EP3335977B1 - Method and device for swell compensation - Google Patents

Method and device for swell compensation Download PDF

Info

Publication number
EP3335977B1
EP3335977B1 EP17206331.5A EP17206331A EP3335977B1 EP 3335977 B1 EP3335977 B1 EP 3335977B1 EP 17206331 A EP17206331 A EP 17206331A EP 3335977 B1 EP3335977 B1 EP 3335977B1
Authority
EP
European Patent Office
Prior art keywords
relative movement
load
control loop
prediction
predictor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP17206331.5A
Other languages
German (de)
French (fr)
Other versions
EP3335977A1 (en
Inventor
Quang Huy Nguyen
Michael Erz
Daniel Neyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=60661806&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3335977(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3335977A1 publication Critical patent/EP3335977A1/en
Application granted granted Critical
Publication of EP3335977B1 publication Critical patent/EP3335977B1/en
Revoked legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B17/00Vessels parts, details, or accessories, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • B63B27/08Arrangement of ship-based loading or unloading equipment for cargo or passengers of winches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • B63B27/10Arrangement of ship-based loading or unloading equipment for cargo or passengers of cranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/02Devices for facilitating retrieval of floating objects, e.g. for recovering crafts from water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D1/00Rope, cable, or chain winding mechanisms; Capstans
    • B66D1/28Other constructional details
    • B66D1/40Control devices
    • B66D1/48Control devices automatic
    • B66D1/52Control devices automatic for varying rope or cable tension, e.g. when recovering craft from water
    • B66D1/525Control devices automatic for varying rope or cable tension, e.g. when recovering craft from water electrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B17/00Vessels parts, details, or accessories, not otherwise provided for
    • B63B2017/0072Seaway compensators

Definitions

  • the invention relates to a system for active wave compensation. Strictly speaking, such systems do not compensate for the swell but for the wave-induced movement of a floating device (e.g., ship or platform) due to the swell.
  • a floating device e.g., ship or platform
  • the goal of such wave compensation systems is to control a position and / or velocity of a load (e.g., pipeline or gangway).
  • a load e.g., pipeline or gangway.
  • the current state of the art essentially allows the division into passive and active systems.
  • Passive systems use a compliant element (eg, a passive energy store or a hydropneumatically designed spring) which reduces load induced by the waves to a lifting unit of the floating device.
  • a compliant element eg, a passive energy store or a hydropneumatically designed spring
  • the active systems provide an additional actuator or at least a complementary active engagement in the lifting device, whereby they achieve a significantly improved compensation quality by means of suitable control strategies.
  • the actuation may be based on hydraulic cylinders, winches with primary and secondary controlled hydraulic motors or electric motors.
  • a disadvantage of such active regulations is the time delay, which is largely determined by the delay of the closed loop, which by the controller, the characteristics of each installed mechanical components, the dynamics of the entire system and the signal delays due to the measurement system (bus delays, Update times, etc.) is affected.
  • the active system for wave compensation according to the document EP 2 123 588 A1 Therefore, in addition to the measuring device, it has a prediction device which determines a prediction (prediction) of the movement of the floating device for the near future, which is also impressed into the regulation of the lifting device.
  • An algorithm for prediction is used.
  • the object of the invention is to provide a method and a device for improving the performance with a predictive control strategy.
  • the method and the device should be able to be integrated with little effort into existing control systems.
  • the method and the device in contrast to publications of the prior art without change in existing control system to be used (add-on solution).
  • the inventive method for controlling at least one actuator of a fixed - be arranged in particular on the shore - lifting device, the movement of the load to be adapted to the movement of a floating device.
  • the floating device may comprise the lifting device so that the load is to be held stationary - e.g. over the seabed.
  • the second embodiment of the method may e.g. be used on an offshore crane, a crane ship, an offshore gangway, a drilling platform or a drill ship.
  • the floating device also has the lifting device, wherein (different from the second embodiment) the load is to be adapted to the movement of another floating device.
  • the load is to be adapted to the movement of another floating device.
  • an optical measuring technique can be used to detect the relative movement of the two floating devices to each other.
  • the third Embodiment may thus be a ship-to-ship application of the method according to the invention.
  • the inventive method can be developed not only to compensate for a vertical (immersion) movement (Heave) but also for the other five degrees of freedom of movement of the floating device.
  • a vertical (immersion) movement Heave
  • the inventive method can be developed not only to compensate for a vertical (immersion) movement (Heave) but also for the other five degrees of freedom of movement of the floating device.
  • the method comprises the following supplementary step: determination of a dominant frequency of the movement, e.g. the typical Jonswap spectrum for the North Sea.
  • the method is performed with a closed loop.
  • the method has the following additional step: performing an offline transfer function of the control loop.
  • the method has the following additional step: determination of a phase shift of the control loop.
  • the method has the following additional step: determination of a prediction time as a function of the update rate based on the determined phase shift.
  • the method is adaptive and has the following supplementary step: carrying out a feed-forward inversion of the closed-loop control.
  • the performance of the method according to the invention can be further improved.
  • the method has the following additional step: modification of properties of an adaptive controller as a function of the process dynamics.
  • the method has the following additional step: performing an online parameter estimation of the closed-loop control in real time.
  • the execution of the closed loop closed loop parameter estimation is preferably based on an algorithm that performs a stable inversion of an estimated model.
  • the claimed device is for active wave compensation, wherein relative movement between a target position (e.g., the seabed or deck of a floating device) and a load (e.g., a pipeline or gangway) is at least partially compensated.
  • the device has a measuring device for detecting the current relative movement and a predictor used as a predictor for predicting the future relative movement.
  • the predictor is based on a recursive least-squares algorithm.
  • the device In order to achieve the same degree of compensation, components with predictors over the prior art can use less expensive components. Furthermore, the device allows very low integration costs. Finally, the device enables an add-on solution for existing devices.
  • the device according to the invention has a summation element, via which an output signal of the predictor and an output signal of a control element can be added.
  • FIG. 1 shows in a simplified representation of a wave 1 of a sea surface on which a ship 3 floats. Due to the wave 1, the ship 3 executes a movement (heave) h t , which may deviate from the shaft 1, and the in FIG. 1 symbolized by a double arrow.
  • a crane 4 On the ship 3, a crane 4 is mounted, via the winch 6 a load m to the seabed 8 is to be lowered.
  • the winch has a rotational speed ⁇ .
  • the load m has a position z and is lowered at a speed v.
  • the movement h t of the ship 3 is a relative movement h t between a floating device 3 and a target position 8.
  • the movement h t of the vessel is measured by a measuring device (MRU) 10 and used as an input value for estimating the future value h t + 1 .
  • the estimate is based on a recursive least squares (RLS) algorithm.
  • K ⁇ t P t - 1 ⁇ H ⁇ t - 1 ⁇ + H ⁇ t - 1 T P t - 1 H ⁇ t - 1 calculated, where ⁇ (0 ⁇ ⁇ ⁇ 1) of the so-called forgetting factor, and P i are the inverse correlation matrix of the measurement data.
  • ⁇ t H t - H t - 1 T ⁇ ⁇ t - 1 ⁇ certainly.
  • an estimate of the movement or the measured values is calculated at a time t + n .
  • the invention is directed to an extension of an existing AHC system for swell compensation.
  • an existing controller 16 which in the case of shown embodiments is designed as a PID controller, by incorporating future information on movement improved performance allowed. Accordingly, the extended structure is divided into a "prediction of movement” and an "active precontrol".
  • the performance of the system for active wave compensation is significantly determined by the delay of the closed loop 14, which by the controller 16, the characteristics of each installed mechanical components and the signal delays due to the measuring device 10 (bus delays, update times, etc.) being affected.
  • the property of the predictor 12 requires a periodic course of the input variable h t in order to be able to make the most accurate prediction h t + 1 possible. This is given by the characteristic of the waves 1 and the correspondingly also the slower motion h t of the ship 3.
  • an offline transfer function of the closed loop 14 is performed. Furthermore, the phase shift of the closed loop 14 is determined at the known dominant frequency of the wave motion h t (eg in Jonswap spectrum). Based on the determined phase shift, the prediction time is determined as a function of the update rate.
  • the sum of the predicted future movement h t + 1 and a user command of a control element 24, formed via a summer 23, represents the input of the prior art active wave compensation system.
  • the internal structure of the prior art system need not be changed.
  • FIG. 3 A simulation of both embodiments of the method according to the invention and the device according to the invention for active wave compensation combined with the predictor 12 is in FIG. 3 shown.
  • the results for the example ship 3 with representative movement data h t are shown.
  • Four different speeds v of the load m are plotted over time.
  • the dashed curve shows the speed of movement h t of the ship and thus also the speed v of the load m without compensation.
  • the curve 19 shows the speed v of the load m with active swell compensation according to the prior art.
  • Curve 20 shows the speed v of the load m with active wave compensation according to the invention according to the first embodiment with phase shift.
  • Curve 21 shows the speed v of the load m with active wave compensation according to the invention according to the second exemplary embodiment with the adaptive method.
  • the performance can be further improved by means of a feed-forward inversion of the controlled system.
  • a disadvantage of the method described above is the need for an offline phase delay analysis, which is achieved by an extension according to FIG. 4 is solved.
  • An adaptive controller 22 modifies its properties as a function of the process dynamics and the characteristic of the movement h t of the ship 3.
  • the adaptation process requires an additional online parameter estimation by means of a parameter estimator 26 of the closed loop 14 in real time.
  • the parameter estimator 26 is based on an algorithm that performs a stable inversion of the estimated model.
  • the predicted motion information is included in the calculation of the manipulated variable of the adaptive controller.
  • the prediction is performed using a recursive least-squares algorithm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Feedback Control In General (AREA)

Description

Die Erfindung betrifft ein System zur aktiven Wellengangskompensation. Mit derartigen Systemen wird genau genommen nicht der Wellengang kompensiert, sondern die durch die Wellen induzierte Bewegung einer schwimmenden Einrichtung (z.B. Schiff oder Plattform) auf Grund des Wellengangs.The invention relates to a system for active wave compensation. Strictly speaking, such systems do not compensate for the swell but for the wave-induced movement of a floating device (e.g., ship or platform) due to the swell.

Eines der Hauptmerkmale und maßgeblicher störender Faktor bei Marine- und Offshore-Operationen ist die durch Wellen induzierte Bewegung der schwimmenden Einrichtungen. Bei Operationen wie z.B. dem Absetzen einer Last auf dem Meeresgrund/Schiff oder der Verlegung von Unterwasser-Pipelines muss auf ein so genanntes Wetterfenster gewartet werden, in dem ein ruhiger Wellengang vermutet wird, was zu hohen Kosten der Operation führt. Diesbezüglich werden Systeme zur Wellengangskompensation in der Marine- und Offshore-Technik eingesetzt um diese Bewegung zu kompensieren und gegebenenfalls das Wetterfenster bzw. das Operationszeitfenster zu erweitern.One of the main features and significant disturbing factor in marine and offshore operations is the wave induced movement of the floating equipment. For operations such as In the event of landing a load on the seabed / ship or laying underwater pipelines, it is necessary to wait for a so-called weather window in which a calm swell is suspected, resulting in high costs of the operation. In this regard, systems are used for wave compensation in marine and offshore technology to compensate for this movement and, where appropriate, to expand the weather window or the operating time window.

Das Ziel derartiger Systeme zur Wellengangskompensation ist die Regelung einer Position und/oder Geschwindigkeit einer Last (z.B. Pipeline oder Gangway). Der derzeitige Stand der Technik erlaubt im Wesentlichen die Einteilung in passive und aktive Systeme.The goal of such wave compensation systems is to control a position and / or velocity of a load (e.g., pipeline or gangway). The current state of the art essentially allows the division into passive and active systems.

Passive Systeme verwenden ein nachgiebiges Element (z.B. einen passiven Energiespeicher oder eine hydropneumatisch ausgeführte Feder), welches durch den Wellengang induzierte Lasten auf eine Hubeinheit der schwimmenden Einrichtung reduziert. Dies hat den Vorteil eines einfachen und günstigen Aufbaus jedoch mit beschränkter Kompensationsgüte.Passive systems use a compliant element (eg, a passive energy store or a hydropneumatically designed spring) which reduces load induced by the waves to a lifting unit of the floating device. This has the advantage of a simple and inexpensive construction but with limited compensation quality.

Die aktiven Systeme sehen einen zusätzlichen Aktor oder zumindest einen ergänzenden aktiven Eingriff in die Hubvorrichtung vor, wobei sie durch geeignete Regelungsstrategien eine deutlich verbesserte Kompensationsgüte erreichen. Die Aktuierung bzw. der aktive Eingriff kann auf hydraulischen Zylindern, Winden mit primär und sekundär geregelten Hydraulikmotoren oder elektrischen Motoren basieren.The active systems provide an additional actuator or at least a complementary active engagement in the lifting device, whereby they achieve a significantly improved compensation quality by means of suitable control strategies. The actuation may be based on hydraulic cylinders, winches with primary and secondary controlled hydraulic motors or electric motors.

In der Druckschrift EP 1 070 828 A2 ist ein aktives System zur Wellengangskompensation gezeigt. Dazu ist eine Messvorrichtung (Motion Reference Unit, MRU) vorgesehen, die die Bewegung der schwimmenden Einrichtung erfasst, die dann korrigierend in Form einer Vorsteuerung in den Regelkreis eingeprägt wird. Auf Basis des Regelkreises erfolgt eine aktive Manipulation der Aktoren.In the publication EP 1 070 828 A2 an active system for wave compensation is shown. For this purpose, a measuring device (Motion Reference Unit, MRU) is provided, which detects the movement of the floating device, which is then impressed in the control loop in the form of a precontrol. Based on the control loop, an active manipulation of the actuators takes place.

Nachteilig an derartigen aktiven Regelungen ist die zeitliche Verzögerung, die maßgeblich durch den Delay des geschlossenen Regelkreises bestimmt wird, welcher durch den Controller, die Charakteristik der jeweils verbauten mechanischen Komponenten, die Dynamik des Gesamtsystems und die Signalverzögerungen in Folge des Messsystems (Bus-Delays, Update Zeitpunkte, etc.) beeinflusst wird.A disadvantage of such active regulations is the time delay, which is largely determined by the delay of the closed loop, which by the controller, the characteristics of each installed mechanical components, the dynamics of the entire system and the signal delays due to the measurement system (bus delays, Update times, etc.) is affected.

Das aktive System zur Wellengangskompensation gemäß der Druckschrift EP 2 123 588 A1 hat daher neben der Messvorrichtung eine Prognosevorrichtung, die eine Prädiktion (Vorhersage) der Bewegung der schwimmenden Einrichtung für die nahe Zukunft ermittelt, die ebenfalls in die Regelung der Hubvorrichtung eingeprägt wird. Dabei wird ein Algorithmus zur Prädiktion verwendet.The active system for wave compensation according to the document EP 2 123 588 A1 Therefore, in addition to the measuring device, it has a prediction device which determines a prediction (prediction) of the movement of the floating device for the near future, which is also impressed into the regulation of the lifting device. An algorithm for prediction is used.

Die Aufgabe der Erfindung ist die Schaffung eines Verfahrens und einer Vorrichtung zur Verbesserung der Performance mit einer vorausschauenden Regelungsstrategie. Das Verfahren und die Vorrichtung sollen sich mit geringem Aufwand in bestehende Regelsysteme integrieren lassen. Insbesondere sollen das Verfahren und die Vorrichtung im Gegensatz zu Veröffentlichungen des Standes der Technik ohne Veränderung in bestehenden Regelungssystems eingesetzt werden (Add-On Lösung).The object of the invention is to provide a method and a device for improving the performance with a predictive control strategy. The method and the device should be able to be integrated with little effort into existing control systems. In particular, the method and the device, in contrast to publications of the prior art without change in existing control system to be used (add-on solution).

Diese Aufgabe wird gelöst durch ein Verfahren zur aktiven Wellengangskompensation mit den Merkmalen des Patentanspruchs 1 und durch eine Vorrichtung zur aktiven Wellengangskompensation mit den Merkmalen des Patentanspruchs 13.This object is achieved by a method for active wave compensation with the features of patent claim 1 and by an apparatus for active wave compensation with the features of claim 13.

Weitere vorteilhafte Ausgestaltungen der Erfindung sind in den abhängigen Patentansprüchen beschrieben.Further advantageous embodiments of the invention are described in the dependent claims.

Mit dem beanspruchten Verfahren wird eine aktive Wellengangskompensation durchgeführt, in dem eine Relativbewegung zwischen einer Zielposition (z.B. dem Meeresgrund oder einem Deck einer schwimmenden Einrichtung) und einer Last (z.B. einer Pipeline oder einer Gangway) zumindest teilweise kompensiert wird. Das Verfahren weist folgende wiederholt durchgeführte Schritte auf:

  • Messen der aktuellen Relativbewegung und
  • Vorausberechnen der zukünftigen Relativbewegung.
Erfindungsgemäß basiert das Vorausberechnen auf einem Recursive-Least-Squares-Algorithmus.With the claimed method, an active wave compensation is performed in which a relative movement between a target position (eg, the seabed or a deck of a floating device) and a load (eg, a pipeline or a gangway) is at least partially compensated. The method has the following repeated steps:
  • Measuring the current relative movement and
  • Predicting the future relative movement.
According to the invention, the prediction is based on a recursive least-squares algorithm.

Um die gleiche Kompensationsgüte zu erreichen, können bei Verfahren mit Vorausberechnung gegenüber dem Stand der Technik kostengünstigere Komponenten eingesetzt werden. Weiterhin ermöglicht das Verfahren sehr geringe Integrationskosten. Schließlich ermöglicht das Verfahren eine Add-On-Lösung für bestehende Systeme.In order to achieve the same compensation quality, more cost-effective components can be used in methods with advance calculation in comparison with the prior art. Furthermore, the method allows very low integration costs. Finally, the method enables an add-on solution for existing systems.

Gemäß einer ersten Ausführungsform kann das erfindungsgemäße Verfahren zur Regelung zumindest eines Aktors einer ortsfesten - insbesondere am Ufer angeordneten - Hubeinrichtung ausgelegt sein, wobei die Bewegung der Last an die Bewegung einer schwimmenden Einrichtung angepasst werden soll.According to a first embodiment, the inventive method for controlling at least one actuator of a fixed - be arranged in particular on the shore - lifting device, the movement of the load to be adapted to the movement of a floating device.

In einer zweiten bevorzugten Ausführungsform kann die schwimmende Einrichtung die Hubeinrichtung aufweisen, so dass die Last ruhend bzw. ortsfest gehalten werden soll - z.B. über dem Meeresgrund. Die zweite Ausführungsform des Verfahrens kann z.B. an einem Offshorekran, einem Kranschiff, einer Offshore Gangway, einer Bohrpattform oder einem Bohrschiff eingesetzt werden.In a second preferred embodiment, the floating device may comprise the lifting device so that the load is to be held stationary - e.g. over the seabed. The second embodiment of the method may e.g. be used on an offshore crane, a crane ship, an offshore gangway, a drilling platform or a drill ship.

Gemäß einer dritten Ausführungsform weist auch die schwimmende Einrichtung die Hubeinrichtung auf, wobei (abweichend von der zweiten Ausführungsform) die Last an die Bewegung einer weiteren schwimmenden Einrichtung angepasst werden soll. Dabei kann vorzugsweise eine optische Messtechnik eingesetzt werden, um die Relativbewegung der beiden schwimmenden Einrichtungen zueinander zu erfassen. Bei der dritten Ausführungsform kann es sich also um eine Schiff-zu-Schiff-Anwendung des erfindungsgemäßen Verfahrens handeln.According to a third embodiment, the floating device also has the lifting device, wherein (different from the second embodiment) the load is to be adapted to the movement of another floating device. In this case, preferably an optical measuring technique can be used to detect the relative movement of the two floating devices to each other. At the third Embodiment may thus be a ship-to-ship application of the method according to the invention.

Das erfindungsgemäße Verfahren kann nicht nur zur Kompensation einer vertikalen (Tauch-) Bewegung (Heave) sondern auch für die weiteren fünf Freiheitsgrade der Bewegung der schwimmenden Einrichtung weitergebildet sein. Also für lineare Bewegungen entlang der Längsachse und/oder lineare Bewegungen entlang der Querachse und/oder rotatorische Gierbewegungen um die senkrechte Achse und/oder Rollbewegungen um die Längsachse und/oder Nickbewegungen um die Querachse der schwimmenden Einrichtung.The inventive method can be developed not only to compensate for a vertical (immersion) movement (Heave) but also for the other five degrees of freedom of movement of the floating device. Thus, for linear movements along the longitudinal axis and / or linear movements along the transverse axis and / or rotational yawing movements about the vertical axis and / or rolling movements about the longitudinal axis and / or pitching movements about the transverse axis of the floating device.

Vorzugsweise weist das Verfahren folgenden ergänzenden Schritt auf: Ermittlung einer dominierende Frequenz der Bewegung, z.B. das für die Nordsee typische Jonswap Spektrum.Preferably, the method comprises the following supplementary step: determination of a dominant frequency of the movement, e.g. the typical Jonswap spectrum for the North Sea.

Gemäß einem ersten Ausführungsbeispiel wird das Verfahren mit einem geschlossenen Regelkreis durchgeführt.According to a first embodiment, the method is performed with a closed loop.

Vorzugsweise weist das Verfahren folgenden ergänzenden Schritt auf: Durchführung einer offline Übertragungsfunktion des Regelkreises.Preferably, the method has the following additional step: performing an offline transfer function of the control loop.

Vorzugsweise weist das Verfahren folgenden ergänzenden Schritt auf: Bestimmung einer Phasenverschiebung des Regelkreises.Preferably, the method has the following additional step: determination of a phase shift of the control loop.

Vorzugsweise weist das Verfahren folgenden ergänzenden Schritt auf: Bestimmung einer Prädiktionszeit in Abhängigkeit der Update-Rate basierend auf der ermittelten Phasenverschiebung.Preferably, the method has the following additional step: determination of a prediction time as a function of the update rate based on the determined phase shift.

Gemäß einem zweiten Ausführungsbeispiel ist das Verfahren adaptiv und weist folgenden ergänzenden Schritt auf: Durchführung einer Feed-Forward-Inversion des geschlossenen Regelkreises. Damit kann die Performance des erfindungsgemäßen Verfahrens weiter verbessert werden.According to a second embodiment, the method is adaptive and has the following supplementary step: carrying out a feed-forward inversion of the closed-loop control. Thus, the performance of the method according to the invention can be further improved.

Vorzugsweise weist das Verfahren folgenden ergänzenden Schritt auf: Modifizierung von Eigenschaften eines adaptiven Reglers in Abhängigkeit der Prozessdynamik.Preferably, the method has the following additional step: modification of properties of an adaptive controller as a function of the process dynamics.

Vorzugsweise weist das Verfahren folgenden ergänzenden Schritt auf: Durchführung einer online Parameterschätzung des geschlossenen Regelkreises in Echtzeit.Preferably, the method has the following additional step: performing an online parameter estimation of the closed-loop control in real time.

Die Durchführung der online Parameterschätzung des geschlossenen Regelkreises basiert vorzugsweise auf einem Algorithmus, der eine stabile Inversion eines geschätzten Modells vornimmt.The execution of the closed loop closed loop parameter estimation is preferably based on an algorithm that performs a stable inversion of an estimated model.

Die beanspruchte Vorrichtung dient zur aktiven Wellengangskompensation, wobei eine Relativbewegung zwischen einer Zielposition (z.B. dem Meeresgrund oder einem Deck einer schwimmenden Einrichtung) und einer Last (z.B. einer Pipeline oder einer Gangway) zumindest teilweise kompensierbar ist. Dazu hat die Vorrichtung eine Messeinrichtung zur Erfassung der aktuellen Relativbewegung und einen als Prognoseeinrichtung eingesetzten Prädiktor zum Vorausberechnen der zukünftigen Relativbewegung. Erfindungsgemäß basiert der Prädiktor auf einem Recursive-Least-Squares-Algorithmus.The claimed device is for active wave compensation, wherein relative movement between a target position (e.g., the seabed or deck of a floating device) and a load (e.g., a pipeline or gangway) is at least partially compensated. For this purpose, the device has a measuring device for detecting the current relative movement and a predictor used as a predictor for predicting the future relative movement. According to the invention, the predictor is based on a recursive least-squares algorithm.

Um die gleiche Kompensationsgüte zu erreichen, können bei Vorrichtungen mit Prädiktor gegenüber dem Stand der Technik kostengünstigere Komponenten eingesetzt werden. Weiterhin ermöglicht die Vorrichtung sehr geringe Integrationskosten. Schließlich ermöglicht die Vorrichtung eine Add-On-Lösung für bestehende Vorrichtungen.In order to achieve the same degree of compensation, components with predictors over the prior art can use less expensive components. Furthermore, the device allows very low integration costs. Finally, the device enables an add-on solution for existing devices.

Die vorgenannten Weiterbildungen des Verfahrens können auch bevorzugte Weiterbildungen der Vorrichtung sein.The aforementioned developments of the method may also be preferred developments of the device.

Bei einer bevorzugten Weiterbildung hat die erfindungsgemäße Vorrichtung ein Summationsglied, über das ein Ausgangssignal des Prädiktors und ein Ausgangssignal eines Bedienelements addierbar sind.In a preferred embodiment, the device according to the invention has a summation element, via which an output signal of the predictor and an output signal of a control element can be added.

Mehrere Ausführungsbeispiele des erfindungsgemäßen Verfahrens bzw. der erfindungsgemäßen Vorrichtung zur aktiven Wellengangskompensation sind in den Zeichnungen dargestellt. Anhand der Figuren dieser Zeichnungen wird die Erfindung nun näher erläutert.Several embodiments of the method and the device according to the invention for active wave compensation are shown in the drawings. With reference to the figures of these drawings, the invention will now be explained in more detail.

Es zeigen

  • Figur 1 in einer schematischen Darstellung ein Schiff mit einer am Boden abzusetzenden Last mit der erfindungsgemäßen Vorrichtung zur Wellengangskompensation,
  • Figur 2 eine Schaltbild eines ersten Ausführungsbeispiels des erfindungsgemäßen Verfahrens,
  • Figur 3 ein Diagramm mit der Darstellung der Bewegung der Last ohne und mit erfindungsgemäßem Verfahren bzw. ohne und mit erfindungsgemäße Vorrichtung; und
  • Figur 4 eine Schaltbild eines zweiten Ausführungsbeispiels des erfindungsgemäßen Verfahrens.
Show it
  • FIG. 1 in a schematic representation of a ship with a load to be placed on the ground with the device according to the invention for swell compensation,
  • FIG. 2 a circuit diagram of a first embodiment of the method according to the invention,
  • FIG. 3 a diagram showing the movement of the load without and with inventive method or without and with inventive device; and
  • FIG. 4 a circuit diagram of a second embodiment of the method according to the invention.

Figur 1 zeigt in einer vereinfachten Darstellung eine Welle 1 einer Meeresoberfläche, auf der ein Schiff 3 schwimmt. Aufgrund der Welle 1 führt das Schiff 3 eine Bewegung (heave) h t aus, welche von der Welle 1 abweichen kann, und die in Figur 1 mit einem Doppelpfeil symbolisiert ist. FIG. 1 shows in a simplified representation of a wave 1 of a sea surface on which a ship 3 floats. Due to the wave 1, the ship 3 executes a movement (heave) h t , which may deviate from the shaft 1, and the in FIG. 1 symbolized by a double arrow.

Auf dem Schiff 3 ist ein Kran 4 montiert, über dessen Winde 6 eine Last m zum Meeresgrund 8 abgesenkt werden soll. Die Winde hat eine Drehgeschwindigkeit ω. Dabei hat die Last m eine Position z und wird mit einer Geschwindigkeit v abgesenkt.On the ship 3, a crane 4 is mounted, via the winch 6 a load m to the seabed 8 is to be lowered. The winch has a rotational speed ω. The load m has a position z and is lowered at a speed v.

Verallgemeinert ausgedrückt ist die Bewegung h t des Schiffes 3 eine Relativbewegung h t zwischen einer schwimmenden Einrichtung 3 und einer Zielposition 8.Expressed in general terms, the movement h t of the ship 3 is a relative movement h t between a floating device 3 and a target position 8.

Gemäß Figur 2 wird die Bewegung ht des Schiffes zum Zeitpunkt t durch eine Messeinrichtung (MRU) 10 gemessen und als Eingangswert zur Schätzung des zukünftigen Wertes h t+1 verwendet. Die Schätzung basiert auf einem Recursive Least Squares (RLS) Algorithmus.According to FIG. 2 At time t the movement h t of the vessel is measured by a measuring device (MRU) 10 and used as an input value for estimating the future value h t + 1 . The estimate is based on a recursive least squares (RLS) algorithm.

Zur Schätzung wird ein lineares Modell θ h t + 1 = h t T θ t

Figure imgb0001
verwendet, wobei der Messdaten-Vektor h t T
Figure imgb0002
aus N Messungen bis zum Zeitpunkt t besteht, und wobei θ die Koeffizienten sind.The estimation becomes a linear model θ H t + 1 = H t T θ t
Figure imgb0001
used, with the measured data vector H t T
Figure imgb0002
consists of N measurements up to the time t, and where θ the coefficients are.

Zunächst wird der sogenannte Kalman-Verstärkungsvektor K t = P t 1 h t 1 λ + h t 1 T P t 1 h t 1

Figure imgb0003
berechnet, wobei λ (0≤λ≤1) der sogenannte Forgetting Factor und Pi die inverse Korrelationsmatrix der Messdaten sind.First, the so-called Kalman gain vector K t = P t - 1 H t - 1 λ + H t - 1 T P t - 1 H t - 1
Figure imgb0003
calculated, where λ (0≤ λ ≤1) of the so-called forgetting factor, and P i are the inverse correlation matrix of the measurement data.

Der Apriori-Fehler zwischen dem aktuellen Messwert h t und dem geschätzten Wert h t+1 wird anschließend als ε t = h t h t 1 T θ t 1

Figure imgb0004
bestimmt.The apriori error between the current measured value h t and the estimated value h t + 1 is then called ε t = H t - H t - 1 T θ t - 1
Figure imgb0004
certainly.

Die Koeffizienten θt werden anhand der Gleichung θ t = θ t 1 K t ε t

Figure imgb0005
und die inverse Korrelationsmatrix Pt anhand P t = P t 1 K t h t T P t 1 λ
Figure imgb0006
aktualisiert.The coefficients θ t are calculated using the equation θ t = θ t - 1 K t ε t
Figure imgb0005
and the inverse correlation matrix P t P t = P t - 1 - K t H t T P t - 1 λ
Figure imgb0006
updated.

Anschließend wird eine Schätzung der Bewegung bzw. der Messwerte zu einem Zeitpunkt t+n berechnet. Dazu wird iterativ ein neuer Messdaten-Vektor entsprechender Länge erzeugt und mit dem Koeffizienten-Vektor θ t multipliziert h t + n = h t N + n 1 , h t N + n , , h t + n 1 θ t

Figure imgb0007
Subsequently, an estimate of the movement or the measured values is calculated at a time t + n . For this purpose, a new measurement data vector of corresponding length is generated iteratively and with the coefficient vector θ t multiplied H t + n = H t - N + n - 1 . H t - N + n . ... . H t + n - 1 θ t
Figure imgb0007

Die Erfindung richtet sich auf eine Erweiterung eines bestehenden AHC Systems zur Wellengangskompensation. Das bedeutet, dass ein bestehender Regler 16, der bei den gezeigten Ausführungsbeispielen als PID-Regler ausgebildet ist, durch Einbeziehen zukünftiger Informationen zur Bewegung eine verbesserte Performance erlaubt. Dem entsprechend gliedert sich die erweiterte Struktur in eine "Vorhersage der Bewegung" und eine "aktive Vorsteuerung".The invention is directed to an extension of an existing AHC system for swell compensation. This means that an existing controller 16, which in the case of shown embodiments is designed as a PID controller, by incorporating future information on movement improved performance allowed. Accordingly, the extended structure is divided into a "prediction of movement" and an "active precontrol".

Die Performance des Systems zur aktiven Wellengangskompensation wird maßgeblich durch den Delay des geschlossenen Regelkreises 14 bestimmt, welcher durch den Regler 16, die Charakteristik der jeweils verbauten mechanischen Komponenten und die Signalverzögerungen in Folge der Messeinrichtung 10 (Bus-Delays, Update Zeitpunkte, etc.) beeinflusst wird.The performance of the system for active wave compensation is significantly determined by the delay of the closed loop 14, which by the controller 16, the characteristics of each installed mechanical components and the signal delays due to the measuring device 10 (bus delays, update times, etc.) being affected.

Durch den Einsatz eines Prädiktors 12 in der Vorsteuerung kann durch einen geeigneten Prädiktionshorizont eine Kompensation dieser Verzögerungen des geschlossenen Regelkreises 14 vorgenommen werden.By using a predictor 12 in the precontrol compensation of these delays of the closed loop 14 can be made by a suitable prediction horizon.

Die Eigenschaft des Prädiktors 12 bedingt einen periodischen Verlauf der Eingangsgröße h t um einen möglichst genau Vorhersage h t+1 treffen zu können. Dies ist durch die Charakteristik der Wellen 1 und dem entsprechend auch der trägeren Bewegung h t des Schiffes 3 gegeben.The property of the predictor 12 requires a periodic course of the input variable h t in order to be able to make the most accurate prediction h t + 1 possible. This is given by the characteristic of the waves 1 and the correspondingly also the slower motion h t of the ship 3.

Zur Ermittlung der optimalen Prädiktionszeit wird eine offline Übertragungsfunktion des geschlossenen Regelkreises 14 durchgeführt. Des Weiteren wird bei der bekannten dominierenden Frequenz der Wellenbewegung h t (z.B. bei Jonswap Spektrum) die Phasenverschiebung des geschlossenen Regelkreises 14 bestimmt. Basierend auf der ermittelten Phasenverschiebung wird in Abhängigkeit der Update Rate die Prädiktionszeit bestimmt.To determine the optimal prediction time, an offline transfer function of the closed loop 14 is performed. Furthermore, the phase shift of the closed loop 14 is determined at the known dominant frequency of the wave motion h t (eg in Jonswap spectrum). Based on the determined phase shift, the prediction time is determined as a function of the update rate.

Die über ein Summationsglied 23 gebildete Summe der prädiktierten zukünftigen Bewegung h t+1 und eines Benutzerkommandos eines Bedienelements 24 stellt den Eingang des Systems zur aktiven Wellengangskompensation gemäß dem Stand der Technik dar. Die innere Struktur des Systems des Standes der Technik muss nicht geändert werden.The sum of the predicted future movement h t + 1 and a user command of a control element 24, formed via a summer 23, represents the input of the prior art active wave compensation system. The internal structure of the prior art system need not be changed.

Eine Simulation beider Ausführungsbeispiele des erfindungsgemäßen Verfahrens und der erfindungsgemäßen Vorrichtung zur aktiven Wellengangskompensation kombiniert mit dem Prädiktor 12 wird in Figur 3 dargestellt. Es sind die Ergebnisse für das Beispielschiff 3 mit repräsentativen Bewegungsdaten h t gezeigt. Dabei sind vier verschiedene Geschwindigkeiten v der Last m über der Zeit aufgetragen. Die gestrichelte Kurve zeigt die Bewegungsgeschwindigkeit h t des Schiffes und damit auch die Geschwindigkeit v der Last m ohne Kompensation. Weiterhin zeigt die Kurve 19 die Geschwindigkeit v der Last m mit aktiver Wellengangskompensation gemäß dem Stand der Technik. Kurve 20 zeigt die Geschwindigkeit v der Last m mit erfindungsgemäßer aktiver Wellengangskompensation gemäß dem ersten Ausführungsbeispiel mit Phasenverschiebung. Kurve 21 zeigt die Geschwindigkeit v der Last m mit erfindungsgemäßer aktiver Wellengangskompensation gemäß dem zweiten Ausführungsbeispiel mit dem adaptiven Verfahren.A simulation of both embodiments of the method according to the invention and the device according to the invention for active wave compensation combined with the predictor 12 is in FIG. 3 shown. The results for the example ship 3 with representative movement data h t are shown. Four different speeds v of the load m are plotted over time. The dashed curve shows the speed of movement h t of the ship and thus also the speed v of the load m without compensation. Furthermore, the curve 19 shows the speed v of the load m with active swell compensation according to the prior art. Curve 20 shows the speed v of the load m with active wave compensation according to the invention according to the first embodiment with phase shift. Curve 21 shows the speed v of the load m with active wave compensation according to the invention according to the second exemplary embodiment with the adaptive method.

In der Simulation anhand des Beispielschiffes 3 mit repräsentativen Bewegungsdaten h t konnte eine Performanceverbesserung der Kompensation der Schiffsbewegung h t erreicht werden.In the simulation on the basis of the example ship 3 with representative movement data h t a performance improvement of the compensation of the ship movement h t could be achieved.

In Ergänzung zum oben beschriebenen Verfahren kann die Performance mit Hilfe einer Feed-Forward Inversion der Regelstrecke zusätzlich verbessert werden.In addition to the procedure described above, the performance can be further improved by means of a feed-forward inversion of the controlled system.

Ein Nachteil des oben beschriebenen Verfahrens besteht in der Notwendigkeit einer offline Phasenverzögerungsanalyse, welche durch eine Erweiterung gemäß Figur 4 gelöst wird.A disadvantage of the method described above is the need for an offline phase delay analysis, which is achieved by an extension according to FIG. 4 is solved.

Ein adaptiver Regler 22 modifiziert seine Eigenschaften in Abhängigkeit der Prozessdynamik und der Charakteristik der Bewegung h t des Schiffs 3. Der Adaptionsprozess erfordert eine zusätzliche online Parameterschätzung mittels eines Parameter-Schätzers 26 des geschlossenen Regelkreises 14 in Echtzeit. Der Parameter-Schätzer 26 basiert auf einem Algorithmus der eine stabile Inversion des geschätzten Modells vornimmt. Die prädiktierte Bewegungsinformation wird in die Berechnung der Stellgröße des Adaptiv-Controllers miteinbezogen.An adaptive controller 22 modifies its properties as a function of the process dynamics and the characteristic of the movement h t of the ship 3. The adaptation process requires an additional online parameter estimation by means of a parameter estimator 26 of the closed loop 14 in real time. The parameter estimator 26 is based on an algorithm that performs a stable inversion of the estimated model. The predicted motion information is included in the calculation of the manipulated variable of the adaptive controller.

Offenbart sind ein Verfahren und Vorrichtung zur aktiven Wellengangskompensation mit einer Prädiktion bzw. mit einem Prädiktor zur Abschätzung der zukünftigen Relativbewegung zwischen einer Last und einer Zielposition sowie einer adaptiven Regelung. Die Prädiktion erfolgt mit einem Recursive-Least-Squares-Algorithmus.Disclosed are a method and apparatus for active wave compensation with a prediction or with a predictor for estimating the future relative movement between a load and a target position and an adaptive control. The prediction is performed using a recursive least-squares algorithm.

Bezugszeichenreference numeral

11
Wellewave
33
schwimmende Einrichtung/ Schifffloating facility / ship
44
Hubeinrichtung / KranLifting device / crane
66
Windewinch
88th
Zielposition / MeeresgrundTarget position / seabed
1010
Messeinrichtungmeasuring device
1212
Prädiktorpredictor
1414
geschlossener Regelkreisclosed loop
1616
Reglerregulator
1818
Kurve ht Curve h t
1919
Kurve Regelung gemäß Stand der TechnikCurve control according to the prior art
2020
Kurve Regelung mit PhasenverschiebungCurve control with phase shift
2121
Kurve adaptives VerfahrenCurve adaptive method
2222
adaptiver Regleradaptive controller
2323
SummationsgliedSummation member
2424
Bedienelementoperating element
2626
Parameter-SchätzerParameter Estimates
hH tt
aktuelle Relativgeschwindigkeit/ Bewegungcurrent relative speed / movement
hH t+1t + 1
zukünftige Relativgeschwindigkeit/ Bewegungfuture relative speed / movement
mm
Lastload
zz
Position der LastPosition of the load
vv
Geschwindigkeit der LastSpeed of the load
ωω
Drehgeschwindigkeit der WindeTurning speed of the winch

Claims (15)

  1. Method for active swell compensation, which is used to at least partially compensate for a relative movement (h t) between a target position (8) and a load (m), having the steps of:
    - measuring the current relative movement (ht), and
    - predicting the future relative movement (ht+1), characterized in that the prediction is based on a recursive least squares algorithm.
  2. Method according to Claim 1, wherein the target position (8) is at rest or is arranged on a floating device, and wherein the load (m) is coupled to a lifting device (4) of a floating device (3).
  3. Method according to Claim 2, wherein the measurement and the prediction are carried out for one of the six degrees of freedom of the at least one floating device (3) or for any desired combination of the degrees of freedom.
  4. Method according to one of the preceding claims, having the step of:
    - determining a dominant frequency of the relative movement (ht).
  5. Method according to one of the preceding claims, which is carried out with a closed control loop (14) .
  6. Method according to Claim 5, having the step of:
    - carrying out an offline calculation of the transfer function of the control loop (14).
  7. Method according to Claim 5 or 6, having the step of:
    - determining the phase shift of the control loop (14) .
  8. Method according to Claim 7, having the step of:
    - determining the prediction time in dependence on the update rate on the basis of the phase shift.
  9. Method according to Claim 5, having the step of:
    - carrying out a feed forward inversion of the closed control loop.
  10. Method according to Claim 9, having the step of:
    - modifying properties of an adaptive controller (22) in dependence on the relative movement (ht) and the process dynamics.
  11. Method according to Claim 9 or 10, having the step of:
    - carrying out an online parameter estimation of the closed control loop (14) in real time.
  12. Method according to Claim 11, wherein the step of:
    - carrying out the online parameter estimation is based on an algorithm which carries out a stable inversion of the estimated model.
  13. Apparatus for active swell compensation, which can be used to at least partially compensate for a relative movement (ht) between a target position (8) and a load (m), wherein the apparatus has a measuring device (10) for capturing the current relative movement (ht) and a predictor (12) for predicting the future relative movement (ht+1), characterized in that the predictor (12) is based on a recursive least squares algorithm.
  14. Apparatus according to Claim 13, which is designed to carry out the method according to one of Claims 2 to 12.
  15. Apparatus according to Claim 13 or 14, having a summation element (23) which can be used to add an output signal from the predictor (12) and an output signal from an operating element (24).
EP17206331.5A 2016-12-15 2017-12-11 Method and device for swell compensation Revoked EP3335977B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016225093.0A DE102016225093A1 (en) 2016-12-15 2016-12-15 Method and device for wave compensation

Publications (2)

Publication Number Publication Date
EP3335977A1 EP3335977A1 (en) 2018-06-20
EP3335977B1 true EP3335977B1 (en) 2019-06-19

Family

ID=60661806

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17206331.5A Revoked EP3335977B1 (en) 2016-12-15 2017-12-11 Method and device for swell compensation

Country Status (3)

Country Link
EP (1) EP3335977B1 (en)
CN (1) CN108216489A (en)
DE (1) DE102016225093A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108877372B (en) * 2018-06-29 2024-02-23 山东大学 Experimental device for active-passive wave compensation
DE102019216366A1 (en) * 2019-10-24 2021-04-29 Robert Bosch Gmbh System and procedure
CN114933256B (en) * 2022-05-31 2023-08-08 三一汽车起重机械有限公司 Winch starting control method, device, equipment and crane
CN115180084A (en) * 2022-08-03 2022-10-14 苏州海希夫智控科技有限公司 Wave compensation anti-swing method for active ship

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2123588A1 (en) 2008-05-21 2009-11-25 Liebherr-Werk Nenzing GmbH Crane control with active swell sequence

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6216789B1 (en) 1999-07-19 2001-04-17 Schlumberger Technology Corporation Heave compensated wireline logging winch system and method of use
WO2006033165A1 (en) * 2004-09-24 2006-03-30 Mitsubishi Denki Kabushiki Kaisha Armature movement detection apparatus and armature position estimation apparatus for an elevator brake
CN103318776B (en) * 2012-06-28 2016-01-20 上海振华重工(集团)股份有限公司 Active heave heave compensation control system and control method
DE102014224204A1 (en) * 2014-11-27 2016-06-02 Robert Bosch Gmbh Method and device for guiding a load according to a target absolute trajectory specification by means of a vehicle, which is exposed to a fluid movement of a fluid

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2123588A1 (en) 2008-05-21 2009-11-25 Liebherr-Werk Nenzing GmbH Crane control with active swell sequence

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
A.H. SAYED ; T. KAILATH: "A state-space approach to adaptive RLS filtering", IEEE SIGNAL PROCESSING MAGAZINE., IEEE SERVICE CENTER, PISCATAWAY, NJ., US, vol. 11, no. 3, 1 July 1994 (1994-07-01), US, pages 18 - 60, XP011423150, ISSN: 1053-5888, DOI: 10.1109/79.295229
D. P. MANDIC ET AL.: "On the Intrinsic Relationship Between the Least Mean Square and Kalman Filters [Lecture Notes", IEEE SIGNAL PROCESSING MAGAZINE, vol. 32, no. 6, November 2015 (2015-11-01), pages 117 - 122, XP011586926, DOI: 10.1109/MSP.2015.2461733
GODHAVN J.-M.: "Adaptive tuning of heave filter in motion sensor", OCEANS '98 CONFERENCE PROCEEDINGS NICE, FRANCE 28 SEPT.-1 OCT. 1998, NEW YORK, NY, USA,IEEE, US, vol. 1, 28 September 1998 (1998-09-28) - 1 October 1998 (1998-10-01), US, pages 174 - 178, XP010311769, ISBN: 978-0-7803-5045-8, DOI: 10.1109/OCEANS.1998.725731
SEBASTIAN KÜCHLER: "Aktive Seegangskompensation mit beobachtergestützter Prognose der vertikalen Schiffsbewegung", INSTITUT FÜR SYSTEMDYNAMIK DER UNIVERSITÄT STUTTGART, vol. 11, 7 May 2012 (2012-05-07)

Also Published As

Publication number Publication date
EP3335977A1 (en) 2018-06-20
DE102016225093A1 (en) 2018-06-21
CN108216489A (en) 2018-06-29

Similar Documents

Publication Publication Date Title
EP3335977B1 (en) Method and device for swell compensation
DE102008024513B4 (en) Crane control with active coast sequence
DE102014201815B4 (en) Measurement of measured quantities and/or sampling under water
EP2636632B1 (en) Crane controls with drive restriction
EP2636636B1 (en) Crane controls with division of a kinematically limited value of the hoisting gear
DE102012004914A1 (en) Crane control with rope power mode
DE102016012756A1 (en) A servo control system having a function for automatically setting a learning control unit
EP2435998A1 (en) Method for the computer-supported control of a ship
DE2245166C3 (en) Automatic arrangement for dynamic maintenance of the position and for controlling a watercraft or underwater vehicle
EP3746850B1 (en) Method for ascertaining a time characteristic of a measured variable, prediction system, actuator control system, method for training the actuator control system, training system, computer program and machine-readable storage medium
EP2947035A1 (en) Method for determining the load on a working machine and working machine, in particular a crane
DE69632823T2 (en) DIPPED BODY AND METHOD FOR REGULATING THE DIVE POSITION OF THE SAME
CN105446136B (en) Ship course intelligent controller based on incomplete recurrence support dynamic neural network
Fujii et al. Invention of automatic movement and dynamic positioning control method of unmanned surface vehicle for core sampling
DE102015214549B3 (en) Underwater measurement and / or sampling arrangement and method for compensating vertical movement of the array relative to a surface of a volume of water
DE102015209470A1 (en) Method and device for forecasting a position of a watercraft
DE69205432T2 (en) PORTABLE STATION FOR MEASURING AND REGULATING THE MAGNETIC SIGNATURE OF A WATER VEHICLE.
EP3816756B1 (en) System and method for controlling a relativ movement
EP3265839B1 (en) Method for calculating a confidence echo signal that is exempt from multipath propagation effects and for determining a distance and/or a direction to an echo source and device and vehicle
DE102014224204A1 (en) Method and device for guiding a load according to a target absolute trajectory specification by means of a vehicle, which is exposed to a fluid movement of a fluid
DE102017200392A1 (en) Watercraft with a ship's crane
DE1431318C3 (en) Device for dynamic anchoring of a floating body, in particular an oil rig
EP0768237B1 (en) method and device to control the hovering of submerged watercraft
Cheng Predictor displays--theory development and application to towed submersibles
DE102019204391A1 (en) Method for controlling an autonomous underwater vehicle without an inertial navigation system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181220

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190305

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017001584

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1145167

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190715

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20190619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190920

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190919

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191019

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502017001584

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

26 Opposition filed

Opponent name: LIEBHERR-WERK NENZING GMBH

Effective date: 20200316

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ROBERT BOSCH GMBH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG2D Information on lapse in contracting state deleted

Ref country code: IS

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191211

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191211

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20171211

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20211220

Year of fee payment: 5

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20211217

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220224

Year of fee payment: 5

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211211

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502017001584

Country of ref document: DE

Owner name: VAN HALTEREN TECHNOLOGIES BOXTEL B.V., NL

Free format text: FORMER OWNER: ROBERT BOSCH GMBH, 70469 STUTTGART, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211211

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

REG Reference to a national code

Ref country code: DE

Ref legal event code: R103

Ref document number: 502017001584

Country of ref document: DE

Ref country code: DE

Ref legal event code: R064

Ref document number: 502017001584

Country of ref document: DE

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FI

Ref legal event code: MGE

27W Patent revoked

Effective date: 20221201

REG Reference to a national code

Ref country code: AT

Ref legal event code: MA03

Ref document number: 1145167

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221201