  • the second electrical conductor is further from the electrolysis cells of the first row than the first electrical conductor so that the ratio of the values of the vertical magnetic field generated by the same balancing current flowing in the second electrical conductor and in the first electrical conductor is less than 0.5 to preferably less than 0.3, at the end-of-queue cells along which the first electrical conductor extends.
  • the second electrical conductor extends along the second row of cells only opposite an end portion of the second row of cells.
  • the magnetic balancing circuit makes it possible to magnetically balance both the end cells of the first row of cells and the corresponding end cells of the second row of cells.
  • the magnetic balancing circuit is connected to a specific electrical supply station.
  • the intensity of the current flowing in the magnetic balancing circuit can advantageously be easily controlled and adjusted.
  • specific electrical supply station it is meant that this electrical supply station does not supply current to the electrolysis circuit (connecting conductors), or correction conductors intended to carry out magnetic correction on all of the series cells.
  • the magnetic balancing circuit of the end of line cells has two ends which are connected to conductors electrically connecting electrolysis cells to each other.
  • the magnetic balancing circuit of the end-of-line cells is then supplied by at least part of the electrolysis current flowing in the cells and forms part of the electrolysis circuit through which the electrolysis current of the series.
  • the magnetic balancing circuit is connected to the conductors electrically connecting electrolysis cells to one another in parallel with one or more so-called parallel electrical conductors.
  • the magnetic balancing circuit of the end-of-line cells forms part of the connection conductor. The electrical balancing between the so-called parallel electrical conductors and the magnetic balancing circuit is thus facilitated.
  • the series of electrolysis cells comprises a correction circuit comprising at least a first correction conductor, extending along the first line, a second correction conductor extending along the second line, and at least one correction conductor for connection between the first and second correction conductors, and in which the magnetic balancing circuit of the end of line cells has two ends which are connected to the correction circuit.
  • certain series include one or more correction circuits extending along all of the electrolysis cells of the series to correct the destabilizing magnetic fields generated by the high intensity currents flowing in the circuits. conductors from cell to cell or in the neighboring cell queue.
  • the correction circuit is an integral part of the series and is supplied with electric current.
  • the magnetic balancing circuit of the line end cells is connected in series between two portions of the correction circuit.
  • the first and second correction conductors extend along all of the electrolysis cells, it suffices to connect the magnetic balancing circuit of the end of line cells in series at an intermediate point of the correction circuit. at a suitable location along the cell lines.
  • the correction current flowing in the correction circuit also passes through the magnetic balancing circuit and becomes in this magnetic balancing circuit the magnetic balancing current.
  • the first correction conductor extends along the first row on the side of the second row
  • the second correction conductor extends along the second row on the side of the first row cells.
  • the first conductor and the second conductor of the magnetic balancing circuit connected to the correction circuit are advantageously arranged outside the two rows of cells.
  • the outside of the rows of cells, opposite the correction circuit, is less crowded than the inside and the installation of the magnetic balancing circuit facilitated.
  • Such a magnetic balancing circuit can in particular be implemented on an existing series already comprising a correction circuit disposed inside the two rows of cells.
  • connection conductor comprises a magnetic balancing conductor of the first end cell running along the first end cell perpendicular to the longitudinal axis of the row of cells, and the first electrical conductor not extend along the first end cell.
  • the first end cell is already magnetically balanced via the magnetic balancing conductor of the first end cell, so that changing its magnetic field using the first electrical conductor would destabilize it.
  • the magnetic balancing circuit of the end of line cells comprises a transverse conductor electrically connecting the correction circuit to the first electrical conductor, the transverse conductor extending under the cell line.
  • the magnetic balancing circuit of the end-of-line cells forms a plurality of loops and the first magnetic balancing electric conductor is formed by a plurality of loop strands extending side by side along of the first row of cells only opposite the end portion of the first row of cells.
  • the current flows in the same direction in each of the loop strands of the first electrical conductor and the impact on the magnetic field of the current flowing in the first electrical conductor is the sum of the impact on the magnetic field of the current flowing in each of the loop strands forming the first electrical conductor.
  • the cells are arranged transversely with respect to the rows of cells.
  • the electrolysis cells are typically electrically connected in series by means of electrical connecting conductors connecting the cathode of an electrolysis cell to the anode of the next electrolysis cell.
  • the invention relates to a series 1 of electrolysis cells comprising, as shown figures 2 to 5 , 7 and 8 , a plurality of electrolysis cells 100, 100 'of substantially rectangular shape, which are arranged so as to form at least two rows F, F' of cells substantially rectilinear, parallel and each having a longitudinal axis A, A '.
  • the cells 100 are typically arranged transversely (that is to say so that their main axis or long side is perpendicular to the longitudinal axis A, A 'of said rows) and located at the same distance from each other .
  • the electrolysis cells 100 typically have a long side greater than 3 times their short side.
  • the lines F, F ′ are separated by a distance depending on technological choices which take account in particular of the intensity I 0 of the electrolysis current of the series and of the configuration of the conductor circuits.
  • the distance D between the two lines is typically between 30 and 100 m for recent series.
  • each electrolysis cell 100 of the series 1 typically comprises a tank 3, anodes 4 supported by the fixing means typically comprising a rod 5 and a multipod 6 and mechanically and electrically connected to an anode frame 7 using connection means 8.
  • the tank 3 comprises a metal box, usually reinforced by stiffeners, and a crucible formed by refractory materials and cathode elements arranged inside the box.
  • the box generally has vertical side walls.
  • the anodes 4, typically made of carbonaceous material are partially immersed in an electrolyte bath (not illustrated) contained in the tank.
  • the tank 3 comprises a cathode assembly 9 provided with cathode bars 10, typically made of steel, one end of which leaves the tank 3 so as to allow electrical connection to the connecting conductors 12 to 17 between cells.
  • connection conductors 12 to 17 are connected to said cells 100 so as to form an electrical series, which constitutes the electrical electrolysis circuit of the series of electrolysis cells.
  • the connection conductors typically comprise flexible conductors 12, 16, 17, upstream connection conductors 13 and risers 14, 15.
  • the connection conductors, in particular upstream, can, in whole or in part, pass under the tank and / or bypass it.
  • the figure 2 schematically illustrates an embodiment comprising a series composed of two rows F, F 'of electrolysis cells 100 oriented transversely to the longitudinal axis A, A' of the rows.
  • the lines are straight and arranged parallel to each other.
  • the lines, and more particularly the first corresponding end cells 100 ′ of the two lines F, F ′, are electrically linked together by connection conductors 20.
  • the connection conductors 20 are formed only of electrical conductors or electrical conductors associated with an electric power station.
  • the series also comprises four electric magnetic balancing circuits 21 of the end cells.
  • a magnetic balancing circuit 21 balances the magnetic field at each of the two ends of the two lines F, F '.
  • These magnetic balancing circuits are arranged at the end cells of the lines outside the cell lines F, F ', that is to say outside the space between the two lines F, F' cells.
  • Each magnetic balancing circuit 21 comprises a first electrical conductor 22 for magnetic balancing of the end cells which extends along a line F, F 'of cells only opposite an end portion P of said row F, F 'of cells.
  • end cells By end cells is meant the n adjacent end cells starting from the first end cell 100 ′ of a row of cells which are magnetically impacted by the circulation of the electrolysis current Io in the connection conductor 20. Typically, n is between 3 and 10. The end portion P of the row of cells opposite which extends the first electrical conductor 22 is therefore limited to a segment of the queue along the end cells .
  • Each magnetic balancing circuit 21 further comprises a second electrical conductor 23 substantially parallel to the first electrical conductor 22 for magnetic balancing of the end cells and disposed at a greater distance from the row of cells than the first electrical conductor 22.
  • the first and second electrical conductors 22, 23 are electrically connected together by means of transverse conductors 24 to form a closed electrical circuit around an electrical supply station 30 advantageously connected at a point on the second electrical conductor 23.
  • the first electrical conductor 22 which extends along the line F, F 'in front of the end cells, makes it possible to substantially limit the vertical magnetic field Bz in the end cells when it is traversed by a current d 'magnetic balancing of the end cells of intensity I, and of opposite direction to the electrolysis current I 0 flowing in the end cells of the queue F, F' in front of which it extends.
  • the second electrical conductor 23 is farther from the end cells than the first electrical conductor 22 so that the magnetic field that it generates has little impact on the stability of the end cells. Due to their distance and their short length, the transverse conductors 24 have little impact on the stability of the end cells.
  • the first and second electrical conductors 22, 23 ' which extend along the line F, F' in front of the end cells, make it possible to substantially limit the vertical magnetic field Bz in the end cells when they are traversed by a magnetic balancing current of the end cells of intensity I1, in the opposite direction to the electrolysis current Io flowing in the end cells of the queue F, F 'in front of which it extends for the first electrical conductor 22 and in the same direction as the electrolysis current I 0 flowing in the end cells of the queue F, F 'in front of which it extends for the second electrical conductor 23'.
  • the first and second electrical conductors 22, 23 ' have a cumulative beneficial magnetic impact.
  • the transverse conductors 24 can in particular pass under the rows F, F ′ of cells. Due to their short length, the transverse conductors 24 have little impact on the stability of the end cells.
  • the first and second electrical conductors 22, 23 " which extend respectively along the lines F and F 'in front of the end cells, make it possible to substantially limit the vertical magnetic field Bz in the end cells of the line in front which they extend when they are traversed by a magnetic balancing current of the end cells of intensity I1, in the same direction as the electrolysis current Io flowing in the end cells of the queue F, F ' in front of which they extend.
  • the first and second electrical conductors 22, 23 " have a beneficial magnetic impact on the end cells of the two rows F and F 'of cells which they pass along respectively.
  • the transverse conductors 24, of substantial length between the two lines F, F ′ only have a slightly negative impact on the stability of the cells, because the current I 1 flowing in the transverse conductors 24 is of less intensity than the electrolysis current I 0 circulating in the connection conductors 20.
  • the figure 5 schematically illustrates one end of a series comprising electrical magnetic balancing circuits 21 of the end cells using the same principles of magnetic balancing as those presented with reference to figure 2 .
  • the methodology for supplying electric current to this magnetic balancing circuit differs. Instead of being supplied with electric current from at least one specific electric power station, each magnetic balancing circuit 21 is supplied from the electrolysis current I 0 flowing in the electrolysis cells of the series.
  • the magnetic balancing circuit 21 comprises a first electrical conductor 22, a second electrical conductor 23 and transverse conductors 24 electrically connecting the first and second electrical conductors to each other or electrically connecting the first and second electrical conductors to conductors electrically connecting to each other the corresponding end electrolysis cells 100 ′ of the two neighboring rows.
  • the transverse conductors 24 form two ends of the magnetic balancing circuit which are connected to conductors electrically connecting two electrolysis cells between them.
  • the magnetic balancing circuit of the end cells forms part of the electrolysis circuit, and more particularly of the connection conductor 20, through which the series electrolysis current flows.
  • the magnetic balancing circuit is connected to the conductors electrically connecting the end electrolysis cells 100 ′ in parallel with an electrical conductor called parallel 25.
  • part of the electrolysis current I 0 corresponding to the magnetic balancing current I 1 , flows in the magnetic balancing circuit.
  • Another part of the electrolysis current I 0 of intensity equal to I 0 -I 1 , flows in the so-called parallel electrical conductor 25.
  • This embodiment has the advantage of eliminating the need to use a specific feeding station.
  • the figure 6 illustrates, schematically, a series of electrolysis cells according to the state of the art comprising two rows F, F ′ of cells and a correction circuit 26 disposed between the two rows of cells.
  • This correction circuit 26 comprises two correction conductors 27 extending along each of the rows F, F 'of cells between the two rows F, F', connection correction conductors 28 between the two correction conductors 27 and an electric power station 31 of the correction circuit.
  • Such a correction circuit makes it possible in particular to compensate at the level of a file the magnetic field generated by the electrolysis current I 0 flowing in the neighboring file.
  • the correction conductors are typically traversed by a correction current I 2 flowing in the same direction as the electrolysis current I 0 flowing in the line they run along.
  • the correction current I 2 is typically comprised between 30 and 150kA.
  • the figure 7 schematically illustrates one end of a series comprising electrical circuits for magnetic balancing 21 of the end cells and a correction circuit as presented with reference to figure 6 .
  • the magnetic balancing circuits 21 of the end cells use the same principles of magnetic balancing as those presented with reference to figures 2 and 5 .
  • the methodology for supplying electric current to this magnetic balancing circuit differs.
  • Each magnetic balancing circuit 21 is supplied from the correction current I2 flowing in the conductors 27, 28 of the correction circuit 26.
  • the magnetic balancing circuit 21 comprises a first electrical conductor 22, a second electrical conductor 23 and transverse conductors 24 electrically connecting the first and second electrical conductors to each other or electrically connecting the first and second electrical conductors to conductors 27, 28 of the correction circuit 26.
  • the transverse conductors 24 thus form two ends of the magnetic balancing circuit which are connected to the conductors 27, 28 of the correction circuit 26.
  • the magnetic balancing circuit 21 of the end cells then forms part of the correction circuit 26 at through which the correction current flows.
  • the magnetic balancing circuit is more particularly connected to the conductors 27, 28 of the correction circuit in series between two portions of the correction circuit.
  • the entire correction current I 2 flows in the magnetic balancing circuit.
  • the intensity of the magnetic balancing current I 1 is equal to the intensity of the correction current I 2 .
  • This embodiment has the advantage of eliminating the need to use a specific supply station for the magnetic balancing circuit 21 of the end cells.
  • the electrical connection of the magnetic balancing circuit 21 is easy and feasible at any point considered appropriate.
  • the positioning of the magnetic balancing circuit 21 on the opposite side of the line F, F 'with respect to the correction conductor 27 corresponding is advantageous for reasons of space and because the insertion of the end cells between the first electrical conductor 22 and the correction conductor 27 is particularly stabilizing for these end cells.
  • the figure 8 schematically illustrates one end of a series comprising electrical circuits for magnetic balancing 21 of the end cells and a correction circuit.
  • the magnetic balancing circuit 21 of the end-of-line cells forms two loops and the first electrical conductor 22 of magnetic balancing is formed by the two loop strands 29 of the magnetic balancing circuit extending side by side along of the cell line only opposite the end portion P of the cell line.
  • the current flows in the same direction in each of the loop strands 29 extending side by side to form the first electrical conductor 22 and the impact on the magnetic field of the current flowing in the first electrical conductor is the sum of the impact on the magnetic field of the current flowing in each of the loop strands 29 forming the first electrical conductor 22.
  • the entire correction current I2 flows in each of the loop strands 29 of the magnetic balancing circuit 21.
  • the intensity of the current magnetic balancing I1 'flowing in the first electrical conductor 22 is twice the intensity of the correction current' 2.
  • the figure 9 schematically illustrates a variant of the embodiment of the figure 7 in which the connecting conductor 20 comprises a conductor 40 for magnetic balancing of the first end cell 100 'along this first end cell 100 'perpendicular to the longitudinal axis of one of the rows F, F' of cells. At least part of the electrolysis current I 0 flows in the conductor 40 in a direction opposite to the direction of circulation of the electrolysis current I0 in the main branch of the connecting conductor 20 extending between the two lines F, F ' . The negative magnetic impact generated by the connection conductor 20 is thus countered at the level of the first end cell 100 ′ skirted by the conductor 40.
  • the end portion P of the line opposite which extends the first electrical conductor 22 of the magnetic balancing circuit 21 of the line end cells then advantageously does not include the first end cell 100 '.
  • the first electrical conductor 22 extending along the line F, F ′ of cells only opposite an end portion P does not run along the first end cell.
  • the transverse conductor 24 electrically connecting the conductors 27, 28 of the correction circuit 26 to the first electrical conductor 22 extends under the row F, F 'of cells and more particularly under the first end cell 100'.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

Domaine de l'inventionField of the invention

L'invention concerne la production d'aluminium par électrolyse ignée, à savoir par électrolyse de l'alumine en solution dans un bain de cryolithe fondue, appelé bain d'électrolyte, selon le procédé bien connu de Hall-Héroult. L'invention concerne tout particulièrement l'équilibrage du champ magnétique des séries de cellules d'électrolyse, typiquement de forme rectangulaire et disposées transversalement.The invention relates to the production of aluminum by igneous electrolysis, namely by electrolysis of alumina in solution in a bath of molten cryolite, called an electrolyte bath, according to the well-known Hall-Héroult process. The invention particularly relates to the balancing of the magnetic field of the series of electrolysis cells, typically of rectangular shape and arranged transversely.

Etat de la techniqueState of the art

Les usines de production d'aluminium par électrolyse ignée contiennent un grand nombre de cellules d'électrolyse - typiquement plusieurs centaines - disposées en ligne, et raccordées électriquement en série a l'aide de conducteurs de liaison, de manière à former deux ou plusieurs files parallèles qui sont électriquement liées entre elles par des conducteurs de raccordement. Les cellules, qui sont de forme rectangulaire, peuvent être orientées soit longitudinalement (c'est-à-dire de façon à ce que leur grand axe soit parallèle à l'axe longitudinal des files), soit transversalement (c'est-à-dire de façon à ce que leur grand axe soit perpendiculaire à l'axe longitudinal des files).The factories for the production of aluminum by igneous electrolysis contain a large number of electrolysis cells - typically several hundred - arranged in line, and electrically connected in series using bonding conductors, so as to form two or more lines. which are electrically linked together by connecting conductors. The cells, which are rectangular in shape, can be oriented either longitudinally (i.e. so that their major axis is parallel to the longitudinal axis of the rows), or transversely (i.e. say so that their major axis is perpendicular to the longitudinal axis of the lines).

Un grand nombre d'arrangements de cellules et de conducteurs de liaison a été proposé afin, d'une part, de limiter les pertes par effet Joule et, d'autre part, de réduire l'impact des champs magnétiques produits par les conducteurs de liaison et les cellules voisines sur le processus d'électrolyse. Par exemple, la demande de brevet français FR 2 552 782 (correspondant au brevet américain US 4 592 821 ), au nom d'Aluminium Pechiney, décrit une file de cellules d'électrolyse disposées transversalement pouvant fonctionner industriellement à des intensités supérieures à 300 kA. Selon ce brevet, la stabilité magnétique des cellules est assurée par la configuration des conducteurs de liaison, notamment ceux passant sous la cuve.A large number of arrangements of cells and connecting conductors have been proposed in order, on the one hand, to limit the losses by Joule effect and, on the other hand, to reduce the impact of the magnetic fields produced by the conductors of bond and neighboring cells on the electrolysis process. For example, the French patent application FR 2 552 782 (corresponding to the American patent US 4,592,821 ), on behalf of Aluminum Pechiney, describes a line of transversely arranged electrolysis cells capable of operating industrially at intensities greater than 300 kA. According to this patent, the magnetic stability of the cells is ensured by the configuration of the connection conductors, in particular those passing under the tank.

Aussi, la demande de brevet français FR 2425 482 (correspondant au brevet américain US 4169 034 ) au nom d'Aluminium Pechiney, décrit une aluminerie comportant au moins deux files voisines parallèles de cellules dans laquelle le champ magnétique généré par le courant circulant dans la file voisine de cellules est compensé au moyen d'au moins un conducteur de correction indépendant passant sur le côté des cuves, le long de toutes les cellules de la série et traversé par un courant continu de correction.Also, the French patent application FR 2425 482 (corresponding to the American patent US 4169 034 ) in the name of Aluminum Pechiney, describes an aluminum smelter comprising at least two parallel parallel rows of cells in which the magnetic field generated by the current flowing in the neighboring row of cells is compensated by means of at least one independent correcting conductor passing on the side of the tanks, along all the cells of the series and crossed by a direct current of correction.

Par ailleurs, la demande de brevet français FR 2 583 069 (correspondant au brevet américain US 4 713 161 ), également au nom d'Aluminium Pechiney, décrit une file de cellules d'électrolyse disposées transversalement pouvant fonctionner à des intensités pouvant atteindre 500 à 600 kA. Selon ce brevet, les coûts de construction et de mise en place des circuits sont minimisés grâce à l'utilisation de conducteurs de liaison aussi petits et aussi directs que possible, alors que la stabilité magnétique et le rendement Faraday sont maximisés grâce à l'utilisation de conducteurs de correction indépendants, disposés parallèlement à chaque file et de chaque côté de celle-ci.Furthermore, the French patent application FR 2 583 069 (corresponding to the American patent US 4,713,161 ), also in the name of Aluminum Pechiney, describes a file of electrolysis cells arranged transversely which can operate at intensities up to 500 to 600 kA. According to this patent, the construction and installation costs of the circuits are minimized by the use of connecting conductors as small and as direct as possible, while the magnetic stability and the Faraday efficiency are maximized by the use independent correction conductors, arranged parallel to each line and on each side thereof.

La disposition en file des cellules d'électrolyse présente l'avantage de simplifier la configuration des conducteurs de liaison et d'uniformiser la carte des champs magnétiques. Toutetois, la présence de conducteurs de raccordement entre les files perturbe l'uniformité de la carte des champs magnétiques des cellules d'extrémité de chaque file.The file arrangement of the electrolysis cells has the advantage of simplifying the configuration of the connecting conductors and standardizing the map of magnetic fields. However, the presence of connecting conductors between the lines disturbs the uniformity of the map of the magnetic fields of the end cells of each line.

Les brevets américains US 3 775 280 et US 4 189 368 proposent des arrangements de conducteurs de raccordement pour des séries de cellules disposées longitudinalement destinés à limiter les perturbations provoquées par ces conducteurs de raccordement. En outre, les intensités de ce type de cellules n'excédent généralement pas 100 kA.American patents US 3,775,280 and US 4,189,368 propose arrangements of connection conductors for series of cells arranged longitudinally intended to limit the disturbances caused by these connection conductors. In addition, the intensities of this type of cell generally do not exceed 100 kA.

Les demandes de brevet européen EP 0 342 033 et chinois CN 2 477 650 décrivent des arrangements de conducteurs de raccordement applicables aux séries de cellules disposées transversalement destinés à limiter les perturbations provoquées par ces conducteurs de raccordement. Ces documents concernent des séries de cellules d'électrolyse munies de cuves destinées à des intensités de l'ordre de 300 kA.European patent applications EP 0 342 033 and Chinese CN 2 477 650 describe arrangements of connection conductors applicable to the series of cells arranged transversely intended to limit the disturbances caused by these connection conductors. These documents relate to series of electrolysis cells provided with cells intended for intensities of the order of 300 kA.

Le brevet FR 2 868 436 (correspondant au brevet américain US 7 513 979 ) au nom d'Aluminium Pechiney décrit une série de deux files de cellules disposées transversalement et munie d'au moins un conducteur de correction le long du côté intérieur des files, avec un arrangement particulier du conducteur de correction consistant à réaliser un tronçon transversal longeant dans sa longueur la première cellule d'extrémité de la file à une distance déterminée et traversé par un courant circulant depuis le côté intérieur vers le côté extérieur des files de cellules. Un tel arrangement permet de compenser de façon satisfaisante le champ magnétique généré par les conducteurs de raccordement dans un faible nombre de cellules d'extrémité (environ 1 à 3) alors qu'un plus grand nombre de cellules d'extrémité (environ 1 à 10) sont perturbées par le champ magnétique généré par les conducteurs de raccordement. Par conséquent un nombre important de cellules d'extrémité de file restent instables et difficiles à opérer.The patent FR 2 868 436 (corresponding to the American patent US 7,513,979 ) in the name of Aluminum Pechiney describes a series of two rows of cells arranged transversely and provided with at least one correction conductor along the inside of the rows, with a particular arrangement of the correction conductor consisting in making a transverse section running along along its length, the first end cell of the line at a determined distance and traversed by a current flowing from the inside to the outside of the lines of cells. Such an arrangement makes it possible to satisfactorily compensate for the magnetic field generated by the connection conductors in a small number of end cells (approximately 1 to 3) while a greater number of end cells (approximately 1 to 10 ) are disturbed by the magnetic field generated by the connecting conductors. Consequently, a large number of end-of-queue cells remain unstable and difficult to operate.

La demanderesse a donc recherché des solutions économiquement et techniquement satisfaisantes pour équilibrer les champs magnétiques des cellules d'extrémité des files, et notamment de séries de cellules formées de cellules rectangulaires longues, disposées transversalement.The Applicant has therefore sought economically and technically satisfactory solutions for balancing the magnetic fields of the end cells of the lines, and in particular of series of cells formed from long rectangular cells, arranged transversely.

Description de l'inventionDescription of the invention

A cet effet, l'invention a pour objet une série de cellules d'électrolyse destinée à la production d'aluminium par électrolyse ignée selon le procédé Hall-Héroult, comportant :

  • au moins une première et une deuxième files rectilignes et parallèles l'une à l'autre de cellules d'électrolyse raccordées électriquement en série,
  • un conducteur de raccordement entre une première cellule d'extrémité de la première file et la première cellule d'extrémité correspondante de la deuxième file,
et caractérisée en ce que la série comprend au moins un circuit d'équilibrage magnétique des cellules d'extrémité de file comportant un premier conducteur électrique d'équilibrage magnétique des cellules d'extrémité de file s'étendant le long d'une première file de cellules uniquement en regard d'une portion d'extrémité de la première file de cellules.To this end, the subject of the invention is a series of electrolysis cells intended for the production of aluminum by igneous electrolysis according to the Hall-Héroult process, comprising:
  • at least first and second straight and parallel rows of electrolysis cells parallel to each other, electrically connected in series,
  • a connection conductor between a first end cell of the first file and the corresponding first end cell of the second file,
and characterized in that the series comprises at least one circuit for magnetic balancing of the end-of-line cells comprising a first electrical conductor for magnetic balancing of the end-of-line cells extending along a first line of cells only next to an end portion of the first row of cells.

La demanderesse a noté que, en l'absence de circuit d'équilibrage magnétique des cellules d'extrémité de file tel que défini ci-dessus, les cellules d'extrémité des files sont surtout affectées par un champ magnétique vertical moyen supplémentaire ΔBz, quand les cellules de la portion centrale des files sont correctement équilibrées magnétiquement. L'invention vise ainsi à maintenir le champ vertical supplémentaire ΔBz dans une fourchette limitée par une valeur minimale et une valeur maximale autour d'une valeur visée proche de zéro.The Applicant has noted that, in the absence of a magnetic balancing circuit for the end-of-line cells as defined above, the end cells of the lines are especially affected by an additional mean vertical magnetic field ΔBz, when the cells in the central portion of the lines are correctly balanced magnetically. The invention thus aims to maintain the additional vertical field ΔBz within a range limited by a minimum value and a maximum value around a target value close to zero.

La demanderesse a eu l'idée de disposer ledit premier conducteur électrique à proximité des cellules d'extrémité notoirement instables de la file de cellules afin de pouvoir faire circuler dans ledit premier conducteur électrique un courant électrique permettant de compenser le champ magnétique produit notamment par les conducteurs de raccordement entre les files, et équilibrer les champs magnétiques au niveau des cuves des cellules d'électrolyse d'extrémité.The Applicant has had the idea of placing said first electrical conductor near the notoriously unstable end cells of the row of cells so as to be able to circulate in said first electrical conductor an electric current making it possible to compensate for the magnetic field produced in particular connecting conductors between the lines, and balancing the magnetic fields at the level of the cells of the end electrolysis cells.

Le premier conducteur électrique s'étendant le long de la file de cellules s'étend parallèlement ou sensiblement parallèlement à l'axe longitudinal de la file de cellules. Par les termes « le long de la file de cellules », la demanderesse entend que le conducteur s'étend à proximité directe de la file de cellules, pour que son impact sur le champ magnétique dans les cellules à proximité soit maximisé, et typiquement a une distance inférieure à 5 mètres et avantageusement inférieure à 3 mètres.The first electrical conductor extending along the row of cells extends parallel or substantially parallel to the longitudinal axis of the row of cells. By the terms "along the cell line", the applicant understands that the conductor extends in the immediate vicinity of the cell line, so that its impact on the magnetic field in nearby cells is maximized, and typically has a distance of less than 5 meters and advantageously less than 3 meters.

Cette configuration permet en particulier de limiter sensiblement le champ magnétique vertical Bz dans ces cellules d'extrémité. L'utilisation d'un tel circuit d'équilibrage magnétique des cellules d'extrémité de file permet en outre un ajustement fin de l'équilibrage magnétique grâce aux paramètres ajustables complémentaires qu'il procure.This configuration makes it possible in particular to substantially limit the vertical magnetic field Bz in these end cells. The use of such a magnetic balancing circuit of the end-of-queue cells also allows fine adjustment of the magnetic balancing thanks to the additional adjustable parameters which it provides.

Le premier conducteur électrique est parcouru lors du fonctionnement de la série par un courant continu d'équilibrage magnétique des cellules d'extrémité de file.The first electrical conductor is traversed during the operation of the series by a direct current for magnetic balancing of the end-of-line cells.

Le premier conducteur électrique s'étend continûment le long d'une pluralité de cellules adjacentes de la portion d'extrémité pour lesquelles un déséquilibre du champ magnétique vertical dû à la présence du conducteur de raccordement est constaté.The first electrical conductor extends continuously along a plurality of adjacent cells of the end portion for which an imbalance of the vertical magnetic field due to the presence of the connecting conductor is observed.

Une telle portion d'extrémité de la première file de cellules comporte typiquement de 3 à 10 cellules, et de préférence de 6 à 8 cellules.Such an end portion of the first row of cells typically comprises from 3 to 10 cells, and preferably from 6 to 8 cells.

Pour que l'impact stabilisant sur le champ magnétique des cellules d'extrémité de file soit adéquat et viable économiquement, le premier conducteur électrique d'équilibrage magnétique s'étend avantageusement sur une longueur au moins égale à trois fois l'entraxe entre deux cellules (l'entraxe entre deux cellules étant la distance entre les axes longitudinaux médians de deux cellules d'électrolyse adjacentes, correspondent typiquement à 5 à 10 metres).In order for the stabilizing impact on the magnetic field of the end-of-line cells to be adequate and economically viable, the first electrical magnetic balancing conductor advantageously extends over a length at least equal to three times the distance between two cells (the distance between two cells being the distance between the median longitudinal axes of two adjacent electrolysis cells, typically correspond to 5 to 10 meters).

Le conducteur de raccordement ne constitue plus un élément déstabilisant pour les cellules d'électrolyse disposées au-delà de la dixième cellule en partant de la premiere cellule d'extrémité, du fait de la distance importante entre ces cellules et le conducteur de raccordement.The connection conductor no longer constitutes a destabilizing element for the electrolysis cells arranged beyond the tenth cell starting from the first end cell, due to the large distance between these cells and the connection conductor.

Pour le cas de séries de cellules d'électrolyse existantes, des moyens d'équilibrage magnétiques des cellules d'extrémité connus peuvent avoir déjà été installés et équilibrent correctement la première cellule d'extrémité. Auquel cas, le premier conducteur électrique d'équilibrage magnétique peut ne pas s'étendre le long de cette première cellule d'extrémité.For the case of existing series of electrolysis cells, magnetic balancing means of the known end cells may have already been installed and correctly balance the first end cell. In which case, the first magnetic balancing electrical conductor may not extend along this first end cell.

L'invention a également pour objet une méthode d'utilisation d'une série de cellules d'électrolyse. En fonctionnement, les files de cellules d'électrolyse et le conducteur de raccordement sont parcourus par un courant d'électrolyse et le premier conducteur électrique d'équilibrage magnétique est parcouru par un courant électrique d'équilibrage :

  • circulant dans le même sens que le courant d'électrolyse circulant dans la première file de cellules si le premier conducteur électrique d'équilibrage magnétique se situe le long de la première file de cellules du côté de la deuxième file de cellules d'électrolyse;
  • circulant dans le sens opposé par rapport au courant d'électrolyse circulant dans la première file de cellules si le premier conducteur électrique d'équilibrage magnétique se situe le long de la première file de cellules du côté opposé à la deuxième file de cellules d'électrolyse.
The invention also relates to a method of using a series of electrolysis cells. In operation, the rows of electrolysis cells and the connection conductor are traversed by an electrolysis current and the first magnetic balancing electrical conductor is traversed by an electrical balancing current:
  • flowing in the same direction as the electrolysis current flowing in the first row of cells if the first electric magnetic balancing conductor is located along the first row of cells on the side of the second row of electrolysis cells;
  • running in the opposite direction with respect to the electrolysis current flowing in the first row of cells if the first magnetic balancing electric conductor is located along the first row of cells on the side opposite to the second row of electrolysis cells .

Ainsi, au niveau des cellules d'extrémité de file le long desquelles le premier conducteur électrique s'étend, le courant électrique d'équilibrage généré en passant dans le premier conducteur électrique un champ magnétique vertical opposé au champ magnétique vertical généré par le courant d'électrolyse en passant dans le conducteur de raccordement.Thus, at the end-of-line cells along which the first electrical conductor extends, the balancing electric current generated by passing a vertical magnetic field opposite the vertical magnetic field generated by the current d through the first electric conductor. electrolysis passing through the connection conductor.

Selon un mode de réalisation, le circuit d'équilibrage magnétique des cellules d'extrémité de file comporte un deuxième conducteur électrique parallèle au premier conducteur électrique d'équilibrage magnétique des cellules d'extrémité de file. Ce deuxième conducteur électrique parallèle participe à la fermeture du circuit d'équilibrage magnétique et potentiellement a la réalisation d'un circuit d'équilibrage magnétique comportant une pluralité de boucles en série. Aussi, ce deuxième conducteur électrique est parcouru par le courant électrique d'équilibrage circulant en sens inverse par rapport au courant électrique d'équilibrage circulant dans le premier conducteur électrique. Ce deuxième conducteur électrique est disposé avantageusement de manière à améliorer la configuration magnétique des cellules d'extrémité de la première file ou de la deuxième file, et a minima de manière a ce que son éventuel impact négatif sur l'équilibrage magnétique des cellules d'extrémité soit minimisé et inférieur à l'impact positif du premier conducteur électrique.According to one embodiment, the magnetic balancing circuit of the end of line cells comprises a second electrical conductor parallel to the first electrical conductor of magnetic balancing of the end of line cells. This second parallel electrical conductor participates in the closure of the magnetic balancing circuit and potentially in the production of a magnetic balancing circuit comprising a plurality of loops in series. Also, this second electrical conductor is traversed by the electric balancing current flowing in the opposite direction with respect to the electric balancing current flowing in the first electric conductor. This second electrical conductor is advantageously arranged so as to improve the magnetic configuration of the end cells of the first row or of the second row, and at a minimum so that its possible negative impact on the magnetic balancing of the cells end is minimized and less than the positive impact of the first electrical conductor.

Selon un mode de réalisation particulier, le deuxième conducteur électrique s'étend le long de la première file de cellules uniquement en regard de la portion d'extrémité de la première file de cellules, le premier et le deuxième conducteur électrique s'étendant le long de cotés opposes de la première file de cellules. Le champ magnétique vertical généré par la circulation du même courant électrique d'équilibrage, en sens inverse, de l'autre côté de la file de cellule, dans le deuxième conducteur électrique s'additionne alors au champ magnétique vertical généré par la circulation d'un courant électrique d'équilibrage dans le premier conducteur électrique pour contrer le champ magnétique vertical déstabilisant généré par le courant circulant dans le conducteur de raccordement.According to a particular embodiment, the second electrical conductor extends along the first row of cells only opposite the end portion of the first row of cells, the first and the second electrical conductor extending along opposite sides of the first row of cells. The vertical magnetic field generated by the circulation of the same electric balancing current, in the opposite direction, on the other side of the cell line, in the second electrical conductor then adds to the vertical magnetic field generated by the circulation of an electric balancing current in the first conductor electric to counter the destabilizing vertical magnetic field generated by the current flowing in the connection conductor.

Selon un autre mode de réalisation particulier, le deuxième conducteur électrique s'étend du même côté de la première file de cellules que le premier conducteur électrique, la distance entre le premier conducteur électrique et la première file de cellules étant plus petite qu'une distance entre le deuxième conducteur électrique et la première file de cellules. Ainsi, comme le deuxième conducteur électrique est du même côté mais plus éloigné de la première file de cellules d'électrolyse que le premier conducteur électrique, les champs magnétiques verticaux générés par la circulation du courant électrique d'équilibrage en sens inverse dans les premier et deuxième conducteurs électriques s'opposent, mais avec une intensité moindre pour le champ magnétique vertical généré par la circulation du courant électrique d'équilibrage dans le deuxième conducteur électrique que dans le premier conducteur électrique, au niveau des cellules d'extrémité de file le long desquelles le premier conducteur électrique s'étend.According to another particular embodiment, the second electrical conductor extends on the same side of the first row of cells as the first electrical conductor, the distance between the first electrical conductor and the first row of cells being less than a distance between the second electrical conductor and the first row of cells. Thus, as the second electrical conductor is on the same side but further from the first row of electrolysis cells than the first electrical conductor, the vertical magnetic fields generated by the circulation of the balancing electric current in the opposite direction in the first and second electrical conductors oppose each other, but with less intensity for the vertical magnetic field generated by the circulation of the balancing electric current in the second electrical conductor than in the first electrical conductor, at the level of the end-of-line cells along from which the first electrical conductor extends.

Avantageusement, le deuxième conducteur électrique est plus éloigné des cellules d'électrolyse de la première file que le premier conducteur électrique de telle sorte que le rapport des valeurs du champ magnétique vertical généré par le même courant d'équilibrage circulant dans le deuxième conducteur électrique et dans le premier conducteur électrique est inférieur à 0.5 à de préférence inférieur à 0.3, au niveau des cellules d'extrémité de file le long desquelles le premier conducteur électrique s'étend.Advantageously, the second electrical conductor is further from the electrolysis cells of the first row than the first electrical conductor so that the ratio of the values of the vertical magnetic field generated by the same balancing current flowing in the second electrical conductor and in the first electrical conductor is less than 0.5 to preferably less than 0.3, at the end-of-queue cells along which the first electrical conductor extends.

Selon un mode de réalisation particulier, le deuxième conducteur électrique s'étend le long de la deuxième file de cellules uniquement en regard d'une portion d'extrémité de la deuxième file de cellules. Ainsi, le circuit d'équilibrage magnétique permet d'équilibrer magnétiquement à la fois les cellules d'extrémité de la première file de cellules et les cellules d'extrémité correspondantes de la deuxième file de cellules.According to a particular embodiment, the second electrical conductor extends along the second row of cells only opposite an end portion of the second row of cells. Thus, the magnetic balancing circuit makes it possible to magnetically balance both the end cells of the first row of cells and the corresponding end cells of the second row of cells.

Selon un mode de réalisation préféré, le circuit d'équilibrage magnétique est connecté à une station d'alimentation électrique spécifique. L'intensité du courant circulant dans le circuit d'équilibrage magnétique peut avantageusement être facilement contrôlée et ajustée. Par station d'alimentation électrique spécifique, on entend que cette station d'alimentation électrique n'alimente pas en courant le circuit d'électrolyse (conducteurs de liaison), ou des conducteurs de correction destinés à réaliser une correction magnétique sur l'ensemble des cellules de la série.According to a preferred embodiment, the magnetic balancing circuit is connected to a specific electrical supply station. The intensity of the current flowing in the magnetic balancing circuit can advantageously be easily controlled and adjusted. By specific electrical supply station, it is meant that this electrical supply station does not supply current to the electrolysis circuit (connecting conductors), or correction conductors intended to carry out magnetic correction on all of the series cells.

Selon un mode de réalisation préféré, le circuit d'équilibrage magnétique des cellules d'extrémité de file comporte deux extrémités qui sont connectées a des conducteurs reliant électriquement des cellules d'électrolyse entre elles. Le circuit d'équilibrage magnétique des cellules d'extrémité de file est alors alimenté par au moins une partie du courant d'électrolyse circulant dans les cellules et forme une partie du circuit d'électrolyse au travers duquel circule le courant d'électrolyse de la série.According to a preferred embodiment, the magnetic balancing circuit of the end of line cells has two ends which are connected to conductors electrically connecting electrolysis cells to each other. The magnetic balancing circuit of the end-of-line cells is then supplied by at least part of the electrolysis current flowing in the cells and forms part of the electrolysis circuit through which the electrolysis current of the series.

Selon un mode de réalisation préféré, le circuit d'équilibrage magnétique est connecté aux conducteurs reliant électriquement des cellules d'électrolyse entre elles en parallèle avec un ou plusieurs conducteurs électriques dits parallèles. Ainsi une partie seulement du courant d'électrolyse circule dans le circuit d'équilibrage magnétique. Avantageusement, le circuit d'équilibrage magnétique des cellules d'extrémité de file forme une partie du conducteur de raccordement. L'équilibrage électrique entre les conducteurs électriques dits parallèles et le circuit d'équilibrage magnétique est ainsi facilité.According to a preferred embodiment, the magnetic balancing circuit is connected to the conductors electrically connecting electrolysis cells to one another in parallel with one or more so-called parallel electrical conductors. Thus only part of the electrolysis current flows in the magnetic balancing circuit. Advantageously, the magnetic balancing circuit of the end-of-line cells forms part of the connection conductor. The electrical balancing between the so-called parallel electrical conductors and the magnetic balancing circuit is thus facilitated.

Selon un mode de réalisation préféré, la série de cellules d'électrolyse comporte un circuit de correction comportant au moins un premier conducteur de correction, s'étendant le long de la première file, un deuxième conducteur de correction s'étendant le long de la deuxième file, et au moins un conducteur de correction de raccordement entre les premier et deuxième conducteurs de correction, et dans laquelle le circuit d'équilibrage magnétique des cellules d'extrémité de file comporte deux extrémités qui sont connectées au circuit de correction.According to a preferred embodiment, the series of electrolysis cells comprises a correction circuit comprising at least a first correction conductor, extending along the first line, a second correction conductor extending along the second line, and at least one correction conductor for connection between the first and second correction conductors, and in which the magnetic balancing circuit of the end of line cells has two ends which are connected to the correction circuit.

Tel que présenté en préambule, certaines séries comportent un ou plusieurs circuits de correction s'étendant le long de l'ensemble des cellules d'électrolyse de la série pour corriger les champs magnétiques déstabilisant générés par les courants de forte intensité circulant dans les circuits de conducteurs de cellule a cellule ou dans la file de cellules voisine. Le circuit de correction fait partie intégrante de la série et est alimenté en courant électrique. Cette solution est donc particulièrement avantageuse car elle ne nécessite pas l'installation d'une station d'alimentation spécifique qui représente un coût d'équipement important et peut en outre s'avérer difficile à installer du fait de l'encombrement nécessaire.As presented in the preamble, certain series include one or more correction circuits extending along all of the electrolysis cells of the series to correct the destabilizing magnetic fields generated by the high intensity currents flowing in the circuits. conductors from cell to cell or in the neighboring cell queue. The correction circuit is an integral part of the series and is supplied with electric current. This solution is therefore particularly advantageous since it does not require the installation of a specific supply station which represents a significant equipment cost and can also prove to be difficult to install due to the space required.

Avantageusement, le circuit d'équilibrage magnétique des cellules d'extrémité de file est connecté en série entre deux portions du circuit de correction. Comme les premier et deuxième conducteurs de correction s'étendent le long de l'ensemble des cellules d'électrolyse, il suffit de connecter le circuit d'équilibrage magnétique des cellules d'extrémité de file en série en un point intermédiaire du circuit de correction à un endroit approprié le long des files de cellule. Le courant de correction circulant dans le circuit de correction passe également dans le circuit d'équilibrage magnétique et devient dans ce circuit d'équilibrage magnétique le courant d'équilibrage magnétique. Selon un mode de réalisation préféré, le premier conducteur de correction s'étend le long de la première file du côté de la deuxième file, et le deuxième conducteur de correction s'étend le long de la deuxième file du côté de la première file de cellules. Le premier conducteur et le deuxième conducteur du circuit d'équilibrage magnétique connecté au circuit de correction sont avantageusement disposés à l'extérieur des deux files de cellules. Le coté extérieur des files de cellules, opposé au circuit de correction, est moins encombré que le côte intérieur et la mise en place du circuit d'équilibrage magnétique facilitée. Un tel circuit d'équilibrage magnétique peut notamment être mis en place sur une série existante comportant déjà un circuit de correction disposé à l'intérieur des deux files de cellules.Advantageously, the magnetic balancing circuit of the line end cells is connected in series between two portions of the correction circuit. As the first and second correction conductors extend along all of the electrolysis cells, it suffices to connect the magnetic balancing circuit of the end of line cells in series at an intermediate point of the correction circuit. at a suitable location along the cell lines. The correction current flowing in the correction circuit also passes through the magnetic balancing circuit and becomes in this magnetic balancing circuit the magnetic balancing current. According to a preferred embodiment, the first correction conductor extends along the first row on the side of the second row, and the second correction conductor extends along the second row on the side of the first row cells. The first conductor and the second conductor of the magnetic balancing circuit connected to the correction circuit are advantageously arranged outside the two rows of cells. The outside of the rows of cells, opposite the correction circuit, is less crowded than the inside and the installation of the magnetic balancing circuit facilitated. Such a magnetic balancing circuit can in particular be implemented on an existing series already comprising a correction circuit disposed inside the two rows of cells.

Selon un mode de réalisation particulier, le conducteur de raccordement comporte un conducteur d'équilibrage magnétique de la première cellule d'extrémité longeant la première cellule d'extrémité perpendiculairement à l'axe longitudinal de la file de cellules, et le premier conducteur électrique ne s'étend pas le long de la première cellule d'extrémité. La première cellule d'extrémité est déjà équilibrée magnétiquement via le conducteur d'équilibrage magnétique de la première cellule d'extrémité, de sorte que modifier son champ magnétique au moyen du premier conducteur électrique aurait pour conséquence de la déstabiliser.According to a particular embodiment, the connection conductor comprises a magnetic balancing conductor of the first end cell running along the first end cell perpendicular to the longitudinal axis of the row of cells, and the first electrical conductor not extend along the first end cell. The first end cell is already magnetically balanced via the magnetic balancing conductor of the first end cell, so that changing its magnetic field using the first electrical conductor would destabilize it.

Selon un mode de réalisation particulier, le circuit d'équilibrage magnétique des cellules d'extrémité de file comporte un conducteur transversal reliant électriquement le circuit de correction au premier conducteur électrique, le conducteur transversal s'étendant sous la file de cellules.According to a particular embodiment, the magnetic balancing circuit of the end of line cells comprises a transverse conductor electrically connecting the correction circuit to the first electrical conductor, the transverse conductor extending under the cell line.

Selon un mode de réalisation, le circuit d'équilibrage magnétique des cellules d'extrémité de file forme une pluralité de boucles et le premier conducteur électrique d'équilibrage magnétique est formé par une pluralité de brins de boucle s'étendant cote à côté le long de la première file de cellules uniquement en regard de la portion d'extrémité de la première file de cellules. Le courant circule dans le même sens dans chacun des brins de boucle du premier conducteur électrique et l'impact sur le champ magnétique du courant circulant dans le premier conducteur électrique est la somme de l'impact sur le champ magnétique du courant circulant dans chacun des brins de boucle formant le premier conducteur électrique.According to one embodiment, the magnetic balancing circuit of the end-of-line cells forms a plurality of loops and the first magnetic balancing electric conductor is formed by a plurality of loop strands extending side by side along of the first row of cells only opposite the end portion of the first row of cells. The current flows in the same direction in each of the loop strands of the first electrical conductor and the impact on the magnetic field of the current flowing in the first electrical conductor is the sum of the impact on the magnetic field of the current flowing in each of the loop strands forming the first electrical conductor.

Selon un mode de réalisation préféré, les cellules sont disposées transversalement par rapport aux files de cellules.According to a preferred embodiment, the cells are arranged transversely with respect to the rows of cells.

Les cellules d'électrolyse sont typiquement raccordées électriquement en série au moyen de conducteurs électriques de liaison reliant la cathode d'une cellule d'électrolyse a l'anode de la cellule d'électrolyse suivante.The electrolysis cells are typically electrically connected in series by means of electrical connecting conductors connecting the cathode of an electrolysis cell to the anode of the next electrolysis cell.

L'invention est décrite en détail ci-après à l'aide des figures annexées.

  • La figure 1 représente, de manière simplifiée et en coupe transversale, deux cellules d'électrolyse successives (n ; n+1) typiques d'une file de cellules.
  • Les figures 2 à 4 illustrent, de manière schématique, différents modes de réalisation d'une série de cellules d'électrolyse selon l'invention comportant deux files et des circuits d'équilibrage magnétique des cellules d'extrémité.
  • La figure 5 illustre, de manière schématique, un mode de réalisation de l'invention dans lequel une partie du courant d'électrolyse de la série est utilisée pour alimenter des circuits d'équilibrage magnétique des cellules d'extrémité.
  • La figure 6 illustre, de manière schématique, une série de cellules d'électrolyse selon l'état de l'art comportant deux files et un circuit de correction.
  • La figure 7 illustre, de manière schématique, une extrémité de série de cellules d'électrolyse selon l'invention comportant deux files et des circuits d'équilibrage magnétique des cellules d'extrémité connectés à un circuit de correction.
  • La figure 8 illustre, de manière schématique, une extrémité de série dans laquelle chaque circuit d'équilibrage magnétique forme deux boucles.
  • La figure 9 illustre, de manière schématique, une extrémité de série de cellules d'électrolyse selon l'invention comportant deux files, un agencement particulier du conducteur de raccordement permettant d'équilibrer magnétiquement la première cellule d'extrémité et des circuits d'équilibrage magnétique des cellules d'extrémité connectés à un circuit de correction.
The invention is described in detail below using the attached figures.
  • The figure 1 represents, in a simplified manner and in cross section, two successive electrolysis cells (n; n + 1) typical of a row of cells.
  • The figures 2 to 4 schematically illustrate various embodiments of a series of electrolysis cells according to the invention comprising two rows and circuits for magnetic balancing of the end cells.
  • The figure 5 illustrates schematically an embodiment of the invention in which part of the series electrolysis current is used to supply magnetic balancing circuits for the end cells.
  • The figure 6 illustrates, schematically, a series of electrolysis cells according to the state of the art comprising two lines and a correction circuit.
  • The figure 7 illustrates schematically a series end of electrolysis cells according to the invention comprising two lines and magnetic balancing circuits of the end cells connected to a correction circuit.
  • The figure 8 illustrates schematically a series end in which each magnetic balancing circuit forms two loops.
  • The figure 9 schematically illustrates a series end of electrolysis cells according to the invention comprising two rows, a particular arrangement of the connection conductor making it possible to magnetically balance the first end cell and magnetic balancing circuits of the cells end connected to a correction circuit.

L'invention concerne une série 1 de cellules d'électrolyse comprenant, comme le montre les figures 2 à 5, 7 et 8, une pluralité de cellules d'électrolyse 100, 100' de forme sensiblement rectangulaire, qui sont agencées de manière à former au moins deux files F, F' de cellules sensiblement rectilignes, parallèles et ayant chacune un axe longitudinal A, A'.The invention relates to a series 1 of electrolysis cells comprising, as shown figures 2 to 5 , 7 and 8 , a plurality of electrolysis cells 100, 100 'of substantially rectangular shape, which are arranged so as to form at least two rows F, F' of cells substantially rectilinear, parallel and each having a longitudinal axis A, A '.

Les cellules 100 sont typiquement disposées transversalement (c'est-à-dire de façon à ce que leur axe principal ou coté long soit perpendiculaire à l'axe longitudinal A, A' desdites files) et situées à la même distance les unes des autres. Les cellules d'électrolyse 100 ont typiquement un côté long supérieur à 3 fois leur côté court.The cells 100 are typically arranged transversely (that is to say so that their main axis or long side is perpendicular to the longitudinal axis A, A 'of said rows) and located at the same distance from each other . The electrolysis cells 100 typically have a long side greater than 3 times their short side.

Les files F, F' sont séparées d'une distance dépendant de choix technologiques qui tiennent compte notamment de l'intensité I0 du courant d'électrolyse de la série et de la configuration des circuits de conducteurs. La distance D entre les deux files est typiquement comprise entre 30 et 100 m pour les séries récentes.The lines F, F ′ are separated by a distance depending on technological choices which take account in particular of the intensity I 0 of the electrolysis current of the series and of the configuration of the conductor circuits. The distance D between the two lines is typically between 30 and 100 m for recent series.

Tel qu'illustré a la figure 1, chaque cellule d'électrolyse 100 de la série 1 comprend typiquement une cuve 3, des anodes 4 supportées par les moyens de fixation comportant typiquement une tige 5 et un multipode 6 et reliées mécaniquement et électriquement a un cadre anodique 7 à l'aide de moyens de raccordement 8. La cuve 3 comprend un caisson métallique, habituellement renforcé par des raidisseurs, et un creuset formé par des matériaux réfractaires et des éléments cathodiques disposés à l'intérieur du caisson. Le caisson comporte généralement des parois latérales verticales. En fonctionnement, les anodes 4, typiquement en matériau carboné, sont partiellement immergées dans un bain d'électrolyte (non illustré) contenu dans la cuve. La cuve 3 comprend un ensemble cathodique 9 muni de barres cathodiques 10, typiquement en acier, dont une extrémité 11 sort de la cuve 3 de manière à permettre un raccordement électrique aux conducteurs de liaison 12 a 17 entre cellules.As illustrated in the figure 1 , each electrolysis cell 100 of the series 1 typically comprises a tank 3, anodes 4 supported by the fixing means typically comprising a rod 5 and a multipod 6 and mechanically and electrically connected to an anode frame 7 using connection means 8. The tank 3 comprises a metal box, usually reinforced by stiffeners, and a crucible formed by refractory materials and cathode elements arranged inside the box. The box generally has vertical side walls. In operation, the anodes 4, typically made of carbonaceous material, are partially immersed in an electrolyte bath (not illustrated) contained in the tank. The tank 3 comprises a cathode assembly 9 provided with cathode bars 10, typically made of steel, one end of which leaves the tank 3 so as to allow electrical connection to the connecting conductors 12 to 17 between cells.

Les conducteurs de liaison 12 à 17 sont raccordés aux dites cellules 100 de façon à former une série électrique, qui constitue le circuit électrique d'électrolyse de la série de cellules d'électrolyse. Les conducteurs de liaison comprennent typiquement des conducteurs flexibles 12, 16, 17, des conducteurs de liaison amont 13 et des montées 14, 15. Les conducteurs de liaison, notamment amont, peuvent, en tout ou partie, passer sous la cuve et/ou la contourner.The connecting conductors 12 to 17 are connected to said cells 100 so as to form an electrical series, which constitutes the electrical electrolysis circuit of the series of electrolysis cells. The connection conductors typically comprise flexible conductors 12, 16, 17, upstream connection conductors 13 and risers 14, 15. The connection conductors, in particular upstream, can, in whole or in part, pass under the tank and / or bypass it.

La figure 2 illustre de façon schématique un mode de réalisation comprenant une série composée de deux files F, F' de cellules 100 d'électrolyse orientées transversalement par rapport à l'axe longitudinal A, A' des files. Les files sont rectilignes et disposées parallèlement entre elles. Les files, et plus particulièrement les premières cellules d'extrémité 100' correspondantes des deux files F, F', sont liées électriquement entre elles par des conducteurs de raccordement 20. Les conducteurs de raccordement 20 sont formés seulement de conducteurs électriques ou de conducteurs électriques associés à une station d'alimentation électrique.The figure 2 schematically illustrates an embodiment comprising a series composed of two rows F, F 'of electrolysis cells 100 oriented transversely to the longitudinal axis A, A' of the rows. The lines are straight and arranged parallel to each other. The lines, and more particularly the first corresponding end cells 100 ′ of the two lines F, F ′, are electrically linked together by connection conductors 20. The connection conductors 20 are formed only of electrical conductors or electrical conductors associated with an electric power station.

Avantageusement la série comporte en outre quatre circuits électriques d'équilibrage magnétique 21 des cellules d'extrémité. Ainsi un circuit d'équilibrage magnétique 21 équilibre le champ magnétique au niveau de chacune des deux extrémités des deux files F, F'. Ces circuits d'équilibrage magnétique sont disposés au niveau des cellules d'extrémité des files à l'extérieur des files F, F' de cellules, c'est-à-dire hors de l'espace entre les deux files F, F' de cellules.Advantageously, the series also comprises four electric magnetic balancing circuits 21 of the end cells. Thus a magnetic balancing circuit 21 balances the magnetic field at each of the two ends of the two lines F, F '. These magnetic balancing circuits are arranged at the end cells of the lines outside the cell lines F, F ', that is to say outside the space between the two lines F, F' cells.

Chaque circuit d'équilibrage magnétique 21 comporte un premier conducteur électrique 22 d'équilibrage magnétique des cellules d'extrémité qui s'étend le long d'une file F, F' de cellules uniquement en regard d'une portion d'extrémité P de ladite file F, F' de cellules.Each magnetic balancing circuit 21 comprises a first electrical conductor 22 for magnetic balancing of the end cells which extends along a line F, F 'of cells only opposite an end portion P of said row F, F 'of cells.

Par cellules d'extrémité, on entend les n cellules d'extrémité adjacentes en partant de la première cellule d'extrémité 100' d'une file de cellules qui sont impactées magnétiquement par la circulation du courant d'électrolyse Io dans le conducteur de raccordement 20. Typiquement, n est compris entre 3 et 10. La portion d'extrémité P de la file de cellules en regard de laquelle s'étend le premier conducteur électrique 22 se limite donc à un segment de la file longeant les cellules d'extrémité.By end cells is meant the n adjacent end cells starting from the first end cell 100 ′ of a row of cells which are magnetically impacted by the circulation of the electrolysis current Io in the connection conductor 20. Typically, n is between 3 and 10. The end portion P of the row of cells opposite which extends the first electrical conductor 22 is therefore limited to a segment of the queue along the end cells .

Chaque circuit d'équilibrage magnétique 21 comporte en outre un deuxième conducteur électrique 23 sensiblement paralléle au premier conducteur électrique 22 d'équilibrage magnétique des cellules d'extrémité et disposé à une distance plus importante de la file de cellules que le premier conducteur électrique 22.Each magnetic balancing circuit 21 further comprises a second electrical conductor 23 substantially parallel to the first electrical conductor 22 for magnetic balancing of the end cells and disposed at a greater distance from the row of cells than the first electrical conductor 22.

Les premier et deuxième conducteurs électriques 22, 23 sont connectés électriquement ensemble au moyen de conducteurs transversaux 24 pour former un circuit électrique fermé autour d'une station d'alimentation électrique 30 connectés avantageusement en un point du deuxième conducteur électrique 23.The first and second electrical conductors 22, 23 are electrically connected together by means of transverse conductors 24 to form a closed electrical circuit around an electrical supply station 30 advantageously connected at a point on the second electrical conductor 23.

Le premier conducteur électrique 22, qui s'étend le long de la file F, F' devant les cellules d'extrémité, permet de limiter sensiblement le champ magnétique vertical Bz dans les cellules d'extrémité lorsqu'il est parcouru par un courant d'équilibrage magnétique des cellules d'extrémité d'intensité I, et de sens opposé au courant d'électrolyse I0 circulant dans les cellules d'extrémité de la file F, F' devant laquelle il s'étend. Le deuxième conducteur électrique 23 est plus éloigné des cellules d'extrémité que le premier conducteur électrique 22 de sorte que le champ magnétique qu'il génère impact peu la stabilité des cellules d'extrémité. Du fait de leur éloignement et de leur faible longueur, les conducteurs transversaux 24 impactent peu la stabilité des cellules d'extrémité.The first electrical conductor 22, which extends along the line F, F 'in front of the end cells, makes it possible to substantially limit the vertical magnetic field Bz in the end cells when it is traversed by a current d 'magnetic balancing of the end cells of intensity I, and of opposite direction to the electrolysis current I 0 flowing in the end cells of the queue F, F' in front of which it extends. The second electrical conductor 23 is farther from the end cells than the first electrical conductor 22 so that the magnetic field that it generates has little impact on the stability of the end cells. Due to their distance and their short length, the transverse conductors 24 have little impact on the stability of the end cells.

Avantageusement, pour une série parcourue par un courant d'électrolyse I0 compris entre 300kA et 600kA avec des files de cellules distantes de 30 à 80 mètres :

  • le premier conducteur électrique 22 longeant la file de cellules s'étend à une distance du bord des cellules d'extrémité inférieure à 5 mètres, avantageusement inférieure à 3 mètres ;
  • le deuxième conducteur électrique 23 est disposé à une distance du bord des cellules d'extrémité supérieure à 7 mètres, avantageusement supérieure à 10 mètres ;
  • le courant d'équilibrage I1 des cellules d'extrémité est compris entre 30 et 150kA. L'intensité du courant d'équilibrage I1, et donc l'équilibrage magnétique résultant, peut être facilement contrôlé et ajusté du fait de l'utilisation d'une station d'alimentation électrique spécifique.
Advantageously, for a series traversed by an electrolysis current I 0 of between 300kA and 600kA with rows of cells 30 to 80 meters apart:
  • the first electrical conductor 22 running along the row of cells extends at a distance from the edge of the end cells of less than 5 meters, advantageously less than 3 meters;
  • the second electrical conductor 23 is disposed at a distance from the edge of the end cells greater than 7 meters, advantageously greater than 10 meters;
  • the balancing current I 1 of the end cells is between 30 and 150kA. The intensity of the balancing current I 1 , and therefore the resulting magnetic balancing, can be easily controlled and adjusted due to the use of a specific electrical power station.

La figure 3 illustre de façon schématique un autre mode de réalisation dans lequel chaque circuit d'équilibrage magnétique 21 entoure les cellules d'extrémité de la file de cellules. Chaque circuit d'équilibrage magnétique comporte :

  • un premier conducteur électrique 22 d'équilibrage magnétique des cellules d'extrémité qui s'étend le long d'une file F, F' de cellules uniquement en regard d'une portion d'extrémité P de ladite file F, F' de cellules, côté extérieur par rapport aux deux files de cellules ;
  • un deuxième conducteur électrique 23' d'équilibrage magnétique des cellules d'extrémité et s'étendant le long de la même file F, F' de cellules que le premier conducteur électrique 22 uniquement en regard d'une portion d'extrémité P de la file F, F' de cellules, cote intérieur par rapport aux deux files de cellules, c'est-à-dire entre les deux files F, F' de cellules ;
  • des conducteurs transversaux 24 connectant électriquement les premier et deuxième conducteurs électriques 22, 23' pour former un circuit électrique fermé autour d'une station d'alimentation électrique 30 connectée en un point du deuxième conducteur électrique 23'.
The figure 3 schematically illustrates another embodiment in which each magnetic balancing circuit 21 surrounds the end cells of the row of cells. Each magnetic balancing circuit includes:
  • a first electrical conductor 22 for magnetic balancing of the end cells which extends along a row F, F 'of cells only opposite an end portion P of said row F, F' of cells , outside on the two rows of cells;
  • a second electrical conductor 23 ′ for magnetic balancing of the end cells and extending along the same row F, F ′ of cells as the first electrical conductor 22 only opposite an end portion P of the row F, F 'of cells, internal dimension with respect to the two rows of cells, that is to say between the two rows F, F' of cells;
  • transverse conductors 24 electrically connecting the first and second electrical conductors 22, 23 'to form a closed electrical circuit around an electrical supply station 30 connected at a point of the second electrical conductor 23'.

Les premier et deuxième conducteurs électriques 22, 23', qui s'étendent le long de la 25 file F, F' devant les cellules d'extrémité, permettent de limiter sensiblement le champ magnétique vertical Bz dans les cellules d'extrémité lorsqu'ils sont parcourus par un courant d'équilibrage magnétique des cellules d'extrémité d'intensité I1, de sens opposé au courant d'électrolyse Io circulant dans les cellules d'extrémité de la file F, F' devant laquelle il s'étend pour le premier conducteur électrique 22 et de sens identique au courant d'électrolyse I0 circulant dans les cellules d'extrémité de la file F, F' devant laquelle il s'étend pour le deuxième conducteur électrique 23'. Dans ce mode de réalisation, les premier et deuxième conducteurs électriques 22, 23' ont un impact magnétique bénéfique cumulatif.The first and second electrical conductors 22, 23 ', which extend along the line F, F' in front of the end cells, make it possible to substantially limit the vertical magnetic field Bz in the end cells when they are traversed by a magnetic balancing current of the end cells of intensity I1, in the opposite direction to the electrolysis current Io flowing in the end cells of the queue F, F 'in front of which it extends for the first electrical conductor 22 and in the same direction as the electrolysis current I 0 flowing in the end cells of the queue F, F 'in front of which it extends for the second electrical conductor 23'. In this embodiment, the first and second electrical conductors 22, 23 'have a cumulative beneficial magnetic impact.

Les conducteurs transversaux 24 peuvent notamment passer sous les files F, F' de cellules. Du fait de leur faible longueur, les conducteurs transversaux 24 impactent peu la stabilité des cellules d'extrémité.The transverse conductors 24 can in particular pass under the rows F, F ′ of cells. Due to their short length, the transverse conductors 24 have little impact on the stability of the end cells.

Avantageusement, pour une série parcourue par un courant d'électrolyse I0 compris entre 300kA et 600kA avec des files de cellules distantes de 30 à 80 mètres :

  • les premier et deuxième conducteurs électriques 22, 23' longeant la file de cellules s'étendent à une distance du bord des cellules d'extrémité inférieure à 5 mètres, avantageusement inférieure à 3 mètres ;
  • le courant d'équilibrage I1 des cellules d'extrémité est compris entre 15 et 75kA.
Advantageously, for a series traversed by an electrolysis current I 0 of between 300kA and 600kA with rows of cells 30 to 80 meters apart:
  • the first and second electrical conductors 22, 23 ′ running along the row of cells extend at a distance from the edge of the end cells of less than 5 meters, advantageously less than 3 meters;
  • the balancing current I 1 of the end cells is between 15 and 75kA.

La figure 4 illustre de façon schématique un autre mode de réalisation d'une série de deux files F, F' de cellules comportant deux circuits électriques d'équilibrage magnétique 21 des cellules d'extrémité, dans lequel chaque circuit d'équilibrage magnétique 21 est disposé entre les deux files F, F' de cellules. Chaque circuit d'équilibrage magnétique comporte :

  • un premier conducteur électrique 22 d'équilibrage magnétique des cellules d'extrémité qui s'étend le long de la première file F de cellules uniquement en regard d'une portion d'extrémité P de ladite file F de cellules, côté intérieur par rapport aux deux files de cellules ;
  • un deuxième conducteur électrique 23" d'équilibrage magnétique des cellules d'extrémité et qui s'étend le long de la deuxième file F' de cellules uniquement en regard d'une portion d'extrémité P' de ladite file F' de cellules, côté intérieur par rapport aux deux files de cellules ;
  • des conducteurs transversaux 24 connectant électriquement les premier et deuxième conducteurs électriques 22, 23" pour former un circuit électrique fermé autour d'une station d'alimentation électrique 30 connectée en un point d'un des conducteurs transversaux 24.
The figure 4 schematically illustrates another embodiment of a series of two rows F, F 'of cells comprising two electric magnetic balancing circuits 21 of the end cells, in which each magnetic balancing circuit 21 is disposed between the two rows F, F 'of cells. Each magnetic balancing circuit includes:
  • a first electrical conductor 22 for magnetic balancing of the end cells which extends along the first row F of cells only opposite an end portion P of said row F of cells, on the inner side with respect to the two rows of cells;
  • a second electrical conductor 23 "for magnetic balancing of the end cells and which extends along the second row F 'of cells only facing an end portion P' of said row F 'of cells, inner side with respect to the two rows of cells;
  • transverse conductors 24 electrically connecting the first and second electrical conductors 22, 23 "to form a closed electrical circuit around an electrical supply station 30 connected at a point of one of the transverse conductors 24.

Les premier et deuxième conducteurs électriques 22, 23", qui s'étendent respectivement le long des files F et F' devant les cellules d'extrémité, permettent de limiter sensiblement le champ magnétique vertical Bz dans les cellules d'extrémité de la file devant laquelle ils s'étendent lorsqu'ils sont parcourus par un courant d'équilibrage magnétique des cellules d'extrémité d'intensité I1, de sens identique au courant d'électrolyse Io circulant dans les cellules d'extrémité de la file F, F' devant laquelle ils s'étendent. Dans ce mode de réalisation, les premier et deuxième conducteurs électriques 22, 23" ont un impact magnétique bénéfique sur les cellules d'extrémité des deux files F at F' de cellules qu'ils longent respectivement.The first and second electrical conductors 22, 23 ", which extend respectively along the lines F and F 'in front of the end cells, make it possible to substantially limit the vertical magnetic field Bz in the end cells of the line in front which they extend when they are traversed by a magnetic balancing current of the end cells of intensity I1, in the same direction as the electrolysis current Io flowing in the end cells of the queue F, F ' in front of which they extend. In this embodiment, the first and second electrical conductors 22, 23 "have a beneficial magnetic impact on the end cells of the two rows F and F 'of cells which they pass along respectively.

Les conducteurs transversaux 24, de longueur conséquente entre les deux files F, F' impactent seulement légèrement négativement la stabilité des cellules, du fait que le courant I1 circulant dans les conducteurs transversaux 24 est d'intensité moindre que le courant d'électrolyse I0 circulant dans les conducteurs de raccordement 20.The transverse conductors 24, of substantial length between the two lines F, F ′ only have a slightly negative impact on the stability of the cells, because the current I 1 flowing in the transverse conductors 24 is of less intensity than the electrolysis current I 0 circulating in the connection conductors 20.

L'impact négatif de ces conducteurs transversaux 24 est bien inférieur à l'impact positif des premier et deuxième conducteurs qui sont positionnés au plus près des cellules d'extrémité.The negative impact of these transverse conductors 24 is much less than the positive impact of the first and second conductors which are positioned as close as possible to the end cells.

Avantageusement, pour une série parcourue par un courant d'électrolyse I0 compris entre 300kA et 600kA avec des files de cellules distantes de 30 à 80 mètres :

  • les premier et deuxième conducteurs électriques 22, 23" s'étendent à une distance du bord des cellules d'extrémité inférieure à 5 mètres, avantageusement inférieure à 3 mètres ;
  • le courant d'équilibrage I1 des cellules d'extrémité est compris entre 30 et 150kA.
Advantageously, for a series traversed by an electrolysis current I 0 of between 300kA and 600kA with rows of cells 30 to 80 meters apart:
  • the first and second electrical conductors 22, 23 "extend at a distance from the edge of the end cells of less than 5 meters, advantageously less than 3 meters;
  • the balancing current I1 of the end cells is between 30 and 150kA.

La figure 5 illustre de façon schématique une extrémité d'une série comportant des circuits électriques d'équilibrage magnétique 21 des cellules d'extrémité reprenant les mêmes principes d'équilibrage magnétique que ceux présentés en référence à la figure 2. La méthodologie d'alimentation en courant électrique de ce circuit d'équilibrage magnétique diffère. Au lieu d'être alimenté en courant électrique au moins d'une station d'alimentation électrique spécifique, chaque circuit d'équilibrage magnétique 21 est alimenté à partir du courant d'électrolyse I0 circulant dans les cellules d'électrolyse de la série.The figure 5 schematically illustrates one end of a series comprising electrical magnetic balancing circuits 21 of the end cells using the same principles of magnetic balancing as those presented with reference to figure 2 . The methodology for supplying electric current to this magnetic balancing circuit differs. Instead of being supplied with electric current from at least one specific electric power station, each magnetic balancing circuit 21 is supplied from the electrolysis current I 0 flowing in the electrolysis cells of the series.

Le circuit d'équilibrage magnétique 21 comporte un premier conducteur électrique 22, un deuxième conducteur électrique 23 et des conducteurs transversaux 24 reliant électriquement les premier et deuxième conducteurs électriques entre eux ou reliant électriquement les premier et deuxième conducteurs électriques a des conducteurs reliant électriquement entre elles les cellules d'électrolyse d'extrémité 100' correspondantes des deux files voisines.The magnetic balancing circuit 21 comprises a first electrical conductor 22, a second electrical conductor 23 and transverse conductors 24 electrically connecting the first and second electrical conductors to each other or electrically connecting the first and second electrical conductors to conductors electrically connecting to each other the corresponding end electrolysis cells 100 ′ of the two neighboring rows.

Les conducteurs transversaux 24 forment deux extrémités du circuit d'équilibrage magnétique qui sont connectées a des conducteurs reliant électriquement deux cellules d'électrolyse entre elles. Le circuit d'équilibrage magnétique des cellules d'extrémité forme une partie du circuit d'électrolyse, et plus particulièrement du conducteur de raccordement 20, au travers duquel circule le courant d'électrolyse de la série.The transverse conductors 24 form two ends of the magnetic balancing circuit which are connected to conductors electrically connecting two electrolysis cells between them. The magnetic balancing circuit of the end cells forms part of the electrolysis circuit, and more particularly of the connection conductor 20, through which the series electrolysis current flows.

Le circuit d'équilibrage magnétique est connecté aux conducteurs reliant électriquement les cellules d'électrolyse d'extrémité 100' en parallèle d'un conducteur électrique dit parallèle 25. Ainsi, en opération, une partie du courant d'électrolyse I0, correspondant au courant d'équilibrage magnétique I1, circule dans le circuit d'équilibrage magnétique. Une autre partie du courant d'électrolyse I0, d'intensité égale à I0-I1, circule dans le conducteur électrique dit parallèle 25.The magnetic balancing circuit is connected to the conductors electrically connecting the end electrolysis cells 100 ′ in parallel with an electrical conductor called parallel 25. Thus, in operation, part of the electrolysis current I 0 , corresponding to the magnetic balancing current I 1 , flows in the magnetic balancing circuit. Another part of the electrolysis current I 0 , of intensity equal to I 0 -I 1 , flows in the so-called parallel electrical conductor 25.

Ce mode de réalisation présente l'avantage d'éliminer le besoin d'utiliser une station d'alimentation spécifique.This embodiment has the advantage of eliminating the need to use a specific feeding station.

La figure 6 illustre, de façon schématique, une série de cellules d'électrolyse selon l'état de l'art comportant deux files F, F' de cellules et un circuit de correction 26 disposé entre les deux files de cellules. Ce circuit de correction 26 comporte deux conducteurs de correction 27 s'étendant le long de chacune des files F, F' de cellules entre les deux files F, F', des conducteurs de correction de raccordement 28 entre les deux conducteurs de correction 27 et une station d'alimentation électrique 31 du circuit de correction. Un tel circuit de correction permet notamment de compenser au niveau d'une file le champ magnétique généré par le courant d'électrolyse I0 circulant dans la file voisine. Les conducteurs de correction sont typiquement parcourus par un courant de correction I2 circulant dans le même sens que le courant d'électrolyse I0 circulant dans la file qu'ils longent.The figure 6 illustrates, schematically, a series of electrolysis cells according to the state of the art comprising two rows F, F ′ of cells and a correction circuit 26 disposed between the two rows of cells. This correction circuit 26 comprises two correction conductors 27 extending along each of the rows F, F 'of cells between the two rows F, F', connection correction conductors 28 between the two correction conductors 27 and an electric power station 31 of the correction circuit. Such a correction circuit makes it possible in particular to compensate at the level of a file the magnetic field generated by the electrolysis current I 0 flowing in the neighboring file. The correction conductors are typically traversed by a correction current I 2 flowing in the same direction as the electrolysis current I 0 flowing in the line they run along.

Pour une série parcourue par un courant d'électrolyse I0 compris entre 300kA et 600kA avec des files de cellules distantes de 30 à 80 mètres, le courant de correction I2 est typiquement Compris entre 30 et 150kA.For a series traversed by an electrolysis current I 0 comprised between 300kA and 600kA with rows of cells 30 to 80 meters apart, the correction current I 2 is typically comprised between 30 and 150kA.

La figure 7 illustre de façon schématique une extrémité d'une série comportant des circuits électriques d'équilibrage magnétique 21 des cellules d'extrémité et un circuit de correction tel que présenté en référence à la figure 6. Les circuits d'équilibrage magnétique 21 des cellules d'extrémité reprennent les mêmes principes d'équilibrage magnétique que ceux présentés en référence aux figures 2 et 5. Par contre, la méthodologie d'alimentation en courant électrique de ce circuit d'équilibrage magnétique diffère. Chaque circuit d'équilibrage magnétique 21 est alimenté à partir du courant de correction I2 circulant dans les conducteurs 27, 28 du circuit de correction 26.The figure 7 schematically illustrates one end of a series comprising electrical circuits for magnetic balancing 21 of the end cells and a correction circuit as presented with reference to figure 6 . The magnetic balancing circuits 21 of the end cells use the same principles of magnetic balancing as those presented with reference to figures 2 and 5 . On the other hand, the methodology for supplying electric current to this magnetic balancing circuit differs. Each magnetic balancing circuit 21 is supplied from the correction current I2 flowing in the conductors 27, 28 of the correction circuit 26.

Le circuit d'équilibrage magnétique 21 comporte un premier conducteur électrique 22, un deuxième conducteur électrique 23 et des conducteurs transversaux 24 reliant électriquement les premier et deuxième conducteurs électriques entre eux ou reliant électriquement les premier et deuxième conducteurs électriques a des conducteurs 27, 28 du circuit de correction 26.The magnetic balancing circuit 21 comprises a first electrical conductor 22, a second electrical conductor 23 and transverse conductors 24 electrically connecting the first and second electrical conductors to each other or electrically connecting the first and second electrical conductors to conductors 27, 28 of the correction circuit 26.

Les conducteurs transversaux 24 forment ainsi deux extrémités du circuit d'équilibrage magnétique qui sont connectées aux conducteurs 27, 28 du circuit de correction 26. Le circuit d'équilibrage magnétique 21 des cellules d'extrémité forme alors une partie du circuit de correction 26 au travers duquel circule le courant de correction.The transverse conductors 24 thus form two ends of the magnetic balancing circuit which are connected to the conductors 27, 28 of the correction circuit 26. The magnetic balancing circuit 21 of the end cells then forms part of the correction circuit 26 at through which the correction current flows.

Le circuit d'équilibrage magnétique est plus particulièrement connecté aux conducteurs 27, 28 du circuit de correction en série entre deux portions du circuit de correction.The magnetic balancing circuit is more particularly connected to the conductors 27, 28 of the correction circuit in series between two portions of the correction circuit.

Ainsi, en opération, la totalité du courant de correction I2 circule dans le circuit d'équilibrage magnétique. Ainsi, l'intensité du courant d'équilibrage magnétique I1 est égale à l'intensité du courant de correction I2.Thus, in operation, the entire correction current I 2 flows in the magnetic balancing circuit. Thus, the intensity of the magnetic balancing current I 1 is equal to the intensity of the correction current I 2 .

Ce mode de réalisation présente l'avantage d'éliminer le besoin d'utiliser une station d'alimentation spécifique pour la circuit d'équilibrage magnétique 21 des cellules d'extrémité. Comme les conducteurs 27, 28 du circuit de correction s'étendent le long des files F, F' sur toute la longueur des files, le raccordement électrique du circuit d'équilibrage magnétique 21 est aisé et réalisable en tout point considéré approprié. Le positionnement du circuit d'équilibrage magnétique 21 du côté opposé de la file F, F' par rapport au conducteur de correction 27 correspondent est avantageux pour des raisons d'encombrement et car l'insertion des cellules d'extrémité entre le premier conducteur électrique 22 et le conducteur de correction 27 est particulièrement stabilisant pour ces cellules d'extrémité.This embodiment has the advantage of eliminating the need to use a specific supply station for the magnetic balancing circuit 21 of the end cells. As the conductors 27, 28 of the correction circuit extend along the lines F, F 'over the entire length of the lines, the electrical connection of the magnetic balancing circuit 21 is easy and feasible at any point considered appropriate. The positioning of the magnetic balancing circuit 21 on the opposite side of the line F, F 'with respect to the correction conductor 27 corresponding is advantageous for reasons of space and because the insertion of the end cells between the first electrical conductor 22 and the correction conductor 27 is particularly stabilizing for these end cells.

La figure 8 illustre de façon schématique une extrémité d'une série comportant des circuits électriques d'équilibrage magnétique 21 des cellules d'extrémité et un circuit de correction. Le circuit d'équilibrage magnétique 21 des cellules d'extrémité de file forme deux boucles et le premier conducteur électrique 22 d'équilibrage magnétique est formé par les deux brins de boucle 29 du circuit d'équilibrage magnétique s'étendant côte à côte le long de la file de cellules uniquement en regard de la portion d'extrémité P de la file de cellules.The figure 8 schematically illustrates one end of a series comprising electrical circuits for magnetic balancing 21 of the end cells and a correction circuit. The magnetic balancing circuit 21 of the end-of-line cells forms two loops and the first electrical conductor 22 of magnetic balancing is formed by the two loop strands 29 of the magnetic balancing circuit extending side by side along of the cell line only opposite the end portion P of the cell line.

Le courant circule dans le même sens dans chacun des brins de boucle 29 s'étendant cote à cote pour former le premier conducteur électrique 22 et l'impact sur le champ magnétique du courant circulant dans le premier conducteur électrique est la somme de l'impact sur le champ magnétique du courant circulant dans chacun des brins de boucle 29 formant le premier conducteur électrique 22.The current flows in the same direction in each of the loop strands 29 extending side by side to form the first electrical conductor 22 and the impact on the magnetic field of the current flowing in the first electrical conductor is the sum of the impact on the magnetic field of the current flowing in each of the loop strands 29 forming the first electrical conductor 22.

Comme le circuit d'équilibrage magnétique est connecté en série aux conducteurs 27, 28 du circuit de correction la totalité du courant de correction I2 circule dans chacun des brins de boucle 29 du circuit d'équilibrage magnétique 21. Ainsi, l'intensité du courant d'équilibrage magnétique I1' circulant dans le premier conducteur électrique 22 est égale à deux fois l'intensité du courant de correction '2.As the magnetic balancing circuit is connected in series to the conductors 27, 28 of the correction circuit, the entire correction current I2 flows in each of the loop strands 29 of the magnetic balancing circuit 21. Thus, the intensity of the current magnetic balancing I1 'flowing in the first electrical conductor 22 is twice the intensity of the correction current' 2.

La figure 9 illustre de façon schématique une variante du mode de réalisation de la figure 7 dans lequel le conducteur de raccordement 20 comporte un conducteur 40 d'équilibrage magnétique de la première cellule d'extrémité 100' longeant cette première cellule d'extrémité 100' perpendiculairement à l'axe longitudinal d'une des files F, F' de cellules. Au moins une partie du courant d'électrolyse I0 circule dans le conducteur 40 dans un sens opposé au sens de circulation du courant d'électrolyse I0 dans la branche principale du conducteur de raccordement 20 s'étendant entre les deux files F, F'. L'impact magnétique négatif engendré par le conducteur de raccordement 20 est ainsi contré au niveau de la première cellule d'extrémité 100' longée par le conducteur 40. Il n'est donc pas nécessaire d'équilibrer magnétiquement cette première cellule d'extrémité 100' au moyen du circuit 21 d'équilibrage magnétique des cellules d'extrémité de file. La portion d'extrémité P de la file en regard de laquelle s'étend le premier conducteur électrique 22 du circuit d'équilibrage magnétique 21 des cellules d'extrémité de file ne comprend alors avantageusement pas la première cellule d'extrémité 100'. Le premier conducteur électrique 22 s'étendant le long de la file F, F' de cellules uniquement en regard d'une portion d'extrémité P ne longe pas la première cellule d'extrémité.The figure 9 schematically illustrates a variant of the embodiment of the figure 7 in which the connecting conductor 20 comprises a conductor 40 for magnetic balancing of the first end cell 100 'along this first end cell 100 'perpendicular to the longitudinal axis of one of the rows F, F' of cells. At least part of the electrolysis current I 0 flows in the conductor 40 in a direction opposite to the direction of circulation of the electrolysis current I0 in the main branch of the connecting conductor 20 extending between the two lines F, F ' . The negative magnetic impact generated by the connection conductor 20 is thus countered at the level of the first end cell 100 ′ skirted by the conductor 40. It is therefore not necessary to magnetically balance this first end cell 100 'by means of the circuit 21 for magnetic balancing of the end-of-line cells. The end portion P of the line opposite which extends the first electrical conductor 22 of the magnetic balancing circuit 21 of the line end cells then advantageously does not include the first end cell 100 '. The first electrical conductor 22 extending along the line F, F ′ of cells only opposite an end portion P does not run along the first end cell.

Le conducteur transversal 24 reliant électriquement les conducteurs 27, 28 du circuit de correction 26 au premier conducteur électrique 22 s'étend sous la file F, F' de cellules et plus particulièrement sous la première cellule d'extrémité 100'.The transverse conductor 24 electrically connecting the conductors 27, 28 of the correction circuit 26 to the first electrical conductor 22 extends under the row F, F 'of cells and more particularly under the first end cell 100'.

Il est ainsi possible d'améliorer la stabilité des cellules d'extrémité d'une série d'électrolyse existante comprenant un arrangement d'équilibrage magnétique de la première cellule d'extrémité du type connu des demandes de brevet européen EP 0 342 033 ou chinois CN 2 477 650 .It is thus possible to improve the stability of the end cells of an existing electrolysis series comprising a magnetic balancing arrangement of the first end cell of the type known from European patent applications EP 0 342 033 or Chinese CN 2 477 650 .

Comme représenté sur les figures, le courant d'électrolyse I0 parcoure les files F, F' de cellules d'électrolyse 100 et le conducteur de raccordement 20 et le premier conducteur électrique 22 d'équilibrage magnétique est parcouru par un courant électrique d'équilibrage I1 :

  • circulant dans le même sens que le courant d'électrolyse I0 circulant dans la file F, F' de cellules qu'il longe si le premier conducteur électrique 22 d'équilibrage magnétique se situe le long de la file F, F' du côté de l'autre file de cellules d'électrolyse de la série;
  • circulant dans le sens opposé par rapport au courant d'électrolyse Io circulant dans la file F, F' de cellules qu'il longe si le premier conducteur électrique 22 d'équilibrage magnétique se situe le long de la file F, F' de cellules du côté opposé à l'autre file de cellules d'électrolyse de la série. Le deuxième conducteur électrique 23 d'équilibrage magnétique est également parcouru par le courant électrique d'équilibrage I1 mais circulant dans le sens inverse du courant électrique d'équilibrage I1 circulant dans le premier conducteur électrique 22 d'équilibrage magnétique.
As shown in the figures, the electrolysis current I 0 flows through the rows F, F 'of electrolysis cells 100 and the connection conductor 20 and the first electric conductor 22 for magnetic balancing is traversed by an electric current of balancing I 1 :
  • flowing in the same direction as the electrolysis current I 0 flowing in the line F, F 'of cells which it runs along if the first electrical conductor 22 for magnetic balancing is located along the line F, F' on the side from the other row of electrolysis cells in the series;
  • flowing in the opposite direction with respect to the electrolysis current Io flowing in the line F, F 'of cells which it runs along if the first electrical conductor 22 for magnetic balancing is located along the line F, F' of cells on the side opposite the other row of electrolysis cells in the series. The second electric conductor 23 for magnetic balancing is also traversed by the electric balance current I 1 but circulating in the opposite direction to the electric balance current I 1 flowing in the first electric conductor 22 for magnetic balance.

Claims (17)

  1. Series (1) of electrolysis cells (100) for the production of aluminum by igneous electrolysis according to the Hall-Heroult process, comprising:
    - at least one first and one second row (F, F'), rectilinear and parallel to each other, of the electrolysis cells (100) electrically connected in series,
    - a connecting conductor (20) between a first end cell (100') of the first row (F) and a corresponding first end cell (100') of the second row (F'),
    characterized in that the series (1) comprises at least one magnetic-balancing circuit (21) of the end cells (100') having a magnetic-balancing first electric conductor (22) of the end cells (100') extending along the first row (F) of cells (100) solely with regard to an end portion (P) of the first row (F) of cells (100).
  2. The series (1) of electrolysis cells (100) according to claim 1, wherein the magnetic-balancing circuit (21) of the end cells (100') has a second electric conductor (23, 23', 23") parallel to the magnetic-balancing first electric conductor (22) of the end cells (100').
  3. The series (1) of electrolysis cells (100) according to claim 2, wherein the second electric conductor (23') extends along the first row (F, F') of cells solely with regard to the end portion (P) of the first row (F) of cells (100), the first and the second electric conductors (22, 23) extending along opposite sides of the first row (F) of cells (100).
  4. The series (1) of electrolysis cells (100) according to claim 2, wherein the second electric conductor (23) extends along a same side of the first row (F) of cells (100) as the first electric conductor (22), a distance between the first electric conductor (22) and the first row (F) of cells (100) being smaller than a distance between the second electric conductor (23) and the first row (F) of cells (100).
  5. The series (1) of electrolysis cells (100) according to claim 4, wherein the second electric conductor (23") extends along the second row (F') of cells (100) solely with regard to an end portion (P') of the second row (F') of cells (100).
  6. The series (1) of electrolysis cells (100) according to any one of the preceding claims, wherein the magnetic-balancing circuit (21) of the end cells (100') has two ends connected to a power station (30).
  7. The series (1) of electrolysis cells (100) according to any one of claims 1 to 5, wherein the magnetic-balancing circuit (21) of the end cells (100') has two ends connected to conductors electrically linking electrolysis cells (100) to each other.
  8. The series (1) of electrolysis cells (100) according to any one of claims 1 to 5, comprising a correction circuit (26) having at least one first correction conductor (27) extending along the first row (F), a second correction conductor (27) extending along the second row (F'), and at least one connection correction conductor (28) between the first and second correction conductors (27, 28), the magnetic-balancing circuit (21) of the end cells (100') having two ends connected to the correction circuit (26).
  9. The series (1) of electrolysis cells (100) according to claim 8, wherein the magnetic-balancing circuit (21) of the end cells (100') is connected in series between two portions of the correction circuit (26).
  10. The series (1) of electrolysis cells (100) according to any one of claims 8 and 9, wherein the first correction conductor (27) extends along the first row (F) on a side by the second row (F'), and the second correction conductor (27) extends along the second row (F') on a side by the first row (F) of cells (100).
  11. The series (1) of electrolysis cells (100) according to any one of claims 8 to 10, wherein the first electric conductor (22) and the second electric conductor (23) of the magnetic-balancing circuit (21) connected to the correction circuit (26) are disposed exterior to the two rows (F, F') of cells (100).
  12. The series (1) of electrolysis cells (100) according to any one of the preceding claims, wherein the connecting conductor (20) has a magnetic-balancing conductor (40) of the first end cell (100') of one of the two rows (F, F') running along the first end cell (100') perpendicular to a longitudinal axis of the one of the rows (F, F') of cells (100), and the first electric conductor (22) does not extend along the first end cell (100').
  13. The series (1) of electrolysis cells (100) according to claim 12 as it depends from claim 11, wherein the magnetic-balancing circuit (21) of the end cells (100') has a transverse conductor (24) electrically linking the correction circuit (26) to the first electric conductor (22), the transverse conductor (24) extending below the one of the two rows (F, F') of cells (100).
  14. The series (1) of electrolysis cells (100) according to any one of the preceding claims, wherein the magnetic-balancing circuit (21) of the end cells (100') forms a plurality of loops and the first electric conductor (22) is formed by a plurality of loop strands (29) extending side by side along the first row (F) of cells (100) solely with regard to the end portion (P) of the first row (F) of cells (100).
  15. The series (1) of electrolysis cells (100) according to any one of the preceding claims, wherein the end portion (P) of the first row (F) of cells (100) has from 3 to 10 of the cells (100), and preferably from 6 to 8 of the cells (100).
  16. Method of using the series (1) of electrolysis cells (100) according to any one of the preceding claims, wherein the rows (F, F') of electrolysis cells (100) and the connecting conductor (20) are traversed by an electrolysis current (I0), and the magnetic-balancing first electric conductor (22) is traversed by a balancing electric current (I1):
    - flowing in the same direction as the electrolysis current (I0) flowing in the first row (F, F') of cells if the magnetic-balancing first electric conductor (22) is located along the first row (F) of cells (100) on the side by the second row (F') of electrolysis cells (100);
    - flowing in the opposite direction with respect to the electrolysis current (I0) flowing in the first row (F) of cells (100) if the magnetic-balancing first electric conductor (22) is located along the first row (F) of cells (100) on a side opposite the second (F') row of electrolysis cells (100).
  17. The method of using the series (1) of electrolysis cells (100) according to claim 16, wherein the series (1) has a magnetic-balancing second electric conductor (23, 23', 23"), the magnetic-balancing second electric conductor (23, 23', 23") traversed by the balancing electric current (I1) flowing in a direction opposite that of the balancing electric current (I1) flowing through the magnetic-balancing first electric conductor (22).
EP16855008.5A 2015-10-15 2016-10-03 Series of electrolysis cells for the production of aluminium comprising means for balancing the magnetic fields at the end of the line Active EP3362590B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1502186A FR3042509B1 (en) 2015-10-15 2015-10-15 SERIES OF ELECTROLYSIS CELLS FOR THE PRODUCTION OF ALUMINUM COMPRISING MEANS FOR BALANCING THE MAGNETIC FIELDS AT THE END OF THE FILE
PCT/IB2016/001437 WO2017064547A1 (en) 2015-10-15 2016-10-03 Series of electrolysis cells for the production of aluminium comprising means for balancing the magnetic fields at the end of the line

Publications (3)

Publication Number Publication Date
EP3362590A1 EP3362590A1 (en) 2018-08-22
EP3362590A4 EP3362590A4 (en) 2019-07-24
EP3362590B1 true EP3362590B1 (en) 2020-04-29

Family

ID=54707843

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16855008.5A Active EP3362590B1 (en) 2015-10-15 2016-10-03 Series of electrolysis cells for the production of aluminium comprising means for balancing the magnetic fields at the end of the line

Country Status (8)

Country Link
EP (1) EP3362590B1 (en)
CN (1) CN108368624B (en)
AU (1) AU2016339054B2 (en)
CA (1) CA3000482C (en)
FR (1) FR3042509B1 (en)
RU (1) RU2722026C2 (en)
WO (1) WO2017064547A1 (en)
ZA (1) ZA201801921B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2563641A (en) * 2017-06-22 2018-12-26 Dubai Aluminium Pjsc Electrolysis plant using the Hall-Héroult process, with vertical magnetic field compensation
RU2678624C1 (en) * 2017-12-29 2019-01-30 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Modular busbar for series of aluminum electrolysis cells

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU327836A1 (en) * 1971-01-27 1977-12-05 Всесоюзный Научно-Исследовательский И Проектный Институт Алюминиевой,Магниевой И Электродной Промышленности "Вами" Installation of busbars on end face of aluminium electrolyzers
US4189368A (en) * 1978-04-18 1980-02-19 Vsesojuzny Nauchno-Issledovatelsky I Proektny Institut Aljuminievoi, Magnievoi I Elektrodnoi Promyshlennosti System of busbars for aluminium-producing electrolyzers
FR2425482A1 (en) 1978-05-11 1979-12-07 Pechiney Aluminium PROCESS FOR COMPENSATION OF THE MAGNETIC FIELD INDUCED BY THE NEIGHBORING LINE IN SERIES OF HIGH INTENSITY ELECTROLYSIS TANKS
FR2552782B1 (en) 1983-10-04 1989-08-18 Pechiney Aluminium ELECTROLYSIS TANK WITH INTENSITY HIGHER THAN 250,000 AMPERES FOR THE PRODUCTION OF ALUMINUM BY THE HALL-HEROULT PROCESS
FR2583069B1 (en) * 1985-06-05 1987-07-31 Pechiney Aluminium CONNECTION DEVICE BETWEEN VERY HIGH INTENSITY ELECTROLYSIS TANKS FOR THE PRODUCTION OF ALUMINUM, INCLUDING A SUPPLY CIRCUIT AND AN INDEPENDENT MAGNETIC FIELD CORRECTION CIRCUIT
NO164787C (en) * 1988-05-11 1990-11-14 Norsk Hydro As DEVICE FOR COMPENSATION OF DAMAGING MAGNETIC EFFECT FROM LIKE RIGHT FIELD AND ENDFIELD ON TRANSFERRED ELECTROLYE OVEN IN MOLDING ELECTROLYTIC PRODUCTS OF ALUMINUM.
RU2168564C2 (en) * 1999-06-03 2001-06-10 ОАО "Объединенная компания "Сибирский алюминий" Compensation device
CN2477650Y (en) 2001-04-20 2002-02-20 贵阳铝镁设计研究院 Electromagnetic interference preventing bus structure of aluminium electrolytic end tank
FR2868436B1 (en) * 2004-04-02 2006-05-26 Aluminium Pechiney Soc Par Act SERIES OF ELECTROLYSIS CELLS FOR THE PRODUCTION OF ALUMINUM COMPRISING MEANS FOR BALANCING THE MAGNETIC FIELDS AT THE END OF THE FILE
NO322258B1 (en) * 2004-09-23 2006-09-04 Norsk Hydro As A method for electrical coupling and magnetic compensation of reduction cells for aluminum, and a system for this
CN2804128Y (en) * 2005-03-18 2006-08-09 贵阳铝镁设计研究院 Structure of preventing magnetic field interfrence between vertical disposition tanks of aluminum electrolyzer
CN202064015U (en) * 2011-04-27 2011-12-07 贵阳铝镁设计研究院有限公司 Cell bottom output and bus configuration structure for aluminium electrolytic cell
CA2841300C (en) * 2011-07-12 2019-04-09 Rio Tinto Alcan International Limited Aluminium smelter comprising electrical conductors made from a superconducting material
CN103114308B (en) * 2011-11-16 2015-04-15 沈阳铝镁设计研究院有限公司 Aluminum electrolysis tank compensation bus power supply rectification set
CN103114307B (en) * 2011-11-16 2015-11-04 沈阳铝镁设计研究院有限公司 Aluminium cell external compensation power-supply rectifying unit aluminium busbar method for arranging and system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
AU2016339054B2 (en) 2021-06-10
WO2017064547A1 (en) 2017-04-20
CN108368624A (en) 2018-08-03
RU2722026C2 (en) 2020-05-26
CA3000482A1 (en) 2017-04-20
RU2018117703A (en) 2019-11-15
CN108368624B (en) 2020-07-14
FR3042509A1 (en) 2017-04-21
EP3362590A4 (en) 2019-07-24
CA3000482C (en) 2023-08-15
AU2016339054A1 (en) 2018-04-12
ZA201801921B (en) 2019-07-31
FR3042509B1 (en) 2017-11-03
EP3362590A1 (en) 2018-08-22
RU2018117703A3 (en) 2019-12-31

Similar Documents

Publication Publication Date Title
CA2561258C (en) Series of electrolysis cells for the production of aluminium comprising means for equilibration of the magnetic fields at the ends of the lines
FR2583069A1 (en) CONNECTION DEVICE BETWEEN VERY HIGH-INTENSITY ELECTROLYSING CUPES FOR THE PRODUCTION OF ALUMINUM HAVING A POWER CIRCUIT AND AN INDEPENDENT CIRCUIT FOR CORRECTING THE MAGNETIC FIELD
EP3362590B1 (en) Series of electrolysis cells for the production of aluminium comprising means for balancing the magnetic fields at the end of the line
EP2732074B1 (en) Aluminum smelter including cells having a cathode outlet through the base of the casing, and a means for stabilizing the cells
CA1125226A (en) Method for compensating the magnetic field induced by the neighbouring row in a series of high intensity electrolysis tanks
EP3030695B1 (en) Aluminium smelter comprising a compensating electric circuit
CA1100906A (en) Method for improving current feed to lengthwise aligned electrolysis baths
CA1143695A (en) Method and device for the suppression of magnetic interferences in high amperage cross fitted electrolytic process furnaces
CA2698894A1 (en) Grooved anode for an electrolysis tank
CA2975962C (en) Aluminium smelter and method to compensate for a magnetic field created by the circulation of the electrolysis current of said aluminium smelter
CA2808355C (en) Electrical connection device, for connecting between two successive cells of a series of cells for the production of aluminium
CH643601A5 (en) INSTALLATION FOR THE PRODUCTION OF ALUMINUM, COMPRISING HIGH-INTENSITY ELECTROLYSIS TANKS CONNECTED IN SERIES WITH THEIR SYMMETRIC VERTICAL MAGNETIC FIELD.
FR2505368A1 (en) Aluminium prodn. in Hall-Heroult cell - with high current intensity and reduced energy consumption
FR2789407A1 (en) ARRANGEMENT OF ELECTROLYSIS TANKS FOR THE PRODUCTION OF ALUMINUM
OA17793A (en) Aluminum plant including an electrical compensation circuit
OA18402A (en) Aluminum smelter and process for compensating a magnetic field created by the circulation of electrolysis current from this smelter.
OA16842A (en) Aluminum plant comprising tanks with cathodic outlet through the bottom of the box and means for stabilizing the tanks

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180504

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602016035380

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C25C0003200000

Ipc: C25C0003160000

A4 Supplementary search report drawn up and despatched

Effective date: 20190626

RIC1 Information provided on ipc code assigned before grant

Ipc: C25C 3/16 20060101AFI20190619BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191114

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTG Intention to grant announced

Effective date: 20200318

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1263413

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016035380

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20200429

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200429

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200831

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200730

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1263413

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016035380

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210201

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602016035380

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201003

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201003

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IS

Payment date: 20230929

Year of fee payment: 8

Ref country code: FR

Payment date: 20230921

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20231010

Year of fee payment: 8