EP3357074B1 - Process to manufacture a permanent magnet - Google Patents

Process to manufacture a permanent magnet Download PDF

Info

Publication number
EP3357074B1
EP3357074B1 EP16781067.0A EP16781067A EP3357074B1 EP 3357074 B1 EP3357074 B1 EP 3357074B1 EP 16781067 A EP16781067 A EP 16781067A EP 3357074 B1 EP3357074 B1 EP 3357074B1
Authority
EP
European Patent Office
Prior art keywords
minutes
mbar
bar
carried out
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16781067.0A
Other languages
German (de)
French (fr)
Other versions
EP3357074A1 (en
Inventor
Carlo Burkhardt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mimplus Technologies & Co KG GmbH
Original Assignee
Mimplus Technologies & Co Kg GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mimplus Technologies & Co Kg GmbH filed Critical Mimplus Technologies & Co Kg GmbH
Priority to SI201631790T priority Critical patent/SI3357074T1/en
Publication of EP3357074A1 publication Critical patent/EP3357074A1/en
Application granted granted Critical
Publication of EP3357074B1 publication Critical patent/EP3357074B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1017Multiple heating or additional steps
    • B22F3/1021Removal of binder or filler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • B22F3/225Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by injection molding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • the invention relates to a method for producing a permanent magnet.
  • Permanent magnets also known as permanent magnets, which have at least one element from the rare earth group, are characterized by a very high energy product, with neodymium-iron-boron magnets (NdFeB magnets) in particular having an energy product of over 385 kJ/m 3 or 48 MGOe enable new technical solutions for a variety of applications.
  • NdFeB magnets neodymium-iron-boron magnets
  • significant reductions in the size of magnet systems or significantly higher magnetic energies are possible with the same size compared to conventional magnetic materials such as barium, ferrite or AlNiCo.
  • producing such magnets requires complex processing steps, which also result in higher costs.
  • One established way of producing such magnets involves melting an alloy of the magnetic material.
  • Blocks of material cast from the melt are then broken and ground into a fine powder, pressed in a magnetic field and then sintered.
  • isostatically pressed and then sintered raw blocks in large dimensions are often used.
  • Shaped magnets are cut from these raw blocks, which has to be done under water, for example, with a diamond saw because of the poor machinability of the magnetic material.
  • Disc-shaped and/or ring-shaped magnets are also manufactured with diamond tools. Due to the machining process, there is considerable production waste, which in turn has a negative impact on costs. The same applies to diamond tools, which are expensive to procure and use.
  • MIM - Metal Injection Molding The process of metal powder injection molding (MIM - Metal Injection Molding) is particularly known for the production of complex geometries, for example from steel or titanium materials.
  • a metal powder is processed with a typically organic binder material into an injection-mouldable mass, the so-called feedstock, and brought into shape by injection molding in an appropriate mold on injection molding machines.
  • the binder is then removed, which is also referred to as debinding or debinding step.
  • debinding or debinding step This is followed by a sintering step in which finished components that are true to the final shape or at least close to the final shape can be produced.
  • a characteristic of the MIM process is the efficient use of raw materials, as it can be used with practically no production waste. Machining post-processing steps can at least be largely avoided.
  • JP H09 283358 A shows a process in which oxidation of the rare earth metal is prevented by using an oxygen-free binder. Furthermore, carbide formation is prevented by carrying out the debinding with heating in a hydrogen atmosphere.
  • the invention is based on the object of creating a method for producing a permanent magnet in which the disadvantages mentioned do not occur.
  • the task is solved by creating a method with the steps of claim 1.
  • the object is achieved in particular by creating a method for producing a permanent magnet, the permanent magnet being a rare earth element, in particular neodymium, wherein a starting material is processed in a metal powder injection molding process (MIM process), wherein the starting material has a rare earth element, and wherein the rare earth element present in the starting material is converted into an inerted one before a debinding step of the metal powder injection molding process connection is converted.
  • MIM process metal powder injection molding process
  • the rare earth element is converted into an inerted compound before the debinding step, it is in the Debinding step does not occur in its highly reactive form towards oxygen and carbon, but rather in a more inert form, so that the risk of formation of oxides or carbides of the rare earth element during the debinding step is significantly reduced, preferably completely avoided.
  • a metal powder injection molding process which is also briefly referred to as an MIM process, is understood to be a process in which a starting material is formed by injection molding, whereby a molded part is obtained, which is subsequently sintered.
  • the starting material can be a metal powder, in particular a powder of a metal alloy, which is then processed in a separate step of the MIM process into an injection moldable material by mixing it with a binder material, this injection moldable material being referred to as feedstock, and wherein the step of mixing the metal powder with the preferably thermoplastic binder material is referred to as feedstock preparation.
  • feedstock preparation it is also possible for a previously processed feedstock to be used directly as the starting material in the MIM process, in which case the feedstock processing itself is not part of the process.
  • the feedstock is injection molded in an injection molding machine, resulting in the molded part, which is also referred to as a green compact and which also has the metal powder and the binder material, i.e. the feedstock.
  • the green compact is then subjected to at least one debinding step, in which the binder material is removed.
  • catalytic debinding involves catalytic chemical conversion of the binder material into gaseous products that can be expelled, chemical debinding Dissolving the binder material in a typically liquid solvent, and/or thermal debinding with thermal conversion, in particular burning out, of the binder material is possible. A combination of these steps is also possible.
  • the binder material also referred to as the primary binder component
  • a second, secondary binder component which is also referred to as the backbone binder. especially by burning out - to be removed.
  • the so-called brown compact is produced from the green compact, which only has the metal powder or - after a first debinding step - the metal powder and the secondary binder component.
  • the brown compact is then sintered, with any remaining backbone binder being thermally removed.
  • the sintering step ultimately results in the finished component manufactured using the MIM process.
  • the terms “green body” and “brown body” the terms “green body” and “brown body” or “green part” and “brown part” are sometimes used.
  • the starting material in the method proposed here can in particular be the metal powder before the feedstock preparation, the prepared feedstock, or the feedstock already in injection-molded form, i.e. the green body, or the green body after a first , in particular chemical debinding step, can be used. It is important that the rare earth element is converted into its inerted compound before a thermal debinding step, so that the formation of oxides and/or carbides is avoided or at least reduced during the thermal debinding step.
  • a rare earth element is understood to mean in particular a chemical element, also in the form of a compound and in particular an alloy with at least one other chemical element, which belongs to the rare earth metals. These are in particular the chemical elements of the third subgroup of the periodic table with the exception of actinium, as well as the lanthanides.
  • the rare earth element is preferably selected from a group consisting of scandium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, yttrium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium.
  • the rare earth element is preferably selected from the so-called light rare earth elements, namely a group consisting of scandium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium and europium.
  • the rare earth element is preferably selected from the group of so-called heavy rare earth elements, namely a group consisting of yttrium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium.
  • the rare earth element is preferably selected from a group consisting of neodymium, dysprosium, terbium and samarium.
  • the rare earth element is preferably selected from a group consisting of neodymium, dysprosium and terbium. It is particularly preferred to use a starting material which has neodymium as the rare earth element.
  • the starting material has more than one rare earth element.
  • the starting material it is possible for the starting material to contain dysprosium and/or terbium as further rare earth element(s) in addition to neodymium.
  • all rare earth elements included in the starting material it is also possible for all rare earth elements included in the starting material to be converted into an inerted compound.
  • “Converting” into an inerted compound here is understood to mean, in particular, a chemical reaction of the rare earth element, in particular a chemical reaction of the rare earth element with at least one further element or at least one compound.
  • conversion is not to be understood as limited to the formation of a covalent bond, but can include the formation of at least one covalent bond.
  • Other bond types and/or chemical reaction types are also included in the term “conversion”. This particularly includes the formation of an ionic bond, a complex bond, and a metallic bond. The conversion can therefore in particular also include the formation of a metallic phase.
  • the fact that the rare earth element is converted into an inerted compound means in particular that the rare earth element compound created by the conversion is less reactive than the rare earth element in its form before the conversion.
  • the inerted compound is particularly unreactive towards the elements carbon and oxygen as the rare earth element in the form present before the conversion.
  • the inerted compound is converted back into the rare earth element after the debinding step.
  • the inerted compound is preferably reconverted after the debinding step into the rare earth element in its form before the conversion into the inerted compound.
  • the rare earth element may not have been in elemental form before being converted into the inerted compound, but in another form, in particular in the form of an alloy or metallic phase, whereby it then returns from the form of the inerted compound into this previously existing alloy or metallic phase or other form is converted back.
  • the properties of the rare earth element which are favorable for the permanent magnet, are recovered in the form that existed before the conversion into the inerted compound.
  • This reconversion preferably takes place before sintering, in particular between the thermal debinding step and the sintering step of the MIM process.
  • An embodiment that is not part of the invention is characterized in that the conversion of the rare earth element into the inerted compound is carried out using a binder-free powder containing the rare earth element as the starting material.
  • the conversion is carried out in particular before feedstock processing.
  • the conversion is particularly preferably carried out simultaneously and/or together with a hydrogen decrepitation step, which is intended in particular to obtain a fine-grained powder for the MIM process.
  • the conversion before feedstock processing has the advantage that shorter reaction times are possible due to the higher reactivity of the starting material without the binder material.
  • the conversion is carried out in at least two conversion steps, with the hydrogenation of the rare earth element being carried out in at least a first conversion step.
  • the first conversion step can optionally be carried out before or after mixture formation.
  • the hydrogenated rare earth element is completely and partially dehydrogenated.
  • the second conversion step is carried out before the green compact is thermally debinded.
  • the conversion of the rare earth element into the inerted compound is carried out on a mixture of the powder containing the rare earth element and the binder material, that is in particular on the feedstock, as starting material.
  • An embodiment of the method is also preferred, which is characterized in that at least the first conversion step is carried out in an atmosphere that contains hydrogen or consists of hydrogen.
  • a hydrogenation of the rare earth element can be carried out, whereby it is chemically more stable in its hydrogenated form, i.e. as a compound with hydrogen, at least up to 500 ° C than in its dehydrogenated form, in particular more stable towards carbon and oxygen.
  • the rare earth element is preferably converted into a hydrogenated form, i.e. into a hydrogen compound.
  • the term hydrogen compound is not limited to a covalent compound. Rather, this can in particular be a hydrogen-containing, metallic phase.
  • neodymium is particularly preferably converted into a neodymium hydride, in particular NdH 3 .
  • the previously formed hydride of the rare earth element is reconverted as an inerted compound after the debinding step by dehydrogenation.
  • Neodymium hydride in particular NdH 3 or NdH 2.7 , is particularly preferably converted back to neodymium (Nd).
  • the first conversion step is preferably carried out at a pressure of at most 2.5 bar, preferably at a pressure of at least 1.5 bar to at most 3.5 bar, preferably at a pressure of at least 1.5 bar to at most 3 bar, preferably at a pressure of at least 1.5 bar to at most 2.5 bar, preferably at least 1.5 bar to at most 2 bar, preferably at least 2 bar to at most 3 bar, preferably at least 2 bar to at most 2.5 bar, preferably from 2, 5 bar.
  • the first conversion step is carried out at a temperature of at least 15 °C to at most 200 °C, preferably at least 15 °C to at most 150 °C, preferably at least 100 °C to at most 150 °C, preferably 125 °C , preferably from at least 15 °C to at most 35 °C, preferably at least 15 °C to at most 30 °C, preferably at least 20 °C to at most 30 °C, preferably from 25 °C. It is therefore possible in particular to carry out the first conversion step at room temperature or at an elevated temperature, in particular up to 150 ° C.
  • the first conversion step is preferably carried out for a period of at least 5 minutes to a maximum of two hours, preferably from at least 30 minutes to a maximum of 90 minutes, preferably for a period of one hour.
  • the specifically selected reaction time depends in particular on the amount of rare earth element to be converted and thus in particular on the amount of starting material to be treated.
  • the hydrogen-containing atmosphere preferably contains at least 200 mbar to at most 1 bar of pure hydrogen.
  • the atmosphere consists of hydrogen in one of the aforementioned pressure ranges.
  • Highly pure gases with a low oxygen content are preferably used for the process, in particular hydrogen, which contains oxygen with a concentration - based on the volume - of at most 2 ppm (parts per million), that is, 2 ppmv (parts per million based on that Volume), preferably at most 1 ppmv, particularly preferably at most 0.5 ppmv.
  • hydrogen with a purity of at least 99.999% by volume (hydrogen 5.0), and very particularly preferably using hydrogen with a purity of 99.9999% by volume (hydrogen 6.0).
  • any protective gas that may be used, in particular argon.
  • At least a second conversion step is carried out.
  • the conversion of the rare earth element into the inerted compound is therefore carried out in two steps.
  • hydrogenation is carried out in the first conversion step, with partial dehydrogenation being carried out in the second conversion step, in particular to achieve an even more stable compound.
  • neodymium hydride formed in the first conversion step is particularly preferred with the molecular formula NdH 3
  • the partially dehydrogenated neodymium hydride with the approximate molecular formula NdH 2.7 is produced by partial degassing, this partially dehydrogenated neodymium hydride being stable to carbon and oxygen up to about 500 ° C.
  • the at least one second conversion step is preferably carried out under vacuum, under an atmosphere containing or consisting of hydrogen, and/or under an atmosphere containing at least one inert gas or consisting of at least one inert gas.
  • a protective gas is understood to mean, in particular, a gas which is inert or at least unreactive towards the substances or mixtures of substances used to produce the permanent magnet.
  • the protective gas is preferably selected from a group consisting of a noble gas, nitrogen, and carbon dioxide.
  • the protective gas is particularly preferably selected from a group consisting of a noble gas and nitrogen.
  • the protective gas is particularly preferably a noble gas.
  • Argon is particularly preferably used as the protective gas.
  • the at least one second conversion step is preferably carried out at a pressure of at least 100 mbar to at most 1 bar, preferably at least 100 mbar to at most 700 mbar, preferably at least 200 mbar to at most 600 mbar.
  • the second conversion step is particularly preferably carried out either under atmospheric pressure (1 bar) or in a pressure range of at least 200 mbar to at most 600 mbar.
  • the at least one second conversion step is preferably carried out at an increasing temperature, in particular by heating the compound resulting from the first conversion step.
  • the temperature preferably increases from a starting temperature of 100 °C to a target temperature of 350 °C, preferably from a starting temperature of 150 °C to a target temperature of 300 °C.
  • the at least one second conversion step is preferably carried out for a period of at least 20 minutes to at most 120 minutes, preferably at least 30 minutes to at most 90 minutes, preferably at least 40 minutes to at most 80 minutes, preferably at least 50 minutes to at most 70 minutes, preferably 60 minutes.
  • a temperature ramp is preferably run, starting from one of the aforementioned start temperatures up to one of the aforementioned target temperatures.
  • the second conversion step in particular partial degassing and, in particular, partial dehydrogenation of the in The compound produced in the first conversion step, resulting in an even more stable intertized compound that is even more inert to oxygen and carbon.
  • An embodiment of the method is preferred, which is characterized in that a binder material is used which has at least one secondary binder component which is completely decomposable below a temperature of 500 ° C or at most 600 ° C. This enables thermal removal of the binder material at a temperature at which the inerted compound is unreactive and, in particular, stable to carbon and oxygen.
  • the debinding can therefore be carried out without the risk of a deterioration in the hard magnetic properties of the permanent magnet to be formed due to the formation of carbides or oxides, or of carbon- and/or oxygen-rich phases.
  • a binder material is preferably used which has a primary binder component and a secondary binder component.
  • a primary binder component is understood to mean a component which can be a substance or a mixture of substances whose properties essentially contribute to the feedstock being flowable and processable by injection molding. This primary binder component is also referred to as the main binder.
  • the secondary binder component is in particular a substance or a mixture of substances which is intended to give the green compact - and possibly also the brown compact before sintering - mechanical stability by connecting the metallic particles to one another.
  • This secondary binder component is also known as the backbone binder.
  • both the primary and secondary binder components are thermally removed.
  • the primary binder component can then also be completely decomposed, preferably below a temperature of 500 ° C or at most 600 ° C.
  • the primary binder component is chemically removable by dissolving in a solvent and is preferably removed, with the secondary binder component being thermally debinded.
  • the solvent used for chemical debinding of the primary binder component is preferably an organic solvent, in particular heptane, cyclohexane, hexane, ethanol and/or acetone.
  • no binder component is debinded catalytically, i.e. catalytic debinding is dispensed with.
  • a binder material is preferably used in which the primary binder component is selected from a group consisting of a paraffin wax, a carnauba wax, a polyolephine wax, polypropylene, polyethylene, polyethylene glycol, a water-soluble polymer, polymethyl methacrylate, and polyoxymethylene.
  • the primary binder component can also have a plurality of these substances, in particular in any combination with one another, and/or comprise further, additional substances. However, it is also possible for the primary binder component to consist of one of the aforementioned substances.
  • a binder material which has a secondary binder component which is selected from a group consisting of ethylene vinyl acetate, polyethylene, polypropylene, polystyrene or polystyrene, polyethylene glycol, polymethyl methacrylate, polyamide, polyoxymethylene, and polyvinyl butyral.
  • the secondary binder component can also contain a plurality of the substances mentioned here, in particular in any combination with one another. In addition to the substances mentioned here, it can also have at least one further substance not mentioned here. However, it is also possible for the secondary binder component to consist of one of the substances mentioned here.
  • An embodiment of the method is preferred, which is characterized in that the - preferably second, thermal - debinding step takes place under vacuum, under an atmosphere that has at least one protective gas or consists of at least one protective gas, and / or under an atmosphere containing or consisting of hydrogen Hydrogen existing atmosphere is carried out.
  • Debinding under hydrogen, in particular under an atmosphere containing hydrogen or consisting of hydrogen, is particularly advantageous because, especially in combination with the conversion of the rare earth element into the inerted compound, it provides extremely efficient protection against the formation of carbides, oxides and / or of carbon and/or hydrogen containing phases of the rare earth element can be guaranteed.
  • the debinding step is additionally or alternatively preferably carried out at a pressure of at least 100 mbar to at most 1 bar, preferably at least 100 mbar to at most 700 mbar, preferably at least 200 mbar to at most 600 mbar.
  • the debinding step is preferably carried out at a temperature of at most 600 °C, preferably less than or at most 500 °C, preferably at least 100 °C to at most 500 °C, preferably at least 200 °C to at most 400 °C, particularly preferably carried out at 300 ° C.
  • a distance of at least 200 ° C from the limit temperature of 500 ° C for the reactivity of the inerted compound ensures a sufficiently large process window for the complete and at the same time gentle decomposition of the binder material with regard to the hard magnetic properties of the resulting permanent magnet. In particular, in this way, a reaction with the rare earth hydride phase, which is stable to carbon and oxygen, can be prevented.
  • the debinding step is preferably carried out for a period of at least 80 minutes to a maximum of 170 minutes, preferably for a period of at least 100 minutes to a maximum of 150 minutes, preferably for a period of 125 minutes.
  • the times mentioned here preferably ensure complete decomposition of the binder material.
  • the specifically selected process time for the debinding step depends in particular on the amount of material to be decomposed, in particular on the size of the part to be debinded.
  • debinding step here is understood to mean, in particular, the thermal decomposition of binder material. This means in particular that this preferably refers to the thermal removal or burning out of the secondary binder component. It is therefore possible for the primary binder component to be removed, for example chemically, in a first debinding step, with the secondary binder component being thermally removed in a second debinding step, which is the debinding step relevant here.
  • this second, thermal debinding step is particularly relevant as a debinding step, since in this debinding step carbon and oxygen compounds are formed, which are critical for the hard magnetic properties of the permanent magnet to be formed.
  • An embodiment of the process is preferred, which is characterized in that the reconversion of the inerted compound is carried out under vacuum and/or under an atmosphere which has at least one protective gas or consists of at least one protective gas. This means that unpleasant chemical reactions can be avoided during the reconversion.
  • the reconversion is preferably carried out at a pressure of at least 100 mbar to at most 1 bar, preferably at least 100 mbar to at most 700 mbar, preferably at least 200 mbar to at most 600 mbar.
  • the reconversion is preferably carried out at a temperature of at least 500 °C, preferably at a temperature of over 500 °C, preferably at a temperature of at least 500 °C to at most 900 °C.
  • the reconversion is preferably carried out for a period of at least 40 minutes to at most 100 minutes, preferably at least 50 minutes to at most 90 minutes, preferably at least 60 minutes to at most 80 minutes, preferably 70 minutes.
  • the reconversion of the inerted compound is preferably carried out in a sintering furnace.
  • sintering furnace is understood in particular to mean a device which is designed to sinter the parts resulting from the previous steps of the MIM process.
  • the thermal debinding step can also be carried out in the sintering furnace.
  • An embodiment of the method is preferred, which is characterized in that a sintering step is carried out in a vacuum and/or under an atmosphere which has at least one protective gas or consists of at least one protective gas. In this way, undesirable chemical reactions can be avoided during sintering.
  • the sintering step is preferably carried out at a pressure of at least 100 mbar to at most 1 bar, preferably at least 100 mbar to at most 700 mbar, preferably at least 200 mbar to at most 600 mbar.
  • the sintering step is preferably carried out at a temperature of at least 900 ° C to at most 1200 ° C, preferably at a temperature of at least 980 ° C to at most 1100 ° C.
  • the sintering step is preferably carried out for a period of at least 100 minutes to at most 160 minutes, preferably at least 110 minutes to at most 150 minutes, preferably at least 120 minutes to at most 140 minutes, preferably 130 minutes.
  • a sintered body is produced.
  • the sintered body is produced by sintering the brown compact or brown body.
  • An embodiment of the method is preferred, which is characterized in that cooling takes place after the sintering step, preferably under vacuum and/or under an atmosphere which has at least one protective gas or consists of at least one protective gas, with the cooling being followed by a heat treatment can connect.
  • Such heat treatments are known in particular for conventionally sintered NdFeB magnets and serve to improve the hard magnetic properties of the permanent magnet.
  • Such a heat treatment can also be advantageously carried out on a permanent magnet produced according to the method proposed here.
  • At least one additional rare earth element or an additional amount of the at least one rare earth element is preferably introduced into the sintered body, particularly preferably via grain boundary diffusion, preferably by means of an electrochemical process.
  • the coercive field strength of the permanent magnet can be increased even further. It is particularly preferred to introduce additional neodymium, dysprosium and/or terbium into the sintered body.
  • An embodiment of the method is also preferred, which is characterized in that a magnetic field is applied to the starting material.
  • a magnetic field is applied to the sintered body.
  • the magnetic field is particularly preferably applied to the starting material during injection molding.
  • the magnetic alignment is preferably carried out during the molding process, in particular when the starting material has been introduced into the injection mold or is about to be introduced, or alternatively only towards the end of the flow process during injection molding before the binder material has hardened.
  • a magnetic field in particular a magnetic pulse, is preferably applied to the sintered body, whereby the permanent magnet receives its magnetization, or whereby the magnetization of the permanent magnet is increased.
  • a magnetic field is applied both to the starting material during injection molding and to the sintered body. This allows the magnetic particles to be aligned in the magnetic field during injection molding, with this alignment being retained during sintering. Typically, however, during sintering, the parallel alignment of electron spins of the magnetic material is lost, although the geometric alignment of the material is retained.
  • a magnetic field in particular a magnetic pulse
  • a parallel alignment of electron spins can in turn be generated in the sintered body and thus ultimately in the permanent magnet, so that it has a very high magnetization.
  • the magnetic particles aligned by the magnetic field during injection molding are ultimately magnetized with respect to the electronic alignment by the magnetic field applied to the sintered body.
  • a magnetic pulse is preferably applied using a pulse magnetometer.
  • an embodiment of the method is preferred which is characterized in that a starting material is used which has NdFeB or consists of NdFeB.
  • a starting material which has NdFeB or consists of NdFeB.
  • permanent magnets based on NdFeB in particular NdFeB magnets with a very high energy product, can advantageously be produced.
  • the starting material preferably has NdFeB in powdered or granulated form, or it consists of NdFeB in powdered or granulated form.
  • a starting material which is in powder form or in granulated form and which has a powder particle size of a maximum of 50 ⁇ m.
  • the grain size is particularly preferably less than 10 ⁇ m, which makes an anisotropic magnetic alignment of the particles particularly easy to carry out during injection molding in the magnetic field.
  • NdFeB powder used or included in the starting material has a grain size of a maximum of 50 ⁇ m and preferably less than 10 ⁇ m.
  • a hydride of the rare earth element that is stable up to 500 ° C can be created, in particular through hydrogenation of the starting material and through appropriate process control, whereby a reaction of the rare earth element with oxygen and carbon during the thermal decomposition of binder material is prevented, which allows the formation of a sintered structure with hard magnetic properties, which is not impaired by the formation of undesirable oxides, carbides, and/or phases containing oxygen and/or carbon.
  • Fig. 1 shows a schematic representation of an embodiment of the method for producing a permanent magnet in the form of a flow chart. Two alternative approaches to the process are shown in the upper part of the diagram.
  • A) shows a first alternative embodiment, in which a starting material in the form of an NdFeB powder is provided in a first step S1.
  • the neodymium comprised by the starting material is converted into an inerted compound in a second step S2, which is carried out in particular by hydrogen treatment at excess pressure of up to 2.5 bar, either at room temperature or at an elevated temperature of up to 150 ° C.
  • a hydrogenation reaction of neodymium with hydrogen produces the neodymium hydride NdHa, which is significantly more stable than elementary neodymium.
  • the hydrogenation to NdH 3 is carried out in particular in a first conversion step, in particular for a period of at least 5 minutes to at most two hours, preferably at least 30 minutes to at most 90 minutes, preferably for one hour.
  • this first conversion step can be done in conjunction with a Hydrogen decrepitation treatment of a molten NdFeB alloy can be carried out.
  • a third step S3 the magnetic powder treated in the second step S2 is now mixed with a binder material and a feedstock is thus produced for further processing in the MIM process.
  • S1' is provided as a starting material in a powder mixture, namely a so-called feedstock, which has NdFeB powder and a binder material as a mixture.
  • This feedstock is treated in a second step S2 ⁇ by hydrogen treatment at excess pressure of up to 2.5 bar, either at room temperature or elevated temperature, in particular up to 150 ° C, where neodymium is hydrogenated to the more stable neodymium hydride NdH 3 .
  • This hydrogen treatment of a first conversion step also preferably takes place for a period of at least 5 minutes to a maximum of two hours, preferably from at least 30 minutes to a maximum of 90 minutes, preferably for a period of one hour.
  • the time period selected for the alternative second step S2 ⁇ should typically be longer than the time period selected for the second step S2 according to the first alternative, since the additional binder material present reduces the reactivity of the neodymium bound in the plastic and is therefore longer Requires reaction times.
  • the feedstock treated in this way in the alternative second step S2 ⁇ is then made available for the further MIM process.
  • a green body is produced by injection molding from the feedstock.
  • a magnetic field is preferably applied to the feedstock so that the individual magnetic grains in the injection molding material are aligned.
  • a fifth step S5 the green compact is heated under vacuum, under a protective gas atmosphere or under a hydrogen atmosphere, at atmospheric pressure or at a reduced pressure of at least 200 mbar to a maximum of 600 mbar, at a temperature of at least 150 ° C to a maximum of 300 ° C Partial degassing of the NdH 3 , whereby the opposite Carbon and oxygen form a stable compound with the approximate molecular formula NdH 2.7 at least up to approximately 500 °C.
  • a temperature ramp can be run for this step, preferably from 150 ° C to 300 ° C, preferably over a period of 60 minutes.
  • This holding time is preferably 40 minutes.
  • a sixth step S6 the green body is debinded.
  • debinding preferably takes place in two steps, with a primary binder component being chemically dissolved using a solvent, in particular heptane and/or acetone, and a secondary binder component, the so-called backbone binder, being thermally removed.
  • the first debinding step namely the chemical debinding of the primary binder component
  • the thermal debinding i.e.
  • the second debinding step for removing the secondary binder component is preferably carried out after the fifth step S5, since this thermal debinding step is critical for the possible formation of carbides or oxides in the magnetic material. Therefore, before this thermal debinding step, this is preferably converted into its form, which is stable at least up to 500 ° C, with the approximate molecular formula NdH 2.7 . It is possible that both debinding steps, namely the first, chemical debinding step, and the second, thermal debinding step, are carried out after the fifth step S5.
  • the decomposition of all remaining organic binder components, in particular the secondary binder component, preferably takes place below a limit temperature for the stability of NdH 2.7 of 500 ° C, particularly preferably at a lower temperature, in particular from at least 200 ° C to at most 400 ° C.
  • the debinding is preferably carried out under a hydrogen atmosphere or under a protective gas atmosphere, in particular under an argon atmosphere, in particular either at atmospheric pressure, at reduced pressure, or also in a vacuum.
  • the carbon and oxygen components that arise during debinding can be removed through process gas and/or vacuum without reacting with the NdH 2.7 phase, which is stable to them.
  • a seventh step S7 the temperature is further increased - preferably in the sintering furnace - to over 500 ° C, preferably to over 600 ° C, and a corresponding holding time a dehydrogenation of the neodymium hydride NdH 2.7 to elementary neodymium.
  • This dehydrogenation can take place in a vacuum or under protective gas, in particular under argon, at atmospheric pressure or at reduced pressure. Since there are no longer any carbon or oxygen residues in the sintering atmosphere, there can be no undesirable formation of neodymium carbides or neodymium oxides.
  • Sintering then takes place in an eighth step S8, with heating to a sintering temperature which is preferably between 980 ° C and 1100 ° C.
  • a sintering temperature which is preferably between 980 ° C and 1100 ° C.
  • the elemental neodymium with the alloy elements iron and boron forms a structure which essentially consists of the phases Nd 2 Fe 14 , Nd. known from conventional sintered magnets 1+ ⁇ Fe 4 B 4 and an Nd-rich grain boundary phase.
  • a ninth step S9 the sintered body formed by sintering is cooled.
  • a usual heat treatment known from sintered NdFeB magnets optionally takes place. It is possible for a further post-treatment to take place before the heat treatment, in which in particular additional neodymium, additional dysprosium and/or terbium is introduced into the structure via grain boundary diffusion, for example via an electrochemical process, in particular to further increase the coercive field strength of the permanent magnet to increase.
  • a magnetic field in particular a magnetic pulse, is applied to the sintered body in order to magnetize it.
  • the magnetic pulse is preferably applied using a pulse magnetometer.
  • Fig. 2 shows a schematic representation of a temperature curve in an embodiment of the method.
  • a temperature T in °C is plotted against a process time t in minutes.
  • the diagram starts within the process after the fourth step S4, i.e. after injection molding and thus the production of the green body.
  • the temperature curve preferably begins at room temperature, particularly at 25 °C.
  • heating takes place via a temperature ramp from room temperature to approximately 150 °C, during a heating time of approximately 80 minutes, with the partial degassing of the neodymium hydride NdH 3 beginning at approximately 150 °C. This is followed by a steeper temperature ramp, over which a Heat up to around 300 °C for around 60 minutes.
  • the partial degassing and formation of the more stable neodymium hydride with the approximate molecular formula NdH 2.7 is preferably completed during a holding time at approximately 300 ° C for approximately 40 minutes. If chemical debinding of the primary binder component has not already taken place before, in particular before the start of the temperature curve, this preferably takes place now. This is now followed by heating from approximately 300 °C to approximately 500 °C, with the heating ramp lasting approximately 170 minutes. The temperature is then maintained at approximately 500 °C for approximately 125 minutes. During the heating and holding time, thermal decomposition of the secondary binder component occurs, thus thermal debinding.
  • the heat is then raised to a temperature of, for example, 1100 °C, namely during a ramp of 250 minutes, with the temperature being maintained at 1100 °C for 130 minutes for sintering. It is possible that the temperature is chosen to be slightly lower than 1100 °C, in particular between 980 °C and 1100 °C, as this is favorable for the magnetic properties of the resulting permanent magnet.
  • cooling takes place along a non-linear cooling curve, which is determined in particular by the properties of the sintering furnace, with cooling preferably taking place down to room temperature.
  • Heat treatment can follow.
  • this is preferably followed by the application of a magnetic field, in particular a magnetic pulse, preferably with a pulse magnetometer, to the sintered body formed during sintering.
  • the hydrogenation of the starting material and the neodymium hydride which is stable at least up to 500 °C and has the approximate molecular formula NdH 2.7 , which is produced by appropriate process control, prevents the reaction of neodymium with oxygen and carbon during the thermal decomposition of the binder material in the MIM process, whereby it allows the formation of a sintered structure with hard magnetic properties, which consists primarily of the phases Nd 2 Fe 14 , Nd 1+ ⁇ Fe 4 B 4 and an Nd-rich grain boundary phase, and which is not affected by the formation of undesirable neodymium oxides or neodymium carbides.

Description

Die Erfindung betrifft ein Verfahren zum Herstellen eines Permanentmagneten.The invention relates to a method for producing a permanent magnet.

Permanentmagnete, die auch als Dauermagnete bezeichnet werden, welche wenigstens ein Element aus der Gruppe der Seltenen Erden aufweisen, zeichnen sich durch ein sehr hohes Energieprodukt aus, wobei insbesondere Neodym-Eisen-Bor-Magnete (NdFeB-Magnete) mit ihrem Energieprodukt von über 385 kJ/m3 oder 48 MGOe neue technische Lösungen für eine Vielzahl von Anwendungen ermöglichen. Dabei sind insbesondere wesentliche Verkleinerungen von Magnetsystemen oder erheblich höhere magnetische Energien bei gleicher Baugröße gegenüber herkömmlichen Magnetwerkstoffen wie Barium, Ferrit oder AlNiCo, möglich. Allerdings sind zur Herstellung solcher Magnete aufwändige Verarbeitungsschritte nötig, die auch höhere Kosten zur Folge haben. Ein etablierter Weg zur Herstellung solcher Magnete umfasst das Erschmelzen einer Legierung des magnetischen Materials. Danach werden aus der Schmelze gegossene Materialblöcke zerbrochen und zu einem feinen Pulver gemahlen, in einem Magnetfeld gepresst und anschließend gesintert. Auf diesem Weg sind allerdings nur einfache geometrische Formen herstellbar. Zur Fertigung komplexer Geometrien werden dagegen oft isostatisch gepresste und dann gesinterte Rohblöcke in großen Dimensionen verwendet. Aus diesen Rohblöcken werden Formmagnete zugeschnitten, was wegen der schlechten Zerspanbarkeit des magnetischen Materials beispielsweise mit einer Diamantsäge unter Wasser erfolgen muss. Auch scheibenförmige und/oder ringförmige Magnete werden mit Diamantwerkzeugen hergestellt. Aufgrund der zerspanenden Verfahrensweise fällt erheblicher Produktionsabfall an, was sich wiederum negativ auf die Kosten auswirkt. Gleiches gilt für die in Beschaffung und Einsatz teuren Diamantwerkzeuge.Permanent magnets, also known as permanent magnets, which have at least one element from the rare earth group, are characterized by a very high energy product, with neodymium-iron-boron magnets (NdFeB magnets) in particular having an energy product of over 385 kJ/m 3 or 48 MGOe enable new technical solutions for a variety of applications. In particular, significant reductions in the size of magnet systems or significantly higher magnetic energies are possible with the same size compared to conventional magnetic materials such as barium, ferrite or AlNiCo. However, producing such magnets requires complex processing steps, which also result in higher costs. One established way of producing such magnets involves melting an alloy of the magnetic material. Blocks of material cast from the melt are then broken and ground into a fine powder, pressed in a magnetic field and then sintered. However, only simple geometric shapes can be produced this way. To produce complex geometries, isostatically pressed and then sintered raw blocks in large dimensions are often used. Shaped magnets are cut from these raw blocks, which has to be done under water, for example, with a diamond saw because of the poor machinability of the magnetic material. Disc-shaped and/or ring-shaped magnets are also manufactured with diamond tools. Due to the machining process, there is considerable production waste, which in turn has a negative impact on costs. The same applies to diamond tools, which are expensive to procure and use.

Insbesondere für die Herstellung komplexer Geometrien, beispielsweise aus Stahl oder Titanwerkstoffen, ist das Verfahren des Metallpulverspritzgießens bekannt (MIM - Metal Injection Molding). Hierbei wird ein Metallpulver mit einem typischerweise organischen Bindermaterial zu einer spritzgießfähigen Masse, dem sogenannten Feedstock, verarbeitet, und auf Spritzgussmaschinen in einem entsprechenden Formwerkzeug durch Spritzgießen in Form gebracht. Anschließend erfolgt eine Entfernung des Binders, was auch als Entbinderung oder als Entbinderungsschritt bezeichnet wird. Danach folgt ein Sinterschritt, in dem endkonturgetreue oder zumindest endkonturnahe Fertigbauteile erzeugt werden können. Charakteristisch für das MIM-Verfahren ist dabei der effiziente Rohstoffeinsatz, da praktisch ohne Produktionsabfall gearbeitet werden kann. Zerspanende Nachbearbeitungsschritte können nämlich zumindest weitestgehend vermieden werden. Wegen der hohen Rohstoffkosten, der geringen Verfügbarkeit der Ausgangsmaterialien und gleichzeitig der sehr problematischen Zerspanbarkeit sind grundsätzlich auch komplex geformte Dauermagnete auf der Grundlage von Elementen aus der Gruppe der Seltenen Erden geeignete Kandidaten, um mittels eines MIM-Verfahrens hergestellt zu werden. Dabei ergibt sich jedoch das Problem, dass chemische Elemente aus der Gruppe der Seltenen Erden und insbesondere das für leistungsstarke Dauermagnete sehr vorteilhafte Legierungselement Neodym (Nd) eine sehr hohe Reaktivität bezüglich Sauerstoff (O2) und Kohlenstoff (C) aufweisen. Für ein serientaugliches und reproduzierbares MIM-Verfahren ist es wichtig, ein Bindermaterial einzusetzen, welches insbesondere organische Verbindungen, insbesondere Kunststoffverbindungen, aufweist, wobei diese bei einer thermischen Entbinderung, also bei einem Ausbrennvorgang zur Entfernung des Bindermaterials, Kohlenstoff und Sauerstoff freisetzen. Dabei kann es zur Ausbildung von Oxiden oder Carbiden eines Seltenerd-Metalls, insbesondere von Neodym, kommen, was zu einer starken Verschlechterung der hartmagnetischen Eigenschaften führt.The process of metal powder injection molding (MIM - Metal Injection Molding) is particularly known for the production of complex geometries, for example from steel or titanium materials. Here, a metal powder is processed with a typically organic binder material into an injection-mouldable mass, the so-called feedstock, and brought into shape by injection molding in an appropriate mold on injection molding machines. The binder is then removed, which is also referred to as debinding or debinding step. This is followed by a sintering step in which finished components that are true to the final shape or at least close to the final shape can be produced. A characteristic of the MIM process is the efficient use of raw materials, as it can be used with practically no production waste. Machining post-processing steps can at least be largely avoided. Because of the high raw material costs, the low availability of the starting materials and at the same time the very problematic machinability, complex-shaped permanent magnets based on elements from the rare earth group are generally suitable candidates for being manufactured using an MIM process. However, the problem arises that chemical elements from the group of rare earths and in particular the alloying element neodymium (Nd), which is very advantageous for powerful permanent magnets, have a very high reactivity with respect to oxygen (O 2 ) and carbon (C). For a series-suitable and reproducible MIM process, it is important to use a binder material which has in particular organic compounds, in particular plastic compounds, which release carbon and oxygen during thermal debinding, i.e. during a burnout process to remove the binder material. This can lead to the formation of oxides or carbides of a rare earth metal, especially neodymium, which leads to a severe deterioration in the hard magnetic properties.

JP H09 283358 A zeigt ein Verfahren, bei dem durch Verwendung eines sauerstofffreien Binders eine Oxidation des Seltenerd-Metalls verhindert wird. Weiterhin wird eine Carbidbildung dadurch verhindert, dass die Entbinderung unter Erhitzung in einer Wasserstoffatmosphäre durchgeführt wird. JP H09 283358 A shows a process in which oxidation of the rare earth metal is prevented by using an oxygen-free binder. Furthermore, carbide formation is prevented by carrying out the debinding with heating in a hydrogen atmosphere.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Herstellung eines Permanentmagneten zu schaffen, bei welchem die genannten Nachteile nicht auftreten.The invention is based on the object of creating a method for producing a permanent magnet in which the disadvantages mentioned do not occur.

Die Aufgabe wird gelöst, indem ein Verfahren mit den Schritten des Anspruchs 1 geschaffen wird.The task is solved by creating a method with the steps of claim 1.

Die Aufgabe wird insbesondere gelöst, indem ein Verfahren zum Herstellen eines Permanentmagneten geschaffen wird, wobei der Permanentmagnet ein Seltenerd-Element, insbesondere Neodym, aufweist, wobei ein Ausgangsmaterial in einem Metallpulverspritzguss-Verfahren (MIM-Verfahren) verarbeitet wird, wobei das Ausgangsmaterial ein Seltenerd-Element aufweist, und wobei das in dem Ausgangsmaterial vorhandene Seltenerd-Element vor einem Entbinderungsschritt des Metallpulverspritzguss-Verfahrens in eine inertisierte Verbindung umgewandelt wird. Dadurch, dass das Seltenerd-Element vor dem Entbinderungsschritt in eine inertisierte Verbindung umgewandelt wird, liegt es in dem Entbinderungsschritt nicht in seiner hochreaktiven Form gegenüber Sauerstoff und Kohlenstoff vor, sondern vielmehr in einer reaktionsträgeren Form, sodass die Gefahr einer Ausbildung von Oxiden oder Carbiden des Seltenerd-Elements während dem Entbinderungsschritt deutlich reduziert, vorzugsweise vollständig vermieden wird. Auf diese Weise kann eine starke Verschlechterung der hartmagnetischen Eigenschaften des Permanentmagneten durch den Entbinderungsschritt verhindert werden. Dies wiederum ermöglicht aufgrund der geeigneten Prozessführung eine Herstellung von oxid- und carbidarmen oder oxid- und carbidfreien Permanentmagneten mit hohem Energieprodukt im Wege des Metallpulverspritzgießens, sodass dieses erstmals auch in großserientauglicher Weise zur Herstellung solcher Permanentmagnete, die Seltenerd-Elemente aufweisen, angewendet werden kann. Mithilfe des Verfahrens können insbesondere auch komplexe Geometrien für solche Magnete schnell, einfach und kostengünstig, insbesondere mit geringem Materialaufwand und vorzugsweise unter Vermeidung von Produktionsabfall durch zerspanende Nachbearbeitungsschritte, hergestellt werden. Insgesamt ermöglicht das Verfahren einen effizienten Rohstoffeinsatz ohne das Problem einer Verschlechterung der hartmagnetischen Eigenschaften der mittels des Verfahrens hergestellten Permanentmagnete.The object is achieved in particular by creating a method for producing a permanent magnet, the permanent magnet being a rare earth element, in particular neodymium, wherein a starting material is processed in a metal powder injection molding process (MIM process), wherein the starting material has a rare earth element, and wherein the rare earth element present in the starting material is converted into an inerted one before a debinding step of the metal powder injection molding process connection is converted. Because the rare earth element is converted into an inerted compound before the debinding step, it is in the Debinding step does not occur in its highly reactive form towards oxygen and carbon, but rather in a more inert form, so that the risk of formation of oxides or carbides of the rare earth element during the debinding step is significantly reduced, preferably completely avoided. In this way, a severe deterioration in the hard magnetic properties of the permanent magnet due to the debinding step can be prevented. Due to the suitable process control, this in turn enables the production of low-oxide and carbide or oxide and carbide-free permanent magnets with a high energy product by means of metal powder injection molding, so that this can for the first time be used in a large-scale manner for the production of such permanent magnets that have rare earth elements. With the help of the method, complex geometries for such magnets can be produced quickly, easily and cost-effectively, in particular with little material expenditure and preferably while avoiding production waste due to machining post-processing steps. Overall, the process enables efficient use of raw materials without the problem of a deterioration in the hard magnetic properties of the permanent magnets produced using the process.

Unter einem Metallpulverspritzguss-Verfahren, welches kurz auch als MIM-Verfahren bezeichnet wird, wird ein Verfahren verstanden, bei welchem ein Ausgangsmaterial durch Spritzgießen geformt wird, wodurch ein Formteil erhalten wird, welches nachfolgend gesintert wird. Bei dem Ausgangsmaterial kann es sich um ein Metallpulver, insbesondere um ein Pulver einer Metalllegierung, handeln, welches dann in einem eigenen Schritt des MIM-Verfahrens zu einem spritzgießfähigen Material durch Vermischen mit einem Bindermaterial aufbereitet wird, wobei dieses spritzgießfähige Material als Feedstock bezeichnet wird, und wobei der Schritt des Vermischens des Metallpulvers mit dem vorzugsweise thermoplastischen Bindermaterial als Feedstock-Aufbereitung bezeichnet wird. Es ist aber auch möglich, dass als Ausgangsmaterial in dem MIM-Verfahren direkt ein zuvor aufbereiteter Feedstock verwendet wird, wobei in diesem Fall die Feedstock-Aufbereitung selbst nicht Teil des Verfahrens ist. Der Feedstock wird in einer Spritzgießmaschine spritzgegossen, woraus das Formteil resultiert, welches auch als Grünling bezeichnet wird, und welches noch das Metallpulver und das Bindermaterial, mithin den Feedstock, aufweist. Der Grünling wird anschließend wenigstens einem Entbinderungsschritt unterworfen, wobei das Bindermaterial entfernt wird. Dabei ist grundsätzlich insbesondere eine katalytische Entbinderung unter katalytischer chemischer Umsetzung des Bindermaterials zu gasförmigen Produkten, die ausgetrieben werden können, eine chemische Entbinderung unter Lösen des Bindermaterials in einem typischerweise flüssigen Lösungsmittel, und/oder eine thermische Entbinderung unter thermischer Umsetzung, insbesondere Ausbrennen, des Bindermaterials möglich. Auch eine Kombination dieser Schritte ist möglich. Dabei ist es insbesondere möglich, zuerst eine erste, auch als primäre Binderkomponente bezeichnete Komponente des Bindermaterials chemisch zu entfernen, insbesondere mittels eines Lösungsmittels aus dem Grünling herauszulösen, und anschließend eine zweite, sekundäre Binderkomponente, die auch als Backbone-Binder bezeichnet wird, thermisch - insbesondere durch Ausbrennen - zu entfernen. Durch den wenigstens einen Entbinderungsschritt wird aus dem Grünling der sogenannte Bräunling hergestellt, welcher nur noch das Metallpulver oder - nach einem ersten Entbinderungsschritt - das Metallpulver und die sekundäre Binderkomponente aufweist. Der Bräunling wird anschließend gesintert, wobei gegebenenfalls noch vorhandener Backbone-Binder thermisch entfernt wird. Aus dem Sinterschritt resultiert schließlich das fertige, mittels dem MIM-Verfahren hergestellte Bauteil. Statt der Begriffe "Grünling" und "Bräunling" werden teilweise auch die Begriffe "Grünkörper" und "Braunkörper" oder "Grünteil" und "Braunteil" verwendet.A metal powder injection molding process, which is also briefly referred to as an MIM process, is understood to be a process in which a starting material is formed by injection molding, whereby a molded part is obtained, which is subsequently sintered. The starting material can be a metal powder, in particular a powder of a metal alloy, which is then processed in a separate step of the MIM process into an injection moldable material by mixing it with a binder material, this injection moldable material being referred to as feedstock, and wherein the step of mixing the metal powder with the preferably thermoplastic binder material is referred to as feedstock preparation. However, it is also possible for a previously processed feedstock to be used directly as the starting material in the MIM process, in which case the feedstock processing itself is not part of the process. The feedstock is injection molded in an injection molding machine, resulting in the molded part, which is also referred to as a green compact and which also has the metal powder and the binder material, i.e. the feedstock. The green compact is then subjected to at least one debinding step, in which the binder material is removed. In principle, catalytic debinding involves catalytic chemical conversion of the binder material into gaseous products that can be expelled, chemical debinding Dissolving the binder material in a typically liquid solvent, and/or thermal debinding with thermal conversion, in particular burning out, of the binder material is possible. A combination of these steps is also possible. In particular, it is possible to first chemically remove a first component of the binder material, also referred to as the primary binder component, in particular to dissolve it out of the green compact using a solvent, and then to thermally remove a second, secondary binder component, which is also referred to as the backbone binder. especially by burning out - to be removed. Through the at least one debinding step, the so-called brown compact is produced from the green compact, which only has the metal powder or - after a first debinding step - the metal powder and the secondary binder component. The brown compact is then sintered, with any remaining backbone binder being thermally removed. The sintering step ultimately results in the finished component manufactured using the MIM process. Instead of the terms “green body” and “brown body” the terms “green body” and “brown body” or “green part” and “brown part” are sometimes used.

Als Ausgangsmaterial in dem hier vorgeschlagenen Verfahren kann bezüglich der Umwandlung des Seltenerd-Elements in die inertisierte Verbindung insbesondere das Metallpulver vor der Feedstock-Aufbereitung, der aufbereitete Feedstock, oder der Feedstock bereits in spritzgegossener Form, mithin der Grünling, oder der Grünling nach einem ersten, insbesondere chemischen Entbinderungsschritt, verwendet werden. Wichtig ist, dass das Seltenerd-Element vor einem thermischen Entbinderungsschritt in seine inertisierte Verbindung umgewandelt wird, sodass die Ausbildung von Oxiden und/oder Carbiden während des thermischen Entbinderungsschritts vermieden oder zumindest verringert wird.With regard to the conversion of the rare earth element into the inerted compound, the starting material in the method proposed here can in particular be the metal powder before the feedstock preparation, the prepared feedstock, or the feedstock already in injection-molded form, i.e. the green body, or the green body after a first , in particular chemical debinding step, can be used. It is important that the rare earth element is converted into its inerted compound before a thermal debinding step, so that the formation of oxides and/or carbides is avoided or at least reduced during the thermal debinding step.

Unter einem Seltenerd-Element wird insbesondere ein chemisches Element, auch in Form einer Verbindung und insbesondere einer Legierung mit wenigstens einem anderen chemischen Element, verstanden, welches zu den Metallen der Seltenen Erden gehört. Dies sind insbesondere die chemischen Elemente der dritten Nebengruppe des Periodensystems mit Ausnahme des Actiniums, sowie die Lanthanoide. Das Seltenerd-Element ist vorzugsweise ausgewählt aus einer Gruppe bestehend aus Scandium, Lanthan, Cer, Praseodym, Neodym, Promethium, Samarium, Europium, Yttrium, Gadolinium, Terbium, Dysprosium, Holmium, Erbium, Thulium, Ytterbium und Lutetium. Bevorzugt ist das Seltenerd-Element ausgewählt aus den sogenannten leichten Seltenerd-Elementen, nämlich einer Gruppe bestehend aus Scandium, Lanthan, Cer, Praseodym, Neodym, Promethium, Samarium und Europium. Alternativ oder zusätzlich ist das Seltenerd-Element bevorzugt ausgewählt aus der Gruppe der sogenannten schweren Seltenerd-Elemente, nämlich einer Gruppe bestehend aus Yttrium, Gadolinium, Terbium, Dysprosium, Holmium, Erbium, Thulium, Ytterbium, und Lutetium. Bevorzugt ist das Seltenerd-Element ausgewählt aus einer Gruppe bestehend aus Neodym, Dysprosium, Terbium und Samarium. Bevorzugt ist das Seltenerd-Element ausgewählt aus einer Gruppe bestehend aus Neodym, Dysprosium und Terbium. Ganz besonders bevorzugt wird ein Ausgangsmaterial verwendet, welches als Seltenerd-Element Neodym aufweist.A rare earth element is understood to mean in particular a chemical element, also in the form of a compound and in particular an alloy with at least one other chemical element, which belongs to the rare earth metals. These are in particular the chemical elements of the third subgroup of the periodic table with the exception of actinium, as well as the lanthanides. The rare earth element is preferably selected from a group consisting of scandium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, yttrium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium. The rare earth element is preferably selected from the so-called light rare earth elements, namely a group consisting of scandium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium and europium. Alternatively or additionally, the rare earth element is preferably selected from the group of so-called heavy rare earth elements, namely a group consisting of yttrium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium. The rare earth element is preferably selected from a group consisting of neodymium, dysprosium, terbium and samarium. The rare earth element is preferably selected from a group consisting of neodymium, dysprosium and terbium. It is particularly preferred to use a starting material which has neodymium as the rare earth element.

Es ist möglich, dass das Ausgangsmaterial mehr als ein Seltenerd-Element aufweist. Insbesondere ist es möglich, dass das Ausgangsmaterial neben Neodym Dysprosium und/oder Terbium als weitere(s) Seltenerd-Element(e) aufweist. Für das hier vorgeschlagene Verfahren ist es grundsätzlich ausreichend, wenn eines der von dem Ausgangsmaterial umfassten Seltenerd-Elemente in eine inertisierte Verbindung umgewandelt wird, insbesondere Neodym. Es ist aber zusätzlich oder alternativ möglich, dass mehr als ein von dem Ausgangsmaterial umfasstes Seltenerd-Element in eine inertisierte Verbindung umgewandelt wird. Es ist auch möglich, dass alle von dem Ausgangsmaterial umfassten Seltenerd-Elemente jeweils in eine inertisierte Verbindung umgewandelt werden.It is possible that the starting material has more than one rare earth element. In particular, it is possible for the starting material to contain dysprosium and/or terbium as further rare earth element(s) in addition to neodymium. For the method proposed here, it is fundamentally sufficient if one of the rare earth elements contained in the starting material is converted into an inerted compound, in particular neodymium. However, it is additionally or alternatively possible for more than one rare earth element included in the starting material to be converted into an inerted compound. It is also possible for all rare earth elements included in the starting material to be converted into an inerted compound.

Unter einem "Umwandeln" in eine inertisierte Verbindung wird hier insbesondere eine chemische Umsetzung des Seltenerd-Elements, insbesondere also eine chemische Reaktion des Seltenerd-Elements mit wenigstens einem weiteren Element oder wenigstens einer Verbindung verstanden. Dabei ist der Begriff "Umwandlung" nicht eingeschränkt zu verstehen auf die Ausbildung einer kovalenten Bindung, kann aber die Ausbildung wenigstens einer kovalenten Bindung umfassen. Auch andere Bindungstypen und/oder chemische Reaktionsarten sind von dem Begriff "Umwandlung" umfasst. Dabei sind insbesondere die Ausbildung einer ionischen Bindung, einer Komplexbindung, und einer metallischen Bindung umfasst. Die Umwandlung kann also insbesondere auch die Ausbildung einer metallischen Phase einschließen. Dass das Seltenerd-Element in eine inertisierte Verbindung umgewandelt wird, bedeutet insbesondere, dass die durch die Umwandlung geschaffene Verbindung des Seltenerd-Elements reaktionsträger ist als das Seltenerd-Element in seiner vor der Umwandlung vorliegenden Form. Dabei ist die inertisierte Verbindung insbesondere reaktionsträger gegenüber den Elementen Kohlenstoff und Sauerstoff als das Seltenerd-Element in der vor der Umwandlung vorliegenden Form.“Converting” into an inerted compound here is understood to mean, in particular, a chemical reaction of the rare earth element, in particular a chemical reaction of the rare earth element with at least one further element or at least one compound. The term “conversion” is not to be understood as limited to the formation of a covalent bond, but can include the formation of at least one covalent bond. Other bond types and/or chemical reaction types are also included in the term “conversion”. This particularly includes the formation of an ionic bond, a complex bond, and a metallic bond. The conversion can therefore in particular also include the formation of a metallic phase. The fact that the rare earth element is converted into an inerted compound means in particular that the rare earth element compound created by the conversion is less reactive than the rare earth element in its form before the conversion. The inerted compound is particularly unreactive towards the elements carbon and oxygen as the rare earth element in the form present before the conversion.

Es wird eine Ausführungsform des Verfahrens beschrieben, die sich dadurch auszeichnet, dass die inertisierte Verbindung nach dem Entbinderungsschritt in das Seltenerd-Element rückumgewandelt wird. Insbesondere wird die inertisierte Verbindung bevorzugt nach dem Entbinderungsschritt in das Seltenerd-Element in seiner vor der Umwandlung in die inertisierte Verbindung vorliegenden Form rückumgewandelt. Dies schließt ein, dass das Seltenerd-Element gegebenenfalls vor der Umwandlung in die inertisierte Verbindung nicht in elementarer Form, sondern in anderer Form, insbesondere in Form einer Legierung oder metallischen Phase vorgelegen hat, wobei es dann aus der Form der inertisierten Verbindung wieder in diese zuvor vorliegende Legierung oder metallische Phase oder andere Form rückumgewandelt wird. Hierdurch werden nach dem Entbinderungsschritt, wenn also keine Gefahr einer Ausbildung von für die hartmagnetischen Eigenschaften des Permanentmagneten schädlichen Carbiden oder Oxiden mehr besteht, die für den Permanentmagneten günstigen Eigenschaften des Seltenerd-Elements in seiner vor der Umwandlung in die inertisierte Verbindung vorliegenden Form wieder zurückgewonnen. Bevorzugt erfolgt diese Rückumwandlung vor dem Sintern, insbesondere also zwischen dem thermischen Entbinderungsschritt und dem Sinterschritt des MIM-Verfahrens.An embodiment of the method is described, which is characterized in that the inerted compound is converted back into the rare earth element after the debinding step. In particular, the inerted compound is preferably reconverted after the debinding step into the rare earth element in its form before the conversion into the inerted compound. This includes that the rare earth element may not have been in elemental form before being converted into the inerted compound, but in another form, in particular in the form of an alloy or metallic phase, whereby it then returns from the form of the inerted compound into this previously existing alloy or metallic phase or other form is converted back. As a result, after the debinding step, when there is no longer any risk of the formation of carbides or oxides that are harmful to the hard magnetic properties of the permanent magnet, the properties of the rare earth element, which are favorable for the permanent magnet, are recovered in the form that existed before the conversion into the inerted compound. This reconversion preferably takes place before sintering, in particular between the thermal debinding step and the sintering step of the MIM process.

Eine Ausführungsform die nicht zur Erfindung gehört, ist dadurch ausgezeichnet, dass die Umwandlung des Seltenerd-Elements in die inertisierte Verbindung an einem binderfreien, das Seltenerd-Element aufweisenden Pulver als Ausgangsmaterial durchgeführt wird. In diesem Fall wird die Umwandlung insbesondere vor der Feedstock-Aufbereitung durchgeführt. Besonders bevorzugt wird in diesem Fall die Umwandlung gleichzeitig und/oder gemeinsam mit einem Schritt der Wasserstoff-Dekrepitation durchgeführt, der insbesondere dazu vorgesehen ist, ein feinkörniges Pulver für das MIM-Verfahren zu erhalten. Die Umwandlung vor der Feedstock-Aufbereitung hat den Vorteil, dass durch die höhere Reaktivität des Ausgangsmaterials ohne das Bindermaterial kürzere Reaktionszeiten möglich sind.An embodiment that is not part of the invention is characterized in that the conversion of the rare earth element into the inerted compound is carried out using a binder-free powder containing the rare earth element as the starting material. In this case, the conversion is carried out in particular before feedstock processing. In this case, the conversion is particularly preferably carried out simultaneously and/or together with a hydrogen decrepitation step, which is intended in particular to obtain a fine-grained powder for the MIM process. The conversion before feedstock processing has the advantage that shorter reaction times are possible due to the higher reactivity of the starting material without the binder material.

Erfindungsgemäß wird die Umwandlung in mindestens zwei Umwandlungsschritten durchgeführt, wobei in wenigstens einem ersten Umwandlungsschritt die Hydrierung des Seltenerd-Elements durchgeführt wird. Der erste Umwandlungsschritt kann wahlweise vor oder nach der Gemischbildung durchgeführt werden kann. In wenigstens einem zweiten Umwandlungsschritt wird vollständig das hydrierte Seltenerd-Element partiell dehydriert. Der zweite Umwandlungsschritt wird vor der thermischen Entbinderung des Grünlings durchgeführt. Insbesondere ist in einer Ausgestaltung vorgesehen, dass die Umwandlung des Seltenerd-Elements in die inertisierte Verbindung an einem Gemisch aus dem das Seltenerd-Element aufweisenden Pulver und dem Bindermaterial, das heißt insbesondere an dem Feedstock, als Ausgangsmaterial durchgeführt wird. Hierbei müssen zwar aufgrund der geringeren Reaktivität des in dem Bindermaterial gebundenen Metallpulvers längere Reaktionszeiten in Kauf genommen werden, es ergibt sich aber der Vorteil einer Prozesstrennung der Feedstockaufbereitung einerseits und der Umwandlung des Seltenerd-Elements andererseits, sodass die Feedstockaufbereitung ausgelagert und insbesondere ein fertig vorbereiteter Feedstock als Ausgangsmaterial bereitgestellt werden kann, an dem dann der Umwandlungsschritt des Seltenerd-Elements durchgeführt wird. Hieraus können sich insbesondere wirtschaftliche Vorteile ergeben.According to the invention, the conversion is carried out in at least two conversion steps, with the hydrogenation of the rare earth element being carried out in at least a first conversion step. The first conversion step can optionally be carried out before or after mixture formation. In at least a second conversion step, the hydrogenated rare earth element is completely and partially dehydrogenated. The second conversion step is carried out before the green compact is thermally debinded. In particular, in one embodiment it is provided that the conversion of the rare earth element into the inerted compound is carried out on a mixture of the powder containing the rare earth element and the binder material, that is in particular on the feedstock, as starting material. Although longer reaction times have to be accepted due to the lower reactivity of the metal powder bound in the binder material, there is the advantage of process separation of the feedstock preparation on the one hand and the conversion of the rare earth element on the other, so that the feedstock preparation is outsourced and in particular a fully prepared feedstock can be provided as starting material, on which the conversion step of the rare earth element is then carried out. This can result in particular economic advantages.

Es wird auch eine Ausführungsform des Verfahrens bevorzugt, die sich dadurch auszeichnet, dass zumindest der erste Umwandlungsschritt in einer Atmosphäre durchgeführt wird, die Wasserstoff aufweist oder aus Wasserstoff besteht. Dabei kann eine Hydrierung des Seltenerd-Elements durchgeführt werden, wobei dieses in seiner hydrierten Form, mithin als Verbindung mit Wasserstoff, zumindest bis 500 °C chemisch stabiler ist als in seiner dehydrierten Form, insbesondere stabiler gegenüber Kohlenstoff und Sauerstoff. Bevorzugt wird das Seltenerd-Element in eine hydrierte Form umgewandelt, mithin in eine Wasserstoff-Verbindung. Dabei ist der Begriff Wasserstoff-Verbindung nicht auf eine kovalente Verbindung beschränkt. Vielmehr kann es sich hierbei auch insbesondere um eine wasserstoffhaltige, metallische Phase handeln. Besonders bevorzugt wird im Rahmen des Verfahrens Neodym in ein Neodymhydrid, insbesondere NdH3, umgewandelt.An embodiment of the method is also preferred, which is characterized in that at least the first conversion step is carried out in an atmosphere that contains hydrogen or consists of hydrogen. A hydrogenation of the rare earth element can be carried out, whereby it is chemically more stable in its hydrogenated form, i.e. as a compound with hydrogen, at least up to 500 ° C than in its dehydrogenated form, in particular more stable towards carbon and oxygen. The rare earth element is preferably converted into a hydrogenated form, i.e. into a hydrogen compound. The term hydrogen compound is not limited to a covalent compound. Rather, this can in particular be a hydrogen-containing, metallic phase. As part of the process, neodymium is particularly preferably converted into a neodymium hydride, in particular NdH 3 .

Im Rahmen der Erfindung wird das zuvor gebildete Hydrid des Seltenerd-Elements als inertisierte Verbindung nach dem Entbinderungsschritt durch Dehydrieren rückumgewandelt. Besonders bevorzugt wird Neodymhydrid, insbesondere NdH3 oder NdH2.7, zu Neodym (Nd) rückumgewandelt.In the context of the invention, the previously formed hydride of the rare earth element is reconverted as an inerted compound after the debinding step by dehydrogenation. Neodymium hydride, in particular NdH 3 or NdH 2.7 , is particularly preferably converted back to neodymium (Nd).

Der erste Umwandlungsschritt wird vorzugsweise durchgeführt bei einem Druck von höchstens 2,5 bar, vorzugsweise bei einem Druck von mindestens 1,5 bar bis höchstens 3,5 bar, vorzugsweise bei einem Druck von mindestens 1,5 bar bis höchstens 3 bar, vorzugsweise bei einem Druck von mindestens 1,5 bar bis höchstens 2,5 bar, vorzugsweise mindestens 1,5 bar bis höchstens 2 bar, vorzugsweise mindestens 2 bar bis höchstens 3 bar, vorzugsweise mindestens 2 bar bis höchstens 2,5 bar, vorzugsweise von 2,5 bar.The first conversion step is preferably carried out at a pressure of at most 2.5 bar, preferably at a pressure of at least 1.5 bar to at most 3.5 bar, preferably at a pressure of at least 1.5 bar to at most 3 bar, preferably at a pressure of at least 1.5 bar to at most 2.5 bar, preferably at least 1.5 bar to at most 2 bar, preferably at least 2 bar to at most 3 bar, preferably at least 2 bar to at most 2.5 bar, preferably from 2, 5 bar.

Alternativ oder zusätzlich wird der erste Umwandlungsschritt durchgeführt bei einer Temperatur von mindestens 15 °C bis höchstens 200 °C, vorzugsweise mindestens 15 °C bis höchstens 150 °C, vorzugsweise von mindestens 100 °C bis höchstens 150 °C, vorzugsweise von 125 °C, vorzugsweise von mindestens 15 °C bis höchstens 35 °C, vorzugsweise mindestens 15 °C bis höchstens 30 °C, vorzugsweise mindestens 20 °C bis höchstens 30 °C, vorzugsweise von 25 °C. Es ist also insbesondere möglich, den ersten Umwandlungsschritt bei Raumtemperatur oder bei erhöhter Temperatur, insbesondere bis zu 150 °C, durchzuführen.Alternatively or additionally, the first conversion step is carried out at a temperature of at least 15 °C to at most 200 °C, preferably at least 15 °C to at most 150 °C, preferably at least 100 °C to at most 150 °C, preferably 125 °C , preferably from at least 15 °C to at most 35 °C, preferably at least 15 °C to at most 30 °C, preferably at least 20 °C to at most 30 °C, preferably from 25 °C. It is therefore possible in particular to carry out the first conversion step at room temperature or at an elevated temperature, in particular up to 150 ° C.

Alternativ oder zusätzlich wird der erste Umwandlungsschritt bevorzugt durchgeführt für eine Zeitdauer von mindestens 5 Minuten bis höchstens zwei Stunden, vorzugsweise von mindestens 30 Minuten bis höchstens 90 Minuten, vorzugsweise für eine Zeitdauer von einer Stunde. Dabei ist die konkret gewählte Reaktionszeit insbesondere abhängig von der Menge des umzuwandelnden Seltenerd-Elements und somit insbesondere von der Menge des zu behandelnden Ausgangsmaterials.Alternatively or additionally, the first conversion step is preferably carried out for a period of at least 5 minutes to a maximum of two hours, preferably from at least 30 minutes to a maximum of 90 minutes, preferably for a period of one hour. The specifically selected reaction time depends in particular on the amount of rare earth element to be converted and thus in particular on the amount of starting material to be treated.

Die Wasserstoff aufweisende Atmosphäre weist bevorzugt von mindestens 200 mbar bis höchstens 1 bar reinen Wasserstoff auf. Bei einer bevorzugten Ausführungsform der Erfindung besteht die Atmosphäre aus Wasserstoff in einem der zuvor genannten Druckbereiche.The hydrogen-containing atmosphere preferably contains at least 200 mbar to at most 1 bar of pure hydrogen. In a preferred embodiment of the invention, the atmosphere consists of hydrogen in one of the aforementioned pressure ranges.

Vorzugsweise werden für das Verfahren hochreine Gase mit einem geringen Sauerstoff-Gehalt verwendet, insbesondere Wasserstoff, welcher Sauerstoff mit einer Konzentration - bezogen auf das Volumen - von höchstens 2 ppm (parts per million), das heißt 2 ppmv (parts per million bezogen auf das Volumen), bevorzugt höchstens 1 ppmv, besonders bevorzugt höchstens 0,5 ppmv, aufweist. Besonders bevorzugt wird Wasserstoff mit einer Reinheit von mindestens 99,999 Vol.-% (Wasserstoff 5.0) verwendet, ganz besonders bevorzugt wird Wasserstoff mit einer Reinheit von 99,9999 Vol.-% (Wassersoff 6.0) verwendet. Entsprechendes gilt auch für ein gegebenenfalls verwendetes Schutzgas, insbesondere Argon.Highly pure gases with a low oxygen content are preferably used for the process, in particular hydrogen, which contains oxygen with a concentration - based on the volume - of at most 2 ppm (parts per million), that is, 2 ppmv (parts per million based on that Volume), preferably at most 1 ppmv, particularly preferably at most 0.5 ppmv. Particular preference is given to using hydrogen with a purity of at least 99.999% by volume (hydrogen 5.0), and very particularly preferably using hydrogen with a purity of 99.9999% by volume (hydrogen 6.0). The same applies to any protective gas that may be used, in particular argon.

Erfindungsgemäß wird wenigstens ein zweiter Umwandlungsschritt durchgeführt. Die Umwandlung des Seltenerd-Elements in die inertisierte Verbindung wird also in zwei Schritten durchgeführt. Besonders bevorzugt wird dabei bei dem ersten Umwandlungsschritt eine Hydrierung vorgenommen, wobei bei dem zweiten Umwandlungsschritt eine partielle Dehydrierung vorgenommen wird, um insbesondere eine noch stabilere Verbindung zu erreichen. Besonders bevorzugt wird bei dem zweiten Umwandlungsschritt aus in dem ersten Umwandlungsschritt gebildetem Neodymhydrid mit der Summenformel NdH3 das teilweise dehydrierte Neodymhydrid mit der ungefähren Summenformel NdH2.7 durch Teilentgasung erzeugt, wobei dieses partielle dehydrierte Neodymhydrid gegenüber Kohlenstoff und Sauerstoff bis etwa 500 °C stabil ist.According to the invention, at least a second conversion step is carried out. The conversion of the rare earth element into the inerted compound is therefore carried out in two steps. Particularly preferably, hydrogenation is carried out in the first conversion step, with partial dehydrogenation being carried out in the second conversion step, in particular to achieve an even more stable compound. In the second conversion step, neodymium hydride formed in the first conversion step is particularly preferred with the molecular formula NdH 3 , the partially dehydrogenated neodymium hydride with the approximate molecular formula NdH 2.7 is produced by partial degassing, this partially dehydrogenated neodymium hydride being stable to carbon and oxygen up to about 500 ° C.

Der wenigstens eine zweite Umwandlungsschritt wird vorzugsweise durchgeführt unter Vakuum, unter einer Wasserstoff aufweisenden oder aus Wasserstoff bestehenden Atmosphäre, und/oder unter einer wenigstens ein Schutzgas aufweisenden oder aus wenigstens einem Schutzgas bestehenden Atmosphäre.The at least one second conversion step is preferably carried out under vacuum, under an atmosphere containing or consisting of hydrogen, and/or under an atmosphere containing at least one inert gas or consisting of at least one inert gas.

Unter einem Schutzgas wird insbesondere ein Gas verstanden, welches inert oder zumindest gegenüber den zu Herstellung des Permanentmagneten verwendeten Stoffen oder Stoffgemischen reaktionsträge ist. Das Schutzgas ist vorzugsweise ausgewählt aus einer Gruppe bestehend aus einem Edelgas, Stickstoff, und Kohlendioxid. Besonders bevorzugt ist das Schutzgas ausgewählt aus einer Gruppe bestehend aus einem Edelgas und Stickstoff. Besonders bevorzugt ist das Schutzgas ein Edelgas. Besonders bevorzugt wird als Schutzgas Argon verwendet.A protective gas is understood to mean, in particular, a gas which is inert or at least unreactive towards the substances or mixtures of substances used to produce the permanent magnet. The protective gas is preferably selected from a group consisting of a noble gas, nitrogen, and carbon dioxide. The protective gas is particularly preferably selected from a group consisting of a noble gas and nitrogen. The protective gas is particularly preferably a noble gas. Argon is particularly preferably used as the protective gas.

Zusätzlich oder alternativ wird der wenigstens eine zweite Umwandlungsschritt bevorzugt durchgeführt bei einem Druck von mindestens 100 mbar bis höchstens 1 bar, vorzugsweise von mindestens 100 mbar bis höchstens 700 mbar, vorzugsweise von mindestens 200 mbar bis höchstens 600 mbar. Besonders bevorzugt wird der zweite Umwandlungsschritt entweder unter Atmosphärendruck (1 bar) oder aber in einem Druckbereich von mindestens 200 mbar bis höchstens 600 mbar durchgeführt.Additionally or alternatively, the at least one second conversion step is preferably carried out at a pressure of at least 100 mbar to at most 1 bar, preferably at least 100 mbar to at most 700 mbar, preferably at least 200 mbar to at most 600 mbar. The second conversion step is particularly preferably carried out either under atmospheric pressure (1 bar) or in a pressure range of at least 200 mbar to at most 600 mbar.

Alternativ oder zusätzlich wird der wenigstens eine zweite Umwandlungsschritt bevorzugt durchgeführt bei einer ansteigenden Temperatur, insbesondere also durch Aufheizen der aus dem ersten Umwandlungsschritt resultierenden Verbindung. Dabei steigt die Temperatur vorzugsweise von einer Starttemperatur von 100 °C bis zu einer Zieltemperatur von 350 °C an, vorzugsweise von einer Starttemperatur von 150 °C bis zu einer Zieltemperatur von 300 °C.Alternatively or additionally, the at least one second conversion step is preferably carried out at an increasing temperature, in particular by heating the compound resulting from the first conversion step. The temperature preferably increases from a starting temperature of 100 °C to a target temperature of 350 °C, preferably from a starting temperature of 150 °C to a target temperature of 300 °C.

Alternativ oder zusätzlich wird der wenigstens eine zweite Umwandlungsschritt bevorzugt durchgeführt während einer Zeitdauer von mindestens 20 Minuten bis höchstens 120 Minuten, vorzugsweise von mindestens 30 Minuten bis höchstens 90 Minuten, vorzugsweise von mindestens 40 Minuten bis höchstens 80 Minuten, vorzugsweise von mindestens 50 Minuten bis höchstens 70 Minuten, vorzugsweise von 60 Minuten. Innerhalb dieser Zeitdauer wird bevorzugt eine Temperaturrampe gefahren, ausgehend von einer der zuvor genannten Starttemperaturen bis zu einer der zuvor genannten Zieltemperaturen. Während des zweiten Umwandlungsschritts erfolgen insbesondere eine Teilentgasung und ganz besonders eine partielle Dehydrierung der in dem ersten Umwandlungsschritt hergestellten Verbindung, wobei eine noch stabilere, gegenüber Sauerstoff und Kohlenstoff noch reaktionsträgere intertisierte Verbindung entsteht.Alternatively or additionally, the at least one second conversion step is preferably carried out for a period of at least 20 minutes to at most 120 minutes, preferably at least 30 minutes to at most 90 minutes, preferably at least 40 minutes to at most 80 minutes, preferably at least 50 minutes to at most 70 minutes, preferably 60 minutes. Within this period of time, a temperature ramp is preferably run, starting from one of the aforementioned start temperatures up to one of the aforementioned target temperatures. During the second conversion step, in particular partial degassing and, in particular, partial dehydrogenation of the in The compound produced in the first conversion step, resulting in an even more stable intertized compound that is even more inert to oxygen and carbon.

Es wird eine Ausführungsform des Verfahrens bevorzugt, die sich dadurch auszeichnet, dass ein Bindermaterial verwendet wird, das zumindest eine sekundäre Binderkomponente aufweist, die unterhalb einer Temperatur von 500 °C oder höchstens bei 600 °C vollständig zersetzbar ist. Dies ermöglicht eine thermische Entfernung des Bindermaterials bei einer Temperatur, bei welcher die inertisierte Verbindung reaktionsträge und insbesondere gegenüber Kohlenstoff und Sauerstoff stabil ist. Somit kann die Entbinderung durchgeführt werden, ohne dass das Risiko einer Verschlechterung der hartmagnetischen Eigenschaften des zu bildenden Permanentmagneten durch Bildung von Carbiden oder Oxiden, oder von kohlenstoff- und/oder sauerstoffreichen Phasen besteht.An embodiment of the method is preferred, which is characterized in that a binder material is used which has at least one secondary binder component which is completely decomposable below a temperature of 500 ° C or at most 600 ° C. This enables thermal removal of the binder material at a temperature at which the inerted compound is unreactive and, in particular, stable to carbon and oxygen. The debinding can therefore be carried out without the risk of a deterioration in the hard magnetic properties of the permanent magnet to be formed due to the formation of carbides or oxides, or of carbon- and/or oxygen-rich phases.

Im Rahmen des Verfahrens wird bevorzugt ein Bindermaterial verwendet, welches eine primäre Binderkomponente und eine sekundäre Binderkomponente aufweist. Unter einer primären Binderkomponente wird dabei eine Komponente verstanden, welche ein Stoff oder ein Stoffgemisch sein kann, dessen Eigenschaften im Wesentlichen dazu beitragen, dass der Feedstock fließfähig und durch Spritzgießen verarbeitbar ist. Diese primäre Binderkomponente wird auch als Hauptbinder bezeichnet. Demgegenüber ist die sekundäre Binderkomponente insbesondere ein Stoff oder ein Stoffgemisch, welcher/welches dafür vorgesehen ist, dem Grünling - und gegebenenfalls auch noch dem Bräunling vor dem Sintern - mechanische Stabilität durch Verbinden der metallischen Partikel untereinander zu verleihen. Diese sekundäre Binderkomponente wird auch als Backbone-Binder bezeichnet.As part of the process, a binder material is preferably used which has a primary binder component and a secondary binder component. A primary binder component is understood to mean a component which can be a substance or a mixture of substances whose properties essentially contribute to the feedstock being flowable and processable by injection molding. This primary binder component is also referred to as the main binder. In contrast, the secondary binder component is in particular a substance or a mixture of substances which is intended to give the green compact - and possibly also the brown compact before sintering - mechanical stability by connecting the metallic particles to one another. This secondary binder component is also known as the backbone binder.

Es ist möglich, dass sowohl die primäre als auch die sekundäre Binderkomponente thermisch entfernt werden. In diesem Fall ist dann auch die primäre Binderkomponente vorzugsweise unterhalb einer Temperatur von 500 °C oder höchstens bei 600 °C vollständig zersetzbar.It is possible that both the primary and secondary binder components are thermally removed. In this case, the primary binder component can then also be completely decomposed, preferably below a temperature of 500 ° C or at most 600 ° C.

Es wird allerdings eine Ausführungsform des Verfahrens bevorzugt, bei welcher die primäre Binderkomponente chemisch durch Auflösen in einem Lösungsmittel entfernbar ist und vorzugsweise entfernt wird, wobei die sekundäre Binderkomponente thermisch entbindert wird. Als Lösungsmittel zur chemischen Entbinderung der primären Binderkomponente wird vorzugsweise ein organisches Lösungsmittel, insbesondere Heptan, Cyclohexan, Hexan, Ethanol und/oder Aceton, verwendet. Bei einer bevorzugten Ausführungsform des Verfahrens ist vorgesehen, dass keine Binderkomponente katalytisch entbindert wird, dass also auf eine katalytische Entbinderung verzichtet wird.However, an embodiment of the process is preferred in which the primary binder component is chemically removable by dissolving in a solvent and is preferably removed, with the secondary binder component being thermally debinded. The solvent used for chemical debinding of the primary binder component is preferably an organic solvent, in particular heptane, cyclohexane, hexane, ethanol and/or acetone. In a preferred embodiment of the method is It is provided that no binder component is debinded catalytically, i.e. catalytic debinding is dispensed with.

Bevorzugt wird ein Bindermaterial verwendet, bei welchem die primäre Binderkomponente ausgewählt ist aus einer Gruppe bestehend aus einem Paraffinwachs, einem Carnauba-Wachs, einem Polyolephinwachs, Polypropylen, Polyethylen, Polyethylenglykol, einem wasserlöslichen Polymer, Polymethylmethacrylat, und Polyoxymethylen. Die primäre Binderkomponente kann auch eine Mehrzahl dieser Stoffe, insbesondere in beliebiger Kombination miteinander, aufweisen, und/oder weitere, zusätzliche Stoffe umfassen. Es ist aber auch möglich, dass die primäre Binderkomponente aus einem der zuvor genannten Stoffe besteht.A binder material is preferably used in which the primary binder component is selected from a group consisting of a paraffin wax, a carnauba wax, a polyolephine wax, polypropylene, polyethylene, polyethylene glycol, a water-soluble polymer, polymethyl methacrylate, and polyoxymethylene. The primary binder component can also have a plurality of these substances, in particular in any combination with one another, and/or comprise further, additional substances. However, it is also possible for the primary binder component to consist of one of the aforementioned substances.

Im Rahmen des Verfahrens wird bevorzugt ein Bindermaterial verwendet, welches eine sekundäre Binderkomponente aufweist, die ausgewählt ist aus einer Gruppe bestehend aus Ethylen-Vinyl-Acetat, Polyethylen, Polypropylen, Polystyrol oder Polystyren, Polyethylenglykol, Polymethylmethacrylat, Polyamid, Polyoxymethylen, und Polyvinylbutyral. Die sekundäre Binderkomponente kann auch eine Mehrzahl der hier genannten Stoffe, insbesondere in beliebiger Kombination miteinander, aufweisen. Sie kann zusätzlich zu den hier genannten Stoffen auch wenigstens einen weiteren, hier nicht genannten Stoff aufweisen. Es ist aber auch möglich, dass die sekundäre Binderkomponente aus einem der hier genannten Stoffe besteht.As part of the process, a binder material is preferably used which has a secondary binder component which is selected from a group consisting of ethylene vinyl acetate, polyethylene, polypropylene, polystyrene or polystyrene, polyethylene glycol, polymethyl methacrylate, polyamide, polyoxymethylene, and polyvinyl butyral. The secondary binder component can also contain a plurality of the substances mentioned here, in particular in any combination with one another. In addition to the substances mentioned here, it can also have at least one further substance not mentioned here. However, it is also possible for the secondary binder component to consist of one of the substances mentioned here.

Es wird eine Ausführungsform des Verfahrens bevorzugt, die sich dadurch auszeichnet, dass der - vorzugsweise zweite, thermische - Entbinderungsschritt unter Vakuum, unter einer Atmosphäre, die wenigstens ein Schutzgas aufweist oder aus wenigstens einem Schutzgas besteht, und/oder unter einer Wasserstoff aufweisenden oder aus Wasserstoff bestehenden Atmosphäre durchgeführt wird.An embodiment of the method is preferred, which is characterized in that the - preferably second, thermal - debinding step takes place under vacuum, under an atmosphere that has at least one protective gas or consists of at least one protective gas, and / or under an atmosphere containing or consisting of hydrogen Hydrogen existing atmosphere is carried out.

Eine Entbinderung unter Wasserstoff, insbesondere unter einer Wasserstoff aufweisenden oder aus Wasserstoff bestehenden Atmosphäre, ist besonders vorteilhaft, weil so gerade in Kombination mit der Umwandlung des Seltenerd-Elements in die inertisierte Verbindung ein äußerst effizienter Schutz vor der Ausbildung von Carbiden, Oxiden und/oder von kohlenstoff- und/oder wasserstoffhaltigen Phasen des Seltenerd-Elements gewährleistet werden kann.Debinding under hydrogen, in particular under an atmosphere containing hydrogen or consisting of hydrogen, is particularly advantageous because, especially in combination with the conversion of the rare earth element into the inerted compound, it provides extremely efficient protection against the formation of carbides, oxides and / or of carbon and/or hydrogen containing phases of the rare earth element can be guaranteed.

Der Entbinderungsschritt wird zusätzlich oder alternativ vorzugsweise bei einem Druck durchgeführt von mindestens 100 mbar bis höchstens 1 bar, vorzugsweise von mindestens 100 mbar bis höchstens 700 mbar, vorzugsweise von mindestens 200 mbar bis höchstens 600 mbar.The debinding step is additionally or alternatively preferably carried out at a pressure of at least 100 mbar to at most 1 bar, preferably at least 100 mbar to at most 700 mbar, preferably at least 200 mbar to at most 600 mbar.

Zusätzlich oder alternativ wird der Entbinderungsschritt vorzugsweise bei einer Temperatur von höchstens 600 °C, vorzugsweise von weniger als oder höchstens 500 °C, vorzugsweise von mindestens 100 °C bis höchstens 500 °C, vorzugsweise von mindestens 200 °C bis höchstens 400 °C, besonders bevorzugt bei 300 °C, durchgeführt. Insbesondere durch einen Abstand von mindestens 200 °C zu der Grenztemperatur von 500 °C für die Reaktivität der inertisierten Verbindung wird ein ausreichend großes Prozessfenster für die vollständige und zugleich in Hinblick auf die hartmagnetischen Eigenschaften des entstehenden Permanentmagneten schonende Zersetzung der Bindermaterials gewährleistet. Insbesondere auf diese Weise kann eine Reaktion mit der gegenüber Kohlenstoff und Sauerstoff stabilen Seltenerd-Hydridphase verhindert werden.Additionally or alternatively, the debinding step is preferably carried out at a temperature of at most 600 °C, preferably less than or at most 500 °C, preferably at least 100 °C to at most 500 °C, preferably at least 200 °C to at most 400 °C, particularly preferably carried out at 300 ° C. In particular, a distance of at least 200 ° C from the limit temperature of 500 ° C for the reactivity of the inerted compound ensures a sufficiently large process window for the complete and at the same time gentle decomposition of the binder material with regard to the hard magnetic properties of the resulting permanent magnet. In particular, in this way, a reaction with the rare earth hydride phase, which is stable to carbon and oxygen, can be prevented.

Zusätzlich oder alternativ wird der Entbinderungsschritt vorzugsweise durchgeführt für eine Zeitdauer von mindestens 80 Minuten bis höchstens 170 Minuten, vorzugsweise von mindestens 100 Minuten bis höchstens 150 Minuten, vorzugsweise für eine Zeitdauer von 125 Minuten. Die hier genannten Zeiten stellen bevorzugt eine vollständige Zersetzung des Bindermaterials sicher. Dabei hängt die konkret gewählte Prozesszeit für den Entbinderungsschritt insbesondere ab von der Menge des zu zersetzenden Materials, insbesondere also von der Größe des zu entbindernden Teils.Additionally or alternatively, the debinding step is preferably carried out for a period of at least 80 minutes to a maximum of 170 minutes, preferably for a period of at least 100 minutes to a maximum of 150 minutes, preferably for a period of 125 minutes. The times mentioned here preferably ensure complete decomposition of the binder material. The specifically selected process time for the debinding step depends in particular on the amount of material to be decomposed, in particular on the size of the part to be debinded.

Unter dem Begriff "Entbinderungsschritt" wird hier insbesondere die thermische Zersetzung von Bindermaterial verstanden. Dies bedeutet insbesondere, dass hiermit bevorzugt die thermische Entfernung oder das Ausbrennen der sekundären Binderkomponente angesprochen ist. Es ist demnach möglich, dass in einem ersten Entbinderungsschritt die primäre Binderkomponente beispielsweise chemisch entfernt wird, wobei die sekundäre Binderkomponente in einem zweiten Entbinderungsschritt, welcher der hier relevante Entbinderungsschritt ist, thermisch entfernt wird. Für das hier vorgeschlagene Verfahren ist nämlich dieser zweite, thermische Entbinderungsschritt als Entbinderungsschritt besonders relevant, da in diesem Entbinderungsschritt Kohlenstoff- und Sauerstoffverbindungen entstehen, welche für die hartmagnetischen Eigenschaften des zu bildenden Permanentmagneten kritisch sind.The term “debinding step” here is understood to mean, in particular, the thermal decomposition of binder material. This means in particular that this preferably refers to the thermal removal or burning out of the secondary binder component. It is therefore possible for the primary binder component to be removed, for example chemically, in a first debinding step, with the secondary binder component being thermally removed in a second debinding step, which is the debinding step relevant here. For the method proposed here, this second, thermal debinding step is particularly relevant as a debinding step, since in this debinding step carbon and oxygen compounds are formed, which are critical for the hard magnetic properties of the permanent magnet to be formed.

Es wird eine Ausführungsform des Verfahrens bevorzugt, die sich dadurch auszeichnet, dass die Rückumwandlung der inertisierten Verbindung unter Vakuum und/oder unter einer Atmosphäre, die wenigstens ein Schutzgas aufweist oder aus wenigstens einem Schutzgas besteht, durchgeführt wird. Somit können unliebsame chemische Reaktionen während der Rückumwandlung vermieden werden.An embodiment of the process is preferred, which is characterized in that the reconversion of the inerted compound is carried out under vacuum and/or under an atmosphere which has at least one protective gas or consists of at least one protective gas. This means that unpleasant chemical reactions can be avoided during the reconversion.

Zusätzlich oder alternativ wird die Rückumwandlung bevorzugt durchgeführt bei eine Druck von mindestens 100 mbar bis höchstens 1 bar, vorzugsweise von mindestens 100 mbar bis höchstens 700 mbar, vorzugsweise von mindestens 200 mbar bis höchstens 600 mbar.Additionally or alternatively, the reconversion is preferably carried out at a pressure of at least 100 mbar to at most 1 bar, preferably at least 100 mbar to at most 700 mbar, preferably at least 200 mbar to at most 600 mbar.

Zusätzlich oder alternativ wird die Rückumwandlung bevorzugt durchgeführt bei einer Temperatur von mindestens 500 °C, vorzugsweise bei einer Temperatur von über 500 °C, vorzugsweise bei einer Temperatur von mindestens 500 °C bis höchstens 900 °C.Additionally or alternatively, the reconversion is preferably carried out at a temperature of at least 500 °C, preferably at a temperature of over 500 °C, preferably at a temperature of at least 500 °C to at most 900 °C.

Zusätzlich oder alternativ wird die Rückumwandlung vorzugsweise durchgeführt während einer Zeitdauer von mindestens 40 Minuten bis höchstens 100 Minuten, vorzugweise von mindestens 50 Minuten bis höchstens 90 Minuten, vorzugsweise von mindestens 60 Minuten bis höchstens 80 Minuten, vorzugsweise von 70 Minuten.Additionally or alternatively, the reconversion is preferably carried out for a period of at least 40 minutes to at most 100 minutes, preferably at least 50 minutes to at most 90 minutes, preferably at least 60 minutes to at most 80 minutes, preferably 70 minutes.

Zusätzlich oder alternativ wird die Rückumwandlung der inertisierten Verbindung bevorzugt in einem Sinterofen durchgeführt. Dabei wird unter dem Begriff "Sinterofen" insbesondere eine Einrichtung verstanden, welche zum Sintern der aus den vorhergehenden Schritten des MIM-Verfahrens resultierenden Teile ausgebildet ist. Dabei kann auch der thermische Entbinderungsschritt in dem Sinterofen durchgeführt werden.Additionally or alternatively, the reconversion of the inerted compound is preferably carried out in a sintering furnace. The term “sintering furnace” is understood in particular to mean a device which is designed to sinter the parts resulting from the previous steps of the MIM process. The thermal debinding step can also be carried out in the sintering furnace.

Es wird eine Ausführungsform des Verfahrens bevorzugt, die sich dadurch auszeichnet, dass ein Sinterschritt durchgeführt wird in Vakuum, und/oder unter einer Atmosphäre, die wenigstens ein Schutzgas aufweist oder aus wenigstens einem Schutzgas besteht. Auf diese Weise können unerwünschte chemische Reaktionen während des Sinterns vermieden werden.An embodiment of the method is preferred, which is characterized in that a sintering step is carried out in a vacuum and/or under an atmosphere which has at least one protective gas or consists of at least one protective gas. In this way, undesirable chemical reactions can be avoided during sintering.

Zusätzlich oder alternativ wird der Sinterschritt vorzugsweise durchgeführt bei einem Druck von mindestens 100 mbar bis höchstens 1 bar, vorzugsweise von mindestens 100 mbar bis höchstens 700 mbar, vorzugsweise von mindestens 200 mbar bis höchstens 600 mbar.Additionally or alternatively, the sintering step is preferably carried out at a pressure of at least 100 mbar to at most 1 bar, preferably at least 100 mbar to at most 700 mbar, preferably at least 200 mbar to at most 600 mbar.

Zusätzlich oder alternativ wird der Sinterschritt vorzugsweise durchgeführt bei einer Temperatur von mindestens 900 °C bis höchstens 1200 °C, vorzugsweise bei einer Temperatur von mindestens 980 °C bis höchstens 1100 °C.Additionally or alternatively, the sintering step is preferably carried out at a temperature of at least 900 ° C to at most 1200 ° C, preferably at a temperature of at least 980 ° C to at most 1100 ° C.

Zusätzlich oder alternativ wird der Sinterschritt bevorzugt durchgeführt für eine Zeitdauer von mindestens 100 Minuten bis höchstens 160 Minuten, vorzugsweise von mindestens 110 Minuten bis höchstens 150 Minuten, vorzugsweise von mindestens 120 Minuten bis höchstens 140 Minuten, vorzugsweise von 130 Minuten.Additionally or alternatively, the sintering step is preferably carried out for a period of at least 100 minutes to at most 160 minutes, preferably at least 110 minutes to at most 150 minutes, preferably at least 120 minutes to at most 140 minutes, preferably 130 minutes.

Im Rahmen des Sinterschritts wird ein Sinterkörper erzeugt. Insbesondere wird durch das Sintern aus dem Bräunling oder Braunkörper der Sinterkörper erzeugt.As part of the sintering step, a sintered body is produced. In particular, the sintered body is produced by sintering the brown compact or brown body.

Es wird eine Ausführungsform des Verfahrens bevorzugt, die sich dadurch auszeichnet, dass nach dem Sinterschritt eine Abkühlung, vorzugsweise unter Vakuum und/oder unter einer Atmosphäre die wenigstens ein Schutzgas aufweist oder aus wenigstens einem Schutzgas besteht, erfolgt, wobei sich an die Abkühlung eine Wärmebehandlung anschließen kann. Solche Wärmebehandlungen sind insbesondere für in herkömmlicher Weise gesinterte NdFeB-Magnete bekannt und dienen dazu, die hartmagnetischen Eigenschaften des Permanentmagneten zu verbessern. Eine solche Wärmebehandlung kann auch bei einem gemäß dem hier vorgeschlagenen Verfahren hergestellten Permanentmagnet vorteilhaft durchgeführt werden.An embodiment of the method is preferred, which is characterized in that cooling takes place after the sintering step, preferably under vacuum and/or under an atmosphere which has at least one protective gas or consists of at least one protective gas, with the cooling being followed by a heat treatment can connect. Such heat treatments are known in particular for conventionally sintered NdFeB magnets and serve to improve the hard magnetic properties of the permanent magnet. Such a heat treatment can also be advantageously carried out on a permanent magnet produced according to the method proposed here.

Bevorzugt wird nach dem Sinterschritt, vorzugsweise nach dem Abkühlen, und vorzugsweise vor der Wärmebehandlung, wenigstens ein zusätzliches Seltenerd-Element oder eine zusätzliche Menge von dem wenigstens einen Seltenerd-Element in den Sinterkörper eingebracht, besonders bevorzugt über Korngrenzendiffusion, vorzugsweise mittels eines elektrochemischen Verfahrens. Hierdurch kann insbesondere die Koerzitivfeldstärke des Permanentmagneten noch weiter erhöht werden. Besonders bevorzugt wird hierbei zusätzliches Neodym, Dysprosium und/oder Terbium in den Sinterkörper eingebracht.After the sintering step, preferably after cooling, and preferably before the heat treatment, at least one additional rare earth element or an additional amount of the at least one rare earth element is preferably introduced into the sintered body, particularly preferably via grain boundary diffusion, preferably by means of an electrochemical process. In this way, in particular, the coercive field strength of the permanent magnet can be increased even further. It is particularly preferred to introduce additional neodymium, dysprosium and/or terbium into the sintered body.

Es wird auch eine Ausführungsform des Verfahrens bevorzugt, die sich dadurch auszeichnet, dass ein Magnetfeld an das Ausgangsmaterial angelegt wird. Alternativ oder zusätzlich wird ein Magnetfeld an den Sinterkörper angelegt. Besonders bevorzugt wird das Magnetfeld während des Spritzgießens an das Ausgangsmaterial angelegt. Durch das Anlegen des Magnetfelds kann eine Ausrichtung der Pulverkörner des Magnetpulvers des Ausgangsmaterials erreicht werden, wodurch gute hartmagnetische Eigenschaften für den entstehenden Permanentmagneten sichergestellt werden können. Dabei wird die magnetische Ausrichtung bevorzugt während des Formvorgangs vorgenommen, insbesondere wenn das Ausgangsmaterial in die Spritzgießform eingeführt worden ist oder dabei ist, eingeführt zu werden, oder alternativ erst gegen Ende des Strömungsprozesses beim Spritzgießen vor einem Aushärten des Bindermaterials.An embodiment of the method is also preferred, which is characterized in that a magnetic field is applied to the starting material. Alternatively or additionally, a magnetic field is applied to the sintered body. The magnetic field is particularly preferably applied to the starting material during injection molding. By applying the magnetic field, an alignment of the powder grains of the magnetic powder of the starting material can be achieved, resulting in good hard magnetic properties for the resulting permanent magnet can be ensured. The magnetic alignment is preferably carried out during the molding process, in particular when the starting material has been introduced into the injection mold or is about to be introduced, or alternatively only towards the end of the flow process during injection molding before the binder material has hardened.

Bevorzugt wird ein Magnetfeld, insbesondere ein Magnetpuls, an den Sinterkörper angelegt, wodurch der Permanentmagnet seine Magnetisierung erhält, oder wodurch die Magnetisierung des Permanentmagneten verstärkt wird.A magnetic field, in particular a magnetic pulse, is preferably applied to the sintered body, whereby the permanent magnet receives its magnetization, or whereby the magnetization of the permanent magnet is increased.

Besonders bevorzugt wird ein Magnetfeld sowohl an das Ausgangsmaterial beim Spritzgießen als auch an den Sinterkörper angelegt. Dadurch können zunächst die magnetischen Partikel beim Spritzgießen in dem Magnetfeld ausgerichtet werden, wobei diese Ausrichtung beim Sintern erhalten bleibt. Typischerweise geht allerdings beim Sintern die parallele Ausrichtung von Elektronenspins des magnetischen Materials verloren, wobei jedoch die geometrische Ausrichtung des Materials erhalten bleibt. Durch das Anlegen eines Magnetfelds, insbesondere eines magnetischen Pulses, an den Sinterkörper kann wiederum eine parallele Ausrichtung von Elektronenspins in dem Sinterkörper und damit letztlich in dem Permanentmagnet erzeugt werden, sodass dieser eine sehr hohe Magnetisierung aufweist. Die durch das Magnetfeld beim Spritzgießen ausgerichteten magnetischen Partikel werden also schließlich durch das an den Sinterkörper angelegte Magnetfeld auch bezüglich der elektronischen Ausrichtung magnetisiert.Particularly preferably, a magnetic field is applied both to the starting material during injection molding and to the sintered body. This allows the magnetic particles to be aligned in the magnetic field during injection molding, with this alignment being retained during sintering. Typically, however, during sintering, the parallel alignment of electron spins of the magnetic material is lost, although the geometric alignment of the material is retained. By applying a magnetic field, in particular a magnetic pulse, to the sintered body, a parallel alignment of electron spins can in turn be generated in the sintered body and thus ultimately in the permanent magnet, so that it has a very high magnetization. The magnetic particles aligned by the magnetic field during injection molding are ultimately magnetized with respect to the electronic alignment by the magnetic field applied to the sintered body.

Das Anlegen eines Magnetpulses erfolgt bevorzugt mittels eines Pulsmagnetometers.A magnetic pulse is preferably applied using a pulse magnetometer.

Schließlich wird eine Ausführungsform des Verfahrens bevorzugt, die sich dadurch auszeichnet, dass ein Ausgangsmaterial verwendet wird, welches NdFeB aufweist oder aus NdFeB besteht. Durch Verwendung dieses Ausgangsmaterials können in vorteilhafter Weise Permanentmagnete auf NdFeB-Basis, insbesondere NdFeB-Magnete mit sehr hohem Energieprodukt, erzeugt werden. Das Ausgangsmaterial weist bevorzugt NdFeB in gepulverter oder granulierter Form auf, oder es besteht aus NdFeB in gepulverter oder granulierter Form.Finally, an embodiment of the method is preferred which is characterized in that a starting material is used which has NdFeB or consists of NdFeB. By using this starting material, permanent magnets based on NdFeB, in particular NdFeB magnets with a very high energy product, can advantageously be produced. The starting material preferably has NdFeB in powdered or granulated form, or it consists of NdFeB in powdered or granulated form.

Bei einer bevorzugten Ausführungsform des Verfahrens wird ein Ausgangsmaterial verwendet, welches in Pulverform oder in granulierter Form vorliegt, und welches eine Pulverpartikelgröße von maximal 50 µm aufweist. Besonders bevorzugt liegt die Korngröße unter 10 µm, was eine anisotrope magnetische Ausrichtung der Partikel während des Spritzgießens im Magnetfeld besonders gut durchführbar macht. Insbesondere weist vorzugsweise ein als Ausgangsmaterial verwendetes oder von dem Ausgangsmaterial umfasstes NdFeB-Pulver eine Korngröße von maximal 50 µm und vorzugsweise von unter 10 µm auf.In a preferred embodiment of the method, a starting material is used which is in powder form or in granulated form and which has a powder particle size of a maximum of 50 μm. The grain size is particularly preferably less than 10 μm, which makes an anisotropic magnetic alignment of the particles particularly easy to carry out during injection molding in the magnetic field. In particular, preferably has a as starting material NdFeB powder used or included in the starting material has a grain size of a maximum of 50 μm and preferably less than 10 μm.

Es zeigt sich, dass insbesondere durch Hydrierung des Ausgangsmaterials und durch entsprechende Prozessführung ein bis zu 500 °C stabiles Hydrid des Seltenerd-Elements geschaffen werden kann, wobei eine Reaktion des Seltenerd-Elements mit Sauerstoff und Kohlenstoff während der thermischen Zersetzung von Bindermaterial verhindert wird, was die Ausbildung eines Sintergefüges mit hartmagnetischen Eigenschaften erlaubt, die nicht durch die Bildung unerwünschter Oxide, Carbide, und/oder Sauerstoff- und/oder Kohlenstoff-haltiger Phasen beeinträchtigt wird.It turns out that a hydride of the rare earth element that is stable up to 500 ° C can be created, in particular through hydrogenation of the starting material and through appropriate process control, whereby a reaction of the rare earth element with oxygen and carbon during the thermal decomposition of binder material is prevented, which allows the formation of a sintered structure with hard magnetic properties, which is not impaired by the formation of undesirable oxides, carbides, and/or phases containing oxygen and/or carbon.

Die Erfindung wird im Folgenden anhand der Zeichnung näher erläutert. Dabei zeigen:

Figur 1
eine schematische Darstellung einer Ausführungsform des Verfahrens in Form eines Flussdiagramms, und
Figur 2
eine schematische Darstellung eines Temperaturverlaufs während einer Ausführungsform des Verfahrens.
The invention is explained in more detail below with reference to the drawing. Show:
Figure 1
a schematic representation of an embodiment of the method in the form of a flowchart, and
Figure 2
a schematic representation of a temperature profile during an embodiment of the method.

Fig. 1 zeigt eine schematische Darstellung einer Ausführungsform des Verfahrens zur Herstellung eines Permanentmagneten in Form eines Flussdiagramms. Dabei sind in einem oberen Teil des Diagramms zwei alternative Vorgehensweisen für das Verfahren dargestellt. Fig. 1 shows a schematic representation of an embodiment of the method for producing a permanent magnet in the form of a flow chart. Two alternative approaches to the process are shown in the upper part of the diagram.

Bei a) ist eine erste alternative Ausführungsform dargestellt, bei welcher in einem ersten Schritt S1 ein Ausgangsmaterial in Form eines NdFeB-Pulvers bereitgestellt wird.A) shows a first alternative embodiment, in which a starting material in the form of an NdFeB powder is provided in a first step S1.

Das von dem Ausgangsmaterial umfasste Neodym wird in einem zweiten Schritt S2 in eine inertisierte Verbindung überführt, was insbesondere durch eine Wasserstoffbehandlung bei Überdruck bis zu 2,5 bar, entweder bei Raumtemperatur oder bei erhöhter Temperatur bis 150°C erfolgt. Durch eine Hydrierungsreaktion des Neodyms mit Wasserstoff entsteht das gegenüber elementarem Neodym deutlich stabilere Neodymhydrid NdHa. Dabei wird die Hydrierung zu NdH3 insbesondere in einem ersten Umwandlungsschritt durchgeführt, insbesondere für eine Zeitdauer von mindestens 5 Minuten bis höchstens zwei Stunden, vorzugsweise von mindestens 30 Minuten bis höchstens 90 Minuten, vorzugsweise für eine Stunde. Insbesondere dieser erste Umwandlungsschritt kann in Verbindung mit einer Wasserstoff-Dekrepitationsbehandlung einer erschmolzenen NdFeB-Legierung durchgeführt werden.The neodymium comprised by the starting material is converted into an inerted compound in a second step S2, which is carried out in particular by hydrogen treatment at excess pressure of up to 2.5 bar, either at room temperature or at an elevated temperature of up to 150 ° C. A hydrogenation reaction of neodymium with hydrogen produces the neodymium hydride NdHa, which is significantly more stable than elementary neodymium. The hydrogenation to NdH 3 is carried out in particular in a first conversion step, in particular for a period of at least 5 minutes to at most two hours, preferably at least 30 minutes to at most 90 minutes, preferably for one hour. In particular, this first conversion step can be done in conjunction with a Hydrogen decrepitation treatment of a molten NdFeB alloy can be carried out.

In einem dritten Schritt S3 wird nun das in dem zweiten Schritt S2 behandelte Magnetpulver mit einem Bindermaterial gemischt und so ein Feedstock für die weitere Verarbeitung im MIM-Verfahren hergestellt.In a third step S3, the magnetic powder treated in the second step S2 is now mixed with a binder material and a feedstock is thus produced for further processing in the MIM process.

Bei b) ist eine alternative Ausgestaltung dieser ersten Verfahrensschritte dargestellt. Dabei wird in einem ersten Schritt S1' in Pulvergemisch, nämlich ein sogenannter Feedstock, als Ausgangsmaterial bereitgestellt, der NdFeB-Pulver und ein Bindermaterial als Gemisch aufweist.At b) an alternative embodiment of these first process steps is shown. In a first step, S1' is provided as a starting material in a powder mixture, namely a so-called feedstock, which has NdFeB powder and a binder material as a mixture.

Dieser Feedstock wird in einem zweiten Schritt S2` durch Wasserstoffbehandlung bei Überdruck bis zu 2,5 bar, entweder bei Raumtemperatur oder erhöhter Temperatur, insbesondere bis zu 150 °C, behandelt, wobei Neodym zu dem stabileren Neodymhydrid NdH3 hydriert wird. Auch diese Wasserstoffbehandlung eines ersten Umwandlungsschritts erfolgt bevorzugt für eine Zeitdauer von mindestens 5 Minuten bis höchstens zwei Stunden, vorzugsweise von mindestens 30 Minuten bis höchstens 90 Minuten, vorzugsweise für eine Zeitdauer von einer Stunde. Es ist zu beachten, dass die für den alternativen zweiten Schritt S2` gewählte Zeitdauer typischerweise länger sein sollte als die für den zweiten Schritt S2 gemäß der ersten Alternative gewählte Zeitdauer, da das zusätzlich vorhandene Bindermaterial die Reaktivität des im Kunststoff gebundenen Neodyms herabsetzt und somit längere Reaktionszeiten erfordert. Der so in dem alternativen zweiten Schritt S2` behandelte Feedstock wird dann für das weitere MIM-Verfahren zur Verfügung gestellt.This feedstock is treated in a second step S2` by hydrogen treatment at excess pressure of up to 2.5 bar, either at room temperature or elevated temperature, in particular up to 150 ° C, where neodymium is hydrogenated to the more stable neodymium hydride NdH 3 . This hydrogen treatment of a first conversion step also preferably takes place for a period of at least 5 minutes to a maximum of two hours, preferably from at least 30 minutes to a maximum of 90 minutes, preferably for a period of one hour. It should be noted that the time period selected for the alternative second step S2` should typically be longer than the time period selected for the second step S2 according to the first alternative, since the additional binder material present reduces the reactivity of the neodymium bound in the plastic and is therefore longer Requires reaction times. The feedstock treated in this way in the alternative second step S2` is then made available for the further MIM process.

Die beiden beschriebenen, alternativen Verfahrensrouten münden nun ein in eine gemeinsame, weitere Vorgehensweise, wobei hier in einem vierten Schritt S4 durch Spritzgießen aus dem Feedstock ein Grünling erzeugt wird. Bevorzugt wird bei einem Spritzgießen ein Magnetfeld an den Feedstock angelegt, sodass die einzelnen Magnetkörner in dem Spritzgießmaterial ausgerichtet werden.The two alternative process routes described now lead to a common, further procedure, whereby in a fourth step S4 a green body is produced by injection molding from the feedstock. During injection molding, a magnetic field is preferably applied to the feedstock so that the individual magnetic grains in the injection molding material are aligned.

In einem fünften Schritt S5 erfolgt durch Aufheizen des Grünlings unter Vakuum, unter Schutzgasatmosphäre oder unter Wasserstoff-Atmosphäre, bei Atmosphärendruck oder bei reduziertem Druck von mindestens 200 mbar bis höchstens 600 mbar, bei einer Temperatur von mindestens 150 °C bis höchstens 300 °C eine Teilentgasung des NdH3, wobei sich die gegenüber Kohlenstoff und Sauerstoff zumindest bis ungefähr 500 °C stabile Verbindung mit der ungefähren Summenformel NdH2.7 bildet. Insbesondere kann für diesen Schritt eine Temperaturrampe gefahren werden, vorzugsweise von 150 °C bis 300 °C, vorzugsweise über eine Zeitdauer von 60 Minuten. Daran schließt sich vorzugsweise eine Haltezeit für die Temperatur bei 300 °C an, um eine vollständige Teilentgasung des Neodymhydrids in seine besonders stabile Form mit der ungefähren Summenformel NdH2.7 zu gewährleisten. Diese Haltezeit beträgt bevorzugt 40 Minuten.In a fifth step S5, the green compact is heated under vacuum, under a protective gas atmosphere or under a hydrogen atmosphere, at atmospheric pressure or at a reduced pressure of at least 200 mbar to a maximum of 600 mbar, at a temperature of at least 150 ° C to a maximum of 300 ° C Partial degassing of the NdH 3 , whereby the opposite Carbon and oxygen form a stable compound with the approximate molecular formula NdH 2.7 at least up to approximately 500 °C. In particular, a temperature ramp can be run for this step, preferably from 150 ° C to 300 ° C, preferably over a period of 60 minutes. This is preferably followed by a holding time for the temperature at 300 ° C in order to ensure complete partial degassing of the neodymium hydride into its particularly stable form with the approximate molecular formula NdH 2.7 . This holding time is preferably 40 minutes.

In einem sechsten Schritt S6 erfolgt eine Entbinderung des Grünlings. Generell erfolgt die Entbinderung bevorzugt in zwei Schritten, wobei eine primäre Binderkomponente chemisch mittels eines Lösungsmittels, insbesondere Heptan und/oder Aceton, aufgelöst wird, wobei eine sekundäre Binderkomponente, der sogenannte Backbone-Binder, thermisch entfernt wird. Es ist möglich, dass der erste Entbinderungsschritt, nämlich die chemische Entbinderung der primären Binderkomponente, vor dem fünften Schritt S5, mithin vor der Teilentgasung des Neodymhydrids, durchgeführt wird. Jedenfalls wird aber vorzugsweise die thermische Entbinderung, mithin der zweite Entbinderungsschritt zur Entfernung der sekundären Binderkomponente, nach dem fünften Schritt S5 durchgeführt, da dieser thermische Entbinderungsschritt kritisch ist für die mögliche Ausbildung von Carbiden oder Oxiden in dem magnetischen Material. Daher wird dieses bevorzugt vor diesem thermischen Entbinderungsschritt in seine zumindest bis 500 °C stabile Form mit der ungefähren Summenformel NdH2.7 umgewandelt. Es ist möglich, dass beide Entbinderungsschritte, nämlich der erste, chemische Entbinderungsschritt, und der zweite, thermische Entbinderungsschritt nach dem fünften Schritt S5 durchgeführt werden. Die Zersetzung aller verbleibenden organischen Binderkomponenten, insbesondere der sekundären Binderkomponente, erfolgt vorzugsweise unterhalb einer Grenztemperatur für die Stabilität von NdH2.7 von 500 °C, besonders bevorzugt bei einer niedrigeren Temperatur, insbesondere von mindestens 200 °C bis höchstens 400 °C. Die Entbinderung wird dabei vorzugsweise unter Wasserstoff-Atmosphäre oder unter Schutzgasatmosphäre, insbesondere unter Argon-Atmosphäre durchgeführt, insbesondere entweder bei Atmosphärendruck, bei reduziertem Druck, oder auch im Vakuum. Dabei können die Kohlenstoff- und Sauerstoff-Anteile, die beim Entbindern entstehen, ohne Reaktion mit der ihnen gegenüber stabilen NdH2.7-Phase durch Prozessgas und/oder Vakuum abgeführt werden.In a sixth step S6, the green body is debinded. In general, debinding preferably takes place in two steps, with a primary binder component being chemically dissolved using a solvent, in particular heptane and/or acetone, and a secondary binder component, the so-called backbone binder, being thermally removed. It is possible for the first debinding step, namely the chemical debinding of the primary binder component, to be carried out before the fifth step S5, i.e. before the partial degassing of the neodymium hydride. In any case, the thermal debinding, i.e. the second debinding step for removing the secondary binder component, is preferably carried out after the fifth step S5, since this thermal debinding step is critical for the possible formation of carbides or oxides in the magnetic material. Therefore, before this thermal debinding step, this is preferably converted into its form, which is stable at least up to 500 ° C, with the approximate molecular formula NdH 2.7 . It is possible that both debinding steps, namely the first, chemical debinding step, and the second, thermal debinding step, are carried out after the fifth step S5. The decomposition of all remaining organic binder components, in particular the secondary binder component, preferably takes place below a limit temperature for the stability of NdH 2.7 of 500 ° C, particularly preferably at a lower temperature, in particular from at least 200 ° C to at most 400 ° C. The debinding is preferably carried out under a hydrogen atmosphere or under a protective gas atmosphere, in particular under an argon atmosphere, in particular either at atmospheric pressure, at reduced pressure, or also in a vacuum. The carbon and oxygen components that arise during debinding can be removed through process gas and/or vacuum without reacting with the NdH 2.7 phase, which is stable to them.

In einem siebten Schritt S7 erfolgt bei weiterer Erhöhung der Temperatur - vorzugsweise im Sinterofen - auf über 500 °C, vorzugsweise auf über 600 °C, und einer entsprechenden Haltezeit einer Dehydrierung des Neodymhydrids NdH2.7 zu elementarem Neodym. Diese Dehydrierung kann im Vakuum oder unter Schutzgas, insbesondere unter Argon, bei Atmosphärendruck oder bei reduziertem Druck erfolgen. Da sich nun weder Kohlenstoff- noch Sauerstoff-Rückstände mehr in der Sinteratmosphäre befinden, kann es zu keiner unerwünschten Bildung von Neodymcarbiden oder Neodymoxiden kommen.In a seventh step S7, the temperature is further increased - preferably in the sintering furnace - to over 500 ° C, preferably to over 600 ° C, and a corresponding holding time a dehydrogenation of the neodymium hydride NdH 2.7 to elementary neodymium. This dehydrogenation can take place in a vacuum or under protective gas, in particular under argon, at atmospheric pressure or at reduced pressure. Since there are no longer any carbon or oxygen residues in the sintering atmosphere, there can be no undesirable formation of neodymium carbides or neodymium oxides.

In einem achten Schritt S8 erfolgt dann das Sintern, wobei zunächst ein Aufheizen auf eine Sintertemperatur erfolgt, die vorzugsweise zwischen 980 °C und 1100 °C liegt. Dabei bildet bei entsprechender Haltezeit im Vakuum oder unter Schutzgas, insbesondere unter Argon, bei Atmosphärendruck oder bei reduziertem Druck, das elementare Neodym mit den Legierungselementen Eisen und Bor ein Gefüge, das im Wesentlichen aus den von konventionellen Sintermagnet bekannten Phasen Nd2Fe14, Nd1+εFe4B4 und einer Nd-reichen Korngrenzenphase besteht.Sintering then takes place in an eighth step S8, with heating to a sintering temperature which is preferably between 980 ° C and 1100 ° C. With an appropriate holding time in a vacuum or under protective gas, in particular under argon, at atmospheric pressure or at reduced pressure, the elemental neodymium with the alloy elements iron and boron forms a structure which essentially consists of the phases Nd 2 Fe 14 , Nd. known from conventional sintered magnets 1+ε Fe 4 B 4 and an Nd-rich grain boundary phase.

In einem neunten Schritt S9 erfolgt eine Abkühlung des durch Sintern gebildeten Sinterkörpers.In a ninth step S9, the sintered body formed by sintering is cooled.

In einem zehnten Schritt S10 erfolgt optional eine übliche, von gesinterten NdFeB-Magneten bekannte Wärmebehandlung. Es ist möglich, dass zusätzlich vor der Wärmebehandlung noch eine weitere Nachbehandlung erfolgt, bei der insbesondere zusätzliches Neodym, zusätzliches Dysprosium und/oder Terbium über Korngrenzendiffusion, beispielsweise über ein elektrochemisches Verfahren, in das Gefüge eingebracht wird, insbesondere um die Koerzitivfeldstärke des Permanentmagneten noch weiter zu erhöhen.In a tenth step S10, a usual heat treatment known from sintered NdFeB magnets optionally takes place. It is possible for a further post-treatment to take place before the heat treatment, in which in particular additional neodymium, additional dysprosium and/or terbium is introduced into the structure via grain boundary diffusion, for example via an electrochemical process, in particular to further increase the coercive field strength of the permanent magnet to increase.

Optional erfolgt in einem elften Schritt S11 die Anwendung eines Magnetfeldes, insbesondere eines Magnetpulses, auf den Sinterkörper, um diesen aufzumagnetisieren. Der Magnetpuls wird vorzugsweise mittels eines Pulsmagnetometers angewendet.Optionally, in an eleventh step S11, a magnetic field, in particular a magnetic pulse, is applied to the sintered body in order to magnetize it. The magnetic pulse is preferably applied using a pulse magnetometer.

Fig. 2 zeigt eine schematische Darstellung eines Temperaturverlaufs bei einer Ausführungsform des Verfahrens. Dabei ist hier eine Temperatur T in °C aufgetragen gegen eine Prozesszeit t in Minuten. Das Diagramm startet innerhalb des Verfahrens nach dem vierten Schritt S4, mithin nach dem Spritzgießen und somit der Herstellung des Grünlings. Die Temperaturkurve beginnt vorzugsweise bei Raumtemperatur, insbesondere also bei 25 °C. Zunächst erfolgt ein Aufheizen über eine Temperaturrampe von Raumtemperatur bis ungefähr 150 °C, während einer Aufheizzeit von ungefähr 80 Minuten, wobei die Teilentgasung des Neodymhydrids NdH3 bei etwa 150 °C beginnt. Es schließt sich eine steilere Temperaturrampe an, über welche ein Aufheizen bis etwa 300 °C während ungefähr 60 Minuten erfolgt. Die Teilentgasung und Bildung des stabileren Neodymhydrids mit der ungefähren Summenformel NdH2.7 wird vorzugsweise während einer Haltezeit bei ungefähr 300 °C für ungefähr 40 Minuten vervollständig. Soweit nicht bereits zuvor, insbesondere vor dem Start der Temperaturkurve, eine chemische Entbinderung der primären Binderkomponente stattgefunden hat, erfolgt diese bevorzugt nun. Es schließt sich jetzt ein Aufheizen von ungefähr 300 °C auf ungefähr 500 °C an, wobei die Aufheizrampe ca. 170 Minuten dauert. Danach wird die Temperatur für ungefähr 125 Minuten bei ungefähr 500 °C gehalten. Während des Aufheizens und der Haltezeit erfolgt eine thermische Zersetzung der sekundären Binderkomponente, mithin eine thermische Entbinderung. Anschließend erfolgt wiederum ein Aufheizen von 500 °C auf 600 °C während einer Zeit von 115 Minuten, und anschließend ein Halten bei 600 °C für 70 Minuten, wobei bereits während der Rampe und insbesondere während der Haltezeit eine Dehydrierung des Neodymhydrids zu elementarem Neodym erfolgt. Fig. 2 shows a schematic representation of a temperature curve in an embodiment of the method. Here a temperature T in °C is plotted against a process time t in minutes. The diagram starts within the process after the fourth step S4, i.e. after injection molding and thus the production of the green body. The temperature curve preferably begins at room temperature, particularly at 25 °C. First, heating takes place via a temperature ramp from room temperature to approximately 150 °C, during a heating time of approximately 80 minutes, with the partial degassing of the neodymium hydride NdH 3 beginning at approximately 150 °C. This is followed by a steeper temperature ramp, over which a Heat up to around 300 °C for around 60 minutes. The partial degassing and formation of the more stable neodymium hydride with the approximate molecular formula NdH 2.7 is preferably completed during a holding time at approximately 300 ° C for approximately 40 minutes. If chemical debinding of the primary binder component has not already taken place before, in particular before the start of the temperature curve, this preferably takes place now. This is now followed by heating from approximately 300 °C to approximately 500 °C, with the heating ramp lasting approximately 170 minutes. The temperature is then maintained at approximately 500 °C for approximately 125 minutes. During the heating and holding time, thermal decomposition of the secondary binder component occurs, thus thermal debinding. This is followed by heating from 500 ° C to 600 ° C for a period of 115 minutes, and then holding at 600 ° C for 70 minutes, with the neodymium hydride being dehydrogenated to elementary neodymium during the ramp and in particular during the holding time .

Im Anschluss wird auf eine Temperatur von hier beispielhaft 1100 °C hochgeheizt, nämlich während einer Rampe von 250 Minuten, wobei zum Sintern die Temperatur bei 1100 °C für 130 Minuten gehalten wird. Es ist möglich, dass die Temperatur etwas tiefer als 1100 °C gewählt wird, insbesondere zwischen 980 °C und 1100 °C, da dies günstig ist für die magnetischen Eigenschaften des entstehenden Permanentmagneten. Nach Beendigung des Sintervorgangs erfolgt ein Abkühlen entlang einer insbesondere durch die Eigenschaften des Sinterofens vorgegebenen, nichtlinearen Kühlkurve, wobei vorzugsweise bis auf Raumtemperatur abgekühlt wird.The heat is then raised to a temperature of, for example, 1100 °C, namely during a ramp of 250 minutes, with the temperature being maintained at 1100 °C for 130 minutes for sintering. It is possible that the temperature is chosen to be slightly lower than 1100 °C, in particular between 980 °C and 1100 °C, as this is favorable for the magnetic properties of the resulting permanent magnet. After the sintering process has ended, cooling takes place along a non-linear cooling curve, which is determined in particular by the properties of the sintering furnace, with cooling preferably taking place down to room temperature.

Es kann sich eine Wärmebehandlung anschließen. Insbesondere schließt sich bevorzugt die Anwendung eines Magnetfelds, insbesondere eines Magnetpulses, vorzugsweise mit einem Pulsmagnetometer, auf den beim Sintern gebildeten Sinterkörper an.Heat treatment can follow. In particular, this is preferably followed by the application of a magnetic field, in particular a magnetic pulse, preferably with a pulse magnetometer, to the sintered body formed during sintering.

Insgesamt zeigt sich, dass die Hydrierung des Ausgangsmaterials und das durch entsprechende Prozessführung erzeugte, zumindest bis 500 °C stabile Neodymhydrid mit der ungefähren Summenformel NdH2.7 die Reaktion von Neodym mit Sauerstoff und Kohlenstoff während der thermischen Zersetzung des Bindermaterials im MIM-Prozess verhindert, wodurch es die Ausbildung eines Sintergefüges mit hartmagnetischen Eigenschaften erlaubt, das vornehmlich aus den Phasen Nd2Fe14, Nd1+εFe4B4 und einer Nd-reichen Korngrenzenphase besteht, und welches nicht durch die Bildung von unerwünschten Neodymoxiden oder Neodymcarbiden beeinträchtigt wird.Overall, it can be seen that the hydrogenation of the starting material and the neodymium hydride, which is stable at least up to 500 °C and has the approximate molecular formula NdH 2.7 , which is produced by appropriate process control, prevents the reaction of neodymium with oxygen and carbon during the thermal decomposition of the binder material in the MIM process, whereby it allows the formation of a sintered structure with hard magnetic properties, which consists primarily of the phases Nd 2 Fe 14 , Nd 1+ε Fe 4 B 4 and an Nd-rich grain boundary phase, and which is not affected by the formation of undesirable neodymium oxides or neodymium carbides.

Claims (10)

  1. Method of manufacturing a permanent magnet comprising at least one rare earth element, wherein
    - a conversion of the at least one rare earth element into an inerted compound is carried out in at least two steps, wherein
    - in at least a first conversion step, hydrogenation of the rare earth element is carried out, wherein
    - in at least one second conversion step, the hydrogenated rare earth element is partially dehydrogenated completely into a hydride which is more stable to carbon and oxygen, wherein
    - a raw material comprising the at least one rare earth element is provided, wherein
    - the raw material is mixed with a binder material, wherein a mixture is formed, wherein
    - the at least one first conversion step is performed before or after formation of the mixture, wherein
    - the mixture is processed in a metal powder injection moulding process, wherein a green body is obtained, wherein
    - the at least one second conversion step is carried out prior to thermal debinding of the green body, wherein
    - thermal debinding of the green body is performed, wherein
    - reconversion of the inerted compound to the rare earth element is carried out by complete dehydrogenation after thermal debinding, wherein
    - the debinded green body is sintered.
  2. Method according to claim 1, characterized in that the at least one first conversion step is carried out in an atmosphere comprising or consisting of hydrogen, preferably
    a) at a pressure of at most 2.5 bar, preferably of at least 1.5 bar to at most 3.5 bar, preferably of at least 1.5 bar to at most 3 bar, preferably of at least 1.5 bar to at most 2.5 bar, preferably of at least 1.5 bar to at most 2 bar, preferably of at least 2 bar to at most 3 bar, preferably of at least 2 bar to at most 2.5 bar, preferably of 2.5 bar, and/or
    b) at a temperature of at least 15 °C to at most 200 °C, preferably of at least 15 °C to at most 150 °C, preferably of at least 100 °C to at most 150 °C, preferably of 125 °C, preferably of at least 15 °C to at most 35 °C, preferably of at least 15 °C to at most 30 °C, preferably of at least 20 °C to at most 30 °C, preferably of 25 °C, and/or
    c) for a duration of at least 5 minutes to at most two hours, preferably of at least 30 minutes to at most 90 minutes, preferably of one hour.
  3. Method according to any one of the preceding claims, characterized in that the at least one second conversion step is carried out
    a) under vacuum, under an atmosphere comprising or consisting of hydrogen, and/or under an atmosphere comprising or consisting of at least one shielding gas, and/or
    b) at a pressure of at least 100 mbar to at most 1 bar, preferably of at least 100 mbar to at most 700 mbar, preferably of at least 200 mbar to at most 600 mbar, and/or
    c) at an increasing temperature of 100 °C to 350 °C, preferably of 150 °C to 300 °C, and/or
    d) for a duration of at least 20 minutes to at most 120 minutes, preferably of at least 30 minutes to at most 90 minutes, preferably of at least 40 minutes to at most 80 minutes, preferably of at least 50 minutes to at most 70 minutes, preferably of 60 minutes.
  4. Method according to one of the preceding claims, characterized in that the binder material comprises at least one secondary binder component which is completely decomposable below a temperature of 500 °C or at most at 600 °C.
  5. Method according to any one of the preceding claims, characterized in that the debinding step is carried out
    a) under vacuum, under an atmosphere comprising or consisting of hydrogen, and/or under an atmosphere comprising or consisting of at least one shielding gas, and/or
    b) at a pressure of at least 100 mbar to at most 1 bar, preferably of at least 100 mbar to at most 700 mbar, preferably of at least 200 mbar to at most 600 mbar, and/or
    c) at a temperature of at most 600 °C, preferably of at most 500 °C, preferably of at least 100 °C to at most 500 °C, preferably of at least 200 °C to at most 400 °C, preferably at 300 °C, and/or
    d) for a duration of at least 80 minutes to at most 170 minutes, preferably of at least 100 minutes to at most 150 minutes, preferably of 125 minutes.
  6. Method according to any one of the preceding claims, characterized in that the reconversion of the inerted compound is carried out
    a) under vacuum, and/or under an atmosphere comprising or consisting of at least one shielding gas, and/or
    b) at a pressure of at least 100 mbar to at most 1 bar, preferably of at least 100 mbar to at most 700 mbar, preferably of at least 200 mbar to at most 600 mbar, and/or
    c) at a temperature of at least 500 °C to at most 900 °C, and/or
    d) for a duration of at least 40 minutes to at most 100 minutes, preferably of at least 50 minutes to at most 90 minutes, preferably of at least 60 minutes to at most 80 minutes, preferably of 70 minutes, and/or
    e) in a sintering furnace.
  7. Method according to any one of the preceding claims, characterized in that the sintering step is carried out
    a) under vacuum, and/or under an atmosphere comprising or consisting of at least one shielding gas, and/or
    b) at a pressure of at least 100 mbar to at most 1 bar, preferably of at least 100 mbar to at most 700 mbar, preferably of at least 200 mbar to at most 600 mbar, and/or
    c) at a temperature of at least 900 °C to at most 1200 °C, preferably of at least 980 °C to at most 1100 °C, and/or
    d) for a duration of at least 100 minutes to at most 160 minutes, preferably of at least 110 minutes to 150 minutes, preferably of 120 minutes to at most 140 minutes, preferably of 130 minutes,
    wherein a sinter body is produced.
  8. Method according to any one of the preceding claims, characterized in that, after sintering, cooling and then heat treatment of the sinter body is carried out.
  9. Method according to any one of the preceding claims, characterized in that a magnetic field is applied to the raw material and/or to the sinter body.
  10. Method according to any one of the preceding claims, characterized in that the raw material comprises or consists of NdFeB.
EP16781067.0A 2015-09-28 2016-09-22 Process to manufacture a permanent magnet Active EP3357074B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI201631790T SI3357074T1 (en) 2015-09-28 2016-09-22 Process to manufacture a permanent magnet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015218619 2015-09-28
PCT/EP2016/072580 WO2017055170A1 (en) 2015-09-28 2016-09-22 Method for producing a permanent magnet

Publications (2)

Publication Number Publication Date
EP3357074A1 EP3357074A1 (en) 2018-08-08
EP3357074B1 true EP3357074B1 (en) 2023-10-25

Family

ID=57130348

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16781067.0A Active EP3357074B1 (en) 2015-09-28 2016-09-22 Process to manufacture a permanent magnet

Country Status (5)

Country Link
EP (1) EP3357074B1 (en)
DE (1) DE112016004392A5 (en)
ES (1) ES2968229T3 (en)
SI (1) SI3357074T1 (en)
WO (1) WO2017055170A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020211857A1 (en) * 2020-09-22 2022-03-24 Mimplus Technologies Gmbh & Co. Kg Process for producing a permanent magnet from a magnetic starting material
DE102020214335A1 (en) 2020-11-13 2022-05-19 Mimplus Technologies Gmbh & Co. Kg Process for producing a permanent magnet from a magnetic starting material
EP4227963A1 (en) * 2022-02-09 2023-08-16 Siemens Aktiengesellschaft Method for producing a magnetic material and magnetic material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3417633B2 (en) * 1993-12-29 2003-06-16 住友特殊金属株式会社 Extrusion molding method in a magnetic field and its molding machine
JPH09283358A (en) * 1996-04-09 1997-10-31 Hitachi Metals Ltd Manufacture of r-fe-b sintered magnet
US6511552B1 (en) * 1998-03-23 2003-01-28 Sumitomo Special Metals Co., Ltd. Permanent magnets and R-TM-B based permanent magnets

Also Published As

Publication number Publication date
WO2017055170A1 (en) 2017-04-06
EP3357074A1 (en) 2018-08-08
ES2968229T3 (en) 2024-05-08
SI3357074T1 (en) 2024-04-30
DE112016004392A5 (en) 2018-06-21

Similar Documents

Publication Publication Date Title
DE19626049C2 (en) Magnetic material and bonded magnet
EP1625101B1 (en) Method for the production of near net-shaped metallic and/or ceramic parts
DE112012003472B4 (en) Process for the manufacture of rare earth magnets
DE60319339T2 (en) METHOD FOR THE PRODUCTION OF R-T-B BASED RARE-ELEMENT PERMANENT MAGNETS
EP3357074B1 (en) Process to manufacture a permanent magnet
DE10225154B4 (en) Soft magnetic powder composite, process for its preparation and its use
DE102017222060A1 (en) Permanent magnet based on R-T-B
DE102017222062A1 (en) Permanent magnet based on R-T-B
DE112014003126T5 (en) R-T-B based sintered magnet
DE2631781B2 (en) Hard magnetic material on the basis of rare earth metal-cobalt-copper and process for its production
DE102019132701A1 (en) METHOD FOR PRODUCING A R-T-B PERMANENT MAGNET
DE102018220588A1 (en) Permanent magnet based on R-T-B
EP0470475B1 (en) Method for the preparation of a body from anisotropic magnetic material based on the Sm-Fe-N substance system
DE10255604B4 (en) A method of making an anisotropic magnetic powder and a bonded anisotropic magnet therefrom
EP3041631B1 (en) Chromium metal powder
DE3626406A1 (en) METHOD FOR PRODUCING PERMANENT MAGNETS BASED ON RARE EARTH METALS
EP1032940B1 (en) Method for producing a magnetic alloy powder
EP4218034A1 (en) Method for producing a permanent magnet from a magnetic starting material
DE102021116156A1 (en) R-T-B based permanent magnet and motor
DE19751367C2 (en) Process for producing a hard magnetic powder consisting of a samarium-cobalt-based alloy
AT393178B (en) PERMANENT MAGNET (MATERIAL) AND METHOD FOR PRODUCING THE SAME
DE3709138C2 (en) Process for the production of a magnetic material from powdery starting components
EP3507039A1 (en) Recycling method for producing magnetic isotropic powders
WO2022101447A1 (en) Method for producing a permanent magnet from a magnetic starting material
DE19751366C2 (en) Process for the production of a hard magnetic samarium-cobalt base material

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180430

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210407

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 1/00 20060101ALN20220817BHEP

Ipc: B22F 9/20 20060101ALN20220817BHEP

Ipc: B22F 3/22 20060101ALI20220817BHEP

Ipc: B22F 3/10 20060101ALI20220817BHEP

Ipc: H01F 41/02 20060101ALI20220817BHEP

Ipc: H01F 1/057 20060101AFI20220817BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 1/00 20060101ALN20221125BHEP

Ipc: B22F 9/20 20060101ALN20221125BHEP

Ipc: B22F 3/22 20060101ALI20221125BHEP

Ipc: B22F 3/10 20060101ALI20221125BHEP

Ipc: H01F 41/02 20060101ALI20221125BHEP

Ipc: H01F 1/057 20060101AFI20221125BHEP

INTG Intention to grant announced

Effective date: 20221214

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MIMPLUS TECHNOLOGIES GMBH & CO. KG

INTC Intention to grant announced (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 1/00 20060101ALN20230424BHEP

Ipc: B22F 9/20 20060101ALN20230424BHEP

Ipc: B22F 3/22 20060101ALI20230424BHEP

Ipc: B22F 3/10 20060101ALI20230424BHEP

Ipc: H01F 41/02 20060101ALI20230424BHEP

Ipc: H01F 1/057 20060101AFI20230424BHEP

INTG Intention to grant announced

Effective date: 20230512

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016016182

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20231027

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20231025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240225

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240126

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240125

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240226

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2968229

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20240508