EP3341604B1 - Servo system for controlling the position of an actuator in a motor vehicle - Google Patents

Servo system for controlling the position of an actuator in a motor vehicle Download PDF

Info

Publication number
EP3341604B1
EP3341604B1 EP16744823.2A EP16744823A EP3341604B1 EP 3341604 B1 EP3341604 B1 EP 3341604B1 EP 16744823 A EP16744823 A EP 16744823A EP 3341604 B1 EP3341604 B1 EP 3341604B1
Authority
EP
European Patent Office
Prior art keywords
actuator
input
adder
output
loop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16744823.2A
Other languages
German (de)
French (fr)
Other versions
EP3341604A1 (en
Inventor
Ali ACHIR
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PSA Automobiles SA
Original Assignee
PSA Automobiles SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PSA Automobiles SA filed Critical PSA Automobiles SA
Publication of EP3341604A1 publication Critical patent/EP3341604A1/en
Application granted granted Critical
Publication of EP3341604B1 publication Critical patent/EP3341604B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D11/105Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the function converting demand to actuation, e.g. a map indicating relations between an accelerator pedal position and throttle valve opening or target engine torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1431Controller structures or design the system including an input-output delay
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1432Controller structures or design the system including a filter, e.g. a low pass or high pass filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0077Control of the EGR valve or actuator, e.g. duty cycle, closed loop control of position

Definitions

  • the invention relates to actuator position servo systems fitted to a motor vehicle. More particularly, the invention relates to compensation for pure delays present in these position control systems.
  • actuators present in the air loop of a motor vehicle such as an exhaust gas recirculation valve / valve, commonly referred to as an EGR valve, or an air intake throttle from a turbocharger.
  • a known solution in the general field of automation consists in adding to a servo system 100 , such as that illustrated in the figure 1 , a predictor 6 of delay.
  • the latter has the task of correcting the command elaborated by the position regulator 4 , in order to attenuate the impact of the pure delay on the quality of the servo-control in position of the actuator 1.
  • the predictor 6 of delay takes for inputs, the inputs 102 and outputs 103 of the regulator 4, and develops compensation 104 for the pure delay, which it returns to the position regulator 4 .
  • the document " An adaptive I-PD controller based on frequency domain system identification "by HASHIMOTO T. and AL illustrates the use of a Smith predictor to compensate for the delay effects in a PID type control loop for a pneumatic actuator controlled in position.
  • the document FR2749613 describes a system for regulating the richness of the air-fuel mixture in an internal combustion engine, this system comprising a regulating device produced in the form of a Smith predictor.
  • the structure of the Smith predictor described in this document proves, however, particularly complex to implement, and remains costly in terms of computational load. induced.
  • the implementation of such a solution involves a particularly complex adjustment of a set of parameters at the level of the computer on board the vehicle, such adjustment being costly in terms of time.
  • the existing delay predictors are not, as is, suitable for controlling in position for actuators fitted to a motor vehicle.
  • An object of the present invention is to overcome all of the aforementioned drawbacks.
  • a second object of the present invention is to provide a device for compensating for pure delay, for a system for controlling the position of actuators fitted to a motor vehicle.
  • a third object of the present invention is to minimize the complexity of implementing a pure delay compensation device for a system for controlling the position of actuators in a motor vehicle.
  • a fourth object of the present invention is to optimally control the position of the actuators in a motor vehicle.
  • the high-pass filter and the amplifier are dimensioned from a first order system approximating the transfer function G (s) of the actuator, this system having a static gain k and a time constant ⁇ 1 .
  • the amplifier has the gain, the static gain k .
  • the high-pass filter has the transfer function ⁇ 2 s + 1 ⁇ 1 s + 1 , where ⁇ 2 is a configurable time constant.
  • the proportional action loop is associated with a gain kp
  • the loop with Integral action is associated with a gain ki
  • the actuator is an actuator of the air loop of a motor vehicle.
  • a second aspect proposes a motor vehicle computer implementing a system for controlling the position of an actuator, produced as described above.
  • a motor vehicle comprising the computer described above is proposed.
  • the actuator 1 is, for example, an actuator of the air loop of a motor vehicle, such as a valve / valve of an exhaust gas recirculation system, or even a throttle valve intake of a turbocharger.
  • the servo-control device 300 is here represented in the Laplace domain and can be implemented in a position regulator 4 , such as that illustrated in the figure 1 .
  • the position regulator 4 is configured to implement a law for controlling the position of the actuator 1.
  • the behavior of the actuator 1 in the servo device 300 is modeled by a transfer function G (s) in the Laplace domain, s being the Laplace variable.
  • the transfer function G (s) can be obtained in different ways, for example communicated directly by a model provided by the manufacturer of the actuator 1, modeled via an appropriate simulation tool (ex: Simulink®), or even obtained from experimentally by applying a step type input to the actuator 1 and observing its response at the output.
  • the pure delay d associated with the actuator 1 is represented by the term e -ds in the Laplace domain.
  • the actuator 1 and its pure delay are modeled by a block 30 of transfer function G (s) e -ds , receiving for input a position command U (s) intended for the actuator 1.
  • the actual position of the actuator 1, following receipt of the position command U (s), corresponds to an ideal response from the actuator 1, to which is added a disturbance in its position.
  • the ideal response from actuator 1, following receipt of the position command U (s), corresponds to the application of the transfer function G (s) e -ds , the response of which is obtained at the output of the block 30.
  • the perturbation in position results, for its part, in particular from the air forces applied to the actuator 1, for example pressure variations during its movement.
  • the actuator 1 therefore has at the output of the transfer function block 30 G (s) e -ds a position Y (s) in response to the command U (s), this position Y (s) being the position that the you want to control a position setpoint value R (s).
  • the proportional action loop and the Derivative action loop respectively perform a first and a second feedback loop 32, 33 between the output of block 30, that is to say position Y (s), and a subtracting input “ - »of the first adder 31.
  • a third feedback loop 34 is moreover produced by the regulator between the position Y (s) and a subtracting input “-” of a second adder 35.
  • the second adder 35 further comprises, for summing input "+", the position setpoint value R (s), this value being determined by the motor vehicle computer, as a function for example of parameters measured in the air loop .
  • This position setpoint value R (s) corresponds to the setpoint value to which the position Y (s) of the actuator 1 is to be controlled .
  • the position setpoint value R (s) is also used as the input of a gain amplifying loop 36 kf , the output of which is connected to a summing input “+” of the first adder 31.
  • the output of the second adder 35 serves as input to a loop 37 with integral action, performing an integration operation. , symbolized by the block “ ⁇ ”, sometimes also symbolized by a block “1 / s", associated with a gain ki .
  • the output of this integral action loop 37 is connected to a summing input “+” of the first adder 31.
  • the first adder 31 determines the control in position U (s) to be applied to actuator 1.
  • the gains kf , ki , kp and kd are static values commonly determined with respect to the transfer function G (s), previously known, for example via the application of a method of placing the poles. These parameters are, for example, determined by simulation via a tool for developing the computer of the motor vehicle and / or adjusted experimentally at the level of the computer, for example according to the progress of a series of tests intended to validate the vehicle specifications. These gains are therefore preconfigured here.
  • the structure of this type of position control device 300 is sometimes designated under the name PD-I (acronym for "Proportional Derivative - Integral”).
  • PD-I cronym for "Proportional Derivative - Integral”
  • Such a structure differs from the current PID (acronym for "Proportional Integral Derivative") regulators, by the fact that only the integral term is located on the error of position ⁇ (s), while the proportional and derivative actions are indexed only on the position Y (s) of the actuator 1.
  • This has the advantage of being able to decouple the performances in setpoint monitoring and the performances in rejection of disturbances.
  • such a control structure is produced in motor vehicle computers for controlling the position of the actuators 1.
  • Y s R s k f + k i s G s 1 + k p + k i s + k d s G s e - ds e - ds
  • Smith's predictor 40 is made as follows.
  • the position command U (s) at the output of the first adder 31 is used as summing input “+” of a third adder 41 and as input of a block 42 of pure delay of transfer function e -ds , the output of this delay block being used as a subtracting input “-” of the third adder 41.
  • the use of block 42 of pure delay implies that the delay d is known. This is in practice estimated by applying a step type input to the actuator 1 and observing its output. It can then be calibrated more finely, during the development of the position regulator 4 .
  • the third adder 41 then calculates its output from its summing input "+” and its subtracting input "-”. This output is connected as input to a block 43 transfer function corrector C (s) .G (s) whose output is used as subtracting input “-” of the first adder 31.
  • C (s) designates here a function transfer parameter specific to the correcting block 43 .
  • Smith's predictor 40 makes it possible to extract the pure delay e -ds from the feedback loop 34 between Y (s) and R (s), that is to say from the closed loop of the function. transfer Y s R s .
  • the transfer function G (s) of the actuator 1 is then approximated by a first order system: G s ⁇ k ⁇ 1 s + 1 , where k and ⁇ 1 are respectively a static gain and a time constant associated with the first order system, these values also being specific to the transfer function G (s) of the actuator 1.
  • the variables k and ⁇ 1 are easily deductible from the actuator 1. These variables are for example determined by simulation via an approximation of the transfer function G (s), or experimentally, by observing the response of the actuator 1 at a step applied at the entry thereof.
  • T (s) k i s k ⁇ 2 s + 1 ⁇ 2 s + 1 .
  • the transfer function T (s) is the product of a gain integrator ki (term k i s ), a high-pass filter with time constant ⁇ 2 having the transfer function ⁇ 2 s + 1 ⁇ 1 s + 1 , and of the static gain k of the actuator 1.
  • the position command U (s) at the output of the first adder 31 is used as summing input “+” of a third adder 41 and as input of a block 42 of pure delay of transfer function e -ds , the output of this delay block being used as a subtracting input “-” of the third adder 41.
  • the third adder 41 then calculates its output from its summing input “+” and its subtracting input “-”. This output is connected as an input to a high-pass filter 51 .
  • the output of the high-pass filter 51 is connected to an amplifier 52 of gain k , where k is the static gain k (predetermined) of the actuator 1.
  • the high-pass filter 51 and the amplifier 52 are therefore dimensioned from the first order system approximating the transfer function G (s) of the actuator 1.
  • the output of amplifier 52 then corresponds to a delay compensation term P (s). This output is used as a subtracting input “-” for the second adder 35.
  • the variables kp and ki are preconfigured when the servo system is produced.
  • the static gain k and the time constant ⁇ 1 are predetermined variables of a first order system approximating the transfer function G (s) of the actuator 1.
  • the only remaining quantity to be calibrated is the variable ⁇ 2 of the high-pass filter 51 .
  • This calibration is easily carried out by calibrating ⁇ 2 to the value k p k i .
  • the production of this pure delay compensator 50 is therefore very fast, easy to implement, and does not involve any complexity in terms of computational load.
  • the calibration of the actuator position control systems is simplified, which allows time to be saved when they are developed.
  • the embodiments described above are applicable to any actuator 1 of the air loop of a motor vehicle, for example to a valve / valve for the recirculation of exhaust gases, or even to a butterfly valve d air intake of a turbocharger.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Feedback Control In General (AREA)
  • Control Of Position Or Direction (AREA)

Description

L'invention concerne les systèmes d'asservissement de position d'actionneurs équipant un véhicule automobile. Plus particulièrement, l'invention a trait à la compensation des retards purs présents dans ces systèmes d'asservissement de position.The invention relates to actuator position servo systems fitted to a motor vehicle. More particularly, the invention relates to compensation for pure delays present in these position control systems.

L'optimisation continue des groupes motopropulseurs, notamment en vue de respecter les différentes normes antipollution et d'améliorer le rendement de ces groupes, conduit à une utilisation toujours plus importante d'actionneurs dans les véhicules automobiles. A titre d'exemples d'actionneurs, on peut citer des actionneurs présents dans la boucle d'air d'un véhicule automobile tel qu'une vanne/soupape de recirculation des gaz d'échappement, couramment désignée sous l'appellation vanne EGR, ou encore un papillon d'admission d'air d'un turbocompresseur.The continuous optimization of powertrains, in particular with a view to respecting the various emission standards and improving the performance of these groups, leads to an ever greater use of actuators in motor vehicles. As examples of actuators, mention may be made of actuators present in the air loop of a motor vehicle such as an exhaust gas recirculation valve / valve, commonly referred to as an EGR valve, or an air intake throttle from a turbocharger.

De tels actionneurs sont couramment pilotés par un calculateur d'un véhicule automobile, via le suivi d'une valeur de consigne variable. La figure 1 illustre, à titre d'exemple, l'architecture globale d'un système 100 d'asservissement de position d'un actionneur 1, mise en oeuvre dans le calculateur d'un véhicule automobile. Cette architecture comprend un superviseur 2 en charge d'ordonner (flèches pointillées) les tâches suivantes :

  • une tâche dédiée à l'acquisition de la position de l'actionneur 1, réalisée par une chaine 3 d'acquisition ;
  • une tâche allouée à une commande de l'asservissement en position de l'actionneur 1, réalisée en fonction de la position de l'actionneur 1 acquise par la chaine 3 de traitement. Cette tâche de commande est réalisée par un régulateur 4 de position, implémentant une loi de commande de l'actionneur 1 ;
  • une tâche de pilotage en puissance électrique de l'actionneur 1, élaborée par une chaine 5 de traitement, réalisée en fonction de la commande de l'asservissement en position de l'actionneur 1 précédemment établie. Suite à cette tâche de pilotage, à partir d'une mesure, une information relative à la position de l'actionneur 1 est alors retournée à la chaine 3 d'acquisition (flèche 101).
Such actuators are commonly controlled by a computer of a motor vehicle, via the monitoring of a variable set value. The figure 1 illustrates, by way of example, the overall architecture of a system 100 for controlling the position of an actuator 1, implemented in the computer of a motor vehicle. This architecture includes a supervisor 2 in charge of ordering (dotted arrows) the following tasks:
  • a task dedicated to the acquisition of the position of the actuator 1, carried out by an acquisition chain 3 ;
  • a task allocated to a control of the servo in position of the actuator 1, carried out as a function of the position of the actuator 1 acquired by the processing chain 3 . This control task is carried out by a position regulator 4 , implementing a control law for the actuator 1 ;
  • an electric power control task of the actuator 1, developed by a processing chain 5 , performed as a function of the control of the servo in position of the actuator 1 previously established. Following this piloting task, on the basis of a measurement, information relating to the position of the actuator 1 is then returned to the acquisition chain 3 (arrow 101 ).

La figure 2a illustre les performances d'asservissement en position d'un actionneur 1 de la boucle d'air d'un véhicule automobile pour un système parfait, c'est-à-dire ne présentant pas de retard pur. Sur cette figure sont illustrées deux courbes :

  • la courbe 201 en traits pointillés épais illustre en ordonnée, en pourcentage, une consigne de position pour un actionneur 1, en fonction d'un temps en secondes représenté en abscisse ;
  • la courbe 202 en traits pleins fins illustre en ordonnée, à la même échelle de pourcentage, la position de l'actionneur 1 en fonction du même temps en secondes représenté en abscisse.
The figure 2a illustrates the servo performance in position of an actuator 1 of the air loop of a motor vehicle for a perfect system, that is to say one having no pure delay. In this figure are illustrated two curves:
  • the curve 201 in thick dotted lines illustrates on the ordinate, in percentage, a position setpoint for an actuator 1, as a function of a time in seconds represented on the abscissa;
  • the curve 202 in solid solid lines illustrates on the ordinate, at the same percentage scale, the position of the actuator 1 as a function of the same time in seconds represented on the abscissa.

On remarque sur cette figure 2a que la position de l'actionneur 1 suit la valeur de consigne de position sans dépassement excédant les 5% et présente un temps de réponse en suivi de consigne performant.We notice on this figure 2a that the position of actuator 1 follows the position setpoint without exceeding exceeding 5% and has a response time in efficient setpoint monitoring.

En pratique, une telle courbe est difficilement observable, du fait de l'existence d'un retard pur existant dans le système 100 d'asservissement. A titre d'exemple, en référence à la figure 1, on peut imputer ce retard pur aux cumuls de différents retards tels :

  • les retards relatifs au superviseur 2 et à l'ordre d'exécution des tâches ;
  • les retards générés par la chaine 3 d'acquisition et de traitement 5 ;
  • les retards intrinsèques au système 100 d'asservissement de position de l'actionneur 1.
  • Eventuellement des retards intrinsèques au système lui-même.
In practice, such a curve is difficult to observe, due to the existence of a pure delay existing in the servo system 100 . As an example, with reference to the figure 1 , we can attribute this pure delay to the accumulations of different delays such as:
  • delays relating to supervisor 2 and the order of execution of tasks;
  • the delays generated by the acquisition and processing chain 3 5;
  • delays intrinsic to the system 100 for servo-positioning the actuator 1.
  • Possibly delays intrinsic to the system itself.

Ainsi, à l'opposé de la figure 2a, il est fréquent en l'absence de compensation de ce retard pur, d'observer les courbes représentées sur la figure 2b. Sur cette figure sont illustrées deux courbes :

  • la courbe 203 en traits pointillés épais illustre en ordonnée, en pourcentage, une consigne de position pour l'actionneur 1, en fonction d'un temps en secondes représenté en abscisse ;
  • la courbe 204 en trait plein fin illustre en ordonnée, à la même échelle de pourcentage, la position de l'actionneur 1 en fonction du même temps en secondes représenté en abscisse.
So, in contrast to the figure 2a , it is frequent in the absence of compensation for this pure delay, to observe the curves represented on the figure 2b . In this figure are illustrated two curves:
  • the curve 203 in thick dotted lines illustrates on the ordinate, in percentage, a position setpoint for the actuator 1, as a function of a time in seconds represented on the abscissa;
  • the curve 204 in solid line illustrates on the ordinate, at the same percentage scale, the position of the actuator 1 as a function of the same time in seconds represented on the abscissa.

On observe, sur cette figure 2b, une dégradation des performances comparé à la figure 2a, notamment la présence d'oscillations autour de la valeur de consigne de position. En effet, l'absence de compensation du retard pur, pousse le régulateur 4 de position à dégrader significativement le temps de réponse en boucle fermée de l'actionneur 1, en vue de conserver des valeurs de dépassement acceptables de la de consigne de position, typiquement inférieures à 5%.We observe, on this figure 2b , a performance degradation compared to the figure 2a , especially the presence oscillations around the position setpoint. Indeed, the absence of compensation for the pure delay, pushes the position regulator 4 to significantly degrade the closed-loop response time of the actuator 1, in order to maintain acceptable values for exceeding the position setpoint, typically less than 5%.

Un autre désavantage de l'absence de compensation de retard pur, vient du fait que la consigne de position déterminée par le calculateur, est issue d'une régulation globale de débit d'air ou de pression de suralimentation dans la boucle d'air. La dégradation du temps de réponse de l'actionneur 1 impacte alors la réponse en couple du moteur du véhicule. On peut alors constater des oscillations de pression, de suralimentation, de débit d'air, ou encore des trous de couple. Une telle situation a donc un fort impact sur la dégradation de l'agrément de conduite. Par ailleurs, d'un point de vue mécanique, l'occurrence d'oscillations au niveau des actionneurs 1 peut rapidement endommager ces derniers. Leurs durées de vie s'en donc voit diminuée.Another disadvantage of the absence of pure delay compensation comes from the fact that the position setpoint determined by the computer comes from a global regulation of air flow or boost pressure in the air loop. The degradation of the response time of the actuator 1 then impacts the torque response of the vehicle engine. We can then see oscillations in pressure, supercharging, air flow, or even torque holes. Such a situation therefore has a strong impact on the deterioration of driving pleasure. Furthermore, from a mechanical point of view, the occurrence of oscillations at the level of the actuators 1 can quickly damage the latter. Their lifetimes are therefore reduced.

Pour parer à ces problèmes, une solution connue dans le domaine général de l'automatique, consiste à ajouter à un système 100 d'asservissement, tel celui illustré sur la figure 1, un prédicteur 6 de retard. Ce dernier a pour tâche de corriger la commande élaborée par le régulateur 4 de position, afin d'atténuer l'impact du retard pur sur la qualité de l'asservissement en position de l'actionneur 1. Pour ce faire, le prédicteur 6 de retard prend pour entrées, les entrées 102 et sorties 103 du régulateur 4, et élabore une compensation 104 du retard pur, qu'il retourne au régulateur 4 de position.To overcome these problems, a known solution in the general field of automation consists in adding to a servo system 100 , such as that illustrated in the figure 1 , a predictor 6 of delay. The latter has the task of correcting the command elaborated by the position regulator 4 , in order to attenuate the impact of the pure delay on the quality of the servo-control in position of the actuator 1. To do this, the predictor 6 of delay takes for inputs, the inputs 102 and outputs 103 of the regulator 4, and develops compensation 104 for the pure delay, which it returns to the position regulator 4 .

Diverses solutions sont connues pour réaliser un prédicteur de retard dans un système d'asservissement. A titre d'exemple, le document " An adaptive I-PD controller based on frequency domain system identification" de HASHIMOTO T. et AL illustre l'utilisation d'un prédicteur de Smith pour compenser les effets de retard dans une boucle de régulation de type PID pour un actionneur pneumatique commandé en position. Le document " A simple adaptive Smith-predictor for controlling time-delay systems: A tutorial" de BAHILL A. présente différentes formulations d'un prédicteur de Smith associé à une boucle de régulation de type PI-PID. Enfin, le document FR2749613 décrit un système de régulation de la richesse du mélange air-carburant dans un moteur à combustion interne, ce système comprenant un dispositif de régulation réalisé sous la forme d'un prédicteur de Smith. La structure du prédicteur de Smith décrite dans ce document s'avère, cependant particulièrement complexe à mettre en oeuvre, et demeure coûteuse en termes de charge de calcul induite. Notamment, la mise en œuvre d'une telle solution implique un réglage particulièrement complexe d'un ensemble de paramètres au niveau du calculateur embarqué dans le véhicule, un tel réglage étant couteux en temps de réalisation. Plus généralement, les prédicteurs de retards existants ne sont, en l'état, pas adaptés à la commande en position pour des actionneurs équipant un véhicule automobile.Various solutions are known for making a delay predictor in a servo system. For example, the document " An adaptive I-PD controller based on frequency domain system identification "by HASHIMOTO T. and AL illustrates the use of a Smith predictor to compensate for the delay effects in a PID type control loop for a pneumatic actuator controlled in position. The document " A simple adaptive Smith-predictor for controlling time-delay systems: A tutorial "by BAHILL A. presents different formulations of a Smith predictor associated with a PI-PID type regulatory loop. Finally, the document FR2749613 describes a system for regulating the richness of the air-fuel mixture in an internal combustion engine, this system comprising a regulating device produced in the form of a Smith predictor. The structure of the Smith predictor described in this document proves, however, particularly complex to implement, and remains costly in terms of computational load. induced. In particular, the implementation of such a solution involves a particularly complex adjustment of a set of parameters at the level of the computer on board the vehicle, such adjustment being costly in terms of time. More generally, the existing delay predictors are not, as is, suitable for controlling in position for actuators fitted to a motor vehicle.

Un objet de la présente invention est de parer à l'ensemble des inconvénients précités.An object of the present invention is to overcome all of the aforementioned drawbacks.

Un deuxième objet de la présente invention est de proposer un dispositif de compensation de retard pur, pour un système d'asservissement de position d'actionneurs équipant un véhicule automobile.A second object of the present invention is to provide a device for compensating for pure delay, for a system for controlling the position of actuators fitted to a motor vehicle.

Un troisième objet de la présente invention est de minimiser la complexité de mise en oeuvre d'un dispositif de compensation de retard pur, pour un système d'asservissement de position d'actionneurs dans un véhicule automobile.A third object of the present invention is to minimize the complexity of implementing a pure delay compensation device for a system for controlling the position of actuators in a motor vehicle.

Un quatrième objet de la présente invention est de piloter de manière optimale la position des actionneurs dans un véhicule automobile.A fourth object of the present invention is to optimally control the position of the actuators in a motor vehicle.

Ainsi, il est proposé, selon un premier aspect, un système d'asservissement de la position Y(s) d'un actionneur à une consigne de position R(s) dans un véhicule automobile, l'actionneur présentant une fonction de transfert G(s) prédéterminée associée à un retard pur e-ds , s étant la variable de Laplace, d représentant le retard pur, ce système étant réalisé via :

  • une commande de position U(s) en entrée de la fonction de transfert G(s), la position Y(s) de l'actionneur correspondant à la réponse de l'actionneur à la commande de position U(s) ;
  • la commande de position U(s) étant élaborée à l'aide d'un régulateur de type Proportionnel Dérivé, formé d'une boucle à action Proportionnelle et d'une boucle à action Dérivée, réalisées respectivement par une première et une deuxième boucle de rétroaction entre la position Y(s) et des entrées soustractrices d'un premier additionneur, le régulateur réalisant une troisième boucle de rétroaction entre la position Y(s) et une entrée soustractrice d'un deuxième additionneur, le deuxième additionneur ayant pour entrée sommatrice la consigne de position R(s) ;
  • la consigne de position R(s) étant aussi utilisée comme entrée d'une boucle amplificatrice dont la sortie est connectée une entrée sommatrice du premier additionneur ;
  • la sortie du deuxième additionneur étant utilisée comme entrée d'une boucle à action Intégrale dont la sortie est connectée à une entrée sommatrice du premier additionneur, de sorte que le premier additionneur calcule en sa sortie la position U(s) en fonction de ses entrées sommatrices et soustractrices ;
ce système comprenant un compensateur de retard pur dans lequel :
  • la commande de position U(s) est utilisée comme première entrée sommatrice d'un troisième additionneur et comme entrée d'un bloc de retard pur de fonction de transfert e-ds , la sortie de ce bloc de retard pur étant utilisé comme entrée soustractrice du troisième additionneur, de sorte que le troisième additionneur calcule sa sortie à partir de son entrée sommatrice et de son entrée soustractrice ;
  • l'entrée d'un filtre passe-haut est connectée à la sortie du troisième additionneur ;
  • l'entrée d'un amplificateur est connectée à la sortie du filtre passe-haut ;
  • la sortie de l'amplificateur correspond à un terme de compensation de retard P(s), cette sortie étant utilisée comme entrée soustractrice par le deuxième additionneur.
Thus, there is proposed, according to a first aspect, a system for controlling the position Y (s) of an actuator to a position setpoint R (s) in a motor vehicle, the actuator having a transfer function G (s) predetermined associated with a pure delay e -ds , s being the Laplace variable, d representing the pure delay, this system being implemented via:
  • a position command U (s) at the input of the transfer function G (s), the position Y (s) of the actuator corresponding to the response of the actuator to the position command U (s);
  • the position control U (s) being developed using a proportional derivative type regulator, formed of a proportional action loop and a derivative action loop, produced respectively by a first and a second loop of feedback between position Y (s) and subtracting inputs of a first adder, the regulator performing a third feedback loop between position Y (s) and a subtracting input of a second adder, the second adder having as summing input the position setpoint R (s);
  • the position setpoint R (s) also being used as the input of an amplifying loop whose output is connected to a summing input of the first adder;
  • the output of the second adder being used as input of an integral action loop whose output is connected to a summing input of the first adder, so that the first adder calculates at its output the position U (s) according to its inputs summing and subtracting;
this system comprising a pure delay compensator in which:
  • the position control U (s) is used as the first summing input of a third adder and as the input of a pure delay block of e -ds transfer function , the output of this pure delay block being used as a subtracting input the third adder, so that the third adder calculates its output from its summing input and its subtracting input;
  • the input of a high-pass filter is connected to the output of the third adder;
  • the input of an amplifier is connected to the output of the high-pass filter;
  • the amplifier output corresponds to a delay compensation term P (s), this output being used as a subtracting input by the second adder.

Avantageusement, dans ce système d'asservissement, le filtre passe-haut et l'amplificateur sont dimensionnés à partir d'un système du premier ordre approximant la fonction de transfert G(s) de l'actionneur, ce système présentant un gain statique k et une constante de temps τ1.Advantageously, in this servo system, the high-pass filter and the amplifier are dimensioned from a first order system approximating the transfer function G (s) of the actuator, this system having a static gain k and a time constant τ 1 .

Avantageusement, dans ce système d'asservissement, l'amplificateur a pour gain, le gain statique k.Advantageously, in this servo system, the amplifier has the gain, the static gain k .

Avantageusement, dans ce système d'asservissement, le filtre passe-haut a pour fonction de transfert τ 2 s + 1 τ 1 s + 1 ,

Figure imgb0001
τ2 est une constante de temps paramétrable.Advantageously, in this servo system, the high-pass filter has the transfer function τ 2 s + 1 τ 1 s + 1 ,
Figure imgb0001
where τ 2 is a configurable time constant.

Avantageusement, dans ce système d'asservissement, la boucle à action Proportionnelle est associée à un gain kp, la boucle à action Intégrale est associée à un gain ki, la constante de temps τ2 étant calibrée de sorte que τ 2 _ = k p k i .

Figure imgb0002
Advantageously, in this servo system, the proportional action loop is associated with a gain kp , the loop with Integral action is associated with a gain ki , the time constant τ 2 being calibrated so that τ 2 _ = k p k i .
Figure imgb0002

Avantageusement, dans ce système d'asservissement, l'actionneur est un actionneur de la boucle d'air d'un véhicule automobile.Advantageously, in this servo system, the actuator is an actuator of the air loop of a motor vehicle.

Il est proposé, selon un deuxième aspect, un calculateur de véhicule automobile implémentant un système d'asservissement de la position d'un actionneur, réalisé comme décrit ci-dessus.A second aspect proposes a motor vehicle computer implementing a system for controlling the position of an actuator, produced as described above.

Il est proposé, selon un troisième aspect, un véhicule automobile comprenant le calculateur décrit ci-dessus.According to a third aspect, a motor vehicle comprising the computer described above is proposed.

D'autres objets et avantages de l'invention apparaîtront à la lumière de la description d'un mode de réalisation, faite ci-après en référence aux dessins annexés dans lesquels :

  • la figure 1 illustre l'architecture globale d'un système d'asservissement de position d'un actionneur mis en oeuvre dans un calculateur équipant un véhicule automobile ;
  • les figures 2a et 2b illustrent les variations temporelles de la position d'un actionneur, respectivement pour un système d'asservissement parfait et réel, vis-à-vis d'une consigne de position ;
  • la figure 3 illustre un dispositif d'asservissement en position d'un actionneur ;
  • la figure 4 illustre un système d'asservissement en position d'un actionneur comprenant un prédicteur de Smith ;
  • la figure 5 illustre un système d'asservissement en position d'un actionneur comprenant un compensateur de retard pur selon un mode de réalisation.
Other objects and advantages of the invention will become apparent in the light of the description of an embodiment, given below with reference to the appended drawings in which:
  • the figure 1 illustrates the overall architecture of a position control system of an actuator implemented in a computer fitted to a motor vehicle;
  • the Figures 2a and 2b illustrate the temporal variations of the position of an actuator, respectively for a perfect and real servo system, with respect to a position setpoint;
  • the figure 3 illustrates a device for controlling the position of an actuator;
  • the figure 4 illustrates an actuator position control system comprising a Smith predictor;
  • the figure 5 illustrates a servo-control system in position of an actuator comprising a pure delay compensator according to one embodiment.

Sur la figure 3 est représenté un dispositif 300 d'asservissement de position d'un actionneur 1, ce dispositif 300 présentant un retard pur d. L'actionneur 1 est, à titre d'exemple, un actionneur de la boucle d'air d'un véhicule automobile, telle une vanne/une soupape d'un système de recirculation des gaz d'échappement, ou encore un papillon d'admission d'un turbocompresseur. Le dispositif 300 d'asservissement est ici représenté dans le domaine de Laplace et peut être mis en oeuvre dans un régulateur 4 de position, tel celui illustré sur la figure 1.On the figure 3 there is shown a device 300 for controlling the position of an actuator 1, this device 300 having a pure delay d . The actuator 1 is, for example, an actuator of the air loop of a motor vehicle, such as a valve / valve of an exhaust gas recirculation system, or even a throttle valve intake of a turbocharger. The servo-control device 300 is here represented in the Laplace domain and can be implemented in a position regulator 4 , such as that illustrated in the figure 1 .

Comme exposé dans la partie introductive, le régulateur 4 de position est configuré pour implémenter une loi de commande de la position de l'actionneur 1. Pour ce faire, le comportement de l'actionneur 1 dans le dispositif 300 d'asservissement est modélisé par une fonction de transfert G(s) dans le domaine de Laplace, s étant la variable de Laplace.As explained in the introductory part, the position regulator 4 is configured to implement a law for controlling the position of the actuator 1. To do this, the behavior of the actuator 1 in the servo device 300 is modeled by a transfer function G (s) in the Laplace domain, s being the Laplace variable.

La fonction de transfert G(s) peut être obtenue de différentes manières, par exemple communiquée directement par un modèle fourni par le constructeur de l'actionneur 1, modélisée via un outil de simulation approprié (ex : Simulink®), ou encore obtenue de manière expérimentale en appliquant à l'actionneur 1 une entrée de type échelon et en observant sa réponse en sortie.The transfer function G (s) can be obtained in different ways, for example communicated directly by a model provided by the manufacturer of the actuator 1, modeled via an appropriate simulation tool (ex: Simulink®), or even obtained from experimentally by applying a step type input to the actuator 1 and observing its response at the output.

Le retard pur d associé à l'actionneur 1 est quant à lui représenté par le terme e-ds dans le domaine de Laplace.The pure delay d associated with the actuator 1 is represented by the term e -ds in the Laplace domain.

Ainsi, sur la figure 3, l'actionneur 1 et son retard pur sont modélisés par un bloc 30 de fonction de transfert G(s) e-ds , recevant pour entrée une commande de position U(s) à destination de l'actionneur 1. So on the figure 3 , the actuator 1 and its pure delay are modeled by a block 30 of transfer function G (s) e -ds , receiving for input a position command U (s) intended for the actuator 1.

En pratique, la position réelle de l'actionneur 1, suite à la réception de la commande de position U(s), correspond à une réponse idéale de l'actionneur 1, à laquelle vient s'ajouter une perturbation sur sa position. La réponse idéale de l'actionneur 1, suite à la réception de la commande de position U(s), correspond à l'application de la fonction de transfert G(s) e-ds , dont la réponse est obtenue en sortie du bloc 30. La perturbation en position résulte, quant à elle, notamment des efforts aérauliques s'appliquant sur l'actionneur 1, par exemple des variations de pression lors de son déplacement.In practice, the actual position of the actuator 1, following receipt of the position command U (s), corresponds to an ideal response from the actuator 1, to which is added a disturbance in its position. The ideal response from actuator 1, following receipt of the position command U (s), corresponds to the application of the transfer function G (s) e -ds , the response of which is obtained at the output of the block 30. The perturbation in position results, for its part, in particular from the air forces applied to the actuator 1, for example pressure variations during its movement.

La perturbation sur la position de l'actionneur 1 est représentée sur la figure 3 par la fonction D(s) en entrée d'un sommateur 7, l'autre entrée de ce sommateur 7 correspondant à la réponse idéale de l'actionneur 1 suite la commande U(s), c'est-à-dire ici à la réponse en sortie du bloc 30 sans perturbation. Ainsi, on observe en sortie du sommateur 7, une position réelle Y(s) de l'actionneur 1 en réponse à la commande U(s). On notera ici que le sommateur 7 et la variable D(s) sont ici représentés à des fins de compréhension théorique. En pratique, et dans la suite de ce document, on considère la position Y(s) de l'actionneur 1 en tant que sortie « réelle » du bloc 30 de fonction de transfert G(s) e-ds , c'est-à-dire en tant que position de l'actionneur 1 comprenant d'éventuelles perturbations extérieures.The disturbance on the position of actuator 1 is shown on the figure 3 by the function D (s) at the input of an adder 7, the other input of this adder 7 corresponding to the ideal response of the actuator 1 following the command U (s), that is to say here at the response at the output of block 30 without disturbance. Thus, at the output of the summer 7 , there is observed a real position Y (s) of the actuator 1 in response to the command U (s). It will be noted here that the summator 7 and the variable D (s) are here represented for the purposes of theoretical understanding. In practice, and in the rest of this document, we consider the position Y (s) of the actuator 1 as the "real" output of the transfer function block 30 G (s) e -ds , that is to say as the position of the actuator 1 comprising possible external disturbances.

L'actionneur 1 présente donc en sortie du bloc 30 de fonction de transfert G(s) e-ds une position Y(s) en réponse à la commande U(s), cette position Y(s) étant la position que l'on souhaite asservir à une valeur de consigne de position R(s).The actuator 1 therefore has at the output of the transfer function block 30 G (s) e -ds a position Y (s) in response to the command U (s), this position Y (s) being the position that the you want to control a position setpoint value R (s).

La commande de position U(s) est élaborée en tant que sortie d'un premier additionneur 31 comportant deux entrées soustractrices « - » et deux entrées sommatrices « + ». Les entrées soustractrices du premier additionneur 31 sont réalisées par un régulateur de type Proportionnel Dérivé, couramment désigné sous l'acronyme « régulateur PD ». Comme son nom l'indique, ce régulateur est formé

  • d'une boucle à action Proportionnelle, réalisant une opération d'amplification de gain kp ;
  • d'une boucle à action Dérivée, réalisant une opération de dérivation, symbolisée par le bloc « d dt » ,
    Figure imgb0003
    parfois aussi symbolisée par un bloc «s », associée à un gain kd.
The position control U (s) is developed as the output of a first adder 31 comprising two subtracting inputs "-" and two summing inputs "+". The subtracting inputs of the first adder 31 are produced by a proportional derivative type regulator, commonly designated by the acronym "PD regulator". As its name suggests, this regulator is formed
  • a proportional action loop, performing a gain amplification operation kp ;
  • a Derivative action loop, performing a bypass operation, symbolized by the block " d dt " ,
    Figure imgb0003
    sometimes also symbolized by a block "s", associated with a gain kd .

La boucle à action Proportionnelle et la boucle à action Dérivée réalisent respectivement une première et une deuxième boucle 32, 33 de rétroaction entre la sortie du bloc 30, c'est-à-dire la position Y(s), et une entrée soustractrice « - » du premier additionneur 31. The proportional action loop and the Derivative action loop respectively perform a first and a second feedback loop 32, 33 between the output of block 30, that is to say position Y (s), and a subtracting input “ - »of the first adder 31.

Une troisième boucle 34 de rétroaction est par ailleurs réalisée par le régulateur entre la position Y(s) et un entrée soustractrice « - » d'un deuxième additionneur 35. A third feedback loop 34 is moreover produced by the regulator between the position Y (s) and a subtracting input “-” of a second adder 35.

Le deuxième additionneur 35 comprend, en outre, pour entrée sommatrice « + » la valeur de consigne de position R(s), cette valeur étant déterminée par le calculateur du véhicule automobile, en fonction par exemple de paramètres mesurés dans la boucle d'air. Cette valeur de consigne de position R(s) correspond à la valeur de consigne à laquelle l'on souhaite asservir la position Y(s) de l'actionneur 1. Ainsi, la sortie du deuxième additionneur 35 correspond à la différence entre la consigne de position R(s) (sur l'entrée sommatrice « + ») et la position Y(s) de l'actionneur (sur l'entrée soustractrice « - »), c'est-à-dire à une erreur de position ε(s) de l'actionneur 1, où ε(s) = R(s)-Y(s).The second adder 35 further comprises, for summing input "+", the position setpoint value R (s), this value being determined by the motor vehicle computer, as a function for example of parameters measured in the air loop . This position setpoint value R (s) corresponds to the setpoint value to which the position Y (s) of the actuator 1 is to be controlled . Thus, the output of the second adder 35 corresponds to the difference between the setpoint of position R (s) (on the summing input "+") and the position Y (s) of the actuator (on the subtracting input "-"), ie to a position error ε (s) of actuator 1 , where ε (s) = R (s) -Y (s).

La valeur de consigne de position R(s) est aussi utilisée comme entrée d'une boucle 36 amplificatrice de gain kf, dont la sortie est connectée à une entrée sommatrice « + » du premier additionneur 31. The position setpoint value R (s) is also used as the input of a gain amplifying loop 36 kf , the output of which is connected to a summing input “+” of the first adder 31.

En outre, la sortie du deuxième additionneur 35, c'est-à-dire l'erreur de position ε(s) de l'actionneur 1, sert d'entrée à une boucle 37 à action intégrale, réalisant une opération d'intégration, symbolisée par le bloc « ∫ », parfois aussi symbolisée par un bloc «1/s », associée à un gain ki. La sortie de cette boucle 37 à action intégrale est connectée à une entrée sommatrice « + » du premier additionneur 31. Ainsi, en fonction de l'ensemble de ses entrées sommatrices « + » et soustractrices « - », le premier additionneur 31 détermine la commande en position U(s) à appliquer à l'actionneur 1. In addition, the output of the second adder 35, that is to say the position error ε (s) of the actuator 1, serves as input to a loop 37 with integral action, performing an integration operation. , symbolized by the block "∫", sometimes also symbolized by a block "1 / s", associated with a gain ki . The output of this integral action loop 37 is connected to a summing input “+” of the first adder 31. Thus, as a function of all of its summing inputs “+” and subtracting “-”, the first adder 31 determines the control in position U (s) to be applied to actuator 1.

Les gains kf, ki, kp et kd sont des valeurs statiques couramment déterminées par rapport à la fonction de transfert G(s), préalablement connue, par exemple via l'application d'une méthode de placement des pôles. Ces paramètres sont à titre d'exemple, déterminés par simulation via un outil de mis au point du calculateur du véhicule automobile et/ou ajustés expérimentalement au niveau du calculateur, par exemple en fonction du déroulement d'une série de tests destinés à valider le cahier des charges du véhicule. Ces gains sont donc ici préconfigurés.The gains kf , ki , kp and kd are static values commonly determined with respect to the transfer function G (s), previously known, for example via the application of a method of placing the poles. These parameters are, for example, determined by simulation via a tool for developing the computer of the motor vehicle and / or adjusted experimentally at the level of the computer, for example according to the progress of a series of tests intended to validate the vehicle specifications. These gains are therefore preconfigured here.

Comme il vient d'être décrit, on remarque que le dispositif 300 d'asservissement de position d'un actionneur 1 comprend notamment :

  • des boucles de rétroactions 32, 33 sur la position Y(s) de l'actionneur 1, réalisées par un régulateur de type Proportionnel Dérivé ;
  • une boucle 37 à action Intégrale réalisée sur l'erreur de position ε(s) de l'actionneur 1, avant l'élaboration de la commande de position U(s). Du fait de cette configuration, on désigne couramment une telle boucle comme boucle anticipatrice.
As has just been described, it can be seen that the device 300 for controlling the position of an actuator 1 comprises in particular:
  • feedback loops 32, 33 on the position Y (s) of the actuator 1, produced by a proportional derivative type regulator;
  • an integral action loop 37 produced on the position error ε (s) of the actuator 1, before the position command U (s) is produced. Because of this configuration, such a loop is commonly designated as an anticipatory loop.

Ainsi, la structure de ce type de dispositif 300 d'asservissement de position est parfois désignée sous la dénomination PD-I (acronyme de « Proportionnel Dérivé - Intégral »). Une telle structure se distingue des régulateurs PID (acronyme de « Proportionnel Intégral Dérivé ») courants, par le fait que seul le terme intégral se situe sur l'erreur de position ε(s), tandis que les actions proportionnelle et dérivée sont indexées uniquement sur la position Y(s) de l'actionneur 1. Ceci présente pour avantage de pouvoir découpler les performances en suivi de consigne et les performances en rejet de perturbations. Ainsi, une telle structure d'asservissement est réalisée dans des calculateurs de véhicules automobiles pour l'asservissement en position des actionneurs 1. Thus, the structure of this type of position control device 300 is sometimes designated under the name PD-I (acronym for "Proportional Derivative - Integral"). Such a structure differs from the current PID (acronym for "Proportional Integral Derivative") regulators, by the fact that only the integral term is located on the error of position ε (s), while the proportional and derivative actions are indexed only on the position Y (s) of the actuator 1. This has the advantage of being able to decouple the performances in setpoint monitoring and the performances in rejection of disturbances. Thus, such a control structure is produced in motor vehicle computers for controlling the position of the actuators 1.

Le dispositif 300 d'asservissement de position de la figure 3 comprend ici pour fonction de transfert : Y s R s = k f + k i s G s 1 + k p + k i s + k d s G s e ds e ds

Figure imgb0004
On remarque dans cette équation la présence au dénominateur du terme e-ds , correspondant au retard pur de ce dispositif 300. C'est la présence de ce terme qui est à l'origine d'oscillations (voir par exemple figure 2b) observées sur la position de l'actionneur 1 lorsque celui-ci essaye de suivre la consigne de position R(s).The position control device 300 of the figure 3 here includes for transfer function: Y s R s = k f + k i s G s 1 + k p + k i s + k d s G s e - ds e - ds
Figure imgb0004
We note in this equation the presence in the denominator of the term e -ds , corresponding to the pure delay of this device 300. It is the presence of this term which is at the origin of oscillations (see for example figure 2b ) observed on the position of the actuator 1 when the latter tries to follow the position setpoint R (s).

Pour compenser ce retard, on ajoute alors au dispositif 300 précédemment décrit un compensateur de retard, tel un prédicteur 40 de Smith illustré en figure 4. Sur cette figure, le prédicteur 40 de Smith est de réalisé de la manière suivante.To compensate for this delay is then added to the device 300 described previously a delay compensator, such a predictor 40 shown in Smith figure 4 . In this figure, Smith's predictor 40 is made as follows.

La commande de position U(s) en sortie du premier additionneur 31 est utilisée comme entrée sommatrice « + » d'un troisième additionneur 41 et comme entrée d'un bloc 42 de retard pur de fonction de transfert e-ds , la sortie de ce bloc de retard étant utilisé comme entrée soustractrice « - » du troisième additionneur 41. L'utilisation bloc 42 de retard pur implique que le retard d est connu. Celui-ci est en pratique estimé en appliquant sur l'actionneur 1 une entrée de type échelon et en observant sa sortie. Il peut être par la suite calibré plus finement, lors de la mise au point du régulateur 4 de position.The position command U (s) at the output of the first adder 31 is used as summing input “+” of a third adder 41 and as input of a block 42 of pure delay of transfer function e -ds , the output of this delay block being used as a subtracting input “-” of the third adder 41. The use of block 42 of pure delay implies that the delay d is known. This is in practice estimated by applying a step type input to the actuator 1 and observing its output. It can then be calibrated more finely, during the development of the position regulator 4 .

Le troisième additionneur 41 calcule alors sa sortie à partir de son entrée sommatrice « + » et son entrée soustractrice « - ». Cette sortie est connectée en entrée à un bloc 43 correcteur de fonction de transfert C(s).G(s) dont la sortie est utilisée comme entrée soustractrice « - » du premier additionneur 31. Le terme C(s) désigne ici une fonction de transfert paramétrable propre au bloc 43 correcteur.The third adder 41 then calculates its output from its summing input "+" and its subtracting input "-". This output is connected as input to a block 43 transfer function corrector C (s) .G (s) whose output is used as subtracting input “-” of the first adder 31. The term C (s) designates here a function transfer parameter specific to the correcting block 43 .

Avantageusement, la présence du prédicteur 40 de Smith permet d'extraire le retard pur e-ds de la boucle de rétroaction 34 entre Y(s) et R(s), c'est-à-dire de la boucle fermée de la fonction de transfert Y s R s .

Figure imgb0005
En effet, si l'on choisit pour la figure 4, C s = k p + k i s + k d s ,
Figure imgb0006
la fonction de transfert du système s'écrit alors : Y s R s = G s k f + k i s 1 + G s k p + k i s + k d s e ds
Figure imgb0007
On constate alors, dans cette équation, que le retard pur est à l'extérieur de la boucle d'asservissement puisque le dénominateur ne dépend plus du terme e-ds .Advantageously, the presence of Smith's predictor 40 makes it possible to extract the pure delay e -ds from the feedback loop 34 between Y (s) and R (s), that is to say from the closed loop of the function. transfer Y s R s .
Figure imgb0005
Indeed, if we choose for the figure 4 , VS s = k p + k i s + k d s ,
Figure imgb0006
the system transfer function is then written: Y s R s = G s k f + k i s 1 + G s k p + k i s + k d s e - ds
Figure imgb0007
We can see in this equation that the pure delay is outside the servo loop since the denominator no longer depends on the term e -ds .

Avantageusement, ceci permet d'éliminer les oscillations observées sur la réponse de l'actionneur 1. On remarque cependant ici que le retard pur e-ds n'a pas disparu. Si l'on note H(s) la fonction de transfert en boucle fermée sans ce retard pur telle que H s = G s k f + k i s 1 + G s k p + k i s + k d s ,

Figure imgb0008
il s'ensuit que Y s R s = H s e ds .
Figure imgb0009
La fonction de transfert de ce système est donc égale à une réponse H(s) en boucle fermée de l'actionneur 1, décalée dans le temps d'un retard pur d. Suite à la réception de la commande de position U(s), on observera donc pour la position Y(s) de l'actionneur 1 un suivi de la consigne de position R(s) proche de la figure 2a, avec un simple décalage temporel et non plus des oscillations sur la position Y(s) de l'actionneur 1. Le retard pur d n'a donc pas disparu, mais devient moins préjudiciable pour l'asservissement en position de l'actionneur 1. L'utilisation d'un prédicteur 40 de Smith s'avère donc performante pour l'asservissement en position de l'actionneur 1. Cependant, ce prédicteur 40 nécessite un réglage fin et complexe de l'ensemble des paramètres de la fonction de transfert H(s).Advantageously, this makes it possible to eliminate the oscillations observed on the response of the actuator 1. It is however noted here that the pure delay e -ds has not disappeared. If we note H (s) the closed loop transfer function without this pure delay such that H s = G s k f + k i s 1 + G s k p + k i s + k d s ,
Figure imgb0008
it follows that Y s R s = H s e - ds .
Figure imgb0009
The transfer function of this system is therefore equal to a response H (s) in closed loop from the actuator 1, shifted in time by a pure delay d . Following receipt of the position command U (s), we will therefore observe, for the position Y (s) of the actuator 1, a monitoring of the position setpoint R (s) close to the figure 2a , with a simple time shift and no longer oscillations on the position Y (s) of the actuator 1. The pure delay d has not therefore disappeared, but becomes less prejudicial for the enslavement in position of the actuator 1 . the use of a predictor 40 Smith is therefore performance for the servo actuator position 1. However, this predictor 40 requires fine tuning and complex of all the parameters of the transfer function H (s).

Pour parer à cet inconvénient, dans un mode de réalisation, on approxime alors la fonction de transfert G(s) de l'actionneur 1 par un système du premier ordre : G s k τ 1 s + 1 ,

Figure imgb0010
k et τ1 sont respectivement un gain statique et une constante de temps associés au système du premier ordre, ces valeurs étant aussi propres à la fonction de transfert G(s) de l'actionneur 1. Avantageusement, les variables k et τ1 sont aisément déductibles de l'actionneur 1. Ces variables sont par exemple déterminées par simulation via une approximation de la fonction de transfert G(s), ou expérimentalement, en observant la réponse de l'actionneur 1 à un échelon appliqué en entrée de celui-ci.To overcome this drawback, in one embodiment, the transfer function G (s) of the actuator 1 is then approximated by a first order system: G s k τ 1 s + 1 ,
Figure imgb0010
where k and τ 1 are respectively a static gain and a time constant associated with the first order system, these values also being specific to the transfer function G (s) of the actuator 1. Advantageously, the variables k and τ 1 are easily deductible from the actuator 1. These variables are for example determined by simulation via an approximation of the transfer function G (s), or experimentally, by observing the response of the actuator 1 at a step applied at the entry thereof.

On suppose, en outre, que k d k i 0 :

Figure imgb0011
une telle approximation peut être réalisée lors du calcul des paramètres kd et ki déterminés lors de la mis en oeuvre du dispositif 300 d'asservissement de position d'actionneur 1 illustré sur la figure 3. Le produit C(s).G(s), c'est-à-dire la fonction de transfert du bloc 43 correcteur, peut alors être approximé de la sorte : C s . G s = k i k p k i s + 1 k d k i s 2 s k τ 1 s + 1 k i s k τ 2 s + 1 τ 1 s + 1 ,
Figure imgb0012
τ2 est une constante de temps paramétrable.It is further assumed that k d k i 0 :
Figure imgb0011
such an approximation can be made during the calculation of the parameters kd and ki determined during the implementation of the device 300 for actuator position control 1 illustrated in the figure 3 . The product C (s) .G (s), that is to say the transfer function of the correcting block 43 , can then be approximated as follows: VS s . G s = k i k p k i s + 1 k d k i s 2 s k τ 1 s + 1 k i s k τ 2 s + 1 τ 1 s + 1 ,
Figure imgb0012
where τ 2 is a configurable time constant.

Si on définit une fonction de transfert T(s) telle que : T s = k i s k τ 2 s + 1 τ 2 s + 1 ,

Figure imgb0013
on note qu'il suffit alors de paramétrer la constante de temps τ2 à la valeur k p k i
Figure imgb0014
pour approximer le produit C(s).G(s).If we define a transfer function T (s) such that: T s = k i s k τ 2 s + 1 τ 2 s + 1 ,
Figure imgb0013
we note that it is then enough to set the time constant τ 2 to the value k p k i
Figure imgb0014
to approximate the product C (s) .G (s).

Par ailleurs, on observe que la fonction de transfert T(s) est le produit d'un intégrateur de gain ki (terme k i s

Figure imgb0015
), d'un filtre passe-haut de constante de temps τ2 ayant pour fonction de transfert τ 2 s + 1 τ 1 s + 1 ,
Figure imgb0016
et du gain statique k de l'actionneur 1. Furthermore, we observe that the transfer function T (s) is the product of a gain integrator ki (term k i s
Figure imgb0015
), a high-pass filter with time constant τ 2 having the transfer function τ 2 s + 1 τ 1 s + 1 ,
Figure imgb0016
and of the static gain k of the actuator 1.

Suite à cette observation, dans un mode de réalisation représenté en figure 5, on réalise le dispositif 300 d'asservissement précédemment décrit auquel on associe à un compensateur 50 de retard pur réalisé de la manière suivante.Following this observation, in an embodiment shown in figure 5 , the previously described servo device 300 is produced, which is associated with a pure delay compensator 50 produced in the following manner.

La commande de position U(s) en sortie du premier additionneur 31 est utilisée comme entrée sommatrice « + » d'un troisième additionneur 41 et comme entrée d'un bloc 42 de retard pur de fonction de transfert e-ds , la sortie de ce bloc de retard étant utilisé comme entrée soustractrice « - » du troisième additionneur 41. Le troisième additionneur 41 calcule alors sa sortie à partir de son entrée sommatrice « + » et son entrée soustractrice « - ». Cette sortie est connectée en entrée à un filtre 51 passe-haut. Avantageusement le filtre 51 passe-haut a pour fonction de transfert τ 2 s + 1 τ 1 s + 1 ,

Figure imgb0017
τ1 est la constante de temps prédéterminée de l'actionneur 1 approximé par un système du premier ordre et où τ 2 _ = k p k i .
Figure imgb0018
The position command U (s) at the output of the first adder 31 is used as summing input “+” of a third adder 41 and as input of a block 42 of pure delay of transfer function e -ds , the output of this delay block being used as a subtracting input “-” of the third adder 41. The third adder 41 then calculates its output from its summing input “+” and its subtracting input “-”. This output is connected as an input to a high-pass filter 51 . Advantageously, the high-pass filter 51 has the transfer function τ 2 s + 1 τ 1 s + 1 ,
Figure imgb0017
where τ 1 is the predetermined time constant of actuator 1 approximated by a first order system and where τ 2 _ = k p k i .
Figure imgb0018

La sortie du filtre 51 passe-haut est connectée à un amplificateur 52 de gain k, où k est le gain statique k (prédéterminé) de l'actionneur 1. The output of the high-pass filter 51 is connected to an amplifier 52 of gain k , where k is the static gain k (predetermined) of the actuator 1.

Le filtre 51 passe-haut et l'amplificateur 52 sont donc dimensionnés à partir du système du premier ordre approximant la fonction de transfert G(s) de l'actionneur 1.The high-pass filter 51 and the amplifier 52 are therefore dimensioned from the first order system approximating the transfer function G (s) of the actuator 1.

La sortie de l'amplificateur 52 correspond alors à un terme de compensation de retard P(s). Cette sortie est utilisée comme entrée soustractrice « - » pour le deuxième additionneur 35. The output of amplifier 52 then corresponds to a delay compensation term P (s). This output is used as a subtracting input “-” for the second adder 35.

Avantageusement, comme exposé précédemment, les variables kp et ki sont préconfigurés lors de la réalisation du système d'asservissement. De même, le gain statique k et la constante de temps τ1 sont des variables prédéterminées d'un système du premier ordre approximant la fonction de transfert G(s) de l'actionneur 1. Ainsi, pour le compensateur 50 de retard pur, la seule grandeur restante à calibrer est la variable τ2 du filtre 51 passe-haut.Advantageously, as explained previously, the variables kp and ki are preconfigured when the servo system is produced. Likewise, the static gain k and the time constant τ 1 are predetermined variables of a first order system approximating the transfer function G (s) of the actuator 1. Thus, for the pure delay compensator 50 , the only remaining quantity to be calibrated is the variable τ 2 of the high-pass filter 51 .

Cette calibration est facilement réalisée en calibrant τ2 à la valeur k p k i .

Figure imgb0019
La réalisation de ce compensateur 50 de retard pur est donc très rapide, facile à mettre en oeuvre, et n'implique pas de complexité en termes de charge de calculs.This calibration is easily carried out by calibrating τ 2 to the value k p k i .
Figure imgb0019
The production of this pure delay compensator 50 is therefore very fast, easy to implement, and does not involve any complexity in terms of computational load.

Avantageusement, grâce aux modes de réalisation précédemment décrits, la calibration des systèmes d'asservissement de positions d'actionneurs se voient simplifiées, ce qui permet d'obtenir un gain de temps lors de leurs mises au point.Advantageously, thanks to the embodiments described above, the calibration of the actuator position control systems is simplified, which allows time to be saved when they are developed.

Avantageusement, les modes de réalisation décrits ci-dessus sont applicables à tout actionneur 1 de la boucle d'air d'un véhicule automobile, par exemple à une vanne/soupape pour la recirculation des gaz d'échappement, ou encore à un papillon d'admission d'air d'un turbocompresseur.Advantageously, the embodiments described above are applicable to any actuator 1 of the air loop of a motor vehicle, for example to a valve / valve for the recirculation of exhaust gases, or even to a butterfly valve d air intake of a turbocharger.

Ces modes de réalisations permettent d'obtenir un meilleur contrôle des actionneurs 1 dans la boucle d'air, et ainsi de limiter des phénomènes d'oscillations dans cette boucle, tels des oscillations de pression de suralimentation, de débits d'air, ou encore de couple moteur. Les performances de régulations du système d'air s'en voient donc améliorées, ainsi que l'agrément de conduite. Par ailleurs, l'amélioration de l'asservissement en position des actionneurs 1 permet de limiter les phénomènes de micro-actionnements dus à leurs oscillations de position. Avantageusement, la durée de vie des actionneurs 1 s'en voit prolongée. De manière générale, la robustesse et la précision des systèmes d'asservissement de positions d'actionneurs 1 se voient améliorées.These embodiments make it possible to obtain better control of the actuators 1 in the air loop, and thus to limit oscillation phenomena in this loop, such as boost pressure oscillations, air flow rates, or else of engine torque. The performance of air system controls is seen therefore improved, as well as driving pleasure. Furthermore, the improvement in the position control of the actuators 1 makes it possible to limit the phenomena of micro-actuations due to their position oscillations. Advantageously, the life of the actuators 1 is extended. In general, the robustness and the precision of actuator position control systems 1 are improved.

Claims (8)

  1. A servo system for controlling the position Y(s) of an actuator (1) to a position setpoint R(s) in a motor vehicle, the actuator (1) having a predetermined transfer function G(s) associated with a pure delay e-ds , s being the Laplace variable, d representing the pure delay, this system being realized via
    - a position control U(s) at input of the transfer function G(s), the position Y(s) of the actuator (1) corresponding to the response of the actuator (1) to the position control U(s);
    - the position control U(s) being developed with the aid of a regulator of the Proportional Derivative type, formed of a proportional action loop and a derived action loop, realized respectively by a first and a second loop (32, 33) of retroaction between the position Y(s) and subtracting inputs of a first adder (31), the regulator realizing a third loop (34) of retroaction between position Y(s) and a subtracting input of a second adder (35), the second adder (35) having as summing input the position setpoint R(s);
    - the position setpoint R(s) being also used as input of an amplifying loop (36), the output of which is connected to a summing input of the first adder (31);
    - the output of the second adder (35) being used as an input of an integral action loop (37), the output of which is connected to a summing input of the first adder (31) so that the first adder calculates at its output the position U(s) as a function of its summing and subtracting inputs;
    this system being characterized in that it includes a pure delay compensator (50) in which
    - the position control U(s) is used as first summing input of a third adder (41) and as input of a pure delay block (42) of transfer function e-ds , the output of this pure delay block (42) being used as subtracting input of the third adder (41), so that the third adder (41) calculates its output from its summing input and its subtracting input:
    - the input of a high-pass filter (51) is connected to the output of the third adder (41);
    - the input of an amplifier (52) is connected to the output of the high-pass filter (51);
    - the output of the amplifier (52) corresponds to a delay compensation term P(s), this output being used as subtracting input by the second adder (35) .
  2. The servo system according to Claim 1, in which the high-pass filter (51) and the amplifier (52) are dimensioned from a first-order system approximating the transfer function G(s) of the actuator (1), this system presenting a static gain k and a time constant t1.
  3. The servo system according to Claim 2, in which the amplifier (52) has as gain the static gain k.
  4. The servo system according to Claims 2 or 3, in which the high-pass filter (51) has as transfer function τ 2 s + 1 τ 1 s + 1 ,
    Figure imgb0024
    where t2 is a parameterizable time constant.
  5. The servo system according to Claim 4, in which the Proportional action loop is associated with a gain kp, the integral action loop (37) is associated with a gain ki, the time constant t2 being calibrated so that τ 2 _ = k p k i .
    Figure imgb0025
  6. The servo system according to any one of the preceding claims, in which the actuator (1) is an actuator of the air loop of a motor vehicle.
  7. A motor vehicle computer implementing a servo system for controlling the position of an actuator, realized according to any one of the preceding claims.
  8. A motor vehicle including the computer of Claim 7.
EP16744823.2A 2015-08-24 2016-07-11 Servo system for controlling the position of an actuator in a motor vehicle Active EP3341604B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1557874A FR3040504B1 (en) 2015-08-24 2015-08-24 ACTUATOR POSITION ASSISTING SYSTEM IN A MOTOR VEHICLE
PCT/FR2016/051769 WO2017032931A1 (en) 2015-08-24 2016-07-11 Servo system for controlling the position of an actuator in a motor vehicle

Publications (2)

Publication Number Publication Date
EP3341604A1 EP3341604A1 (en) 2018-07-04
EP3341604B1 true EP3341604B1 (en) 2020-03-18

Family

ID=55361582

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16744823.2A Active EP3341604B1 (en) 2015-08-24 2016-07-11 Servo system for controlling the position of an actuator in a motor vehicle

Country Status (3)

Country Link
EP (1) EP3341604B1 (en)
FR (1) FR3040504B1 (en)
WO (1) WO2017032931A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3064852A1 (en) * 2017-04-03 2018-10-05 Peugeot Citroen Automobiles Sa CONTROL DEVICE FOR POSITIONING A ROTOR PART OF A BRUSHLESS ACTUATOR
IT202000024010A1 (en) * 2020-10-12 2022-04-12 Enrico Bruna ADJUSTING THE POSITION OF AN EXHAUST GAS RECIRCULATION (EGR) VALVE BY HYBRID CONTROL IN A DIESEL ENGINE
FR3137132B1 (en) 2022-06-27 2024-05-10 Psa Automobiles Sa METHOD FOR ADJUSTING A SERVO TO THE POSITION OF AN ACTUATOR, SUCH AS A MOTOR VEHICLE ACTUATOR

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2749613B1 (en) * 1996-06-11 1998-07-31 Renault WEALTH REGULATION SYSTEM IN AN INTERNAL COMBUSTION ENGINE
DE112006003672A5 (en) * 2006-02-28 2009-04-09 Bayerische Motoren Werke Aktiengesellschaft Method for controlling the fuel-air mixture in an internal combustion engine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
FR3040504B1 (en) 2017-08-25
WO2017032931A1 (en) 2017-03-02
FR3040504A1 (en) 2017-03-03
EP3341604A1 (en) 2018-07-04

Similar Documents

Publication Publication Date Title
EP3314337B1 (en) Method for controlling an energy equivalence factor for a hybrid motor vehicle
EP3341604B1 (en) Servo system for controlling the position of an actuator in a motor vehicle
EP3338147B1 (en) System for controlling a controlled parameter
US7006909B1 (en) Engine delay compensation
FR2868473A1 (en) Internal combustion engine e.g. diesel engine, control process for vehicle, involves adapting upstream control based on output magnitude of supply pressure adjustment, and correcting set point position of actuation unit based on magnitude
EP1614882A2 (en) Apparatus and method to control an internal combustion engine
EP2834508B1 (en) System for controlling the vanes of a variable geometry turbine with learning and linearisation
EP1651880B1 (en) Controlled adaptive device for coupling an engine and a gearbox in a motor vehicle
FR3000854A1 (en) SYSTEM AND CORRESPONDING METHOD FOR CONTROLLING THE ROTATION SPEED OF AN ELECTRIC MOTOR OF A MOTOR VEHICLE
FR2845350A1 (en) METHOD AND DEVICE FOR AUTOMATICALLY CONTROLLING THE PUSH OF AT LEAST ONE AIRCRAFT ENGINE DURING A HORIZONTAL FLIGHT STABILIZED PHASE
EP3580441B1 (en) Method for controlling the speed and the power of a turbine engine propeller
FR2891585A1 (en) Driving motor control correction device for heat engine, has gain adjustment units adjusting gain of correction units based on value of gain parameter selected from group comprising error signal and derivative of set point and error signal
EP3321758B1 (en) A method of controlling an electrical taxiing system
EP3729206B1 (en) Methof of closed-loop controlling a controller with setpoint weighting
EP3228540B1 (en) Method for controlling a taxiing system
FR3012524A1 (en) METHOD AND DEVICE FOR COMPENSATING THE STATIC SHIFTING OF A ACTUATOR ACTUATOR
WO2024003471A1 (en) Method for adjusting a position servo-control of an actuator, such as a motor vehicle actuator
EP2776693B1 (en) Method and system for controlling the actuator of a small-opening and regulated-delivery valve
FR2944561A3 (en) Method for adjusting regulator with state parameter i.e. particle filter/nitrogen oxide trap output gas temperature, in electronic control unit of internal combustion engine of motor vehicle, involves calculating parameters of corrector
EP3808959A1 (en) Method for controlling the supercharging of air in an internal combustion engine
WO2024115846A1 (en) Control method and control device for a hybrid turbine engine
EP2534355B1 (en) Method for adjusting an operating parameter of an engine and control system implementing said method
FR3142512A1 (en) Control method and control device for a hybrid turbomachine
WO2023275448A1 (en) Method for robotically controlling a vehicle powertrain with optimised take-off and shut-down functions
FR3037549A1 (en) METHOD FOR CONTROLLING A HYBRID PROPULSION SYSTEM MINIMIZING POLLUTING EMISSIONS, AND TAKING INTO ACCOUNT THE CHARGE OF THE BATTERY

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180115

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F02D 11/10 20060101ALI20190924BHEP

Ipc: F02D 41/00 20060101ALI20190924BHEP

Ipc: F02D 41/14 20060101AFI20190924BHEP

INTG Intention to grant announced

Effective date: 20191011

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: DE

Ref legal event code: R084

Ref document number: 602016032064

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016032064

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1246169

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200415

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20200505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200618

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200618

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200619

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200718

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: PSA AUTOMOBILES SA

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1246169

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200318

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016032064

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

26N No opposition filed

Effective date: 20201221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200711

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230620

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230724

Year of fee payment: 8

Ref country code: DE

Payment date: 20230620

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602016032064

Country of ref document: DE

Owner name: STELLANTIS AUTO SAS, FR

Free format text: FORMER OWNER: PSA AUTOMOBILES S.A., POISSY, FR