EP3332395B1 - Détecteur de fumée à dispersion de lumière pourvu d'une chambre de mesure optique ménagée dans le boîtier du détecteur et d'une surface réfléchissante prévue sur un côté intérieur d'un capot de détecteur faisant partie du boîtier de detecteur - Google Patents

Détecteur de fumée à dispersion de lumière pourvu d'une chambre de mesure optique ménagée dans le boîtier du détecteur et d'une surface réfléchissante prévue sur un côté intérieur d'un capot de détecteur faisant partie du boîtier de detecteur Download PDF

Info

Publication number
EP3332395B1
EP3332395B1 EP16745687.0A EP16745687A EP3332395B1 EP 3332395 B1 EP3332395 B1 EP 3332395B1 EP 16745687 A EP16745687 A EP 16745687A EP 3332395 B1 EP3332395 B1 EP 3332395B1
Authority
EP
European Patent Office
Prior art keywords
light
detector
scattered
led
hood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16745687.0A
Other languages
German (de)
English (en)
Other versions
EP3332395A1 (fr
Inventor
Aleksandar Duric
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Schweiz AG
Original Assignee
Siemens Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Schweiz AG filed Critical Siemens Schweiz AG
Publication of EP3332395A1 publication Critical patent/EP3332395A1/fr
Application granted granted Critical
Publication of EP3332395B1 publication Critical patent/EP3332395B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/103Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device
    • G08B17/107Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device for detecting light-scattering due to smoke

Definitions

  • the invention relates to a scattered light smoke detector having an optical measuring chamber communicating with the ambient air.
  • the measuring chamber is housed inside a detector housing and limited by a base body and by a detector hood of the detector housing.
  • the main body and the detector hood can also be one-piece. Both are preferably a Kunststoffspritzgrussteil.
  • a preferably planar circuit carrier is accommodated, on which, adjacent to the measuring chamber, a light-emitting diode and a photosensor, such as e.g. a photodiode, are arranged in a scattered light arrangement.
  • a mirror surface for focusing a light cone emitted by the opposite light-emitting diode is arranged in the measuring chamber.
  • the mirror surface has a mirror geometry such that the light cone of the light-emitting diode intersects a reception region of the photosensor in a first scattered light volume within the measurement chamber. After being reflected, the cone of light virtually passes without contact through the interior of the detector housing with the measuring chamber and ends in a light-absorbing light trap.
  • a scattered light smoke detector in which two planar optical elements or only one ellipsoidal mirror (see FIG. 14) are arranged as an optical deflection element in the beam path between radiation source and radiation receiver.
  • the ellipsoidal mirror is arranged on a support of the scattered light smoke detector.
  • Common to all embodiments of the scattered light smoke detector is that the radiation emitted by the radiation source and the radiation scattered by the smoke particles to the radiation receiver is conducted virtually parallel to the ceiling to allow a very flat design of the detector (see Fig. 1, 2 . 4 and 5 ).
  • a scattered light smoke detector with an accessible for smoke particles measuring field in a measuring chamber to which the radiation of a radiation transmitter is directed. Stray radiation occurring in the measuring field is received by a radiation receiver.
  • the measuring chamber is designed as part of an internally mirrored hollow ellipsoid.
  • the measuring field is arranged at the first focal point and the radiation receiver at the second focal point of the hollow ellipsoid.
  • the local invention makes it possible to supply almost all of the scattered radiation to the smoke particles radiation receiver as a measurement signal, including the forward and backward scattered radiation and the scattered radiation of all intermediate areas.
  • the mirror formed by the hollow ellipsoid has one or more smoke inlet openings, which allow the smoke particles to penetrate into the measuring field.
  • the openings are small with respect to the surface consumption compared to the total surface of the hollow ellipsoid.
  • only a partial or half shell of the hollow ellipsoid is used to allow free access of the smoke particles for measuring. All the described embodiments can, as usual with optical smoke detectors, be provided with a labyrinth to prevent the entry of extraneous light into the hollow ellipsoid.
  • a scattered light smoke detector in which a light emitting diode and a photosensor are arranged on a circuit carrier, which lie opposite the inside of a detector hood. It is the photodiode and the photosensor each preceded by a prism for optical beam deflection by 90 °.
  • Such scattered light smoke detectors are well known. Like the scattered-light smoke detector according to the invention, they can be designed for connection to a detector bus or to a detector line. In case of a detected minimum smoke concentration the alarm or warning message is output to the detector bus.
  • the alarm or warning message can be issued optically and / or acoustically alternatively or additionally via radio and / or on the scattered light smoke detector.
  • the considered scattered light smoke detectors designed as point detectors can alternatively or additionally be designed for a battery-supported stand-alone operation.
  • the object is achieved with the objects of the main claim.
  • Advantageous embodiments of the present invention are indicated in the dependent claims.
  • the light-emitting diode and the photosensor lie directly opposite an inner side of the detector hood which delimits the measuring chamber.
  • a part of the inside of the detector hood has a concave mirror surface.
  • the mirror surface is thus according to the invention concave. It may be a silvery foil or a piece of metal sheet, e.g. made of aluminum or steel.
  • the film can be glued to the inside of the detector hood.
  • the sheet metal piece may be on the inside of the detector hood, e.g. glued or attached during injection molding of the detector hood with.
  • the mirror surface may also be a metallized surface, e.g. applied by means of a vapor deposition in a vacuum.
  • the mirror surface may also be a plastic mirror having a glossy or polished surface, such as e.g. made of black plastic.
  • the circuit carrier is preferably a planar printed circuit board.
  • it has contacting surfaces for surface mounting, ie for a so-called SMD assembly, at least on one of the two circuit carrier sides.
  • the essence of the invention lies in the use of the inside of the detector hood as a mirror or as a reflector to direct the emitted from the light emitting diode orthogonal to the circuit carrier light beam through a central region in the interior of the detector housing.
  • focusing and targeted steering of the light beam is also advantageous effective directed introduction of the light beam in the designated light trap with a nearly complete absorption of light possible.
  • virtual non-contact is meant that the mirrored light beam, apart from isolated marginal rays of the light beam, completely opens into the light trap, without first touching other parts of the housing.
  • At least one aperture and / or at least one light trap and / or light-absorbing structures are arranged on the circuit carrier.
  • a one-piece cover with recesses for at least the light-emitting diode and for the photosensor is mounted on the circuit carrier.
  • the cover has or forms the at least one diaphragm and / or light trap and / or light-absorbing structures.
  • the cover covers substantially all of the inner side of the detector cover opposite the upper side of the circuit carrier and thus forms the bottom of the optical measuring chamber except for the aforementioned recesses.
  • the cover is in particular a black plastic injection molded part.
  • the at least one aperture is formed as sharp as possible, so that only little light falls on such an edge and is reflected.
  • the light traps are preferably pot-shaped or funnel-shaped. They have such geometrically oriented surfaces and / or corrugations with respect to the main direction of incidence of the light rays from the light-emitting diode on, that the incident light rays "dead" after some reflections.
  • the majority of the remaining top of the cover is preferably grooved.
  • the surfaces of the diaphragm (s) and / or the light trap (s) and / or the corrugated surfaces or the corrugations are preferably formed shiny and act like black mirrors. This has the advantage that incident light is not diffusely scattered, but reflected reflected.
  • the inner side of the signaling hood also has corrugations as light-absorbing structures except for the mirror surface (s), in particular shiny black corrugations. It may also have on its inside a light-absorbing paint layer, e.g. a black color layer.
  • the optical measuring chamber is thus formed by the adjacent cover on the circuit carrier and by the opposite inner side of the detector hood.
  • This can advantageously be dispensed with a pot-shaped lid, which is usually plugged onto the floor or on the cover of the optical measuring chamber.
  • a labyrinth Such an arrangement is also referred to as a labyrinth.
  • labyrinth typically cylindrically designed labyrinth usually has lamellae as Lichtabpressieri on the radially outer periphery. The latter are designed such that they allow the passage of smoke particles to be detected into the interior of the labyrinth, but shield the interior of the labyrinth against direct ambient light.
  • such light shielding elements are integral parts of the cover for the circuit carrier. They can be molded there as a plastic part.
  • the light shielding elements may alternatively be integrated in the detector hood or in the main body.
  • the detector housing with the detector hood on an essentially rotationally symmetrical or mirror-image outer contour is essentially rotationally symmetrical or mirror-image outer contour. This allows a largely direction-independent smoke detection.
  • the detector hood has a convex outer contour and an at least partially concave inner contour. It has the respective mirror surface on the inside of the detector hood on one of the at least partially concave inner contour of the detector hood following mirror geometry.
  • the mirror surface may e.g. a concave portion of the surface of a sphere, an ellipsoid, a paraboloid or a hyperboloid. From the convex outer contour follows a geometrically corresponding concave inner contour of the mirror surface, provided that the wall thickness of the detector hood remains essentially unchanged.
  • the concave inner contour advantageously makes it possible to focus the incident light beam emitted by the opposite light-emitting diode.
  • the photosensor is arranged centrally in the detector housing, so that the scattered light volume formed in the interior of the detector housing encloses a constructive main axis extending through the center of the scattered light smoke detector. This advantageously allows a largely direction-independent smoke detection.
  • At least one further light-emitting diode with an optical axis orthogonal to the circuit carrier is arranged on the circuit carrier.
  • the optical axes of the three optoelectronic components run at least almost parallel to one another.
  • At least one of the at least one further light-emitting diode is arranged adjacent to the first light-emitting diode.
  • the at least one further light-emitting diode having the first light-emitting diode can be a two-color or multi-color light-emitting diode as a one-piece optoelectronic light-emitting diode Form component.
  • the at least one further light-emitting diode of the mirror surface of the first light-emitting diode lies opposite.
  • the light emitted by the respective light-emitting diodes has a mutually different wavelength.
  • the color-specific evaluation of the photosensor signal makes it possible to carry out a fire technical analysis of the detected smoke particles with regard to their particle size.
  • the first light-emitting diode is preferably a (monochrome) red light-emitting diode or a (monochrome) infrared light-emitting diode with a light wavelength of 940 ⁇ 70 nm.
  • the second light-emitting diode is preferably a (monochrome) blue light-emitting diode with a light wavelength of 470 ⁇ 70 nm or ( monochrome) UV light emitting diode in the UV-A range.
  • the first and second light-emitting diode can be combined to form a two-color light-emitting diode.
  • Such a light-emitting diode is also referred to as a dual LED or duo LED. In essence, both light-emitting diodes have an approximately identical optical axis, so that advantageously no further mirror surface is required on the inside of the detector hood.
  • the smoke detector has an electronic control unit, in particular a microcontroller.
  • the control unit is connected to the respective light emitting diode and the photosensor, in particular signal or data technology.
  • the control unit emits a fire alarm if a sensor signal assigned to the respective light-emitting diode exceeds a scattered light limit value or a combined scattered light limit value.
  • the microcontroller is further configured to drive the LEDs alternately at least indirectly and in the case of a plurality of light emitting diodes, and to evaluate the corresponding photosensor signal in a temporally assigned manner.
  • a thermal radiation sensor which is sensitive in a contactless manner for heat radiation in the mid-infrared region (MIR) is accommodated in the detector housing.
  • MIR mid-infrared region
  • thermopile a thermopile or a bolometer. More commonplace in the jargon is the English term "Thermopile" for a thermopile.
  • Such heat radiation sensors give i.Vgl. to pyrosensors that spend only one signal on heat radiation changes, also a sensor signal with constant heat radiation according to their intensity.
  • the heat radiation sensor is further aligned according to the invention optically to a central region on the inside of the detector hood for detecting a local housing temperature, which essentially follows the ambient temperature in the immediate vicinity of the scattered light smoke detector.
  • the central region typically comprises the geometric main axis or the axis of rotational symmetry of the scattered light smoke detector. It is also in the optical detection range of the heat radiation sensor.
  • the entire detector housing including the detector hood is also designed to be light-tight, so that no appreciable light, neither in the visible range, in the UV range nor in the near and middle infrared range passes through the detector housing.
  • the detected heat radiation is directly related to the temperature on the inside of the detector hood, which follows the actual ambient temperature with a small, justifiable delay.
  • the central area of the detector hood usually warms up quickly when the ceiling is installed as intended.
  • the wall thickness of the detector hood be dimensioned such that the prevailing on the outside of the detector hood ambient temperature by the heat-conducting material property of the detector hood with a time constant of less than 30 s, in particular less than 10 s follows.
  • the housing part has a wall thickness in the range of 1 to 2 mm, so that a time constant for the heat transfer from the outside to the inside in the central region of the detector hood of less than 10 seconds is possible.
  • the control unit is also connected to the heat radiation sensor and adapted to mathematically derive a temperature value corresponding to the ambient temperature from a heat sensor signal output by the heat radiation sensor and to take it into account when outputting the fire alarm.
  • a temperature value corresponding to the ambient temperature from a heat sensor signal output by the heat radiation sensor and to take it into account when outputting the fire alarm.
  • an excessively high temperature value can be used to check the plausibility of detected smoke in an open fire.
  • a fire alarm can also be issued by the control unit if there is an open fire with no smoke, such as smoke. in a fire with alcohol, but the ambient temperature is too high, such as greater than 65 ° Celsius.
  • the control unit is set up to determine the temperature value according to the pyrometric measuring principle taking into account a stored emissivity.
  • the emissivity depends on the surface condition and / or the material of the detector hood as well as on the wavelength of the emitted heat radiation.
  • the emissivity in the mid-infrared range preferably has a value of at least 0.8, preferably of at least 0.9. This can e.g. be achieved by a black plastic or by a black paint in the central area of the inside of the detector hood.
  • the emissivity can e.g. be measured by a sample test.
  • the detector hood comprises a housing part, which comprises at least the central area of the detector hood.
  • This housing part is preferably integrated in the detector hood.
  • this housing part is only permeable to heat radiation in the mid-infrared range.
  • the remaining housing parts are preferably designed to be light-tight, so no significant Light, neither in the visible range, in the UV range nor in the near and middle infrared range through the remaining detector housing passes.
  • the material of the central housing part may be for example a plastic, such as a thermoplastic based on polymethyl methacrylate or polycarbonate or a ceramic, such as transparent fine crystalline spinel ceramics based on magnesium and aluminum oxide. In particular, this material then appears in the optically visible region as opaque, in particular as opaque or white-opaque.
  • the scattered light detector thus has a housing or a detector hood, which appears to a viewer as a conventional fire alarm.
  • control unit is connected to the heat radiation sensor and adapted to monitor a heat sensor signal emitted by the heat radiation sensor for the occurrence of significant fluctuations or flicker frequencies for open fire and blazing embers and to take into account in the output of the fire alarm.
  • the frequency-technical monitoring may e.g. by means of digital filters or by means of a digital Fourier analysis (FFT, DFT).
  • a fire alarm can be issued immediately when a detected open fire before the resulting smoke particles reach the optical measuring chamber. The alarm is thus faster.
  • control unit may additionally be set up to derive a temperature value corresponding to the ambient temperature from a direct component of the heat sensor signal, and likewise to take this into consideration when outputting the fire alarm.
  • two characteristic fire parameters can advantageously be detected by means of only one heat radiation sensor.
  • a separate further component for the temperature detection in the environment of the hazard alarm can be omitted.
  • the heat radiation permeable housing part forms an optical lens for widening the optical detection area of the heat radiation sensor. As a result, a larger area in the vicinity of the scattered light smoke detector can be monitored.
  • FIG. 1 shows a first embodiment of the scattered light smoke detector 1 with a mirror surface S according to the invention.
  • the scattered light smoke detector 1 shown has a detector housing 2 on, which is composed of a base body 3 and a detector hood 4.
  • the detector 1 is mounted with its connection side AN to a detector base, not shown further, which is typically attached to the ceiling.
  • openings OF are formed so that smoke particles can pass through them into the interior IR of the detector housing 2 for optical smoke detection.
  • further light shielding elements in the form of lamellae LAM are present, which allow the smoke particles to pass through, but shield direct ambient light (s. FIG. 6 ).
  • an optical measuring chamber is accommodated or formed in the interior IR of the detector housing 2, which is bounded by the base body 3 and by the detector hood 4.
  • a circuit substrate 7 is accommodated, on which, adjacent to the measuring chamber, a light-emitting diode 5 and a photosensor 6 are arranged in a scattered-light arrangement. In such an arrangement, no direct light from the light emitting diode 5 to the photosensor reaches 6.
  • Both light emitting diode 5 and photosensor 6 are arranged on the flat circuit substrate 7, that their optical axes A orthogonal or nearly orthogonal to the circuit substrate 7 and thus parallel to each other.
  • the light-emitting diode 5 and the photosensor 6 are SMD components which can be applied with high precision and automatically on a circuit carrier 7 with contact areas provided for this purpose.
  • the light-emitting diode 5 and the photosensor 6 lie directly opposite an inner side IS of the detector hood 4, the inner side defining the optical measuring chamber.
  • the light-emitting diode 5 illuminates the inside IS of the detector hood 4 directly. It lacks in comparison to the prior art, a labyrinth lid, which would otherwise be located between light emitting diode 5 and photosensor 6 on the one hand and between the inside IS of the detector hood 4 on the other hand.
  • a part of the inside IS of the detector hood 4 has a mirror surface S, which is opposite to the light-emitting diode 5.
  • the mirror surface S is dimensioned such that the light cone R, B emitted by the light-emitting diode 5 completely impinges on the mirror surface S.
  • the mirror surface S has a mirror geometry such that the light cone R, B intersects a reception region E of the photosensor 6 in a scattered light volume Z within the optical measuring chamber. In this case, scattered light passes only from particles in this scattered light volume for detection by the photosensor 6.
  • the receiving area E is a receiving cone.
  • apertures BL, a light trap LF and light-absorbing structures AB in the form of corrugations for minimizing the fundamental pulse in the optical measuring chamber are furthermore provided.
  • the aforementioned structural elements BL, LF, AB are integral elements of a glossy black plastic cover 8, which is provided for covering or attachment to the circuit substrate 7 and forms, so to speak, the bottom of the optical measuring chamber.
  • the cover 8 is in the example a one-piece plastic injection molded part. This part can also be inseparably composed of several plastic parts. In the cover 8, two recesses in the form of openings for the light emitting diode 5 and for the photosensor 6 are still present.
  • the inner side IS of the detector hood 4 also has light-absorbing structures AB, such as e.g. in the form of corrugations or fluted surfaces (not shown).
  • the exception is the mirror surface S, which is e.g. by an attached specular piece of sheet metal or by vapor-deposited metal, e.g. Aluminum, can be realized.
  • the scattered light smoke detector 1 shown also has a substantially rotationally symmetrical or mirror-image outer contour.
  • SA the constructive main axis or axis of symmetry is drawn for this purpose.
  • the detector hood 4 has a convex outer contour on its outer side AS.
  • the detector hood 4 has an approximately equal wall thickness in the range of 1 to 2 mm, so that the detector hood 4 forms on its inner side IS a constructively corresponding convex inner contour.
  • This contour is also roughly followed by the mirror geometry of the mirror surface S.
  • the resulting concave mirror geometry can advantageously be used for focusing and focusing the emitted light cone.
  • a desired advantageous mirror geometry can be achieved via a suitably selected outer contour of the detector hood.
  • the mirror surface S has such a mirror geometry that the light cone R, B of the light-emitting diode 5 after its reflection virtually non-contact the interior IR of the detector housing 2 with the optical measuring chamber and flows into the light-absorbing light trap LF. The incident there, not scattered smoke particles light is effectively absorbed there.
  • the scattered light smoke detector shown has an electronic control unit 10 for controlling and evaluating the optoelectronic components 5, 6 and for outputting an alarm message.
  • This is preferably a microcontroller and applied to the circuit substrate 7.
  • the control unit 10 is programmatically configured to actuate the light-emitting diode 5 at least indirectly pulsed and to evaluate a corresponding sensor signal originating from the photosensor 6. If the sensor signal exceeds a scattered light limit, an alarm message is output.
  • the light-emitting diode 5 shown can be a red-emitting LED, an infrared LED, a blue-emitting LED or a UV LED.
  • R denotes a red cone of light or a red light bundle
  • B denotes a blue cone of light or a blue light bundle.
  • the light-emitting diode 5 may also be a dual LED 50 or a multi-color LED, such as an RGB LED.
  • FIG. 2 shows a second embodiment with two mirror surfaces S1, S2.
  • a second mirror surface S2 is provided, which is opposite to the photosensor 6 and which has a mirror geometry such that the original first scattered light center Z1 (without a second mirror surface S2) can be expanded by the second scattered light center Z2.
  • the first and second scattered light centers Z1, Z2 can partially overlap.
  • FIG. 3 shows a third embodiment with a heat radiation sensor 9 for detecting an ambient temperature T according to the invention.
  • the photosensor 6 is now arranged centrally in the detector housing 2 on the circuit carrier 7.
  • the scattered light volume Z formed in the interior IR of the detector housing 2 now encloses the constructive main axis SA or symmetry axis extending the center of the smoke detector 1.
  • Smoke detection is equally fast regardless of the direction of the smoke entering the optical measuring chamber.
  • the cover 8 forms by way of example yet another light trap LF.
  • a heat-radiation sensor 9 which is sensitive to heat radiation in the mid-infrared range and is in the form of a thermopile, likewise designed as an SMD component, is received in detector housing 2 in the form of a contactless device.
  • the heat radiation sensor 9, like the photosensor 6, is arranged centrally and on the circuit carrier 7. With W, the heat-optical conical detection range of the heat radiation sensor 9 is designated.
  • the detection range W defines a (virtual) measurement surface MF on the inside IS of the detector hood 4 for detecting a housing temperature there. In other words, the heat radiation sensor 9 detects the heat radiation emitted by this measurement surface MF in the direction of the heat radiation sensor 9.
  • the temperature prevailing at the measuring surface can then be deduced, which substantially follows the ambient temperature T in the immediate vicinity of the scattered light smoke detector 1. Temperature changes, such as in a fire, are the fastest detectable at the lower vertex SP. Through this point SP also runs the constructive main axis SA of the scattered light smoke detector 1. This is thus the measuring surface MF opposite.
  • the ambient temperature T is due to the thin housing wall of the detector hood 4 after a short time, such as after 10 s, on the inside IS on the measuring surface MF on.
  • the detector hood 4 in the region of the measuring surface MF have a particularly good heat-conducting plastic or a piece of metal, such as copper.
  • the heat radiation sensor 9 is connected on the output side to the control unit 10, which then mathematically derives a temperature value corresponding to the ambient temperature T from a heat sensor signal output by the heat radiation sensor 9 and takes this into consideration in the output of the fire alarm.
  • FIG. 4 shows a fourth embodiment with two mirror surfaces S1, S2 and two stray light arrangements according to the invention.
  • the wall thickness of the detector hood 4 is significantly larger than in the example of the preceding figures.
  • the mirror geometry, in particular of the second mirror surface S2 can additionally be specifically adapted to the specification by the outer contour of the detector hood 4 in order to specifically focus the light beam emitted by the opposite light-emitting diode 52 or the light cone B into the light trap LF.
  • the second mirror surface S2 is partially embedded or recessed in the detector hood 4.
  • Both light emitting diodes 51, 52 may be of the same type, e.g. Infrared LEDs. From the respective detected same color scattered light from different scattered light angles, a determination of the type of smoke is possible.
  • FIG. 5 shows a fifth embodiment with a heat radiation sensor 9 for detecting an ambient temperature T and for detecting open fire in the sense of a flame detector according to the invention.
  • a heat radiation sensor 9 for detecting an ambient temperature T and for detecting open fire in the sense of a flame detector according to the invention.
  • the detector hood 4 in the central region MF, ie in the region of the measuring surface, according to the invention, a transparent only for heat radiation in the mid-infrared region housing part 11. This can be such that it does not differ visually from the remaining detector housing 2.
  • the housing part 11 additionally forms an optical lens for widening the optical detection area W.
  • the control unit 10 is configured to monitor the heat sensor signal outputted from the heat radiation sensor 9 for the occurrence of significant fluctuations or flicker frequencies for open fire and blazing fire in terms of a flame detector and to take into account in the output of the fire alarm.
  • control unit 10 may be configured to derive from a DC component of the heat sensor signal by calculation a temperature value corresponding to the ambient temperature T and also to take this into consideration when issuing the fire alarm.
  • all the components 5, 6, 10 shown are arranged on a circuit carrier side opposite the cover 8. For the light emitting diode 5 and for the photosensor 6 corresponding through hole DO in the circuit substrate 7 are present.
  • FIG. 6 finally shows a plan view of the embodiment FIG. 5 along the line VI marked there.
  • the lamellae LAM as Lichtabpressieri and the central arrangement of the Photosensor 6 and heat radiation sensor 9 can be seen.
  • the FIG. 6 also shows the substantially rotationally symmetrical housing shape of the scattered light smoke detector 1. Also well visible are the large-area light-absorbing structures AB of the plastic cover 8 on the circuit substrate. 7

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fire-Detection Mechanisms (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Claims (14)

  1. Détecteur de fumée à lumière diffusée doté d'une chambre de mesure communiquant avec l'air ambiant, cette chambre de mesure étant logée à l'intérieur (IR) d'un boîtier de détecteur (2) et étant délimitée par un corps de base (3) et par un cache de détecteur (4) du boîtier de détecteur (2), un support de circuit (7) étant logé dans le corps de base (3), sur le support de circuit (7), contigus à la chambre de mesure optique, une diode électroluminescente (5) ainsi qu'un photodétecteur (6) étant agencés dans un montage de lumière diffusée, cette diode électroluminescente (5) et ce photodétecteur (6) présentant chacun un axe optique (A) évoluant au moins presque à la perpendiculaire du support de circuit (7), une surface miroir (S) étant disposée dans la chambre de mesure pour la focalisation d'un cône lumineux (R, B) émis de la diode élecroluminescente (5) opposée, et cette surface miroir (S) présentant une géométrie de miroir telle que le cône lumineux (R, B) de la diode électroluminescente (5) découpe une zone réceptrice (E) du photodétecteur (6) dans un premier volume de lumière diffusée (Z1, Z) à l'intérieur de la chambre de mesure et en ce que ce cône lumineux (R, B), après sa réflexion traverse effectivement sans obstacle l'espace intérieur (IR) du boîtier de détecteur (2) avec la chambre de mesure et débouche dans un piège à lumière (LF) absorbant la lumière, caractérisé en ce que la diode électroluminescente (5) et le photodétecteur (6) sont directement face à un côté interne (IS) du cache de détecteur (4) délimitant la chambre de mesure, une partie de ce côté interne (IS) du cache de détecteur (4) présentant une surface miroir (S) concave.
  2. Détecteur de fumée à lumière diffusée selon la revendication 1, une partie du côté interne (IS) présentant une autre surface miroir (S2) qui fait face au photodétecteur (6) et qui présente une géométrie de miroir telle que le premier volume de lumière diffusée (Z1) peut s'élargir d'un deuxième volume de lumière diffusée (Z2).
  3. Détecteur de fumée à lumière diffusée selon la revendication 1 ou 2, un recouvrement (8) avec des évidements pour la diode électroluminescente (5) et pour le photodétecteur (6) étant pratiqué sur le support de circuit (7), et ce recouvrement (8) étant fait en particulier monobloc et le au moins un écran (BL) présentant un piège à lumière (LF) et/ou des structures photoabsorbantes (AB).
  4. Détecteur de fumée à lumière diffusée selon l'une des revendications précédentes, le côté interne (IS) du cache de détecteur (4) présentant jusqu'à la au moins une surface miroir (S) des structures absorbant la lumière (AB), en particulier des stries noir brillant et/ou une couche de couleur absorbant la lumière.
  5. Détecteur de fumée à lumière diffusée selon l'une des revendications précédentes, le boîtier de détecteur (2) avec le cache de détecteur (4) présentant un profil extérieur essentiellement circulairement symétrique ou inversé.
  6. Détecteur de fumée à lumière diffusée selon la revendication 5, le cache de détecteur (4) présentant un profil extérieur convexe et un profil intérieur au moins en partie concave, et chaque surface miroir (S) sur le côté interne (IS) du cache de détecteur (4) présentant une géométrie de miroir suivant le profil intérieur au moins partiellement concave du cache de détecteur (4).
  7. Détecteur de fumée à lumière diffusée selon la revendication 5 ou 6, le photodétecteur (6) étant situé au centre du boîtier de détecteur (2) de sorte que le volume de lumière diffusée (Z) qui s'est formé dans l'espace intérieur (IR) du boîtier de détecteur (2) enferme un axe principal (SA) constructif évoluant à travers le centre du détecteur de fumée.
  8. Détecteur de fumée à lumière diffusée selon l'une des revendications précédentes, au moins une autre diode électroluminescente (52) avec un axe optique (A) perpendiculaire au support de circuit (7) étant située sur le support de circuit (7), au moins une de la au moins une autre diode électroluminescente (52) étant située contiguë à la première diode électroluminescente (5, 51) ou formant avec la première diode électroluminescente (5, 51) une diode électroluminescente (50) dichrome ou polychrome sous forme d'un composant optoélectronique monobloc, cette au moins une autre diode électroluminescente (52) étant située en face de la surface miroir (S) de la première diode électroluminescente (5, 51), et la lumière émise par chacune des diodes électroluminescentes (50, 51, 52) présentant une longueur d'onde différente l'une de l'autre.
  9. Détecteur de fumée à lumière diffusée selon la revendication 8, la première diode électroluminescente (51) étant une diode électroluminescente rouge ou à infrarouge et la deuxième diode électroluminescente (52) étant une diode électroluminescente bleu ou ultraviolette, ou étant rassemblée en diode électroluminescente dichrome (50).
  10. Détecteur de fumée à lumière diffusée selon l'une des revendications précédentes, avec une unité de commande (10) électronique, laquelle est raccordée à chaque diode électroluminescente (5, 51, 52) et au photodétecteur (6), et cette unité de commande (10) émettant une alarme incendie, dans le cas où un signal de détecteur associé à l'une des diodes électroluminescentes respectives (5, 51, 52) dépasse positivement une valeur de seuil de lumière diffusée ou une valeur de seuil de lumière diffusée combinée.
  11. Détecteur de fumée à lumière diffusée selon la revendication 10, le boîtier de détecteur (2) logeant un détecteur de rayonnement thermique (9) opérant sans contact et qui est sensible à un rayonnement thermique dans la gamme d'infrarouge moyen, ce détecteur de rayonnement thermique (9) étant en particulier une thermopile ou un bolomètre, ce détecteur de rayonnement thermique (9) étant orienté optiquement sur une zone centrale (MF) sur le côté interne (IS) du cache de détecteur (4) pour la détection d'une température locale de boîtier, laquelle suit essentiellement la température ambiante (T) dans l'environnement immédiat du détecteur de fumée à lumière diffusée, l'unité de commande (10) étant raccordée au détecteur de rayonnement thermique (9) et étant prévu pour inférer mathématiquement d'un signal du détecteur thermique émis par le détecteur de rayonnement thermique (9) une valeur de température correspondant à la température ambiante (T) et pour la faire intervenir dans le déclenchement de l'alarme incendie.
  12. Détecteur de fumée à lumière diffusée selon la revendication 10, un détecteur de rayonnement thermique (9) opérant sans contact et sensible au rayonnement thermique dans la gamme d'infrarouge moyen étant logé dans le boîtier de détecteur (2), ce détecteur de rayonnement thermique (9) étant en particulier une thermopile, un bolomètre ou une photodiode, ce détecteur de rayonnement thermique (9) étant orienté optiquement sur une zone centrale (MF) sur le côté interne (IS) du cache de détecteur (4) pour la détection d'une température locale de boîtier, ce cache de détecteur (4) comprenant une pièce de boîtier (11) englobant au moins la zone centrale (MF) du cache de détecteur (4), laquelle pièce n'est perméable qu'au rayonnement thermique dans la gamme d'infrarouge moyen, et l'unité de commande (10) étant raccordée au détecteur de rayonnement thermique (9) et étant prévu pour surveiller un signal de détecteur thermique émis par le détecteur de rayonnement thermique (9) dès l'apparition de fluctuations significatives ou de fréquences scintillantes indiquant un feu libre et des braises incandescentes et pour le faire intervenir dans le déclenchement de l'alarme incendie.
  13. Détecteur de fumée à lumière diffusée selon la revendication 12, l'unité de commande (10) étant en outre prévue pour inférer, à partir d'une part continue du signal de détecteur thermique, mathématiquement, une valeur de température correspondant à la température ambiante (T) et pour la faire intervenir dans le déclenchement de l'alarme incendie.
  14. Détecteur de fumée à lumière diffusée selon la revendication 12 ou 13, la pièce de boîtier (11) qui n'est perméable qu'au rayonnement thermique formant une lentille optique pour l'élargissement de la zone de détection optique (W) du détecteur de rayonnement thermique.
EP16745687.0A 2015-08-06 2016-07-26 Détecteur de fumée à dispersion de lumière pourvu d'une chambre de mesure optique ménagée dans le boîtier du détecteur et d'une surface réfléchissante prévue sur un côté intérieur d'un capot de détecteur faisant partie du boîtier de detecteur Active EP3332395B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP15180045.5A EP3128493A1 (fr) 2015-08-06 2015-08-06 Detecteur de fumee a ecran diffusant dote d'une chambre de mesure optique logee dans le boitier de detecteur et d'une surface reflechissante sur un cote interieur d'un capot de detecteur en tant que partie du boitier de detecteur
PCT/EP2016/067794 WO2017021217A1 (fr) 2015-08-06 2016-07-26 Détecteur de fumée à dispersion de lumière pourvu d'une chambre de mesure optique ménagée dans le boîtier du détecteur et d'une surface réfléchissante prévue sur un côté intérieur d'un capot de détecteur faisant partie du boîtier de detecteur

Publications (2)

Publication Number Publication Date
EP3332395A1 EP3332395A1 (fr) 2018-06-13
EP3332395B1 true EP3332395B1 (fr) 2019-05-22

Family

ID=53783596

Family Applications (2)

Application Number Title Priority Date Filing Date
EP15180045.5A Withdrawn EP3128493A1 (fr) 2015-08-06 2015-08-06 Detecteur de fumee a ecran diffusant dote d'une chambre de mesure optique logee dans le boitier de detecteur et d'une surface reflechissante sur un cote interieur d'un capot de detecteur en tant que partie du boitier de detecteur
EP16745687.0A Active EP3332395B1 (fr) 2015-08-06 2016-07-26 Détecteur de fumée à dispersion de lumière pourvu d'une chambre de mesure optique ménagée dans le boîtier du détecteur et d'une surface réfléchissante prévue sur un côté intérieur d'un capot de détecteur faisant partie du boîtier de detecteur

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP15180045.5A Withdrawn EP3128493A1 (fr) 2015-08-06 2015-08-06 Detecteur de fumee a ecran diffusant dote d'une chambre de mesure optique logee dans le boitier de detecteur et d'une surface reflechissante sur un cote interieur d'un capot de detecteur en tant que partie du boitier de detecteur

Country Status (3)

Country Link
EP (2) EP3128493A1 (fr)
CN (1) CN107851355B (fr)
WO (1) WO2017021217A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102638997B1 (ko) * 2017-12-15 2024-02-20 아나로그 디바이시즈 인코포레이티드 소형의 광학적 연기 검출기 시스템 및 장치
US10809173B2 (en) 2017-12-15 2020-10-20 Analog Devices, Inc. Smoke detector chamber boundary surfaces
US11788942B2 (en) 2017-12-15 2023-10-17 Analog Devices, Inc. Compact optical smoke detector system and apparatus
USD874964S1 (en) 2018-11-06 2020-02-11 Analog Devices, Inc. Blocking members in a smoke detector chamber
USD920825S1 (en) 2018-11-06 2021-06-01 Analog Devices, Inc. Smoke detector chamber
US10921367B2 (en) 2019-03-06 2021-02-16 Analog Devices, Inc. Stable measurement of sensors methods and systems
US11796445B2 (en) 2019-05-15 2023-10-24 Analog Devices, Inc. Optical improvements to compact smoke detectors, systems and apparatus
WO2021115728A1 (fr) * 2019-12-10 2021-06-17 Siemens Schweiz Ag Unité de détection de fumée pour une alarme incendie à suppression d'impulsions de base, et procédé approprié de détection de fumée

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH684556A5 (de) * 1992-09-14 1994-10-14 Cerberus Ag Optischer Rauchmelder.
DE19741853A1 (de) * 1997-09-23 1999-03-25 Bosch Gmbh Robert Rauchmelder
EP1103937B1 (fr) * 1999-11-19 2005-05-11 Siemens Building Technologies AG Détecteur d'incendie
TWI235965B (en) * 2001-04-24 2005-07-11 Matsushita Electric Works Ltd Fire detector unit
EP1376505B1 (fr) * 2002-06-20 2006-02-15 Siemens Schweiz AG Détecteur d'incendie
CN201616160U (zh) * 2009-05-26 2010-10-27 官洪运 多波段红外图像型大空间火灾探测器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN107851355A (zh) 2018-03-27
WO2017021217A1 (fr) 2017-02-09
EP3128493A1 (fr) 2017-02-08
EP3332395A1 (fr) 2018-06-13
CN107851355B (zh) 2020-03-17

Similar Documents

Publication Publication Date Title
EP3332395B1 (fr) Détecteur de fumée à dispersion de lumière pourvu d'une chambre de mesure optique ménagée dans le boîtier du détecteur et d'une surface réfléchissante prévue sur un côté intérieur d'un capot de détecteur faisant partie du boîtier de detecteur
EP3270362B1 (fr) Détecteur d'incendie comprenant une chambre de mesure et un support de circuit destiné à disposer ensemble un détecteur d'incendie de la chambre de mesure et au moins un autre capteur destiné à détecter une grandeur de mesure dans l'environnement à l'extérieur du détecteur d'incendie
DE102013015692B4 (de) Laserzündkerze
DE102011119431B4 (de) Streustrahlungsbrandmelder und Verfahren zur automatischen Erkennung einer Brandsituation
DE102006004003A1 (de) Infrarot-Gasdetektor
DE60316682T2 (de) Gassensoren
DE102016207757B4 (de) Leuchtvorrichtung
DE102016113492A1 (de) Teilchensensor
DE69014808T2 (de) Infrarot-Strahlungsdetektor.
EP1903332A1 (fr) Capteur destiné à la détection de saleté et/ou de pluie et procédé de fonctionnement d'un capteur
EP3857207A1 (fr) Détecteur de fumée à lumière diffusée comportant une led bicolore, un photocapteur et un polariseur sélectif en longueur d'onde, connecté en amont du photocapteur ou en aval de la led bicolore, et utilisation appropriée d'un tel polariseur
EP0802499A2 (fr) Balayeur à luminescence
DE19512126C1 (de) Vorrichtung zum Detektieren eines Gases oder Aerosols
DE102017204037A1 (de) Optischer Sensor mit Belagssensor
WO2009077110A1 (fr) Dispositif pour déterminer le degré de réflexion d'un échantillon
DE102004001357B4 (de) Ölnebel-Erkennungseinrichtung
DE102019203230A1 (de) Sensorvorrichtung umfassend ein Sensorelement und eine Abschlussscheibe
EP3584775A1 (fr) Module conducteur optique soudable, en particulier d'une seule pièce destiné à la détection de fumée selon le principe de la lumière diffuse ainsi que bloc de détection de fumée, module de détection de fumée et détecteur de fumée selon le principe de la lumière diffuse
DE29511344U1 (de) Vorrichtung zur Messung von optischen Kenngrößen transparenter Materialien
DE102005025848B3 (de) Optische Messvorrichtung und Verwendung der Messvorrichtung zur Messung von Beschichtungen auf organischer- und/oder Polymer-Basis
DE19920184C2 (de) Verfahren für die gleichzeitige Erfassung von diffuser und specularer Reflexion von Proben, insbesondere undurchsichtiger Proben, sowie Reflektanz-Meßsonde
DE102023000154B3 (de) Vorrichtung für das Recycling diffuser elektromagnetischer Strahlung
DE102004023524B3 (de) Verfahren zur Erfassung und Meldung von Betauungen in Rauchmeldern
JP7504434B2 (ja) 積分球及び分光透過率測定装置
DE2758517A1 (de) Rauchdetektor mit einer dunkelfeldoptik

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180112

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190207

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016004815

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1137020

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190615

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190522

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190922

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190822

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190822

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016004815

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190731

26N No opposition filed

Effective date: 20200225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190726

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160726

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1137020

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210726

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20221013

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230807

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230720

Year of fee payment: 8

Ref country code: FR

Payment date: 20230720

Year of fee payment: 8

Ref country code: DE

Payment date: 20230918

Year of fee payment: 8

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230731