EP3334519B1 - Device and method for dispersing at least one substance in a fluid - Google Patents

Device and method for dispersing at least one substance in a fluid Download PDF

Info

Publication number
EP3334519B1
EP3334519B1 EP16762959.1A EP16762959A EP3334519B1 EP 3334519 B1 EP3334519 B1 EP 3334519B1 EP 16762959 A EP16762959 A EP 16762959A EP 3334519 B1 EP3334519 B1 EP 3334519B1
Authority
EP
European Patent Office
Prior art keywords
rotor
substance
dispersed
fluid
feed line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16762959.1A
Other languages
German (de)
French (fr)
Other versions
EP3334519A1 (en
Inventor
Dominik Kastl
Markus Nichterlein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Netzsch Feinmahltechnik GmbH
Original Assignee
Netzsch Feinmahltechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Netzsch Feinmahltechnik GmbH filed Critical Netzsch Feinmahltechnik GmbH
Priority to PL16762959T priority Critical patent/PL3334519T3/en
Publication of EP3334519A1 publication Critical patent/EP3334519A1/en
Application granted granted Critical
Publication of EP3334519B1 publication Critical patent/EP3334519B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/53Mixing liquids with solids using driven stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/41Emulsifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/41Emulsifying
    • B01F23/4105Methods of emulsifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/56Mixing liquids with solids by introducing solids in liquids, e.g. dispersing or dissolving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/60Pump mixers, i.e. mixing within a pump
    • B01F25/64Pump mixers, i.e. mixing within a pump of the centrifugal-pump type, i.e. turbo-mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/60Pump mixers, i.e. mixing within a pump
    • B01F25/64Pump mixers, i.e. mixing within a pump of the centrifugal-pump type, i.e. turbo-mixers
    • B01F25/642Pump mixers, i.e. mixing within a pump of the centrifugal-pump type, i.e. turbo-mixers consisting of a stator-rotor system with intermeshing teeth or cages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/71825Feed mechanisms characterised by the means for feeding the components to the mixer using means for feeding one phase surrounded by another phase without mixing during the feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F2025/91Direction of flow or arrangement of feed and discharge openings
    • B01F2025/911Axial flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F2025/91Direction of flow or arrangement of feed and discharge openings
    • B01F2025/912Radial flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F2025/91Direction of flow or arrangement of feed and discharge openings
    • B01F2025/919Direction of flow or arrangement of feed and discharge openings characterised by the disposition of the feed and discharge openings
    • B01F2025/9191Direction of flow or arrangement of feed and discharge openings characterised by the disposition of the feed and discharge openings characterised by the arrangement of the feed openings for one or more flows, e.g. for the mainflow and the flow of an additional component

Definitions

  • the present invention relates to an apparatus and a method for dispersing at least one substance in a fluid.
  • the invention relates to a device for dispersing a substance in a fluid, in particular in a suitable liquid.
  • Dispersion is understood to mean the mixing of at least two substances that do not or hardly dissolve in one another or that combine chemically with one another.
  • one substance disperse phase
  • another substance continuous phase
  • the disperse phase is also liquid, while in the case of a suspension solid particles are finely distributed in a liquid.
  • a rotor is moved at a high peripheral speed. This rotation causes a suction that sucks the medium into the rotor and presses it out through the openings, teeth or the like of the stator, whereby the disperse phase is dispersed in the continuous phase.
  • DE 4118870 A1 describes a device for wetting and dispersing powders in liquids. In the case of low concentrations, the powder substances are entered in a single pass. At high concentrations, work is carried out in circulation until the final concentration is reached.
  • This device uses a classic rotor-stator system that is subject to high wear.
  • the built-in stator creates a flow resistance that limits the pumping action of the device.
  • DE 3002429 C2 discloses a device for mixing at least one substance with a liquid.
  • the substances to be mixed in are introduced into a pipe surrounding the rotor shaft via lateral connecting pipes.
  • the liquid enters an annular space between the stator and the tube surrounding the rotor shaft at the open-top end of the stator, reaches the blades of the rotor and then exits again at the lower open end of the stator.
  • the substances to be dispersed are introduced through the connecting pipes below the level of the liquid. It is possible to mix the substances to be mixed in below the liquid level in such a way that they do not come into contact with the surrounding atmosphere before mixing.
  • grinding media can also be used in the first process area in this machine. However, this leads to a flow resistance which negatively affects the pumping effect. The use of grinding media inside the machine also leads to increased wear, in particular on the cutting device.
  • the EP2676725 describes a device for mixing, in particular for dispersing.
  • This comprises a housing, a separating device and a rotor unit.
  • the separating device divides the housing into a first process area and a second process area.
  • a first section of the rotor unit is arranged in the first process area and a second section of the rotor unit is arranged in the second process area.
  • the materials to be mixed are fed to the first process area at a distance from the rotor unit. As a result, there is a risk of the powder feed being contaminated by liquid or a liquid-powder mixture.
  • the DE2004143 discloses an apparatus for the production of emulsions and suspensions in the form of a centrifugal homogenizer. This uses a rotor-stator system in a multi-row design.
  • a multi-part structure usually means increased maintenance costs. In addition, more parts can wear out and have to be replaced accordingly, which leads to increased costs.
  • the powder intake pipe and the pipe that feeds the liquid each end at the end face of the rotor, whereby the gap between the mouth of the inlet pipes and the rotor can be adjusted and thus changed.
  • the US 2006/0268657 A1 describes an apparatus and a method for mixing a solid with a liquid.
  • a rotor is provided in the housing, which is composed of several rotor sections.
  • the first rotor section faces a pulse conveying device and is arranged in the solids supply space.
  • the first rotor section comprises a pretreatment head for the coarse comminution of the powder agglomerates fed in.
  • the second rotor section has a plurality of atomizing knives extending perpendicularly to the rotor axis A for fine atomizing of the previously comminuted powder agglomerates.
  • the third rotor section comprises a plurality of conveyor webs.
  • Liquid is introduced into the acceleration chamber via a supply line and a tangentially arranged inlet nozzle, which liquid is set in a rotary movement in the acceleration chamber and accelerated to a predetermined speed.
  • the liquid flows at a constant rotational speed into the mixing space, where it is mixed with the solid particles.
  • the powder particles are transported by the centrifugal movement resulting from the rotary movement in the direction of the liquid layer flowing along the housing wall.
  • the NL 39146 C describes a method and an apparatus for producing fire-fighting foam.
  • a liquid ring pump with an eccentric is disclosed here.
  • a centrifugal pump is provided in front of the liquid ring pump in order to draw in extinguishing water from a storage tank.
  • An impeller with radially directed paddles is arranged in the housing. The foam-forming liquid is fed into the interior of the housing via the feed line and water is introduced into the interior of the housing via the nozzle, from where it is conveyed radially by means of the impeller.
  • the U.S. 3,503,846 A discloses an apparatus for treating pulp pastes with oxidizing reagents.
  • An impeller is provided inside the housing of the device.
  • the impeller is sunk upwards and connects to a tapered, pointed part.
  • the pointed part comprises a large number of spiral blades, which ensure that the high-consistency material sinks evenly into the chamber of the rotor and that the pressed paste masses and agglomerates are roughly broken up for the first time.
  • the rotor includes a plurality of centrifugal blades as well on the recessed part Ledges. Additional blades are provided on the outer edge of the disk, which complete the centrifugal effect of the air volume flow and the particles in suspension in it when it passes through the outlet.
  • the mouths of the inlet passages for the reagents and steam are arranged and oriented in such a way that the supplied reagents and vapors are supplied directly to the action of the centrifugal blades.
  • the U.S. 3,606,270 A discloses a power mixer for continuously mixing powders or other particulate materials with a liquid.
  • the power mixer includes a housing with an impeller having curved impeller blades.
  • the housing further comprises an axial inlet extension with an adjoining tube.
  • a feed tube for particulate material is provided in the tube.
  • Liquid inlets are also provided. The liquid and material can then be mixed by means of the impeller in a mixing zone a. Rotation of the impeller moves the mixed material towards the outlet pipes.
  • the object of the invention is to provide an improved device for dispersing at least one substance in a fluid, in particular a device for dispersing at least one powdery substance in a liquid.
  • the device should preferably be designed to be more compact and thus more space-saving than devices known from the prior art, and the device should also be of a technically simple design and thus be inexpensive to manufacture and require little maintenance.
  • the invention relates to a device for dispersing at least one substance in a fluid.
  • a device for dispersing at least one substance in a fluid.
  • Such a device comprises a process housing with a rotor, a fluid feed, a feed line for the at least one dispersing substance with at least one outlet opening and a product outlet.
  • the rotor is operated, for example, via an electric motor drive which is arranged outside the process housing.
  • the rotor is arranged on a drive shaft which, for example, is guided through one of the housing walls of the process housing with a mechanical seal and sealed and is rotatably mounted by means of a bearing.
  • the rotor is designed in such a way that an axial conveyance of a supplied fluid can be generated with the rotor at least in some areas. Furthermore, a radial conveyance of the supplied fluid can be generated with the rotor at least in some areas.
  • the rotor preferably comprises at least one first means for generating the at least regionally axial conveyance and at least one second means for generating the at least regionally radial conveying of the supplied fluid.
  • the areas of axial conveyance and radial conveyance do not overlap, that is, a first area is provided in which predominantly or completely axial conveyance takes place and a second area is provided in the predominantly or completely radial funding takes place. If necessary, an intermediate area can exist in which both axial and radial conveyance takes place. Embodiments are therefore also conceivable in which the areas of the axial and radial conveyance at least partially overlap.
  • the supplied fluid is predominantly conveyed axially in a first region. Furthermore, a slight radial conveyance already takes place in this first area, which turns into a completely radial conveyance of the fluid in the direction of the product outlet of the device.
  • a preferred embodiment provides that the feed line for the substance to be dispersed is at least partially enclosed by the rotor.
  • the at least one outlet opening of the supply line is assigned to a region of the rotor in which the fluid is predominantly conveyed axially.
  • the rotor preferably has guide structures that generate the axial conveying effect of the rotor.
  • the guide structures are designed in particular in such a way that, on the one hand, they represent the at least one first means for generating the at least regionally axial conveyance and, on the other hand, they form the at least one second means for generating the at least regionally radial conveyance.
  • the rotor has a widening cross section, in particular the cross section of the rotor widens on the drive side, that is, in the direction of the rotor side facing away from the feed line for the substance to be dispersed.
  • the axial conveyance of the fluid in the area of the at least one outlet opening changes into a radial conveying effect as the rotor cross-section increases.
  • the rotation of the rotor generated by the drive means that the fluid is set into rotation.
  • the guide structures are formed on the side of the rotor facing the feed line for the substance to be dispersed.
  • the rotor has a massive rotor core, the cross section of which - as already described - widens at least in some areas in the direction of the product outlet.
  • At least one of the guide structures is extended beyond a solid core of the rotor in the axial direction in the direction of the feed line for the substance to be dispersed.
  • a plurality of guide structures is preferably extended beyond a solid core of the rotor in the axial direction in the direction of the feed line for the substance to be dispersed.
  • the at least one outlet opening of the feed line for the substance to be dispersed is at least partially enclosed by the at least one elongated guide structure, so that the substance to be dispersed is released from the feed line within structural elements of the rotor.
  • the number of elongated conductive structures is variable in relation to the number of total conductive structures.
  • a rotor can have such a high density of conductive structures that it is sufficient for the functionality of the conductive structures if only every second conductive structure has an extension beyond the rotor core.
  • the feed line for the substance to be dispersed is in particular arranged in such a way that the at least one outlet opening for the substance to be dispersed is at least partially enclosed by the elongated guide structures outside the solid rotor core.
  • the rotor has a plurality of guide structures which are formed in the area of the rotor surface. It is It is conceivable to extend only one guide structure beyond the rotor core and to design the extension in such a way that it at least partially or largely all-encompasses the outlet opening for the substance to be dispersed. For example, the extension of one conductive structure could be guided helically around the longitudinal axis of the feed line for the substance to be dispersed.
  • the guide structures are designed as a receptacle for the feed line for the substance to be dispersed.
  • the guide structures have a central recess in the area of their extension, which is designed to correspond to the feed line for the substance to be dispersed.
  • the guide structures are aligned coaxially to the axis of rotation of the rotor in the area of their extension beyond the solid rotor core.
  • the extension of the guide structures in particular forms the first means for generating the at least regionally axial conveyance.
  • the guide structures in the area of the massive rotor core are curved.
  • the curved sub-area of the guide structures in particular forms the second means for generating the at least regionally radial conveyance.
  • the curvature of the guide structures results in a high outlet pressure and a good conveying effect.
  • the curved guide structures support the radial conveyance when the rotor rotates.
  • the elongated guide structures have the effect that an axial conveyance of the fluid towards the massive rotor core or in the direction of the product outlet is achieved already in the area of the at least one outlet opening, although it is arranged outside the solid rotor core.
  • the rotation of the rotor also has centrifugal forces that prevent fluid from getting inside.
  • the centrifugal forces prevent fluid from being able to penetrate into the receiving area between the elongated guide structures in which the at least one outlet opening is arranged.
  • the feed line for the substance to be dispersed has a first longitudinal axis.
  • the feed line for the substance to be dispersed is a pipe with a formed first longitudinal axis.
  • the rotor is mounted rotatably about an axis of rotation, for example the axis of rotation is formed by the drive shaft.
  • the longitudinal axis of the feed line for the substance to be dispersed and the axis of rotation of the rotor can preferably be aligned coaxially or parallel to one another.
  • the outlet opening of the feed line for the substance to be dispersed can be arranged in alignment with the longitudinal axis of the feed line for the substance to be dispersed and the axis of rotation of the rotor.
  • the feed line for the substance to be dispersed is arranged at an angle to the axis of rotation of the rotor.
  • the feed line for the substance to be dispersed ends in the center of the rotor.
  • the feed line for the substance to be dispersed which is angled to the rotor axis of rotation, is also arranged in this embodiment in such a way that the at least one outlet opening of the feed line for the substance to be dispersed is at least partially enclosed by the elongated guide structures outside the solid rotor core. This prevents fluid from entering the feed line for the substance to be dispersed. Instead, the fluid is diverted to the outside via the centrifugal forces that occur due to the rotation of the rotor, directly via the guide structures of the rotor.
  • the recess formed by the elongated guide structures must be open. This leads to the fact that in the lower area there is a greater distance between the outlet opening of the feed line for the substance to be dispersed and the rotor, while in the upper area the desired small distance between the outlet opening of the feed line and the elongated guide structures of the rotor results.
  • the lower, increased distance is not a problem, however, since the fluid does not tend to flow into the supply line from below.
  • an essential advantage of this further embodiment with an angled arrangement of the supply line is that the fluid does not enter the supply line for the closed, especially when the device is switched off dispersing substance can flow in.
  • the fluid supply is arranged largely orthogonally to the supply line for the substance to be dispersed.
  • the fluid supply can have a second longitudinal axis.
  • the fluid supply is designed as a tube with a second longitudinal axis.
  • the fluid feed is arranged on the process housing at a distance from the rotor, in particular on the side of the feed line for the substance to be dispersed, so that the filled fluid flows around the feed line for the substance to be dispersed at least in some areas.
  • the fluid supply is arranged largely at an angle to the supply line for the substance to be dispersed, in particular at an angle between 0 degrees and 90 degrees.
  • the fluid is directed outwards from the center of the rotor via the guide structures of the rotor and due to the centrifugal forces that occur when the rotor rotates, so that the fluid cannot reach the central area in which the at least one outlet opening of the feed line for the to dispersing substance is arranged. In particular, the fluid thus does not enter the area of the axis of rotation of the rotor.
  • the feed line for the substance to be dispersed can be adjusted axially, in particular the feed line for the substance to be dispersed can be moved axially and / or parallel to the axis of rotation of the rotor relative to the process housing along its longitudinal axis.
  • the immersion depth of an end area of the feed line for the substance to be dispersed into the elongated guide structures of the rotor and thus the distance between the at least the end area of the feed line for the substance to be dispersed and the solid core of the rotor, which includes the at least one outlet opening, and the solid core of the rotor can added substance can be changed.
  • a radial distance is preferably formed between the elongated guide structures of the rotor and the feed line for the substance to be dispersed.
  • Distance is necessary so that the substance can emerge from the at least one outlet opening and pass through between the guide structures into the fluid.
  • a gap is formed between the feed line for the substance to be dispersed and the rotor in the axial direction through which the substance passes radially into the fluid.
  • the rotor has a plurality of guide structures, only some of the guide structures having axial extensions as first means for generating the at least regionally axial conveyance.
  • the rotor has an even number of guide structures, only every second guide structure being extended axially beyond the solid rotor core. This can be particularly useful when there is a high density of conductive structures on the rotor core. In particular, this prevents the extensions from forming such a tight ring around the axis of rotation that a passage of the substance from the supply line into the fluid could be hindered.
  • the feed line for the substance to be dispersed can have an increased diameter in the region of the at least one outlet opening, for example in the form of a crank, which serves as an additional deflecting element. This also ensures that no fluid can get into and / or to the at least one outlet opening of the feed line.
  • the at least one outlet opening does not have to be designed as an open end of the feed line for the substance to be dispersed.
  • the feed line for the substance to be dispersed is formed by a tube, the end of which is closed in the direction of the solid rotor core between the guide structures and which has a plurality of lateral openings in this end area as outlet openings for the substance in the radial direction .
  • the substance is also conveyed outwards by the centrifugal forces, that is, in the direction of the outer rotor edge. In doing so, the substance is in the fluid dispersed. This takes place in particular on the outer edge area of the rotor in an interspace between the rotating rotor and the static process housing.
  • the inner diameter of the feed line for the substance to be dispersed is variable and can thus be adapted to the requirements of the feed line for the substance to be dispersed.
  • the delivery rate and the flow rate can be adjusted.
  • format parts reducing the cross section can be pushed into the feed line for the substance to be dispersed in order to vary the diameter and thus the cross-sectional area of the feed line for the substance to be dispersed.
  • the variable setting takes place, for example, by using additional inner tubes with smaller diameters for the powder feed tube.
  • the inner tubes can for example consist of PTFE or another suitable plastic.
  • the rotor and feed tube are exchanged, whereby, for example, several different sizes of rotor and powder feed tube can be available for selection as format parts.
  • the first longitudinal axis of the feed line for the substance to be dispersed is oriented horizontally and the second longitudinal axis of the fluid feed is arranged vertically.
  • the fluid is supplied from above.
  • the fluid enters the process housing via the fluid supply and is captured by the rotor, which accelerates the fluid in the axial and radial directions. This creates a pumping action which pumps the fluid through the product outlet into a container.
  • the high pumping effect creates a negative pressure in the process housing.
  • suction is created due to the negative pressure in the process housing.
  • the substance exits via the at least one outlet opening arranged between the elongated guide structures and merges radially into the fluid.
  • the resulting dispersion or suspension is discharged by the rotor from the process housing via the product outlet. Due to the narrow gap between the conductive structures and the feed line for the substance to be dispersed the fluid is prevented by centrifugal forces from flowing into the feed line for the substance to be dispersed.
  • the substance to be dispersed can also be fed in gravimetrically.
  • the feed line for the substance to be dispersed is positioned vertically or at an angle less than or equal to 70 ° to the vertical.
  • the invention further relates to a method for dispersing at least one substance in a fluid, in particular in a liquid, by means of a device comprising a process housing with rotor, a fluid supply, a feed line for the at least one substance to be dispersed with an outlet opening, and a product outlet .
  • the rotor brings about an axial conveyance of a supplied fluid, at least in some areas. Furthermore, the rotor brings about a radial conveyance of the supplied fluid, at least in some areas.
  • the method can comprise one or more features and / or properties of the device described above.
  • the device and the method are suitable for dispersing a substance in a fluid, in particular in a liquid.
  • a powdery solid largely without the aid of mechanical forces such as those generated, for example, by a classic rotor-stator system or by the use of grinding media .
  • mechanical forces physical effects are used in the device or in the process, for example pressure differences and the associated expansion and compression of air contained in the powder.
  • the device is more compact than conventionally known devices. Since the device has a technically simpler structure than known devices, it can be produced more cost-effectively.
  • the technically simplified structure facilitates cleaning and maintenance of the device. The simplified cleaning makes the device particularly interesting for small and medium-sized product batches and frequent product changes.
  • the device does not use a classic rotor-stator principle to disperse the substance to be dispersed in a fluid.
  • a lower shear of the product is advantageous here.
  • the device and the method are distinguished by a lower energy input, as a result of which the temperature rise is also lower than in the case of conventionally known devices.
  • the device is less prone to failure and / or less prone to wear.
  • the device is less sensitive to foreign bodies contained in the powdery substance to be dispersed or in the fluid.
  • FIG. 1 shows a schematic cross section of a dispersion device 1 and 1 according to the invention
  • Figure 2 shows a perspective view of a dispersion device 1 according to the invention.
  • the dispersion device 1 is used in particular to disperse a powdery substance P in a fluid F, in particular a liquid, and to produce a dispersion D in the process.
  • the dispersion device 1 comprises a drive motor (not shown), a bearing 9 in which the drive shaft 2 is mounted and a coupling lantern with an internal shaft coupling and drive motor (not shown) for power transmission from the motor shaft to the drive shaft 2.
  • the drive shaft 2 is used for the drive of the rotor 3.
  • the dispersion device 1 comprises a rotating bearing of the drive shaft 2, which is guided through a mechanical seal 4 into a process housing 5.
  • a rotor 3 and a product outlet 8 for discharging the product, in particular the dispersion D, are arranged in the process housing 5 in which the dispersion takes place.
  • the process housing 5 is also assigned a supply line for the powdery substance P to be dispersed, in particular a powder supply 6 for supplying powder P, and also a fluid supply 7 for supplying fluid F (cf. Figure 2 ).
  • Figure 3 shows a perspective view and Figure 4 shows a schematic sectional illustration of a process housing 5 with powder feed 6, fluid feed 7 and product outlet 8.
  • Figures 5 and 6 show different representations of an embodiment of the rotor 3.
  • the rotor 3 is rotatable about an axis of rotation R and has a solid rotor core 10.
  • the rotor 3 has a cross-sectional area Q which increases at least in regions towards the drive side. In other words, the cross-sectional area Q of the rotor 3 decreases in the direction of the powder supply 6.
  • the rotor 3 has a first cross-sectional area Q1 in an area adjacent to the powder supply 6, which is smaller than a second cross-sectional area Q2 in an area of the rotor 3 close to the drive (compare in particular Figure 4 ).
  • Guide structures 11 are arranged on the rotor core 10, which guide the fluid F or the powder P in a directional manner.
  • Each guide structure 11 essentially comprises two sub-areas 12, 13, the first sub-area 12 being arranged and attached to the solid rotor core 10 and the second sub-area 13 representing an axial extension 14 of the guide structure 11 beyond the solid rotor core 10.
  • the guide structures 11 are inclined in the axial direction in the area of the extensions 14 so that they convey in particular axially.
  • the guide structures 11 in the first sub-area 12 are additionally curved backwards in order to achieve a high outlet pressure and a good conveying effect.
  • the extensions 14 of the guide structures 11 are cut out in the area of the axis of rotation R of the rotor 3 and form an axial opening 15.
  • This opening 15 serves in particular as a receptacle 16 for an end area 20 of the powder feed 6 (cf. Figures 1 and 4th ).
  • the at least one powder outlet opening 21 of the powder feed 6 is enclosed by the guide structures 11 of the rotor 3 (cf. Figures 1 and 4th ).
  • Rotation of the rotor 3 about the axis of rotation R generates centrifugal forces which lead to the fluid F being conducted to the outside and thus being kept away from the powder outlet opening 21.
  • penetration of the fluid F into the powder feeder 6 can be effectively prevented.
  • the immersion area EB (compare Figures 1 and 4th ), in which the powder feed 6 dips at least in some areas into the rotor 3, in particular the dipping area EB, in which the powder feed 6 dips into the extensions 14 of the guide structures of the rotor 3, thus also the exit area AB, in which the powder P from the at least a powder outlet opening 21 of the powder feed 6 exits and in particular passes over into the fluid F.
  • the rotor 3 is preferably shaped in such a way that an axial conveying effect of the fluid F in the direction of the solid rotor core 10 or in the direction of the product outlet 8 is achieved already in the area around the end area 20 of the powder feed 6.
  • an axial conveying effect of the fluid F in the direction of the solid rotor core 10 or in the direction of the product outlet 8 is achieved already in the area around the end area 20 of the powder feed 6.
  • this axial conveyance changes into a radial conveying effect, up to an area in which the fluid F is only conveyed radially.
  • the fluid F is set in rotation by the rotation of the rotor 3 about the axis of rotation R.
  • the powder feed 6 can be closed in the end region 20 and have lateral openings as powder outlet openings 21, via which the powder preferably emerges from the powder feed 6 in the radial direction.
  • the powder feed 6 can be axially displaced along a longitudinal axis L6.
  • the longitudinal axis L6 can preferably be aligned coaxially or parallel to the axis of rotation R of the rotor 2.
  • Via the axial displacement of the powder feed 6, in particular the depth that the end region 20 of the powder feed 6 dips into the extensions 14 of the guide structures 11 can be set.
  • a spacing is formed between the extensions 14 of the guide structures 11 and the powder feed 6. This distance ensures, in particular, an undisturbed rotation of the rotor 3 around the powder feed 6 and furthermore enables the unimpeded exit of the powder P from the at least one powder outlet opening 21.
  • the radial distance between the extensions 14 of the guide structures 11 and the powder feed 6 is preferably between 0.1 mm and 10 mm. It is clear to a person skilled in the art that the spacing is especially tailored to the size of the overall device or to the substances and / or products to be processed.
  • a distance A between rotor 3 and process housing 5 is between 0.1 mm and 10 mm.
  • the powder feed 6 can have an enlarged outer diameter in the end region 20, in particular in the region of the at least one powder outlet opening 21.
  • the increased diameter serves as an additional deflecting element which additionally prevents fluid F from penetrating into the area of the powder outlet opening 21.
  • the supply of the fluid F, the powder P or a product suspension or dispersion D takes place via relatively large pipe cross-sections of the powder supply 6 and fluid supply 7. This in particular keeps flow resistances low and products up to medium viscosities can be processed without a pump. If, for example, a product is passed through in the circuit in order to add powder P successively until the desired final concentration is reached, then the addition of the product already containing powder usually takes place via the feed line of the fluid feed 7.
  • a valve or the like can be installed at the product inlet of the fluid feed 7 to throttle the flow for products with low viscosities (not shown).
  • the supply of fluid F can take place as a function of the respective fluid F or circulating dispersion product D with or without a pump.
  • the powder feed 6, which is usually regulated by a valve (not shown) is opened, suction occurs in the process housing 5 due to the negative pressure.
  • the powder P is sucked in in the direction of the rotor 3.
  • the resulting dispersion D is discharged by the rotor 3 from the process housing 5 via the product outlet 8.
  • the narrow gap between the conductive structures 11 and the powder feed 6 prevents the fluid from flowing into the powder feed 6 by means of centrifugal forces.
  • valves on the fluid feed 7 or on the powder feed 6 are provided in particular to either open the feed completely or to close it completely in order to prevent the dispersion device 1 from flooding.
  • the dispersion device 1 can be used without additional machines. All that is required is a product or batch container (not shown) and a suitable powder feed system (not shown). Conventionally known systems are suitable as the powder feed system, for example a suction lance, a bag feed station, a BigBag feed station, a silo, etc. With the dispersion device 1, powder P can be sucked in and finely dispersed in fluids F, in particular in liquids.
  • Figure 7 represents a first working mode AM1 and Figure 8 shows a second working mode AM2.
  • the powder feed 6 is open.
  • a valve (not shown) regulating the powder feed 6 is open.
  • the fluid F or the dispersion product D consisting of powder P dispersed in the fluid F circulates between a product or batch container and the dispersion device 1 (in Figures 7 and 8 only the process housing 5 with the supply and discharge lines 6, 7, 8 is shown in each case, with powder P being continuously supplied, in particular sucked in, via the powder supply 6.
  • the powder can be fed in via a funnel, a BigBag station, a silo, a suction lance or the like, for example.
  • a second working mode AM2 according to Figure 8 the powder supply 6 is closed by means of a valve (not shown). Instead, the dispersion product D circulates continuously between the product or batch container and the process housing 5 of the dispersion device 1. A strong negative pressure arises in the process housing 5, which leads to (micro) cavitation within the dispersion D. Furthermore, the dispersion product D, that is to say the powder P dispersed in the fluid F, is subjected to a shear effect between the conductive structures 11 and the process housing 5 (cf. Figures 1 and 4th ).
  • a further valve (not shown) can be arranged at the product outlet 8 or the product flow is throttled with a corresponding pipeline.
  • Figure 9 shows a side view of a further embodiment of a dispersion device 1 according to the invention.
  • Figure 10 shows a sectional illustration through the dispersion device 1 according to FIG Figure 9 .
  • Figure 11 shows a schematic sectional view and Figure 13 FIG. 13 shows a perspective illustration of the process housing of the embodiment according to FIG Figure 9 .
  • Figure 12 provides a detail section Figure 11 dar and Figure 14
  • FIG. 11 shows a perspective illustration of a rotor with mounting of the embodiment of the dispersion device 1 according to FIG Figure 9 .
  • Identical components are provided with the same reference numbers as in Figures 1 to 8 , to the description of which reference is hereby made.
  • the dispersion device 1 comprises a drive motor (not shown), a bearing 9 in which the drive shaft 2 is mounted and a coupling lantern with an internal shaft coupling.
  • the dispersion device 1 further comprises a drive motor (not shown) for transmitting power from the motor shaft to the drive shaft 2, which is used to drive the rotor 3.
  • a rotating one Support of the drive shaft 2 is provided, which is guided through a mechanical seal 4 into a process housing 5.
  • a powdery substance P is dispersed in a fluid F
  • a rotor 3 and a product outlet 8 for discharging the product, in particular the dispersion D are arranged.
  • the process housing 5 is also assigned a supply line for the powdery substance P to be dispersed, in particular a powder supply 6 *, and also a fluid supply 7 * for supplying fluid F.
  • the longitudinal axis L6 * of the powder feed 6 * is arranged at an angle ⁇ to the axis of rotation R of the rotor 3.
  • the powdery substance P is thus fed to the rotor 3 obliquely from above to below.
  • the powder feed 6 * ends analogously to the powder feed 6 according to FIG Figures 1 and 4th in the center of the rotor 3, in particular, the end region 20 of the powder feed 6 * with the powder outlet opening 21 dips between the axial extensions 14 * of the guide structures 11 of the rotor 3.
  • the extensions 14 * of the guide structures 11 are also cut out in the area of the axis of rotation R of the rotor 3 and form an axial opening 15 *.
  • This opening 15 * serves in particular as a receptacle 16 * for an end region 20 of the powder feed 6 * (compare in particular Figures 12 and 14th ).
  • the at least one powder outlet opening 21 of the powder feed 6 * is enclosed within the receptacle 16 * by the extensions 14 * of the guide structures 11 of the rotor 3 (cf. Figure 10 to 12 ).
  • the immersion area EB in which the powder feed 6 * dips into the rotor 3 at least in some areas, in particular the immersion area EB, in which the powder feed 6 * dips into the extensions 14 * of the guide structures 11 of the rotor 3, thus also corresponds to the exit area AB, in which the powder P emerges from the at least one powder outlet opening 21 of the powder feed 6 * and in particular passes into the fluid F.
  • the powdery substance P is thus supplied in the center of the rotor 3, as in particular in the enlarged detailed illustration of FIG Figure 12 can be clearly seen.
  • the rotor blades or guide structures 11 enclose the end region 20 of the powder feed 6 * and thereby effectively prevent fluid F from getting into the powder feed 6 *.
  • the fluid F is centrifuged to the outside through the guide structures 11, in particular via the first partial area 12 of the guide structures 11.
  • the special design of the powder feed 6 *, which dips into the rotor blades or guide structures 11, thus forms a dynamic barrier between the powdery substance P and the fluid F.
  • the end area 20 of the powder feed 6 * can be cut off in the entry area EB, in which it dips into the rotor 3, such that the end area 20 forms a surface perpendicular to the axis of rotation R of the rotor 3.
  • the end region 20 can be cut off at any desired angle to the longitudinal axis L6 * of the powder feed 6 *.
  • the angle a at which the powder feed 6 * is arranged to the axis of rotation R of the rotor 3 can be between 0 ° and 90 °.
  • the distance between the powder feed 6 * and the rotor 3 can be between 0.5 mm and 100 mm.
  • the coverage of the rotor blades or the coverage of the extensions 14 * of the guide structures 11 beyond the powder feed 6 *, in particular the enclosure of the powder feed 6 * by the extensions 14 * of the guide structures 11, can preferably be between 1mm and 100mm.
  • the recess between the extensions 14 * which forms the opening 15 * or receptacle 16 *, is designed to be open in order to enable an unhindered rotation of the rotor 3 (cf. Figure 12 ).
  • the first distance A1 is greater than the second distance A2.
  • the lower area is not a problem, since no fluid F flows into the powder feed 6 * from below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)
  • Centrifugal Separators (AREA)

Description

Die vorliegende Erfindung betrifft eine Vorrichtung und ein Verfahren zum Dispergieren mindestens einer Substanz in einem Fluid.The present invention relates to an apparatus and a method for dispersing at least one substance in a fluid.

Stand der TechnikState of the art

Die Erfindung bezieht sich auf eine Vorrichtung zum Dispergieren einer Substanz in einem Fluid, insbesondere in einer geeigneten Flüssigkeit.The invention relates to a device for dispersing a substance in a fluid, in particular in a suitable liquid.

Unter Dispergieren versteht man das Mischen von mindestens zwei Stoffen, die sich nicht oder kaum ineinander lösen oder chemisch miteinander verbinden. Beim Dispergieren wird ein Stoff (disperse Phase) in einen anderen Stoff (kontinuierliche Phase) verteilt, wobei eine Emulsion oder eine Suspension entsteht. Bei einer Emulsion ist die disperse Phase ebenfalls flüssig, während bei einer Suspension Feststoffpartikel in einer Flüssigkeit fein verteilt vorliegen.Dispersion is understood to mean the mixing of at least two substances that do not or hardly dissolve in one another or that combine chemically with one another. When dispersing, one substance (disperse phase) is divided into another substance (continuous phase), creating an emulsion or a suspension. In the case of an emulsion, the disperse phase is also liquid, while in the case of a suspension solid particles are finely distributed in a liquid.

Viele Vorrichtungen zum Dispergieren basieren auf dem sogenannten Rotor-Stator-Prinzip. Dabei wird ein Rotor mit einer hohen Umfangsgeschwindigkeit bewegt. Diese Rotation bewirkt einen Sog, der das Medium in den Rotor saugt und durch die Öffnungen, Zähne oder ähnlichem des Stators nach außen presst, wobei die disperse Phase in der kontinuierlichen Phase dispergiert.Many devices for dispersing are based on the so-called rotor-stator principle. A rotor is moved at a high peripheral speed. This rotation causes a suction that sucks the medium into the rotor and presses it out through the openings, teeth or the like of the stator, whereby the disperse phase is dispersed in the continuous phase.

DE 4118870 A1 beschreibt eine Vorrichtung zum Benetzen und Dispergieren von Pulvern in Flüssigkeiten. Die Eintragung der Pulverstoffe erfolgt bei niedrigen Konzentrationen in einmaligem Durchlauf. Bei hohen Konzentrationen wird im Umlauf bis zur Erreichung der Endkonzentration gearbeitet. Diese Vorrichtung nutzt ein klassisches Rotor-Stator-System, das einem hohen Verschleiß unterliegt. Zusätzlich wird durch den eingebauten Stator ein Strömungswiderstand erzeugt, der die Pumpwirkung der Vorrichtung beschränkt. DE 4118870 A1 describes a device for wetting and dispersing powders in liquids. In the case of low concentrations, the powder substances are entered in a single pass. At high concentrations, work is carried out in circulation until the final concentration is reached. This device uses a classic rotor-stator system that is subject to high wear. In addition, the built-in stator creates a flow resistance that limits the pumping action of the device.

DE 3002429 C2 offenbart eine Vorrichtung zum Vermischen mindestens eines Stoffes mit einer Flüssigkeit. Die einzumischenden Stoffe werden über seitliche Anschlussrohre in ein die Rotorwelle umgebendes Rohr eingeleitet. Die Flüssigkeit tritt am oben offenen Ende des Stators in einem zwischen dem Stator und dem die Rotorwelle umgebenden Rohr vorhandenen Ringraum ein, gelangt zu den Flügeln des Rotors und tritt dann wieder am unteren offenen Ende des Stators aus. Die zu dispergierenden Stoffe werden durch Einführung über die Anschlussrohre unter das Niveau der Flüssigkeit eingegeben. Dabei ist es möglich, die einzumischenden Stoffe derart unter dem Flüssigkeitsniveau einzumischen, dass diese vor dem Einmischen keinen Kontakt mit der sie umgebenden Atmosphäre haben. Gemäß Beschreibung können in dieser Maschine auch Mahlkörper im ersten Prozessbereich verwendet werden. Dies führt jedoch zu einem Strömungswiderstand, der die Pumpwirkung negativ beeinflusst. Auch kommt es durch Verwendung von Mahlkörper innerhalb der Maschine zu einem erhöhten Verschleiß, insbesondere an der Trennvorrichtung. DE 3002429 C2 discloses a device for mixing at least one substance with a liquid. The substances to be mixed in are introduced into a pipe surrounding the rotor shaft via lateral connecting pipes. The liquid enters an annular space between the stator and the tube surrounding the rotor shaft at the open-top end of the stator, reaches the blades of the rotor and then exits again at the lower open end of the stator. The substances to be dispersed are introduced through the connecting pipes below the level of the liquid. It is possible to mix the substances to be mixed in below the liquid level in such a way that they do not come into contact with the surrounding atmosphere before mixing. According to the description, grinding media can also be used in the first process area in this machine. However, this leads to a flow resistance which negatively affects the pumping effect. The use of grinding media inside the machine also leads to increased wear, in particular on the cutting device.

Die EP2676725 beschreibt eine Vorrichtung zum Mischen, insbesondere zum Dispergieren. Diese umfasst ein Gehäuse, eine Trennvorrichtung und eine Rotoreinheit. Die Trennvorrichtung unterteilt das Gehäuse in einen ersten Prozessbereich und einen zweiten Prozessbereich. Ein erster Abschnitt der Rotoreinheit ist im ersten Prozessbereich angeordnet und ein zweiter Abschnitt der Rotoreinheit ist im zweiten Prozessbereich angeordnet. Die Zuführung der zu vermischenden Stoffe zum ersten Prozessbereich erfolgt beabstandet zu der Rotoreinheit. Dadurch besteht die Gefahr einer Verunreinigung der Pulverzuführung durch Flüssigkeit oder Flüssigkeits- Pulver- Gemisch.The EP2676725 describes a device for mixing, in particular for dispersing. This comprises a housing, a separating device and a rotor unit. The separating device divides the housing into a first process area and a second process area. A first section of the rotor unit is arranged in the first process area and a second section of the rotor unit is arranged in the second process area. The materials to be mixed are fed to the first process area at a distance from the rotor unit. As a result, there is a risk of the powder feed being contaminated by liquid or a liquid-powder mixture.

Die DE2004143 offenbart eine Vorrichtung für die Herstellung von Emulsionen und Suspensionen in Form einer Kreiselhomogenisiermaschine. Die nutzt ein Rotor-Stator-System in mehrreihiger Ausführung. Ein mehrteiliger Aufbau bedeutet in der Regel einen erhöhten Wartungsaufwand. Zudem können mehr Teile verschleißen, die dementsprechend ausgetauscht werden müssen, was zu erhöhten Kosten führt. Das Pulvereinsaugrohr und das die Flüssigkeit zuführende Rohr enden jeweils an der Stirnseite des Rotors, wobei der Spalt zwischen der Mündung der Zulaufrohre und dem Rotor eingestellt und somit verändert werden kann.The DE2004143 discloses an apparatus for the production of emulsions and suspensions in the form of a centrifugal homogenizer. This uses a rotor-stator system in a multi-row design. A multi-part structure usually means increased maintenance costs. In addition, more parts can wear out and have to be replaced accordingly, which leads to increased costs. The powder intake pipe and the pipe that feeds the liquid each end at the end face of the rotor, whereby the gap between the mouth of the inlet pipes and the rotor can be adjusted and thus changed.

Die US 2006/0268657 A1 beschreibt eine Vorrichtung und ein Verfahren zum Vermischen eines Feststoffs mit einer Flüssigkeit. Im Gehäuse ist ein Rotor vorgesehen, welcher sich aus mehreren Rotorabschnitten zusammensetzt. Der erste Rotorabschnitt ist einer Impulsförderungseinrichtung zugewandt und im Feststoff-Zufuhrraum angeordnet. Der erste Rotorabschnitt umfasst einen Vorbehandlungskopf zur groben Zerkleinerung der zugeführten Pulveragglomerate. Der zweite Rotorabschnitt weist mehrere sich senkrecht zur Rotorachse A erstreckende Zerstäubungsmesser zur Feinzerstäubung der zuvor zerkleinerten Pulveragglomerate auf. Der dritte Rotorabschnitt umfasst eine Mehrzahl von Förderstegen. Über eine Zuführleitung und einer tangential angeordneten Einlassdüse wird Flüssigkeit in den Beschleunigungsraum eingeleitet werden, welche im Beschleunigungsraum in eine Drehbewegung versetzt und auf eine vorbestimmte Geschwindigkeit beschleunigt wird. Im Beschleunigungsraum strömt die Flüssigkeit mit einer gleichbleibenden Drehgeschwindigkeit in den Mischraum, wo sie mit dem Feststoffteilchen gemischt wird. Die Pulverteilchen werden durch die infolge der Drehbewegung entstandenen Zentrifugalbewegung in Richtung der entlang der Gehäusewandung strömenden Flüssigkeitsschicht transportiert.The US 2006/0268657 A1 describes an apparatus and a method for mixing a solid with a liquid. A rotor is provided in the housing, which is composed of several rotor sections. The first rotor section faces a pulse conveying device and is arranged in the solids supply space. The first rotor section comprises a pretreatment head for the coarse comminution of the powder agglomerates fed in. The second rotor section has a plurality of atomizing knives extending perpendicularly to the rotor axis A for fine atomizing of the previously comminuted powder agglomerates. The third rotor section comprises a plurality of conveyor webs. Liquid is introduced into the acceleration chamber via a supply line and a tangentially arranged inlet nozzle, which liquid is set in a rotary movement in the acceleration chamber and accelerated to a predetermined speed. In the acceleration space, the liquid flows at a constant rotational speed into the mixing space, where it is mixed with the solid particles. The powder particles are transported by the centrifugal movement resulting from the rotary movement in the direction of the liquid layer flowing along the housing wall.

Die NL 39146 C beschreibt ein Verfahren und eine Vorrichtung zur Herstellung von Feuerlöschschaum. Hierbei ist eine Flüssigkeitsringpumpe mit einem Exzenter offenbart. Um Löschwasser aus einem Vorratsbehälter anzusaugen, ist vor der Flüssigkeitsringpumpe eine Kreiselpumpe vorgesehen. Im Gehäuse ist ein Laufrad mit radial gerichteten Paddeln angeordnet. Die schaumbildende Flüssigkeit wird über die Zuleitung in das Innere des Gehäuses zugeführt und über die Düse wird Wasser in den Innenraum des Gehäuses eingeleitet, von wo aus sie mittels des Laufrades radial gefördert wird.The NL 39146 C describes a method and an apparatus for producing fire-fighting foam. A liquid ring pump with an eccentric is disclosed here. A centrifugal pump is provided in front of the liquid ring pump in order to draw in extinguishing water from a storage tank. An impeller with radially directed paddles is arranged in the housing. The foam-forming liquid is fed into the interior of the housing via the feed line and water is introduced into the interior of the housing via the nozzle, from where it is conveyed radially by means of the impeller.

Die US 3 503 846 A offenbart eine Vorrichtung zur Behandlung von Zellstoffpasten mit oxydierenden Reagenzien. Im Inneren des Gehäuses der Vorrichtung ist ein Laufrad vorgesehen. Das Laufrad ist nach oben eingesenkt und schließt an ein verjüngtes, zugespitztes Teil an. Das zugespitzte Teil umfasst eine Vielzahl an Spiralschaufeln, welche ein gleichmäßiges Sinken des hochkonsistenten Materials in die Kammer des Rotors gewährleisten und eine erstmalige grobe Zertrümmerung der ausgepressten Pastenmassen und Agglomerate durchführen. Der Rotor umfasst am eingesenkten Teil eine Vielzahl an Zentrifugalschaufeln sowie Vorsprünge. Am Außenrand der Scheibe sind zusätzliche Schaufeln vorgesehen, die die Zentrifugalwirkung des Luftvolumenstroms und der in diesem beim Durchgang durch den Ausgang in Suspension befindlichen Teilchen vervollständigen. Die Mündungen der Eintrittsdurchgänge für die Reagenzien und Dampf sind derart angeordnet und ausgerichtet, dass die zugeführten Reagenzien und Dämpfe unmittelbar der Wirkung der Zentrifugalschaufeln zugeführt werden.The U.S. 3,503,846 A discloses an apparatus for treating pulp pastes with oxidizing reagents. An impeller is provided inside the housing of the device. The impeller is sunk upwards and connects to a tapered, pointed part. The pointed part comprises a large number of spiral blades, which ensure that the high-consistency material sinks evenly into the chamber of the rotor and that the pressed paste masses and agglomerates are roughly broken up for the first time. The rotor includes a plurality of centrifugal blades as well on the recessed part Ledges. Additional blades are provided on the outer edge of the disk, which complete the centrifugal effect of the air volume flow and the particles in suspension in it when it passes through the outlet. The mouths of the inlet passages for the reagents and steam are arranged and oriented in such a way that the supplied reagents and vapors are supplied directly to the action of the centrifugal blades.

Die US 3 606 270 A offenbart einen Kraftmischer zum kontinuierlichen Mischen von Pulvern oder anderen teilchenförmigen Materialien mit einer Flüssigkeit. Der Kraftmischer umfasst ein Gehäuse mit einem Laufrad, welches gekrümmte Laufradschaufeln aufweist. Das Gehäuse umfasst weiter einen axialen Einlassfortsatz mit einem sich daran anschließenden Rohr. Im Rohr ist ein Zufuhrrohr für teilchenförmiges Material vorgesehen. Weiter sind Flüssigkeitseinlässe vorgesehen. Flüssigkeit und Material können anschließend mittels des Laufrades in einer Mischzone a vermischt werden. Durch Rotation des Laufrads wird das vermischte Material in Richtung zu den Auslassrohren bewegt.The U.S. 3,606,270 A discloses a power mixer for continuously mixing powders or other particulate materials with a liquid. The power mixer includes a housing with an impeller having curved impeller blades. The housing further comprises an axial inlet extension with an adjoining tube. A feed tube for particulate material is provided in the tube. Liquid inlets are also provided. The liquid and material can then be mixed by means of the impeller in a mixing zone a. Rotation of the impeller moves the mixed material towards the outlet pipes.

Aufgabe der Erfindung ist es, eine verbesserte Vorrichtung zur Dispersion von mindestens einer Substanz in einem Fluid, insbesondere eine Vorrichtung zur Dispersion von mindestens einer pulverigen Substanz in einer Flüssigkeit, bereitzustellen. Vorzugsweise soll die Vorrichtung kompakter und somit platzsparender ausgeführt sein als aus dem Stand der Technik bekannte Vorrichtungen, weiterhin soll die Vorrichtung technisch einfach aufgebaut und somit kostengünstig herstellbar sein und einen geringen Wartungsbedarf haben.The object of the invention is to provide an improved device for dispersing at least one substance in a fluid, in particular a device for dispersing at least one powdery substance in a liquid. The device should preferably be designed to be more compact and thus more space-saving than devices known from the prior art, and the device should also be of a technically simple design and thus be inexpensive to manufacture and require little maintenance.

Die obige Aufgabe wird durch eine Vorrichtung und ein Verfahren zum Dispergieren einer Substanz in einem Fluid gelöst, die die Merkmale in den Patentansprüchen 1 und 11 umfassen. Weitere vorteilhafte Ausgestaltungen werden durch die Unteransprüche beschrieben.The above object is achieved by an apparatus and a method for dispersing a substance in a fluid which comprise the features in claims 1 and 11. Further advantageous refinements are described by the subclaims.

Beschreibungdescription

Die Erfindung bezieht sich auf eine Vorrichtung zum Dispergieren mindestens einer Substanz in einem Fluid. Eine solche Vorrichtung umfasst ein Prozessgehäuse mit einem Rotor, eine Fluidzuführung, eine Zuleitung für die mindestens eine zu dispergierende Substanz mit mindestens einer Austrittsöffnung, sowie einen Produktauslass. Der Rotor wird beispielsweise über einen elektromotorischen Antrieb betrieben, der außerhalb des Prozessgehäuses angeordnet ist. Insbesondere ist der Rotor an einer Antriebswelle angeordnet, die beispielsweise mit einer Gleitringdichtung durch eine der Gehäusewände des Prozessgehäuses durchgeführt und abgedichtet und mittels einer Lagerung drehbar gelagert ist.The invention relates to a device for dispersing at least one substance in a fluid. Such a device comprises a process housing with a rotor, a fluid feed, a feed line for the at least one dispersing substance with at least one outlet opening and a product outlet. The rotor is operated, for example, via an electric motor drive which is arranged outside the process housing. In particular, the rotor is arranged on a drive shaft which, for example, is guided through one of the housing walls of the process housing with a mechanical seal and sealed and is rotatably mounted by means of a bearing.

Der Rotor ist derart ausgebildet, dass mit dem Rotor zumindest bereichsweise eine axiale Förderung eines zugeführten Fluides erzeugbar ist. Weiterhin ist mit dem Rotor zumindest bereichsweise eine radiale Förderung des zugeführten Fluides erzeugbar.The rotor is designed in such a way that an axial conveyance of a supplied fluid can be generated with the rotor at least in some areas. Furthermore, a radial conveyance of the supplied fluid can be generated with the rotor at least in some areas.

Vorzugsweise umfasst der Rotor mindestens ein erstes Mittel zur Erzeugung der zumindest bereichsweisen axialen Förderung und mindestens ein zweites Mittel zur Erzeugung der zumindest bereichsweisen radialen Förderung des zugeführten Fluides.The rotor preferably comprises at least one first means for generating the at least regionally axial conveyance and at least one second means for generating the at least regionally radial conveying of the supplied fluid.

Gemäß einer Ausführungsform der Erfindung ist vorgesehen, dass sich die Bereiche der axialen Förderung und der radialen Förderung nicht überlappen, das heißt, es ist ein erster Bereich vorgesehen, in dem überwiegend oder vollständig eine axiale Förderung erfolgt und es ist ein zweiter Bereich vorgesehen, in dem überwiegend oder vollständig eine radiale Förderung erfolgt. Gegebenenfalls kann ein Zwischenbereich existieren, indem sowohl eine axiale als auch eine radiale Förderung erfolgt. Es sind also auch Ausführungsformen denkbar, bei denen sich die Bereiche der axialen und der radialen Förderung zumindest teilweise überlappen.According to one embodiment of the invention it is provided that the areas of axial conveyance and radial conveyance do not overlap, that is, a first area is provided in which predominantly or completely axial conveyance takes place and a second area is provided in the predominantly or completely radial funding takes place. If necessary, an intermediate area can exist in which both axial and radial conveyance takes place. Embodiments are therefore also conceivable in which the areas of the axial and radial conveyance at least partially overlap.

Gemäß einer Ausführungsform der Erfindung erfolgt in einem ersten Bereich überwiegend eine axiale Förderung des zugeführten Fluides. Weiterhin erfolgt in diesem ersten Bereich auch bereits eine leichte radiale Förderung, die in Richtung des Produktauslasses der Vorrichtung in eine komplett radiale Förderung des Fluides übergeht.According to one embodiment of the invention, the supplied fluid is predominantly conveyed axially in a first region. Furthermore, a slight radial conveyance already takes place in this first area, which turns into a completely radial conveyance of the fluid in the direction of the product outlet of the device.

Um zu verhindern, dass Fluid in beziehungsweise an die mindestens eine Austrittsöffnung gelangen kann, ist gemäß einer bevorzugten Ausführungsform vorgesehen, dass die Zuleitung für die zu dispergierende Substanz zumindest teilweise vom Rotor umschlossen ist. Insbesondere ist die mindestens eine Austrittsöffnung der Zuleitung einem Bereich des Rotors zugeordnet, in dem das Fluid überwiegend axial gefördert wird.In order to prevent fluid from getting into or to the at least one outlet opening, a preferred embodiment provides that the feed line for the substance to be dispersed is at least partially enclosed by the rotor. In particular, the at least one outlet opening of the supply line is assigned to a region of the rotor in which the fluid is predominantly conveyed axially.

Um dies zu erreichen, weist der Rotor vorzugsweise Leitstrukturen auf, die die axiale Förderwirkung des Rotors erzeugen. Die Leitstrukturen sind insbesondere derart ausgebildet, dass sie zum einen das mindestens eine erste Mittel zur Erzeugung der zumindest bereichsweisen axialen Förderung darstellen und zum anderen das mindestens eine zweite Mittel zur Erzeugung der zumindest bereichsweisen radialen Förderung bilden.In order to achieve this, the rotor preferably has guide structures that generate the axial conveying effect of the rotor. The guide structures are designed in particular in such a way that, on the one hand, they represent the at least one first means for generating the at least regionally axial conveyance and, on the other hand, they form the at least one second means for generating the at least regionally radial conveyance.

Weiterhin weist der Rotor einen sich verbreiternden Querschnitt auf, insbesondere verbreitert sich der Querschnitt des Rotors antriebsseitig, das heißt, in Richtung der von der Zuleitung für die zu dispergierende Substanz abgewandten Rotorseite. Durch diese Verbreiterung des Rotorquerschnitts in Richtung Produktauslass, insbesondere in Kombination mit den Leitstrukturen des Rotors, geht die axiale Förderung des Fluides im Bereich der mindestens einen Austrittsöffnung mit zunehmendem Rotorquerschnitt in eine radiale Förderwirkung über. Weiterhin bewirkt die über den Antrieb erzeugte Rotation des Rotors, dass das Fluid in eine Drehung versetzt wird.Furthermore, the rotor has a widening cross section, in particular the cross section of the rotor widens on the drive side, that is, in the direction of the rotor side facing away from the feed line for the substance to be dispersed. As a result of this widening of the rotor cross-section in the direction of the product outlet, in particular in combination with the guide structures of the rotor, the axial conveyance of the fluid in the area of the at least one outlet opening changes into a radial conveying effect as the rotor cross-section increases. Furthermore causes The rotation of the rotor generated by the drive means that the fluid is set into rotation.

Die Leitstrukturen sind auf der der Zuleitung für die zu dispergierende Substanz zugewandten Seite des Rotors ausgebildet. Der Rotor weist einen massiven Rotorkern auf, dessen Querschnitt sich - wie bereits beschrieben - in Richtung Produktauslass zumindest bereichsweise verbreitert. Mindestens eine der Leitstrukturen ist über einen massiven Kern des Rotors hinaus in axialer Richtung in Richtung der Zuleitung für die zu dispergierende Substanz verlängert. Vorzugsweise ist eine Mehrzahl von Leitstrukturen über einen massiven Kern des Rotors hinaus in axialer Richtung in Richtung der Zuleitung für die zu dispergierende Substanz verlängert. Erfindungsgemäß ist vorgesehen, dass die mindestens eine Austrittsöffnung der Zuleitung für die zu dispergierende Substanz zumindest teilweise von der mindestens einen verlängerten Leitstruktur umschlossen ist, so dass die zu dispergierende Substanz innerhalb von Strukturelementen des Rotors aus der Zuleitung freigesetzt wird.The guide structures are formed on the side of the rotor facing the feed line for the substance to be dispersed. The rotor has a massive rotor core, the cross section of which - as already described - widens at least in some areas in the direction of the product outlet. At least one of the guide structures is extended beyond a solid core of the rotor in the axial direction in the direction of the feed line for the substance to be dispersed. A plurality of guide structures is preferably extended beyond a solid core of the rotor in the axial direction in the direction of the feed line for the substance to be dispersed. According to the invention it is provided that the at least one outlet opening of the feed line for the substance to be dispersed is at least partially enclosed by the at least one elongated guide structure, so that the substance to be dispersed is released from the feed line within structural elements of the rotor.

Gemäß einer Ausführungsform ist vorgesehen, dass die Anzahl der verlängerten Leitstrukturen in Bezug auf die Anzahl der gesamten Leitstrukturen variabel ist. Beispielsweise kann ein Rotor eine derart hohe Dichte an Leitstrukturen aufweisen, dass es für die Funktionalität der Leitstrukturen ausreicht, wenn nur jede zweite Leitstruktur eine Verlängerung über den Rotorkern hinaus aufweist.According to one embodiment, it is provided that the number of elongated conductive structures is variable in relation to the number of total conductive structures. For example, a rotor can have such a high density of conductive structures that it is sufficient for the functionality of the conductive structures if only every second conductive structure has an extension beyond the rotor core.

Die Zuleitung für die zu dispergierende Substanz ist insbesondere derart angeordnet, dass die mindestens eine Austrittsöffnung für die zu dispergierende Substanz zumindest teilweise von den verlängerten Leitstrukturen außerhalb des massiven Rotorkerns umschlossen ist. Durch die bei der Drehung des Rotors auftretenden und auf das Fluid und / oder die über die mindestens eine Austrittsöffnung austretende Substanz einwirkenden Zentrifugalkräfte wird das Fluid effektiv von der mindestens einen Austrittsöffnung der Zuleitung für die zu dispergierende Substanz fern gehalten, so dass ein Verkleben der zu dispergierenden Substanz in oder an der mindestens einen Austrittsöffnung der Zuleitung für die zu dispergierende Substanz wirksam verhindert werden kann.The feed line for the substance to be dispersed is in particular arranged in such a way that the at least one outlet opening for the substance to be dispersed is at least partially enclosed by the elongated guide structures outside the solid rotor core. As a result of the centrifugal forces occurring during the rotation of the rotor and acting on the fluid and / or the substance exiting via the at least one outlet opening, the fluid is effectively kept away from the at least one outlet opening of the feed line for the substance to be dispersed, so that the to dispersing substance can be effectively prevented in or on the at least one outlet opening of the feed line for the substance to be dispersed.

Erfindungsgemäß weist der Rotor eine Mehrzahl von Leitstrukturen auf die im Bereich der Rotoroberfläche ausgebildet sind. Es ist denkbar, nur eine Leitstruktur über den Rotorkern hinaus zu verlängern und die Verlängerung derart auszubilden, dass diese die Austrittsöffnung für die zu dispergierende Substanz zumindest teilweise oder weitgehend allumfassend umschließt. Beispielsweise könnte die Verlängerung der einen Leitstruktur helikal um die Längsachse der Zuleitung für die zu dispergierende Substanz geführt werden.According to the invention, the rotor has a plurality of guide structures which are formed in the area of the rotor surface. It is It is conceivable to extend only one guide structure beyond the rotor core and to design the extension in such a way that it at least partially or largely all-encompasses the outlet opening for the substance to be dispersed. For example, the extension of one conductive structure could be guided helically around the longitudinal axis of the feed line for the substance to be dispersed.

Die Leitstrukturen sind im Bereich ihrer Verlängerung über den massiven Rotorkern hinaus im mittleren Bereich des Rotors, das heißt, im Bereich der Drehachse des Rotors, als Aufnahme für die Zuleitung für die zu dispergierende Substanz ausgebildet. Insbesondere weisen die Leitstrukturen im Bereich ihrer Verlängerung eine mittige Aussparung auf, die korrespondierend zur Zuleitung für die zu dispergierende Substanz ausgebildet ist.In the area of their extension beyond the solid rotor core in the middle area of the rotor, that is, in the area of the axis of rotation of the rotor, the guide structures are designed as a receptacle for the feed line for the substance to be dispersed. In particular, the guide structures have a central recess in the area of their extension, which is designed to correspond to the feed line for the substance to be dispersed.

Gemäß einer bevorzugten Ausführungsform sind die Leitstrukturen im Bereich ihrer Verlängerung über den massiven Rotorkern hinaus koaxial zur Drehachse des Rotors ausgerichtet. Die Verlängerung der Leitstrukturen bildet insbesondere die ersten Mittel zur Erzeugung der zumindest bereichsweisen axialen Förderung. Weiterhin sind die Leitstrukturen im Bereich des massiven Rotorkerns gekrümmt. Der gekrümmte Teilbereich der Leitstrukturen bildet insbesondere das zweite Mittel zur Erzeugung der zumindest bereichsweisen radialen Förderung. Durch die Krümmung der Leitstrukturen werden ein hoher Ausgangsdruck und eine gute Förderwirkung erzielt. Insbesondere unterstützen die gekrümmten Leitstrukturen die radiale Förderung bei Drehung des Rotors.According to a preferred embodiment, the guide structures are aligned coaxially to the axis of rotation of the rotor in the area of their extension beyond the solid rotor core. The extension of the guide structures in particular forms the first means for generating the at least regionally axial conveyance. Furthermore, the guide structures in the area of the massive rotor core are curved. The curved sub-area of the guide structures in particular forms the second means for generating the at least regionally radial conveyance. The curvature of the guide structures results in a high outlet pressure and a good conveying effect. In particular, the curved guide structures support the radial conveyance when the rotor rotates.

Die verlängerten Leitstrukturen bewirken, dass bereits im Bereich der mindestens einen Austrittsöffnung, obwohl diese außerhalb des massiven Rotorkerns angeordnet ist, eine axiale Förderung des Fluides zum massiven Rotorkern hin, beziehungsweise in Richtung des Produktauslasses, erzielt wird. Durch die Drehung des Rotors wirken zudem Zentrifugalkräfte, die verhindern, dass Fluid nach innen gelangen kann. Insbesondere verhindern die Zentrifugalkräfte, dass Fluid in den Aufnahmebereich zwischen den verlängerten Leitstrukturen eindringen kann, in dem die mindestens eine Austrittsöffnung angeordnet ist.The elongated guide structures have the effect that an axial conveyance of the fluid towards the massive rotor core or in the direction of the product outlet is achieved already in the area of the at least one outlet opening, although it is arranged outside the solid rotor core. The rotation of the rotor also has centrifugal forces that prevent fluid from getting inside. In particular, the centrifugal forces prevent fluid from being able to penetrate into the receiving area between the elongated guide structures in which the at least one outlet opening is arranged.

Gemäß einer Ausführungsform der Erfindung ist vorgesehen, dass die Zuleitung für die zu dispergierende Substanz eine erste Längsachse aufweist. Insbesondere ist die Zuleitung für die zu dispergierende Substanz als Rohr mit einer ersten Längsachse ausgebildet. Der Rotor ist um eine Drehachse drehbar gelagert, beispielsweise wird die Drehachse durch die Antriebswelle gebildet. Die Längsachse der Zuleitung für die zu dispergierende Substanz und die Drehachse des Rotors können gemäß einer Ausführungsform vorzugsweise koaxial oder parallel zueinander ausgerichtet sein. Die Austrittsöffnung der Zuleitung für die zu dispergierende Substanz kann gemäß einer Ausführungsform fluchtend zu der Längsachse der Zuleitung für die zu dispergierende Substanz und der Drehachse des Rotors angeordnet sein.According to one embodiment of the invention it is provided that the feed line for the substance to be dispersed has a first longitudinal axis. In particular, the feed line for the substance to be dispersed is a pipe with a formed first longitudinal axis. The rotor is mounted rotatably about an axis of rotation, for example the axis of rotation is formed by the drive shaft. According to one embodiment, the longitudinal axis of the feed line for the substance to be dispersed and the axis of rotation of the rotor can preferably be aligned coaxially or parallel to one another. According to one embodiment, the outlet opening of the feed line for the substance to be dispersed can be arranged in alignment with the longitudinal axis of the feed line for the substance to be dispersed and the axis of rotation of the rotor.

Gemäß einer weiteren Ausführungsform ist vorgesehen, dass die Zuleitung für die zu dispergierende Substanz unter einem Winkel zur Drehachse des Rotors angeordnet ist. Auch bei dieser Ausführungsform endet die Zuleitung für die zu dispergierende Substanz im Zentrum des Rotors. Insbesondere ist die winklig zur Rotordrehachse ausgebildete Zuleitung für die zu dispergierende Substanz auch in dieser Ausführungsform derart angeordnet, dass die mindestens eine Austrittsöffnung der Zuleitung für die zu dispergierende Substanz zumindest teilweise von den verlängerten Leitstrukturen außerhalb des massiven Rotorkerns umschlossen ist. Dies verhindert, dass Fluid in die Zuleitung für die zu dispergierende Substanz eintreten kann. Stattdessen wird das Fluid über die aufgrund der Rotation des Rotors auftretenden Zentrifugalkräfte direkt über die Leitstrukturen des Rotors nach außen abgeleitet.According to a further embodiment it is provided that the feed line for the substance to be dispersed is arranged at an angle to the axis of rotation of the rotor. In this embodiment too, the feed line for the substance to be dispersed ends in the center of the rotor. In particular, the feed line for the substance to be dispersed, which is angled to the rotor axis of rotation, is also arranged in this embodiment in such a way that the at least one outlet opening of the feed line for the substance to be dispersed is at least partially enclosed by the elongated guide structures outside the solid rotor core. This prevents fluid from entering the feed line for the substance to be dispersed. Instead, the fluid is diverted to the outside via the centrifugal forces that occur due to the rotation of the rotor, directly via the guide structures of the rotor.

Bedingt durch den winkeligen Eintritt der Zuleitung für die zu dispergierende Substanz in den Rotor muss die durch die verlängerten Leitstrukturen gebildete Aussparung geöffnet sein. Dies führt dazu, dass sich im unteren Bereich ein größerer Abstand zwischen der Austrittsöffnung der Zuleitung für die zu dispergierende Substanz und dem Rotor ergibt, während im oberen Bereich der gewünschte kleine Abstand zwischen der Austrittsöffnung der Zuleitung und den verlängerten Leitstrukturen des Rotors ergibt. Der untere vergrößerte Abstand ist jedoch unproblematisch, da das Fluid nicht dazu tendiert, von unten her in die Zuleitung zu strömen.Due to the angled entry of the feed line for the substance to be dispersed into the rotor, the recess formed by the elongated guide structures must be open. This leads to the fact that in the lower area there is a greater distance between the outlet opening of the feed line for the substance to be dispersed and the rotor, while in the upper area the desired small distance between the outlet opening of the feed line and the elongated guide structures of the rotor results. The lower, increased distance is not a problem, however, since the fluid does not tend to flow into the supply line from below.

Ein wesentlicher Vorteil dieser weiteren Ausführungsform mit winkliger Anordnung der Zuleitung besteht darin, dass das Fluid insbesondere im ausgeschalteten Zustand der Vorrichtung nicht in die Zuleitung für die zu dispergierende Substanz einfließen kann. Somit ist auch im Ruhezustand der Vorrichtung sicher gewährleistet, dass kein Fluid in die Zuleitung gelangt und somit keine zu dispergierende Substanz innerhalb der Zuleitung verkleben kann. Weiterhin kann vorgesehen sein, dass die Fluidzuführung weitgehend orthogonal zur Zuleitung für die zu dispergierende Substanz angeordnet ist. Beispielsweise kann die Fluidzuführung eine zweite Längsachse aufweisen. Insbesondere ist die Fluidzuführung als Rohr mit einer zweiten Längsachse ausgebildet. Die Fluidzuführung ist am Prozessgehäuse beabstandet zum Rotor angeordnet, insbesondere auf der Seite der Zuleitung für die zu dispergierende Substanz, so dass eingefülltes Fluid die Zuleitung für die zu dispergierende Substanz zumindest bereichsweise umströmt.An essential advantage of this further embodiment with an angled arrangement of the supply line is that the fluid does not enter the supply line for the closed, especially when the device is switched off dispersing substance can flow in. Thus, even when the device is in the idle state, it is reliably ensured that no fluid gets into the feed line and thus no substance to be dispersed can stick inside the feed line. Furthermore, it can be provided that the fluid supply is arranged largely orthogonally to the supply line for the substance to be dispersed. For example, the fluid supply can have a second longitudinal axis. In particular, the fluid supply is designed as a tube with a second longitudinal axis. The fluid feed is arranged on the process housing at a distance from the rotor, in particular on the side of the feed line for the substance to be dispersed, so that the filled fluid flows around the feed line for the substance to be dispersed at least in some areas.

Gemäß einer weiteren Ausführungsform ist vorgesehen, die Fluidzuführung weitgehend schräg zu der Zuleitung für die zu dispergierende Substanz anzuordnen, insbesondere in einem Winkel zwischen 0 Grad und 90 Grad.According to a further embodiment, provision is made for the fluid supply to be arranged largely at an angle to the supply line for the substance to be dispersed, in particular at an angle between 0 degrees and 90 degrees.

Das Fluid wird über die Leitstrukturen des Rotors und aufgrund der bei der Drehung des Rotors auftretenden Zentrifugalkräfte von der Mitte des Rotors nach außen geleitet, so dass das Fluid nicht in den mittleren Bereich gelangen kann, in dem die mindestens eine Austrittsöffnung der Zuleitung für die zu dispergierende Substanz angeordnet ist. Insbesondere tritt das Fluid somit nicht in den Bereich der Rotationsachse des Rotors ein.The fluid is directed outwards from the center of the rotor via the guide structures of the rotor and due to the centrifugal forces that occur when the rotor rotates, so that the fluid cannot reach the central area in which the at least one outlet opening of the feed line for the to dispersing substance is arranged. In particular, the fluid thus does not enter the area of the axis of rotation of the rotor.

Gemäß einer Ausführungsform der Erfindung ist vorgesehen, dass die Zuleitung für die zu dispergierende Substanz axial verstellt werden kann, insbesondere kann die Zuleitung für die zu dispergierende Substanz relativ zum Prozessgehäuse entlang ihrer Längsachse axial und / oder parallel zur Rotationsachse des Rotors verschoben werden. Dadurch kann die Eintauchtiefe eines Endbereiches der Zuleitung für die zu dispergierende Substanz in die verlängerten Leitstrukturen des Rotors und somit der Abstand zwischen der mindestens dem die mindestens eine Austrittsöffnung umfassenden Endbereiches der Zuleitung für die zu dispergierende Substanz und dem massiven Kern des Rotors in Abhängigkeit von der zugeführten Substanz verändert werden.According to one embodiment of the invention it is provided that the feed line for the substance to be dispersed can be adjusted axially, in particular the feed line for the substance to be dispersed can be moved axially and / or parallel to the axis of rotation of the rotor relative to the process housing along its longitudinal axis. As a result, the immersion depth of an end area of the feed line for the substance to be dispersed into the elongated guide structures of the rotor and thus the distance between the at least the end area of the feed line for the substance to be dispersed and the solid core of the rotor, which includes the at least one outlet opening, and the solid core of the rotor can added substance can be changed.

Zwischen den verlängerten Leitstrukturen des Rotors und der Zuleitung für die zu dispergierende Substanz ist vorzugsweise ein radialer Abstand ausgebildet. DerA radial distance is preferably formed between the elongated guide structures of the rotor and the feed line for the substance to be dispersed. The

Abstand ist notwendig, damit die Substanz aus der mindestens einen Austrittsöffnung austreten und zwischen den Leitstrukturen hindurch in das Fluid übertreten kann. Vorzugsweise besteht zwischen den verlängerten Leitstrukturen des Rotors und der Zuleitung für die zu dispergierende Substanz in radialer Richtung ein Abstand von zirka 0,1mm bis zirka 10mm. Weiterhin ist vorgesehen, dass zwischen der Zuleitung für die zu dispergierende Substanz und dem Rotor in axialer Richtung ein Spalt ausgebildet ist, durch den die Substanz in das Fluid radial übertritt.Distance is necessary so that the substance can emerge from the at least one outlet opening and pass through between the guide structures into the fluid. There is preferably a distance of approximately 0.1 mm to approximately 10 mm in the radial direction between the elongated guide structures of the rotor and the feed line for the substance to be dispersed. Furthermore, it is provided that a gap is formed between the feed line for the substance to be dispersed and the rotor in the axial direction through which the substance passes radially into the fluid.

Gemäß einer Ausführungsform der Erfindung weist der Rotor eine Mehrzahl von Leitstrukturen auf, wobei nur ein Teil der Leitstrukturen axiale Verlängerungen als erste Mittel zur Erzeugung der zumindest bereichsweisen axialen Förderung ausgebildet haben. Beispielsweise weist der Rotor eine gerade Anzahl von Leitstrukturen auf, wobei nur jede zweite Leitstruktur axial über den massiven Rotorkern hinaus verlängert ist. Dies kann insbesondere bei einer hohen Dichte an Leitstrukturen auf dem Rotorkern sinnvoll sein. Insbesondere wird dadurch verhindert, dass die Verlängerungen einen derart dichten Ring um die Rotationsachse bilden, dass ein Übertritt der Substanz aus der Zuleitung in das Fluid behindert werden könnte.According to one embodiment of the invention, the rotor has a plurality of guide structures, only some of the guide structures having axial extensions as first means for generating the at least regionally axial conveyance. For example, the rotor has an even number of guide structures, only every second guide structure being extended axially beyond the solid rotor core. This can be particularly useful when there is a high density of conductive structures on the rotor core. In particular, this prevents the extensions from forming such a tight ring around the axis of rotation that a passage of the substance from the supply line into the fluid could be hindered.

Die Zuleitung für die zu dispergierende Substanz kann im Bereich der mindestens einen Austrittsöffnung einen erhöhten Durchmesser aufweisen, beispielsweise in Form einer Kröpfung, die als zusätzliches Abweiselement dient. Dadurch wird zusätzlich sichergestellt, dass kein Fluid in und / oder an die mindestens eine Austrittsöffnung der Zuleitung gelangen kann.The feed line for the substance to be dispersed can have an increased diameter in the region of the at least one outlet opening, for example in the form of a crank, which serves as an additional deflecting element. This also ensures that no fluid can get into and / or to the at least one outlet opening of the feed line.

Die mindestens eine Austrittsöffnung muss nicht als offenes Ende der Zuleitung für die zu dispergierende Substanz ausgebildet sein. Gemäß einer Ausführungsform der Erfindung wird die Zuleitung für die zu dispergierende Substanz durch ein Rohr gebildet, dessen in Richtung des massiven Rotorkerns zwischen den Leitstrukturen angeordnetes Ende geschlossen ist und das in diesem Endbereich eine Mehrzahl von seitlichen Öffnungen als Austrittsöffnungen für die Substanz in radialer Richtung aufweist.The at least one outlet opening does not have to be designed as an open end of the feed line for the substance to be dispersed. According to one embodiment of the invention, the feed line for the substance to be dispersed is formed by a tube, the end of which is closed in the direction of the solid rotor core between the guide structures and which has a plurality of lateral openings in this end area as outlet openings for the substance in the radial direction .

Die Substanz wird ebenfalls durch die Zentrifugalkräfte nach außen gefördert, das heißt, in Richtung des äußeren Rotorrands. Dabei wird die Substanz in dem Fluid dispergiert. Dies erfolgt insbesondere am Außenrandbereich des Rotors in einem Zwischenraum zwischen dem drehenden Rotor und dem statischen Prozessgehäuse.The substance is also conveyed outwards by the centrifugal forces, that is, in the direction of the outer rotor edge. In doing so, the substance is in the fluid dispersed. This takes place in particular on the outer edge area of the rotor in an interspace between the rotating rotor and the static process housing.

Gemäß einer weiteren Ausführungsform kann vorgesehen sein, dass der Innendurchmesser der Zuleitung für die zu dispergierende Substanz variabel ist und somit an die Anforderungen der Zuleitung für die zu dispergierende Substanz angepasst werden kann. Insbesondere können die Fördermenge und die Strömungsgeschwindigkeit eingestellt werden. Beispielsweise kann vorgesehen sein, dass den Querschnitt verringernde Formatteile in die Zuleitung für die zu dispergierende Substanz eingeschoben werden können, um den Durchmesser und somit die Querschnittsfläche der Zuleitung für die zu dispergierende Substanz zu variieren. Die variable Einstellung erfolgt beispielsweise durch Verwendung von zusätzlichen Innenrohren mit kleineren Durchmessern für das Pulverzuführrohr. Die Innenrohre können beispielsweise aus PTFE oder einem anderen geeigneten Kunststoff bestehen. Alternativ erfolgt ein Austausch von Rotor und Zuführrohr, wobei beispielsweise mehrere verschiedene Größen von Rotor und Pulverzuführrohr zur Auswahl als Formatteile vorliegen können.According to a further embodiment it can be provided that the inner diameter of the feed line for the substance to be dispersed is variable and can thus be adapted to the requirements of the feed line for the substance to be dispersed. In particular, the delivery rate and the flow rate can be adjusted. For example, it can be provided that format parts reducing the cross section can be pushed into the feed line for the substance to be dispersed in order to vary the diameter and thus the cross-sectional area of the feed line for the substance to be dispersed. The variable setting takes place, for example, by using additional inner tubes with smaller diameters for the powder feed tube. The inner tubes can for example consist of PTFE or another suitable plastic. Alternatively, the rotor and feed tube are exchanged, whereby, for example, several different sizes of rotor and powder feed tube can be available for selection as format parts.

Gemäß einer Ausführungsform der Erfindung ist die erste Längsachse der Zuleitung für die zu dispergierende Substanz horizontal ausgerichtet und die zweite Längsachse der Fluidzuführung ist vertikal angeordnet. Insbesondere kann vorgesehen sein, dass die Fluidzuführung von oben her erfolgt.According to one embodiment of the invention, the first longitudinal axis of the feed line for the substance to be dispersed is oriented horizontally and the second longitudinal axis of the fluid feed is arranged vertically. In particular, it can be provided that the fluid is supplied from above.

Das Fluid tritt über die Fluidzuführung in das Prozessgehäuse ein und wird vom Rotor erfasst, der das Fluid in axialer und radialer Richtung beschleunigt. Dadurch kommt eine Pumpwirkung zustande, welche das Fluid durch den Produktauslass in einen Behälter pumpt. Durch die hohe Pumpwirkung entsteht im Prozessgehäuse ein Unterdruck. Sobald die Zuleitung für die zu dispergierende Substanz geöffnet wird, entsteht aufgrund des Unterdruckes im Prozessgehäuse ein Sog. Dadurch wird die Substanz durch die Zuleitung für die zu dispergierende Substanz gesaugt. Die Substanz tritt über die zwischen den verlängerten Leitstrukturen angeordnete mindestens eine Austrittsöffnung aus und geht radial in das Fluid über. Die so entstandene Dispersion oder Suspension wird durch den Rotor vom Prozessgehäuse über den Produktauslass ausgetragen. Durch den engen Spalt zwischen den Leitstrukturen und der Zuleitung für die zu dispergierende Substanz wird das Fluid über Zentrifugalkräfte davon abgehalten, in die Zuleitung für die zu dispergierende Substanz zu fließen.The fluid enters the process housing via the fluid supply and is captured by the rotor, which accelerates the fluid in the axial and radial directions. This creates a pumping action which pumps the fluid through the product outlet into a container. The high pumping effect creates a negative pressure in the process housing. As soon as the feed line for the substance to be dispersed is opened, suction is created due to the negative pressure in the process housing. As a result, the substance is sucked through the feed line for the substance to be dispersed. The substance exits via the at least one outlet opening arranged between the elongated guide structures and merges radially into the fluid. The resulting dispersion or suspension is discharged by the rotor from the process housing via the product outlet. Due to the narrow gap between the conductive structures and the feed line for the substance to be dispersed the fluid is prevented by centrifugal forces from flowing into the feed line for the substance to be dispersed.

Alternativ kann die Zufuhr der zu dispergierenden Substanz auch gravimetrisch erfolgen. In diesem Fall ist die Zuleitung für die zu dispergierende Substanz vertikal oder in einem Winkel kleiner gleich 70° zu Vertikalen angestellt.Alternatively, the substance to be dispersed can also be fed in gravimetrically. In this case, the feed line for the substance to be dispersed is positioned vertically or at an angle less than or equal to 70 ° to the vertical.

Die Erfindung bezieht sich weiterhin auf ein Verfahren zum Dispergieren mindestens einer Substanz in einem Fluid, insbesondere in einer Flüssigkeit, vermittels einer Vorrichtung umfassend ein Prozessgehäuse mit Rotor, eine Fluidzuführung, eine Zuleitung für die mindestens eine zu dispergierende Substanz mit einer Austrittsöffnung, sowie einen Produktauslass. Der Rotor bewirkt zumindest bereichsweise eine axiale Förderung eines zugeführten Fluides. Weiterhin bewirkt der Rotor zumindest bereichsweise eine radiale Förderung des zugeführten Fluides.The invention further relates to a method for dispersing at least one substance in a fluid, in particular in a liquid, by means of a device comprising a process housing with rotor, a fluid supply, a feed line for the at least one substance to be dispersed with an outlet opening, and a product outlet . The rotor brings about an axial conveyance of a supplied fluid, at least in some areas. Furthermore, the rotor brings about a radial conveyance of the supplied fluid, at least in some areas.

Das Verfahren kann alternativ oder zusätzlich zu den beschriebenen Merkmalen ein oder mehrere Merkmale und / oder Eigenschaften der zuvor beschriebenen Vorrichtung umfassen.As an alternative or in addition to the features described, the method can comprise one or more features and / or properties of the device described above.

Die Vorrichtung und das Verfahren sind geeignet, eine Substanz in einem Fluid, insbesondere in einer Flüssigkeit, zu dispergieren. Insbesondere ist es mit der erfindungsgemäßen Vorrichtung und / oder dem erfindungsgemäßen Verfahren möglich, einen pulverförmigen Feststoff größtenteils ohne Zuhilfenahme von mechanischen Kräften wie sie beispielsweise durch ein klassisches Rotor -Stator-System oder durch die Verwendung von Mahlkörper erzeugt wird, zu benetzen und / oder dispergieren. Anstelle von mechanischen Kräften werden in der Vorrichtung beziehungsweise bei dem Verfahren physikalische Effekte ausgenutzt, beispielsweise Druckunterschiede und die damit verbundene Expansion und Kompression von im Pulver enthaltener Luft.The device and the method are suitable for dispersing a substance in a fluid, in particular in a liquid. In particular, with the device according to the invention and / or the method according to the invention, it is possible to wet and / or disperse a powdery solid largely without the aid of mechanical forces such as those generated, for example, by a classic rotor-stator system or by the use of grinding media . Instead of mechanical forces, physical effects are used in the device or in the process, for example pressure differences and the associated expansion and compression of air contained in the powder.

Die Vorrichtung ist kompakter als herkömmlich bekannte Vorrichtungen. Da die Vorrichtung technisch einfacher als bekannte Vorrichtungen aufgebaut ist, kann diese kostengünstiger produziert werden. Der technisch vereinfachte Aufbau erleichtert die Reinigung und Wartung der Vorrichtung. Die vereinfachte Reinigung macht die Vorrichtung insbesondere für kleinere und mittlere Produktansätze und häufigere Produktwechsel interessant.The device is more compact than conventionally known devices. Since the device has a technically simpler structure than known devices, it can be produced more cost-effectively. The technically simplified structure facilitates cleaning and maintenance of the device. The simplified cleaning makes the device particularly interesting for small and medium-sized product batches and frequent product changes.

Die Vorrichtung verwendet zur Dispersion der zu dispergierenden Substanz in einem Fluid kein klassisches Rotor- Stator- Prinzip. Das heißt insbesondere, dass das Produkt nicht durch einen Stator gepumpt werden muss. Vorteilhaft dabei ist eine geringere Scherung des Produktes. Weiterhin zeichnen sich die Vorrichtung und das Verfahren durch einen geringeren Energieeintrag aus, wodurch der Temperaturanstieg ebenfalls geringer ist als bei herkömmlich bekannten Vorrichtungen. Des Weiteren ist die Vorrichtung weniger störanfällig und / oder verschleißanfällig. Insbesondere ist die Vorrichtung weniger sensitiv bei in der zu dispergierenden pulverigen Substanz oder in den Fluid enthaltenen Fremdkörpern.The device does not use a classic rotor-stator principle to disperse the substance to be dispersed in a fluid. In particular, this means that the product does not have to be pumped through a stator. A lower shear of the product is advantageous here. Furthermore, the device and the method are distinguished by a lower energy input, as a result of which the temperature rise is also lower than in the case of conventionally known devices. Furthermore, the device is less prone to failure and / or less prone to wear. In particular, the device is less sensitive to foreign bodies contained in the powdery substance to be dispersed or in the fluid.

FigurenbeschreibungFigure description

Im Folgenden sollen Ausführungsbeispiele die Erfindung und ihre Vorteile anhand der beigefügten Figuren näher erläutern. Die Größenverhältnisse der einzelnen Elemente zueinander in den Figuren entsprechen nicht immer den realen Größenverhältnissen, da einige Formen vereinfacht und andere Formen zur besseren Veranschaulichung vergrößert im Verhältnis zu anderen Elementen dargestellt sind.

  • Figur 1 zeigt einen schematischen Querschnitt einer erfindungsgemäßen Dispersionsvorrichtung.
  • Figur 2 zeigt eine perspektivische Darstellung einer erfindungsgemäßen Dispersionsvorrichtung.
  • Figur 3 zeigt eine perspektivische Darstellung eines Prozessgehäuses einer Dispersionsvorrichtung.
  • Figur 4 zeigt eine schematische Schnittdarstellung einer weiteren Ausführungsform eines Prozessgehäuses in seitlicher Darstellung.
  • Figur 5 zeigt eine perspektivische Darstellung eines Rotors mit Lagerung.
  • Figur 6 zeigt eine Draufsicht auf den Rotor mit Lagerung.
  • Figur 7 stellt einen ersten Arbeitsmodus dar.
  • Figur 8 stellt einen zweiten Arbeitsmodus dar.
  • Figur 9 zeigt eine seitliche Darstellung einer weiteren Ausführungsform einer erfindungsgemäßen Dispersionsvorrichtung.
  • Figur 10 zeigt eine Schnittdarstellung durch eine seitliche Darstellung einer Ausführungsform einer erfindungsgemäßen Dispersionsvorrichtung gemäß Figur 9.
  • Figur 11 zeigt eine schematische Schnittdarstellung der Prozessgehäuses der Ausführungsform gemäß Figur 9.
  • Figur 12 zeigt einen Detailausschnitt aus Figur 11.
  • Figur 13 zeigt eine perspektivische Darstellung der Prozessgehäuses der Dispersionsvorrichtung gemäß Figur 9.
  • Figur 14 zeigt eine perspektivische Darstellung eines Rotors mit Lagerung der Ausführungsform gemäß Figur 9.
In the following, exemplary embodiments are intended to explain the invention and its advantages in more detail with reference to the accompanying figures. The proportions of the individual elements to one another in the figures do not always correspond to the real proportions, since some forms are simplified and other forms are shown enlarged in relation to other elements for better illustration.
  • Figure 1 shows a schematic cross section of a dispersion device according to the invention.
  • Figure 2 shows a perspective view of a dispersion device according to the invention.
  • Figure 3 shows a perspective view of a process housing of a dispersion device.
  • Figure 4 shows a schematic sectional illustration of a further embodiment of a process housing in a lateral illustration.
  • Figure 5 shows a perspective view of a rotor with a bearing.
  • Figure 6 shows a plan view of the rotor with storage.
  • Figure 7 represents a first working mode.
  • Figure 8 represents a second working mode.
  • Figure 9 shows a side view of a further embodiment of a dispersion device according to the invention.
  • Figure 10 shows a sectional view through a side view of an embodiment of a dispersion device according to the invention according to FIG Figure 9 .
  • Figure 11 FIG. 11 shows a schematic sectional illustration of the process housing of the embodiment according to FIG Figure 9 .
  • Figure 12 shows a detail from Figure 11 .
  • Figure 13 FIG. 11 shows a perspective illustration of the process housing of the dispersion device according to FIG Figure 9 .
  • Figure 14 FIG. 11 shows a perspective illustration of a rotor with a mounting of the embodiment according to FIG Figure 9 .

Für gleiche oder gleich wirkende Elemente der Erfindung werden identische Bezugszeichen verwendet. Ferner werden der Übersicht halber nur Bezugszeichen in den einzelnen Figuren dargestellt, die für die Beschreibung der jeweiligen Figur erforderlich sind. Die dargestellten Ausführungsformen stellen lediglich Beispiele dar, wie die erfindungsgemäße Vorrichtung oder das erfindungsgemäße Verfahren ausgestaltet sein können und stellen keine abschließende Begrenzung dar.Identical reference symbols are used for identical or identically acting elements of the invention. Furthermore, for the sake of clarity, only reference symbols are shown in the individual figures which are necessary for the description of the respective figure. The illustrated embodiments merely represent examples of how the device according to the invention or the method according to the invention can be designed and do not represent a final limitation.

Figur 1 zeigt einen schematischen Querschnitt einer erfindungsgemäßen Dispersionsvorrichtung 1 und Figur 2 zeigt eine perspektivische Darstellung einer erfindungsgemäßen Dispersionsvorrichtung 1. Die Dispersionsvorrichtung 1 wird insbesondere verwendet um eine pulverige Substanz P in einem Fluid F, insbesondere einer Flüssigkeit, zu dispergieren und dabei eine Dispersion D herzustellen. Die Dispersionsvorrichtung 1 umfasst einen Antriebsmotor (nicht dargestellt), eine Lagerung 9, in der die Antriebswelle 2 gelagert ist und eine Kupplungslaterne mit innenliegender Wellenkupplung und Antriebsmotor (nicht dargestellt) zur Kraftübertragung von der Motorwelle auf die Antriebswelle 2. Die Antriebswelle 2 dient dem Antrieb des Rotors 3. Weiterhin umfasst die Dispersionsvorrichtung 1 eine drehende Lagerung der Antriebswelle 2, die durch eine Gleitringdichtung 4 in ein Prozessgehäuse 5 geführt ist. Figure 1 shows a schematic cross section of a dispersion device 1 and 1 according to the invention Figure 2 shows a perspective view of a dispersion device 1 according to the invention. The dispersion device 1 is used in particular to disperse a powdery substance P in a fluid F, in particular a liquid, and to produce a dispersion D in the process. The dispersion device 1 comprises a drive motor (not shown), a bearing 9 in which the drive shaft 2 is mounted and a coupling lantern with an internal shaft coupling and drive motor (not shown) for power transmission from the motor shaft to the drive shaft 2. The drive shaft 2 is used for the drive of the rotor 3. Furthermore, the dispersion device 1 comprises a rotating bearing of the drive shaft 2, which is guided through a mechanical seal 4 into a process housing 5.

In dem Prozessgehäuse 5, in dem die Dispersion stattfindet, sind ein Rotor 3 und ein Produktauslass 8 zum Abführen des Produktes, insbesondere der Dispersion D, angeordnet. Dem Prozessgehäuse 5 ist weiterhin eine Zuleitung für die zu dispergierende pulverige Substanz P zugeordnet, insbesondere eine Pulverzufuhr 6 zur Zuführung von Pulver P, sowie weiterhin eine Fluidzuführung 7 zur Zuführung von Fluid F (vergleiche Figur 2).A rotor 3 and a product outlet 8 for discharging the product, in particular the dispersion D, are arranged in the process housing 5 in which the dispersion takes place. The process housing 5 is also assigned a supply line for the powdery substance P to be dispersed, in particular a powder supply 6 for supplying powder P, and also a fluid supply 7 for supplying fluid F (cf. Figure 2 ).

Figur 3 zeigt eine perspektivische Darstellung und Figur 4 zeigt eine schematische Schnittdarstellung eines Prozessgehäuses 5 mit Pulverzufuhr 6, Fluidzuführung 7 und Produktauslass 8. Figuren 5 und 6 zeigen unterschiedliche Darstellungen einer Ausführungsform des Rotors 3. Figure 3 shows a perspective view and Figure 4 shows a schematic sectional illustration of a process housing 5 with powder feed 6, fluid feed 7 and product outlet 8. Figures 5 and 6 show different representations of an embodiment of the rotor 3.

Der Rotor 3 ist um eine Rotationsachse R drehbar und weist einen massiven Rotorkern 10 auf. Der Rotor 3 weist eine Querschnittsfläche Q auf, die sich zur Antriebsseite hin zumindest bereichsweise vergrößert. Anders ausgedrückt, die Querschnittsfläche Q des Rotors 3 verkleinert sich in Richtung der Pulverzufuhr 6. Insbesondere weist der Rotor 3 in einem Bereich benachbart zur Pulverzufuhr 6 eine erste Querschnittsfläche Q1 auf, die kleiner ist als eine zweite Querschnittsfläche Q2 in einem antriebsnahen Bereich des Rotors 3 (vergleiche insbesondere Figur 4).The rotor 3 is rotatable about an axis of rotation R and has a solid rotor core 10. The rotor 3 has a cross-sectional area Q which increases at least in regions towards the drive side. In other words, the cross-sectional area Q of the rotor 3 decreases in the direction of the powder supply 6. In particular, the rotor 3 has a first cross-sectional area Q1 in an area adjacent to the powder supply 6, which is smaller than a second cross-sectional area Q2 in an area of the rotor 3 close to the drive (compare in particular Figure 4 ).

Auf dem Rotorkern 10 sind Leitstrukturen 11 angeordnet, die eine gerichtete Führung des Fluides F beziehungsweise des Pulvers P bewirken. Jede Leitstruktur 11 umfasst im Wesentlichen zwei Teilbereiche 12, 13, wobei der erste Teilbereich 12 an dem massiven Rotorkern 10 angeordnet und befestigt ist und wobei der zweite Teilbereich 13 eine axiale Verlängerung 14 der Leitstruktur 11 über den massiven Rotorkern 10 hinaus darstellt. Insbesondere sind die Leitstrukturen 11 im Bereich der Verlängerungen 14 in axialer Richtung geneigt, damit sie insbesondere axial fördern. Dagegen sind die Leitstrukturen 11 im ersten Teilbereich 12 zusätzlich rückwärts gekrümmt, um einen hohen Ausgangsdruck und eine gute Förderwirkung zu erzielen.Guide structures 11 are arranged on the rotor core 10, which guide the fluid F or the powder P in a directional manner. Each guide structure 11 essentially comprises two sub-areas 12, 13, the first sub-area 12 being arranged and attached to the solid rotor core 10 and the second sub-area 13 representing an axial extension 14 of the guide structure 11 beyond the solid rotor core 10. In particular, the guide structures 11 are inclined in the axial direction in the area of the extensions 14 so that they convey in particular axially. In contrast, the guide structures 11 in the first sub-area 12 are additionally curved backwards in order to achieve a high outlet pressure and a good conveying effect.

Die Verlängerungen 14 der Leitstrukturen 11 sind im Bereich der Rotationsachse R des Rotors 3 ausgespart und bilden eine axiale Öffnung 15. Diese Öffnung 15 dient insbesondere als Aufnahme 16 für einen Endbereich 20 der Pulverzufuhr 6 (vergleiche Figuren 1 und 4). Insbesondere wird innerhalb der Aufnahme 16 die mindestens eine Pulveraustrittsöffnung 21 der Pulverzufuhr 6 von den Leitstrukturen 11 des Rotors 3 umschlossen (vergleiche Figuren 1 und 4). Bei Rotation des Rotors 3 um die Rotationsachse R entstehen Zentrifugalkräfte, die dazu führen, dass das Fluid F nach außen geleitet wird und somit von der Pulveraustrittsöffnung 21 ferngehalten wird. Somit kann wirksam ein Eindringen von Fluid F in die Pulverzufuhr 6 verhindern werden.The extensions 14 of the guide structures 11 are cut out in the area of the axis of rotation R of the rotor 3 and form an axial opening 15. This opening 15 serves in particular as a receptacle 16 for an end area 20 of the powder feed 6 (cf. Figures 1 and 4th ). In particular, within the receptacle 16, the at least one powder outlet opening 21 of the powder feed 6 is enclosed by the guide structures 11 of the rotor 3 (cf. Figures 1 and 4th ). At Rotation of the rotor 3 about the axis of rotation R generates centrifugal forces which lead to the fluid F being conducted to the outside and thus being kept away from the powder outlet opening 21. Thus, penetration of the fluid F into the powder feeder 6 can be effectively prevented.

Insbesondere entspricht der Eintauchbereich EB (vergleiche Figuren 1 und 4), in dem die Pulverzufuhr 6 zumindest bereichsweise in den Rotor 3 eintaucht, insbesondere der Eintauchbereich EB, in dem die Pulverzufuhr 6 in die Verlängerungen 14 der Leitstrukturen des Rotors 3 eintaucht, somit auch dem Austrittsbereich AB, in dem das Pulver P aus der mindestens einen Pulveraustrittsöffnung 21 der Pulverzufuhr 6 austritt und insbesondere in das Fluid F übertritt.In particular, the immersion area EB (compare Figures 1 and 4th ), in which the powder feed 6 dips at least in some areas into the rotor 3, in particular the dipping area EB, in which the powder feed 6 dips into the extensions 14 of the guide structures of the rotor 3, thus also the exit area AB, in which the powder P from the at least a powder outlet opening 21 of the powder feed 6 exits and in particular passes over into the fluid F.

Vorzugsweise ist der Rotor 3 so geformt, dass bereits im Bereich um den Endbereich 20 der Pulverzufuhr 6 eine axiale Förderwirkung des Fluides F in Richtung des massiven Rotorkerns 10 beziehungsweise in Richtung des Produktauslasses 8 erzielt wird. Diese axiale Förderung geht mit zunehmendem Durchmesser des Rotors 3, das heißt, mit zunehmender Querschnittsfläche Q des Rotors 3 in Richtung Produktauslass 8 in eine radiale Förderwirkung über, bis hin zu einem Bereich, in dem das Fluid F nur noch radial gefördert wird. Zusätzlich zur axialen bzw. radialen Förderwirkung wird das Fluid F durch die Drehung des Rotors 3 um die Rotationsachse R in Rotation versetzt.The rotor 3 is preferably shaped in such a way that an axial conveying effect of the fluid F in the direction of the solid rotor core 10 or in the direction of the product outlet 8 is achieved already in the area around the end area 20 of the powder feed 6. As the diameter of the rotor 3 increases, that is, as the cross-sectional area Q of the rotor 3 increases in the direction of the product outlet 8, this axial conveyance changes into a radial conveying effect, up to an area in which the fluid F is only conveyed radially. In addition to the axial or radial conveying effect, the fluid F is set in rotation by the rotation of the rotor 3 about the axis of rotation R.

Die Pulverzufuhr 6 kann im Endbereich 20 geschlossen sein und seitliche Öffnungen als Pulveraustrittsöffnungen 21 aufweisen, über die vorzugsweise ein Austritt des Pulvers aus der Pulverzufuhr 6 in radialer Richtung erfolgt.The powder feed 6 can be closed in the end region 20 and have lateral openings as powder outlet openings 21, via which the powder preferably emerges from the powder feed 6 in the radial direction.

Es kann vorgesehen sein, dass die Pulverzufuhr 6 entlang einer Längsachse L6 axial verschoben werden kann. Die Längsachse L6 kann vorzugsweise koaxial oder parallel zur Rotationsachse R des Rotors 2 ausgerichtet sein. Über die axiale Verschiebung der Pulverzufuhr 6 kann insbesondere die Tiefe, die der Endbereich 20 der Pulverzufuhr 6 in die Verlängerungen 14 der Leitstrukturen 11 eintaucht, eingestellt werden. In radialer Richtung ist zwischen den Verlängerungen 14 der Leitstrukturen 11 und der Pulverzufuhr 6 ein Abstand ausgebildet. Dieser Abstand gewährleistet insbesondere eine ungestörte Rotation des Rotors 3 um die Pulverzufuhr 6 herum und ermöglicht weiterhin den ungehinderten Austritt des Pulvers P aus der mindestens einen Pulveraustrittsöffnung 21. Der radiale Abstand zwischen den Verlängerungen 14 der Leitstrukturen 11 und der Pulverzufuhr 6 beträgt vorzugsweise zwischen 0,1 mm und 10 mm. Für den Fachmann ist klar, dass der Abstand insbesondere auf die Größe der Gesamtvorrichtung beziehungsweise auf die zu verarbeitenden Stoffe und / oder Produkte abgestimmt ist.It can be provided that the powder feed 6 can be axially displaced along a longitudinal axis L6. The longitudinal axis L6 can preferably be aligned coaxially or parallel to the axis of rotation R of the rotor 2. Via the axial displacement of the powder feed 6, in particular the depth that the end region 20 of the powder feed 6 dips into the extensions 14 of the guide structures 11 can be set. In the radial direction, a spacing is formed between the extensions 14 of the guide structures 11 and the powder feed 6. This distance ensures, in particular, an undisturbed rotation of the rotor 3 around the powder feed 6 and furthermore enables the unimpeded exit of the powder P from the at least one powder outlet opening 21. The radial distance between the extensions 14 of the guide structures 11 and the powder feed 6 is preferably between 0.1 mm and 10 mm. It is clear to a person skilled in the art that the spacing is especially tailored to the size of the overall device or to the substances and / or products to be processed.

Weiterhin besteht zwischen der Pulverzufuhr 6 und dem massiven Rotorkern 10 in axialer Richtung ein Spalt S, durch den das über die Pulverzufuhr 6 zugeführte Pulver P radial in das Fluid F übertritt.Furthermore, there is a gap S in the axial direction between the powder supply 6 and the solid rotor core 10, through which the powder P supplied via the powder supply 6 passes radially into the fluid F.

Ein Abstand A zwischen Rotor 3 und Prozessgehäuse 5 (vergleiche Figuren 1 und 4) beträgt zwischen 0,1 mm und 10 mm. Je geringer der Abstand A, desto höhere Scherkräfte wirken innerhalb des Fluides F, was die Dispergierwirkung begünstigen kann.A distance A between rotor 3 and process housing 5 (compare Figures 1 and 4th ) is between 0.1 mm and 10 mm. The smaller the distance A, the higher the shear forces act within the fluid F, which can promote the dispersing effect.

Die Pulverzufuhr 6 kann im Endbereich 20, insbesondere im Bereich der mindestens einen Pulveraustrittsöffnung 21, einen vergrößerten Außendurchmesser aufweisen. Der erhöhte Durchmesser dient als zusätzliches Abweiselement, das zusätzlich ein Eindringen von Fluid F in den Bereich der Pulveraustrittsöffnung 21 verhindert.The powder feed 6 can have an enlarged outer diameter in the end region 20, in particular in the region of the at least one powder outlet opening 21. The increased diameter serves as an additional deflecting element which additionally prevents fluid F from penetrating into the area of the powder outlet opening 21.

Die Zuführung des Fluides F, des Pulvers P beziehungsweise einer Produkt-Suspension oder Dispersion D geschieht über relativ große Rohrquerschnitte der Pulverzufuhr 6 und Fluidzuführung 7. Dadurch werden insbesondere Strömungswiderstände gering gehalten und es können auch Produkte bis hin zu mittleren Viskositäten ohne Pumpe prozessiert werden. Wird beispielsweise ein Produkt im Kreislauf durchgeleitet, um sukzessive Pulver P zuzugeben, bis die gewünschte Endkonzentration erreicht ist, dann erfolgt die Zugabe des bereits Pulver enthaltenden Produktes in der Regel über die Zuleitung der Fluidzuführung 7.The supply of the fluid F, the powder P or a product suspension or dispersion D takes place via relatively large pipe cross-sections of the powder supply 6 and fluid supply 7. This in particular keeps flow resistances low and products up to medium viscosities can be processed without a pump. If, for example, a product is passed through in the circuit in order to add powder P successively until the desired final concentration is reached, then the addition of the product already containing powder usually takes place via the feed line of the fluid feed 7.

Um Produkte mit unterschiedlichen Viskositäten jeweils optimal bearbeiten zu können, kann am Produkteinlass der Fluidzuführung 7 zur Drosselung des Durchflusses für Produkte mit niedrigen Viskositäten ein Ventil oder Ähnliches verbaut sein (nicht dargestellt).In order to be able to optimally process products with different viscosities, a valve or the like can be installed at the product inlet of the fluid feed 7 to throttle the flow for products with low viscosities (not shown).

Bei der erfindungsgemäßen Dispersionsvorrichtung 1 kann die Zufuhr von Fluid F in Abhängigkeit vom jeweiligen Fluid F beziehungsweise zirkulierendes Dispersionsprodukt D mit oder ohne Pumpe erfolgen.In the case of the dispersion device 1 according to the invention, the supply of fluid F can take place as a function of the respective fluid F or circulating dispersion product D with or without a pump.

Das Fluid F tritt im Produkteinlass der Fluidzuführung 7 in das Prozessgehäuse 5 ein, wird vom sich drehenden Rotor 3 erfasst und in axialer und radialer Richtung beschleunigt. Dadurch kommt eine Pumpwirkung zustande, welche das Fluid F durch den Produktauslass 8 zurück in einen Behälter (nicht dargestellt) pumpt. Dabei entsteht im Prozessgehäuse 5 ein Unterdruck. Sobald die in der Regel durch ein Ventil (nicht dargestellt) regulierte Pulverzufuhr 6 geöffnet wird, entsteht aufgrund des Unterdruckes im Prozessgehäuse 5 ein Sog. Das Pulver P wird in Richtung des Rotors 3 angesaugt. Das Pulver P tritt über die mindestens eine Pulveraustrittsöffnung 21 aus der Pulverzufuhr 6 aus und geht radial in das Fluid F über. Die so entstandene Dispersion D wird durch den Rotor 3 vom Prozessgehäuse 5 über den Produktauslass 8 ausgetragen. Durch den engen Spalt zwischen den Leitstrukturen 11 und der Pulverzufuhr 6 wird das Fluid über Zentrifugalkräfte davon abgehalten in die Pulverzufuhr 6 einzufließen.The fluid F enters the process housing 5 in the product inlet of the fluid supply 7, is captured by the rotating rotor 3 and accelerated in the axial and radial directions. This creates a pumping action which pumps the fluid F through the product outlet 8 back into a container (not shown). This creates a negative pressure in the process housing 5. As soon as the powder feed 6, which is usually regulated by a valve (not shown), is opened, suction occurs in the process housing 5 due to the negative pressure. The powder P is sucked in in the direction of the rotor 3. The powder P emerges from the powder feed 6 via the at least one powder outlet opening 21 and merges radially into the fluid F. The resulting dispersion D is discharged by the rotor 3 from the process housing 5 via the product outlet 8. The narrow gap between the conductive structures 11 and the powder feed 6 prevents the fluid from flowing into the powder feed 6 by means of centrifugal forces.

Die Ventile an der Fluidzuführung 7 beziehungsweise an der Pulverzufuhr 6 sind insbesondere dazu vorgesehen, die Zuführung entweder komplett zu öffnen oder komplett zu verschließen, um ein Fluten der Dispersionsvorrichtung 1 zu verhindern.The valves on the fluid feed 7 or on the powder feed 6 are provided in particular to either open the feed completely or to close it completely in order to prevent the dispersion device 1 from flooding.

Die erfindungsgemäße Dispersionsvorrichtung 1 kann ohne zusätzliche Maschinen benutzt werden. Es wird lediglich ein Produkt- beziehungsweise Ansatzbehälter (nicht dargestellt) und ein geeignetes Pulveraufgabesystem (nicht dargestellt) benötigt. Als Pulveraufgabesystem eignen sich herkömmlich bekannte Systeme, beispielsweise eine Sauglanze, eine Sackaufgabestation, eine BigBag-Aufgabestation, ein Silo o.ä. Mit der Dispersionsvorrichtung 1 können Pulver P in Fluide F, insbesondere in Flüssigkeiten, eingesaugt und fein dispergiert werden.The dispersion device 1 according to the invention can be used without additional machines. All that is required is a product or batch container (not shown) and a suitable powder feed system (not shown). Conventionally known systems are suitable as the powder feed system, for example a suction lance, a bag feed station, a BigBag feed station, a silo, etc. With the dispersion device 1, powder P can be sucked in and finely dispersed in fluids F, in particular in liquids.

Figur 7 stellt einen ersten Arbeitsmodus AM1 und Figur 8 stellt einen zweiten Arbeitsmodus AM2 dar. In dem ersten Arbeitsmodus AM1 gemäß Figur 7 ist die Pulverzufuhr 6 geöffnet. Insbesondere ist ein die Pulverzufuhr 6 regulierendes Ventil (nicht dargestellt) geöffnet. In diesem ersten Arbeitsmodus AM1 zirkuliert das Fluid F beziehungsweise das Dispersionsprodukt D bestehend aus in dem Fluid F dispergiertem Pulver P zwischen einem Produkt- beziehungsweise Ansatzbehälter und der Dispersionsvorrichtung 1 (in Figuren 7 und 8 ist jeweils nur das Prozessgehäuse 5 mit den Zu- und Ableitungen 6, 7, 8 dargestellt, wobei über die Pulverzufuhr 6 fortlaufend Pulver P zugeführt, insbesondere eingesaugt, wird. Die Pulverbeschickung kann beispielsweise über einen Trichter, eine BigBag-Station, ein Silo, eine Sauglanze oder ähnlichem erfolgen. Figure 7 represents a first working mode AM1 and Figure 8 shows a second working mode AM2. In the first working mode AM1 according to FIG Figure 7 the powder feed 6 is open. In particular, a valve (not shown) regulating the powder feed 6 is open. In this first working mode AM1, the fluid F or the dispersion product D consisting of powder P dispersed in the fluid F circulates between a product or batch container and the dispersion device 1 (in Figures 7 and 8 only the process housing 5 with the supply and discharge lines 6, 7, 8 is shown in each case, with powder P being continuously supplied, in particular sucked in, via the powder supply 6. The powder can be fed in via a funnel, a BigBag station, a silo, a suction lance or the like, for example.

In einem zweiten Arbeitsmodus AM2 gemäß Figur 8 ist die Pulverzufuhr 6 mittels Ventil (nicht dargestellt) verschlossen. Stattdessen zirkuliert das Dispersionsprodukt D fortlaufend zwischen dem Produkt- beziehungsweise Ansatzbehälter und dem Prozessgehäuse 5 der Dispersionsvorrichtung 1. Dabei entsteht im Prozessgehäuse 5 ein starker Unterdruck, der zu (Micro-) Kavitation innerhalb der Dispersion D führt. Des Weiteren wird das Dispersionsprodukt D, das heißt, das im Fluid F dispergierte Pulver P, zwischen den Leitstrukturen 11 und dem Prozessgehäuse 5 einer Scherwirkung unterzogen (vergleiche Figuren 1 und 4). Um einen höheren Druck und eine höhere Verweilzeit des Dispersionsprodukts D beziehungsweise des im Fluid F dispergierten Pulvers P im Prozessgehäuse 5 zu erzielen, kann am Produktauslass 8 ein weiteres Ventil (nicht dargestellt) angeordnet sein oder aber der Produktfluss wird mit einer entsprechenden Rohrleitung gedrosselt. Diese Maßnahmen bzw. Effekte wirken sich positiv auf die Dispergierqualität aus.In a second working mode AM2 according to Figure 8 the powder supply 6 is closed by means of a valve (not shown). Instead, the dispersion product D circulates continuously between the product or batch container and the process housing 5 of the dispersion device 1. A strong negative pressure arises in the process housing 5, which leads to (micro) cavitation within the dispersion D. Furthermore, the dispersion product D, that is to say the powder P dispersed in the fluid F, is subjected to a shear effect between the conductive structures 11 and the process housing 5 (cf. Figures 1 and 4th ). In order to achieve a higher pressure and a longer residence time of the dispersion product D or the powder P dispersed in the fluid F in the process housing 5, a further valve (not shown) can be arranged at the product outlet 8 or the product flow is throttled with a corresponding pipeline. These measures or effects have a positive effect on the dispersion quality.

Figur 9 zeigt eine seitliche Darstellung einer weiteren Ausführungsform einer erfindungsgemäßen Dispersionsvorrichtung 1. Figur 10 zeigt eine Schnittdarstellung durch die Dispersionsvorrichtung 1 gemäß Figur 9. Figur 11 zeigt eine schematische Schnittdarstellung und Figur 13 zeigt eine perspektivische Darstellung des Prozessgehäuses der Ausführungsform gemäß Figur 9. Figur 12 stellt einen Detailausschnitt aus Figur 11 dar und Figur 14 zeigt eine perspektivische Darstellung eines Rotors mit Lagerung der Ausführungsform der Dispersionsvorrichtung 1 gemäß Figur 9. Gleiche Bauteile sind mit denselben Referenznummern versehen wie in den Figuren 1 bis 8, auf deren Beschreibung hiermit verwiesen wird. Figure 9 shows a side view of a further embodiment of a dispersion device 1 according to the invention. Figure 10 shows a sectional illustration through the dispersion device 1 according to FIG Figure 9 . Figure 11 shows a schematic sectional view and Figure 13 FIG. 13 shows a perspective illustration of the process housing of the embodiment according to FIG Figure 9 . Figure 12 provides a detail section Figure 11 dar and Figure 14 FIG. 11 shows a perspective illustration of a rotor with mounting of the embodiment of the dispersion device 1 according to FIG Figure 9 . Identical components are provided with the same reference numbers as in Figures 1 to 8 , to the description of which reference is hereby made.

Die Dispersionsvorrichtung 1 umfasst einen Antriebsmotor (nicht dargestellt), eine Lagerung 9 in der die Antriebswelle 2 gelagert ist und eine Kupplungslaterne mit innenliegender Wellenkupplung. Die Dispersionsvorrichtung 1 umfasst weiterhin einen Antriebsmotor (nicht dargestellt) zur Kraftübertragung von der Motorwelle auf die Antriebswelle 2, die dem Antrieb des Rotors 3 dient. Weiterhin ist eine drehende Lagerung der Antriebswelle 2 vorgesehen, die durch eine Gleitringdichtung 4 in ein Prozessgehäuse 5 geführt ist. In dem Prozessgehäuse 5, in dem die Dispersion einer pulverigen Substanz P in einem Fluid F stattfindet, sind ein Rotor 3 und ein Produktauslass 8 zum Abführen des Produktes, insbesondere der Dispersion D, angeordnet. Dem Prozessgehäuse 5 ist weiterhin eine Zuleitung für die zu dispergierende pulverige Substanz P zugeordnet, insbesondere eine Pulverzufuhr 6*, sowie weiterhin eine Fluidzuführung 7* zur Zuführung von Fluid F.The dispersion device 1 comprises a drive motor (not shown), a bearing 9 in which the drive shaft 2 is mounted and a coupling lantern with an internal shaft coupling. The dispersion device 1 further comprises a drive motor (not shown) for transmitting power from the motor shaft to the drive shaft 2, which is used to drive the rotor 3. There is also a rotating one Support of the drive shaft 2 is provided, which is guided through a mechanical seal 4 into a process housing 5. In the process housing 5, in which a powdery substance P is dispersed in a fluid F, a rotor 3 and a product outlet 8 for discharging the product, in particular the dispersion D, are arranged. The process housing 5 is also assigned a supply line for the powdery substance P to be dispersed, in particular a powder supply 6 *, and also a fluid supply 7 * for supplying fluid F.

Im Gegensatz zu der in den Figuren 1 bis 8 dargestellten Ausführungsform ist bei der in den Figuren 9 bis 14 dargestellten Ausführungsform die Längsachse L6* der Pulverzufuhr 6* in einem Winkel α zur Rotationsachse R des Rotors 3 angeordnet. Insbesondere wird die pulverige Substanz P somit von schräg oben nach unten dem Rotor 3 zugeleitet. Die Pulverzufuhr 6* endet analog zur Pulverzufuhr 6 gemäß Figuren 1 und 4 im Zentrum des Rotors 3, insbesondere taucht der Endbereich 20 der Pulverzufuhr 6* mit der Pulveraustrittsöffnung 21 zwischen den axialen Verlängerungen 14* der Leitstrukturen 11 des Rotors 3 ein. Analog zu den im Zusammenhang mit den Figuren 5 und 6 ausführlich beschriebenen Leitstrukturen 11 sind die Verlängerungen 14* der Leitstrukturen 11 ebenfalls im Bereich der Rotationsachse R des Rotors 3 ausgespart und bilden eine axiale Öffnung 15*. Diese Öffnung 15* dient insbesondere als Aufnahme 16* für einen Endbereich 20 der Pulverzufuhr 6* (vergleiche insbesondere Figuren 12 und 14). Insbesondere wird die mindestens eine Pulveraustrittsöffnung 21 der Pulverzufuhr 6* innerhalb der Aufnahme 16* von den Verlängerungen 14* der Leitstrukturen 11 des Rotors 3 umschlossen (vergleiche Figur 10 bis 12). Bei der Rotation des Rotors 3 um die Rotationsachse R entstehen Zentrifugalkräfte, die dazu führen, dass das Fluid F nach außen abgeleitet wird und somit von der Pulveraustrittsöffnung 21 ferngehalten wird. Somit kann wirksam ein Eindringen von Fluid F in die Pulverzufuhr 6* verhindern werden.In contrast to the one in the Figures 1 to 8 The embodiment shown is in the Figures 9 to 14 The illustrated embodiment, the longitudinal axis L6 * of the powder feed 6 * is arranged at an angle α to the axis of rotation R of the rotor 3. In particular, the powdery substance P is thus fed to the rotor 3 obliquely from above to below. The powder feed 6 * ends analogously to the powder feed 6 according to FIG Figures 1 and 4th in the center of the rotor 3, in particular, the end region 20 of the powder feed 6 * with the powder outlet opening 21 dips between the axial extensions 14 * of the guide structures 11 of the rotor 3. Analogous to those related to the Figures 5 and 6 The guide structures 11 described in detail, the extensions 14 * of the guide structures 11 are also cut out in the area of the axis of rotation R of the rotor 3 and form an axial opening 15 *. This opening 15 * serves in particular as a receptacle 16 * for an end region 20 of the powder feed 6 * (compare in particular Figures 12 and 14th ). In particular, the at least one powder outlet opening 21 of the powder feed 6 * is enclosed within the receptacle 16 * by the extensions 14 * of the guide structures 11 of the rotor 3 (cf. Figure 10 to 12 ). When the rotor 3 rotates about the axis of rotation R, centrifugal forces arise which lead to the fluid F being diverted to the outside and thus kept away from the powder outlet opening 21. Thus, the penetration of fluid F into the powder feeder 6 * can be effectively prevented.

Insbesondere entspricht der Eintauchbereich EB, in dem die Pulverzufuhr 6* zumindest bereichsweise in den Rotor 3 eintaucht, insbesondere der Eintauchbereich EB, in dem die Pulverzufuhr 6* in die Verlängerungen 14* der Leitstrukturen 11 des Rotors 3 eintaucht, somit auch dem Austrittsbereich AB, in dem das Pulver P aus der mindestens einen Pulveraustrittsöffnung 21 der Pulverzufuhr 6* austritt und insbesondere in das Fluid F übertritt.In particular, the immersion area EB, in which the powder feed 6 * dips into the rotor 3 at least in some areas, in particular the immersion area EB, in which the powder feed 6 * dips into the extensions 14 * of the guide structures 11 of the rotor 3, thus also corresponds to the exit area AB, in which the powder P emerges from the at least one powder outlet opening 21 of the powder feed 6 * and in particular passes into the fluid F.

Auch bei dieser Ausführungsform wird somit die pulverige Substanz P im Zentrum des Rotors 3 zugeführt, wie insbesondere in der vergrößerten Detaildarstellung der Figur 12 deutlich zu erkennen ist. Die Rotorflügel beziehungsweise Leitstrukturen 11 umschließen dabei den Endbereich 20 der Pulverzufuhr 6* und verhindern dadurch wirksam, dass Fluid F in die Pulverzufuhr 6* gelangen kann. Durch die Leitstrukturen 11, insbesondere über den ersten Teilbereich 12 der Leitstrukturen 11, wird das Fluid F nach außen zentrifugiert. Die spezielle Ausführung der in die Rotorflügel bzw. Leitstrukturen 11 eintauchenden Pulverzufuhr 6* bildet somit eine dynamische Barriere zwischen der pulverigen Substanz P und dem Fluid F.In this embodiment too, the powdery substance P is thus supplied in the center of the rotor 3, as in particular in the enlarged detailed illustration of FIG Figure 12 can be clearly seen. The rotor blades or guide structures 11 enclose the end region 20 of the powder feed 6 * and thereby effectively prevent fluid F from getting into the powder feed 6 *. The fluid F is centrifuged to the outside through the guide structures 11, in particular via the first partial area 12 of the guide structures 11. The special design of the powder feed 6 *, which dips into the rotor blades or guide structures 11, thus forms a dynamic barrier between the powdery substance P and the fluid F.

Der Endbereich 20 der Pulverzufuhr 6* kann in dem Eintrittsbereich EB, in dem er in den Rotor 3 eintaucht, so abgeschnitten sein, dass der Endbereich 20 eine Fläche senkrecht zur Rotationsachse R des Rotors 3 bildet. Alternativ kann der Endbereich 20 in einem beliebigen Winkel zur Längsachse L6* der Pulverzufuhr 6* abgeschnitten sein.The end area 20 of the powder feed 6 * can be cut off in the entry area EB, in which it dips into the rotor 3, such that the end area 20 forms a surface perpendicular to the axis of rotation R of the rotor 3. Alternatively, the end region 20 can be cut off at any desired angle to the longitudinal axis L6 * of the powder feed 6 *.

Der Winkel a, in dem die Pulverzufuhr 6* zur Rotationsachse R des Rotors 3 angeordnet ist, kann zwischen 0° bis zu 90° betragen. Der Abstand der Pulverzufuhr 6* zum Rotor 3 kann beliebig zwischen 0,5 mm und 100 mm betragen. Die Überdeckung der Rotorflügel beziehungsweise die Überdeckung der Verlängerungen 14* der Leitstrukturen 11 über die Pulverzufuhr 6* hinaus, insbesondere die Umschließung der Pulverzufuhr 6* durch die Verlängerungen 14* der Leitstrukturen 11, kann vorzugsweise zwischen 1mm und 100mm betragen.The angle a at which the powder feed 6 * is arranged to the axis of rotation R of the rotor 3 can be between 0 ° and 90 °. The distance between the powder feed 6 * and the rotor 3 can be between 0.5 mm and 100 mm. The coverage of the rotor blades or the coverage of the extensions 14 * of the guide structures 11 beyond the powder feed 6 *, in particular the enclosure of the powder feed 6 * by the extensions 14 * of the guide structures 11, can preferably be between 1mm and 100mm.

Bedingt durch den winkligen Eintritt der Pulverzufuhr 6* in die axiale Öffnung 15* beziehungsweise Aufnahme 16* zwischen den axialen Verlängerungen 14* der Leitstrukturen 11 ist die Aussparung zwischen den Verlängerungen 14*, die die Öffnung 15* beziehungsweise Aufnahme 16* bildet, geöffnet ausgebildet, um eine ungehinderte Rotation des Rotors 3 zu ermöglichen (vergleiche Figur 12). Dadurch ergibt sich im unteren Bereich ein erster Abstand A1 zwischen der Pulverzufuhr 6* und den Verlängerungen 14* und im oberen Bereich ergibt sich ein zweiter Abstand A2 zwischen der Pulverzufuhr 6* und den Verlängerungen 14*. Dabei ist der erste Abstand A1 größer als der zweite Abstand A2. Der größere erste Abstand A1 im unteren Bereich ist jedoch unproblematisch, da kein Fluid F von unten her in die Pulverzufuhr 6* einströmt.Due to the angled entry of the powder feed 6 * into the axial opening 15 * or receptacle 16 * between the axial extensions 14 * of the guide structures 11, the recess between the extensions 14 *, which forms the opening 15 * or receptacle 16 *, is designed to be open in order to enable an unhindered rotation of the rotor 3 (cf. Figure 12 ). This results in a first distance A1 between the powder feed 6 * and the extensions 14 * in the lower region and a second distance A2 between the powder feed 6 * and the extensions 14 * in the upper region. The first distance A1 is greater than the second distance A2. The larger first distance A1 im However, the lower area is not a problem, since no fluid F flows into the powder feed 6 * from below.

Diese Ausführungsform hat sich insbesondere beim Stillstand der Dispersionsvorrichtung 1 als vorteilhaft erwiesen, wenn in dieser gegebenenfalls noch Restfluid vorhanden ist. Bei der Ausführungsform gemäß Figuren 1 bis 7 kann es in Ausnahmefällen im Ruhezustand zu einem Einfließen von Restfluid in die Pulverzufuhr 6 kommen, die dann zu einem Verkleben der pulverigen Substanz P innerhalb der Pulverzufuhr 6 führen kann.This embodiment has proven to be particularly advantageous when the dispersion device 1 is at a standstill, when residual fluid may still be present in it. In the embodiment according to Figures 1 to 7 In exceptional cases, residual fluid can flow into the powder feed 6 in the idle state, which can then lead to the powdery substance P sticking inside the powder feed 6.

Bei einer Ausführungsform mit einer gemäß den Figuren 9 bis 14 dargestellten und beschriebenen Einlassgeometrie der Pulverzufuhr 6* zwischen die Verlängerungen 14* der Leitstrukturen 11 des Rotors 3 ist diese Restgefahr komplett ausgeschlossen. Auch im ausgeschalteten Zustand der Dispersionsvorrichtung 1 kommt es bei dieser Ausführungsform nicht zu einem ungewollten Einfließen von Fluid F in die Pulverzufuhr 6*.In an embodiment with one according to the Figures 9 to 14 The illustrated and described inlet geometry of the powder feed 6 * between the extensions 14 * of the guide structures 11 of the rotor 3, this residual risk is completely excluded. In this embodiment, even when the dispersion device 1 is switched off, there is no undesired flow of fluid F into the powder feed 6 *.

Die Erfindung wurde unter Bezugnahme auf eine bevorzugte Ausführungsform beschrieben. Es ist jedoch für einen Fachmann vorstellbar, dass Abwandlungen oder Änderungen der Erfindung gemacht werden können, ohne dabei den Schutzbereich der nachstehenden Ansprüche zu verlassen.The invention has been described with reference to a preferred embodiment. However, it is conceivable for a person skilled in the art that modifications or changes can be made to the invention without departing from the scope of protection of the claims below.

BezuaszeichenlisteReference list

11
DispersionsvorrichtungDispersing device
22
Antriebswelledrive shaft
33
Rotorrotor
44th
GleitringdichtungMechanical seal
55
ProzessgehäuseProcess housing
66th
Pulverzufuhr / ZuleitungPowder feed / supply line
77th
Fluidzuführung / ZuleitungFluid supply / supply line
88th
Produktauslass / AbleitungProduct outlet / discharge
99
Lagerungstorage
1010
RotorkernRotor core
1111
LeitstrukturLead structure
1212th
erster Teilbereichfirst part
1313th
zweiter Teilbereichsecond sub-area
1414th
axiale Verlängerungaxial extension
1515th
Öffnungopening
1616
Aufnahmeadmission
2020th
EndbereichEnd area
2121
PulveraustrittsöffnungPowder outlet
AA.
Abstanddistance
ABFROM
AustrittsbereichExit area
AMAT THE
ArbeitsmodusWorking mode
DD.
Dispersion / DispersionsproduktDispersion / dispersion product
EBEB
EintauchbereichImmersion area
FF.
FluidFluid
LL.
LängsachseLongitudinal axis
PP
Pulverpowder
RR.
RotationsachseAxis of rotation
SS.
Spaltgap
QQ
QuerschnittsflächeCross sectional area

Claims (11)

  1. A device (1) for dispersing at least one powdery substance (P) in a fluid (F), comprising a process housing (5) comprising a rotor (3) comprising a rotor surface, a fluid supply (7), a feed line (6) for the at least one powdery substance to be dispersed, comprising at least one outlet opening (21), as well as a product outlet (8), wherein an axial delivery of s supplied fluid (F) can be generated by the rotor (3) at least area by area, and wherein a radial delivery of the supplied fluid (F) can be generated by the rotor (3) at least area by area,
    wherein the rotor (3) has guide structures (11) for generating the axial delivery effect in the region of the rotor surface, and wherein a radial delivery effect can be generated by a widening of a rotor cross section (Q) and/or by a rotation of the rotor (3),
    wherein the guide structures (11) are formed on the side of the rotor (3) facing the feed line (6) for the substance to be dispersed, and wherein at least one of the guide structures (11) is extended beyond a solid core (10) of the rotor (3) axially in the direction of the feed line (6) for the powdery substance to be dispersed,
    characterized in that
    the at least one outlet opening (21) of the feed line (6) for the powdery substance to be dispersed is surrounded at least partially by the at least one extended guide structure (11) outside of the solid rotor core, wherein
    centrifugal forces , which result in that the fluid (F) is guided to the outside and is thus kept away from the powder outlet opening (21), can be generated in response to the rotation of the rotor (3) around the axis of rotation (R), wherein a penetration of fluid (F) into the powder supply (6) is effectively prevented.
  2. The device (1) according to claim 1, wherein the rotor (3) comprises at least one first means for generating the axial delivery at least area by area, and wherein the rotor (3) comprises at least one second means for generating the radial delivery at least area by area.
  3. The device (1) according to claim 1 or 2, wherein the feed line (6) for the substance to be dispersed is at least partially surrounded by the rotor (3), and wherein the at least one outlet opening (21) is arranged in a region of the rotor (3), in which the fluid (F) can be delivered axially.
  4. The device (1) according to one of the preceding claims, wherein the feed line (6) for the substance to be dispersed has a first longitudinal axis (L6), and wherein the rotor (3) is mounted rotatably around an axis of rotation (R), wherein the longitudinal axis (L6) of the feed line (6) for the substance to be dispersed and the axis of rotation (R) of the rotor (3) are aligned coaxially or parallel, and wherein an outlet opening (21) of the feed line (6) for the substance to be dispersed is aligned with the first longitudinal axis (L6) of the feed line (6) for the substance to be dispersed and the axis of rotation (R) of the rotor (3), or wherein the longitudinal axis (L6*) of the feed line (6*) for the substance to be dispersed and the axis of rotation (R) of the rotor (3) are arranged at a defined angle (a) to one another.
  5. The device (1) according to one of the preceding claims, wherein the fluid supply (7) is arranged largely orthogonally to the feed line (6) for the substance to be dispersed, or wherein the fluid supply (7) is arranged at an angle of between 0 degrees and 90 degrees to the feed line (6) for the substance to be dispersed.
  6. The device (1) according to one of claims 4 or 5, wherein the fluid supply (7) has a second longitudinal axis, which is arranged orthogonally or at an angle to the first longitudinal axis (L6) of the feed line (6) for the substance to be dispersed, and wherein the fluid supply (7) is arranged spaced apart from the rotor (3), so that introduced fluid (F) flows at least area by area around the feed line (6) for the substance to be dispersed.
  7. The device (1) according to claim 6, wherein the fluid (F) can be guided to the outside from a center of the rotor (3) by means of the guide structures (11) of the rotor (3) and the centrifugal forces occurring in response to the rotation of the rotor (3).
  8. The device (1) according to one of the preceding claims, wherein the feed line (6) for the substance to be dispersed can be axially adjusted, in particular wherein the feed line (6) for the substance to be dispersed can be displaced parallel to the axis of rotation (R) of the rotor.
  9. The device (1) according to one of claims 5 to 8, wherein the insertion depth of an end region (20) of the feed line (6) for the substance to be dispersed, in particular the insertion depth of the end region (20) comprising the at least one outlet opening (21), can be adjusted in the extended guide structures (11) of the rotor (3).
  10. The device (1) according to one of claims 5 to 9, wherein a radial distance, in particular a radial distance of between 0.1 mm and 10 mm, is formed between the extended guide structures (11) of the rotor (3) and the feed line (6) for the substance to be dispersed.
  11. A method for dispersing at least one substance (P) in a fluid (F), in particular in a liquid, by means of a device (1) according to one of claims 1 to 10, comprising a process housing (5) comprising a rotor (3) comprising a rotor surface, a fluid supply (7), a feed line (6) for the at least one substance to be dispersed, comprising at least one outlet opening (21), as well as a product outlet (8), wherein the rotor (3) effects an axial delivery of a supplied fluid (F) at least area by area, and wherein the rotor (3) effects a radial delivery of the supplied fluid (F) at least area by area.
EP16762959.1A 2015-08-13 2016-07-23 Device and method for dispersing at least one substance in a fluid Active EP3334519B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL16762959T PL3334519T3 (en) 2015-08-13 2016-07-23 Device and method for dispersing at least one substance in a fluid

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102015113380 2015-08-13
DE102016102728.6A DE102016102728A1 (en) 2015-08-13 2016-02-17 Apparatus and method for dispersing at least one substance in a fluid
PCT/DE2016/000287 WO2017025073A1 (en) 2015-08-13 2016-07-23 Device and method for dispersing at least one substance in a fluid

Publications (2)

Publication Number Publication Date
EP3334519A1 EP3334519A1 (en) 2018-06-20
EP3334519B1 true EP3334519B1 (en) 2021-05-19

Family

ID=57907847

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16762959.1A Active EP3334519B1 (en) 2015-08-13 2016-07-23 Device and method for dispersing at least one substance in a fluid

Country Status (10)

Country Link
US (1) US10946355B2 (en)
EP (1) EP3334519B1 (en)
JP (1) JP6715322B2 (en)
KR (1) KR102531425B1 (en)
CN (1) CN107921382B (en)
BR (1) BR112018002340B1 (en)
DE (1) DE102016102728A1 (en)
ES (1) ES2879389T3 (en)
PL (1) PL3334519T3 (en)
WO (1) WO2017025073A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110385171A (en) * 2018-04-23 2019-10-29 昆山强迪粉碎设备有限公司 Colloid mill agitator tank discharging device
CN108993306B (en) * 2018-08-13 2021-06-25 苏州卓诚钛设备有限公司 Coaxial rotary liquid medicine stirring device with detachable inner lock
CN116850888B (en) * 2023-08-22 2024-04-09 深圳市尚水智能股份有限公司 Dispersing mechanism and pulping equipment

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL39146C (en) *
BE681488A (en) * 1965-10-25 1966-10-31
US3606270A (en) * 1970-05-14 1971-09-20 Ludish Co Continuous power blender
DE3002429A1 (en) 1980-01-24 1981-07-30 Ystral Gmbh Maschinenbau Und Processtechnik, 7801 Ballrechten-Dottingen Gas powder and fluid dispersing device - combines hollow rotor with jet mixer principle
EP0048312A1 (en) * 1980-09-19 1982-03-31 Nemo Ivarson Method and apparatus for continuously mixing a liquid and powder
DE4118870A1 (en) 1991-06-07 1992-12-17 Ystral Gmbh Maschinenbau Und P DEVICE FOR WETING AND DISPERSING POWDERS IN LIQUIDS
JP2001062273A (en) * 1999-08-27 2001-03-13 Dow Corning Toray Silicone Co Ltd Continuous mixing device
DE50202072D1 (en) * 2001-08-17 2005-02-24 Netzsch Feinmahltechnik DEVICE AND METHOD FOR MIXING A SOLID WITH A LIQUID
DE10260040A1 (en) * 2002-12-19 2004-07-15 Braun Gmbh mixing device
SG10201406836SA (en) * 2009-11-02 2014-12-30 Mannkind Corp Reactor For Producing Pharmaceutical Particles In A Precipitation Process
US9656224B2 (en) * 2011-02-28 2017-05-23 Sulzer Mixpac Ag Dynamic mixer
JP5625216B2 (en) * 2011-05-31 2014-11-19 株式会社イズミフードマシナリ Distributed method and distributed system
EP2676725B1 (en) 2012-06-18 2016-03-02 Bühler AG Method and device for mixing, in particular for dispersion

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
BR112018002340A2 (en) 2018-10-02
DE102016102728A1 (en) 2017-02-16
PL3334519T3 (en) 2021-11-15
BR112018002340B1 (en) 2022-06-14
US10946355B2 (en) 2021-03-16
KR20180053303A (en) 2018-05-21
CN107921382B (en) 2021-09-07
ES2879389T3 (en) 2021-11-22
KR102531425B1 (en) 2023-05-12
US20180236423A1 (en) 2018-08-23
JP2018522727A (en) 2018-08-16
JP6715322B2 (en) 2020-07-01
CN107921382A (en) 2018-04-17
WO2017025073A1 (en) 2017-02-16
EP3334519A1 (en) 2018-06-20

Similar Documents

Publication Publication Date Title
DE1457182C3 (en) Device for continuous mixing
DE602004003661T2 (en) agitating mixer
EP2285476B1 (en) Rotor/stator system and process for producing dispersions
EP0516921A1 (en) Gasing stirrer
DE602005003356T2 (en) METHOD, DEVICE AND ROTOR FOR HOMOGENIZING A MEDIUM
DE69916651T2 (en) METHOD AND DEVICE FOR MIXING HIGH-MOLECULAR MATERIALS WITH LIQUIDS
EP3202489B1 (en) Device for homogenizing and/or dispersing flowable products
DE3243671C2 (en)
EP2572777B1 (en) Outlet means of a rotor-stator-dispersion machine
EP3334519B1 (en) Device and method for dispersing at least one substance in a fluid
EP0570335B1 (en) Device and process for mixing a pulverulent solid component to a liquid material
DE3342304A1 (en) HOMOGENIZING MACHINE
DE19537303B4 (en) Device for homogenizing flowable substances
EP2305370A1 (en) Homogeniser and homogenising device with such a homogeniser
EP1964604A2 (en) Method and device for continuous production of a mixture composed of at least two different flow-capable phases
AT511564B1 (en) MIXING DEVICE AND METHOD FOR MIXING A BULK OR A PAST-OIL MASS
DE102017113890A1 (en) Fumigation reactor and method for producing a gas-liquid mixture
DE19514384C2 (en) Mixing or dispersing device with a guide housing
EP0832682A1 (en) Apparatus for homogenizing and dispersing liquid phases
EP1627676A1 (en) Apparatus and method for mixing a fluid especially with a powdery additive
EP1920822B1 (en) Device and method for continuous mixing and degassing of solid and/or liquid substances
DE3641413C1 (en) Apparatus for processing materials
EP3656523A1 (en) Mixing and kneading machine with efficient venting in the area of the feed-in, and related method
DE69730068T2 (en) mixing device
EP4140571A2 (en) Mixing device for producing a flowable product and method for operating a mixing device

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180220

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20191007

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

INTG Intention to grant announced

Effective date: 20210317

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016013075

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1393452

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210819

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2879389

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20211122

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502016013075

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B01F0003080000

Ipc: B01F0023400000

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210919

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210820

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210920

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210819

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016013075

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210731

26N No opposition filed

Effective date: 20220222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210919

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210723

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210723

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1393452

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230623

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230713

Year of fee payment: 8

Ref country code: IT

Payment date: 20230727

Year of fee payment: 8

Ref country code: GB

Payment date: 20230720

Year of fee payment: 8

Ref country code: ES

Payment date: 20230801

Year of fee payment: 8

Ref country code: CH

Payment date: 20230801

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230721

Year of fee payment: 8

Ref country code: DE

Payment date: 20230724

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519